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Abstract  

 

Having gained a tremendous amount of popularity since its introduction in 2006, Tract-Based Spatial 

Statistics (TBSS) can now be considered as the standard approach for voxel based analysis (VBA) of 

diffusion tensor imaging (DTI) data. Aiming to improve the sensitivity, objectivity, and interpretability 

of multi-subject DTI studies, TBSS includes a skeletonization step that alleviates residual image 

misalignment and obviates the need of data smoothing. Although TBSS represents an elegant and 

user-friendly framework that tackles numerous concerns existing in conventional VBA methods, it 

has limitations of its own, some of which have already been detailed in recent literature. In this work, 

we present general methodological considerations on TBSS and report on pitfalls that have not been 

described previously. In particular, we have identified specific assumptions of TBSS that may not be 

satisfied under typical conditions. Moreover, we demonstrate that the existence of such violations 

can severely affect the reliability of TBSS results. With TBSS being used increasingly, it is of 

paramount importance to acquaint TBSS users with these concerns, such that a well-informed 

decision can be made whether and how to pursue a TBSS analysis. Finally, in addition to raising 

awareness by providing our new insights, we provide constructive suggestions that could improve 

the validity and increase the impact of TBSS drastically.  
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1. Introduction 

Diffusion magnetic resonance imaging (MRI) can deliver insight into the living human brain in health 

and disease, especially in white matter anatomy, and provides quantitative parameters related to 

white matter (WM) microstructure (Tournier et al., 2011). Much of the knowledge on changes in WM 

microstructure that we have gained from diffusion MRI originates from studies that compared such 

diffusion markers between populations of interest, commonly a healthy control group and a diseased 

population. The value and impact of such studies is directly tied to the ability of researchers to 

present results that are unbiased, objective, and anatomically specific. Tract-based spatial statistics 

(TBSS) (Smith et al., 2006) has become a very popular tool for the evaluation of diffusion tensor 

imaging (DTI) data in this context. 

TBSS pioneered the idea of projecting volumetric data onto a WM skeleton to circumvent the partial 

volume effect (PVE) and gain statistical power from this dimensionality reduction (Smith et al., 2006). 

The approach does not require data smoothing and could alleviate many concerns that were raised 

regarding the conventional voxel based morphometry (VBM) framework that was previously used in 

many DTI studies (e.g., Jones et al. (2005)). Although TBSS has advanced the state of the art in 

diffusion MRI group studies significantly, the increased complexity by adding the skeletonization step 

reduces the overall transparency. In other words, while TBSS is very user-friendly, and delivers 

comprehensive images, it may also obscure several aspects of the raw data that the reader of a study 

or even the researcher that performed the analysis might not be aware of. With more and more 

scientists adopting to the technique, it is therefore increasingly important to raise awareness of the 

limitations of the approach. In previous studies, some problems related to TBSS have been 

investigated.  Edden and Jones (2011) reported that the shape of the skeleton as well as the 

statistical results are rotationally variant. Zalesky (2011) quantitatively assessed the performance of 

the projection algorithm in moderating registration misalignments and showed that only 10% of 

post-registration misalignment was corrected by the TBSS projection algorithm. Keihaninejad et al. 

(2012) demonstrated the dependence of specificity and sensitivity of TBSS results on the registration 

target and suggest the use of a group-wise atlas as target. Van Hecke et al. (2010) discussed potential 

pitfalls and limitations of TBSS, like the assumption that the effect of interest occurs in voxels where 

the local FA is highest. In the following, we discuss important issues that we address in this study.  

One major point of debate is the potentially limited anatomical specificity of TBSS. The technique 

was introduced as being “tract-based”, in response to the challenge of comparing voxels of “the 

same part of the same WM tract from each and every subject”, both “in terms of resolving 

topological variabilities and in terms of the exact alignment of the very fine structures present in 

such data” (Smith et al., 2006). However, the distinction between adjacent, differently oriented fiber 

bundles with similar FA values is challenging and alternative methods are described by Kindlmann et 



al. (2007) and Yushkevich et al. (2008) to overcome this limitation. Since TBSS only makes use of the 

FA map and discards the orientation information captured in the diffusion data, two different 

problems arise. First, complications in terms of anatomical specificity occur in regions where 

pathways of different structures merge, such as those related to the superior projections of the 

corpus callosum (CC) and the corona radiata fiber bundles. Without the (long-distance) directional 

tract information derived from the orientation information, it is virtually impossible to assign the FA 

values to the same anatomical structure across subjects in a consistent way as the skeletonization 

step causes these different bundles to collapse on top of each other (see Fig. 1). Furthermore, even 

in regions where the assignment of voxels to tracts is unambiguous, the tract-specificity of the TBSS 

projection step is unknown. The region where the cingulum bundle (CB) and CC are in close proximity 

is a good example in this respect and in the original TBSS-paper, it has been explicitly stated that the 

CB and CC are correctly differentiated by the projection algorithm (Smith et al. (2006), page 1494, 

second paragraph): “The superior part of the cingulum (i.e., above the corpus callosum) is slightly 

extended across its cross-section in the inferior-superior direction, and well-localised across subjects 

by virtue of the strong, nearby corpus callosum, and hence the normal projections described above 

work well (similar issues relate to the fornix)”. However, this was not shown experimentally. Since we 

question the tract-specificity of TBSS throughout this paper, we do not use the words “tract-center” 

or “tract” when referring to the skeleton, but “locally maximal FA value”, or “FA-skeleton”, because 

we think this is a less ambiguous and, thus, more appropriate expression. 

Another factor that plays a central role in the TBSS processing pipeline, and one that may greatly 

affect the anatomical specificity of TBSS, is the quality of image registration. The mean FA skeleton 

has been shown to be less “alignment-invariant” than anticipated and alternative skeleton-based 

approaches that try to address this point have been published, but have not yet reached a 

comparable level of acceptance (Kindlmann et al., 2007; Yushkevich et al., 2008; Zhang et al., 2010a).  

A further point of debate is the robustness and interpretability of TBSS results. The original TBSS  

paper includes inter-subject and inter-session test-restest results regarding the reproducibility of FA 

values (Smith et al., 2006). However, the influence of the user in terms of parameter settings and the 

noise level on the final TBSS result, i.e., the significant maps, has not been shown. Being a fully 

automated technique, TBSS is generally considered to be largely user-independent. However, there 

are several parameters that have to be adopted in each TBSS analysis. While this is potentially very 

important in order to allow for a proper adaptation of the method to each specific analysis, many 

papers vary the parameters without motivating their choice. This is critical, since important aspects 

of the underlying data such as SNR or alignment problems remain unnoticed when looking only at 

the final result. We anticipate that the influence of different TBSS configuration options on the final 

result is largely unclear and/or underestimated by TBSS users. One important example is the choice 



of template in TBSS studies. Many studies use the FMRIB-template that is distributed with TBSS. This 

might be mainly due to computational reasons, since the generation of a study-specific target is 

computationally expensive to obtain, especially in larger populations. However, while the choice of 

the template is known to significantly impact the results of other group analysis methods (Van Hecke 

et al., 2011), its impact on the final TBSS result is largely unknown. An initial study was performed by 

Keihaninejad et al. (2012), who  demonstrated the positive impact of improved alignment on TBSS by 

the use of a group-wise atlas construction.  

Taken together, although TBSS may provide plausible results, the final significance maps overlaid on 

the template image may also hide potential methodological imperfections related to the quality 

and/or the analysis of the data. In this paper, a deeper look underneath the surface of the TBSS 

framework is provided. We address several methodological aspects of the technique: how unbiased, 

objective, and anatomically specific are TBSS results? What are major sources of bias, user-

dependence, and non-specificity and to what extent do these factors affect the final TBSS result? 

With the detailed analyses presented in this study, we provide an in-depth investigation of the major 

pitfalls when analyzing and interpreting data with TBSS. We conclude with suggestions that define 

good practice when using TBSS and we propose improvements that may further raise the validity and 

impact of TBSS.  

 

2. Methods: 

2.1 TBSS settings 

In all experiments, the TBSS pipeline was applied using the recommended parameters. For the in vivo 

datasets a permutation test with n=5000, corrected for multiple comparisons and threshold free 

cluster enhancement (TFCE (Smith and Nichols, 2009)) was used to compare patients and controls, 

with p=0.05 as threshold for significance. Unless otherwise stated, an FA threshold of 0.2 was applied 

and the FMRIB58 template (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA) was used as 

registration target. Four dataset types (two in vivo human brain, physical phantom, and synthetic FA 

images) were used to perform the TBSS analyses in this work. Details on these data sets and 

experiments are provided in the following paragraphs. 

 

2.2 Dataset types 

Two in vivo dataset types were used. The first (in vivo dataset I) was acquired at 1.5 T (Symphony, 

Siemens Medical Solution, Erlangen, Germany) for 15 Alzheimer’s disease patients and 15 healthy 

controls using a twice refocused single-shot echo planar imaging (EPI) sequence. Parameters: 

repetition time (TR) 4700 ms, echo time (TE) 78 ms, field of view (FOV) 240 mm, in-plane resolution 

of 2.5 mm, 50 axial slices of 2.5 mm thickness, 6 gradient directions (b=1000 s/mm²) and a b=0 



s/mm2 image, and 10 repetitions. The second in vivo dataset type (in vivo dataset II) was acquired at 

3 T (Intera , Philips, Best, the Netherlands) from 50 Alzheimer’s disease patients and 50 healthy 

controls recruited as described previously (Reijmer et al., 2013). A single-shot spin echo EPI with the 

following parameters was used: TR 6638 ms, TE 73 ms, FOV 220 mm, in-plane resolution of 1.72 mm, 

48 axial slices of 2.5 mm thickness, 45 gradient directions (b=1200 s/mm²) and a b=0 s/mm2 image 

(number of signal averages=3). 

Preprocessing included correction for motion and eddy currents (FSL (Jenkinson et al., 2012), FLIRT 

(Greve and Fischl, 2009; Jenkinson et al., 2002; Jenkinson and Smith, 2001)) and image masking (FSL, 

BET (Smith, 2002)). The tensors were estimated with the weighted linear least squares approach 

(Veraart et al., 2013). 

Physical phantom datasets were acquired at 3 T (TRIO, Siemens Medical Solution, Erlangen, 

Germany) using an EPI sequence with monopolar gradient scheme and the following parameters: 

Resolution 2.5x2.5x2.5 mm3, FOV 160x160 mm², TR/TE 2900/78 ms, 180 diffusion directions with 

b=1000 s/mm2, 20 b=0 s/mm2 images, bandwidth=2004 Hz/Px, and GRAPPA acceleration factor 2. All 

images were corrected for eddy currents using FSL. All voxels with intensities below approximately 

three times the noise threshold (derived from the mean intensity of the background signal) in the 

non-diffusion weighted image were excluded from diffusion tensor calculations and are excluded 

from further analysis. 

A synthetic FA map of two adjacent WM tracts was emulated by a grayscale image volume with an 

isotropic voxel size of 1 mm. A small linear FA gradient from each pathway center to its edges is 

introduced, so that TBSS can identify the center of each trajectory. For a detailed description, see 

section 2.3.   

 

2.3 Experiments 

Effect of WM tract adjacency on anatomical specificity 

To investigate tract-specificity, we segmented two major adjacent WM tracts, the CB and the CC, in 

all subjects in native space (in vivo dataset I/II, 15/50 Alzheimer’s disease patients and 15/50 healthy 

controls). We did this by thresholding the main diffusion direction, which is clearly distinguishable 

between the two tracts, as follows: voxels with FA>0.4 in the analyzed region of interest (Fig. 2a) 

were marked CB if the first eigenvector deviated not more than 30° from anterior-posterior direction 

and were defined as part of the CC if they did not deviate more than 30° from left-right direction. 

Using the same transformations as in the conventional TBSS pipeline, each of the binary 

segmentations is followed through the TBSS pipeline (Fig. 2b-d).  

To determine the potential sources of voxel misassignments between adjacent WM tracts we 

investigated the effect of the FA skeleton projection procedure and registration quality on the 



outcome results. In a first experiment, a conceptual weakness of the TBSS skeletonization and 

projection step is demonstrated by making use of the synthetic FA map. This volume emulates two 

tracts of different FA (0.9 and 0.6) and different thickness (15 mm and 5 mm) that traverse each 

other at a 90° angle, similar to the CB and CC (Fig. 3a). The tracts are separated by a 1 mm thick gap. 

In a second experiment, based on the in vivo datasets, we used an alternative registration method 

(DTI-TK (Zhang et al., 2006)) and repeatedly followed the CB and CC segmentations through the 

pipeline, in order to assess the influence of registration quality on the misassignment problem. In 

contrast to the standard TBSS registration (FNIRT), DTI-TK uses the full tensor information for the 

registration. We choose DTI-TK since it was the overall winner of a registration algorithm challenge as 

previously published (Wang et al., 2011). Zhang et al. (2007) and Van Hecke et al. (2007) also found 

that the use of full tensor features or integration of all the diffusion-weighted images instead of 

tensor-derived indices for the registration can improve the alignment of WM tracts and the detection 

of WM differences. Because a tensor template is needed as registration target for this approach, the 

IXI aging template (Zhang et al., 2010b) (65-83 years old, 21 males and 30 females, 

www.nitrc.org/projects/dtitk) is used for the DTI-TK registration and its FA map for the standard TBSS 

registration. In a last experiment, in order to evaluate the impact of voxel misassignments on the 

final TBSS statistical results, we compared the statistical significant maps produced by TBSS at 

different levels of voxel misassignment (Fig. 4). 

 

Influence of resolution/partial volume and skeleton shape 

The skeletonization step of TBSS could – in principle – correct for residual misalignments after the 

image registration. However, for a successful correction, the direction of the misalignment and the 

direction of the FA maximum search direction have to match. We analyzed, if this prerequisite for a 

reliable group comparison is fulfilled in vivo (Fig.5, in vivo dataset I/II). 

A deeper understanding of the connection between partial volume effects, the skeleton shape, the 

FA maximum search direction and the projected FA values chosen for the subsequent group 

comparison is provided by a previously presented resolution phantom (Bach et al., 2013) (physical 

phantom datasets). This phantom (see Fig. 6a) consists of 6 circular fiber strands, each with an outer 

diameter of 60 mm. They have square cross-sections of 5x5, 3x3, 2.5x2.5, 2x2, 1.5x1.5 and 1x1 mm². 

Two different image volumes of the phantom were generated by varying its relative position to the 

imaging matrix by shifting the FOV (Fig. 6b). The two different FOV positions are visualized by the 

green and red squares in Fig. 6c. In one case, the strand is “halved” by the voxels (green squares). In 

the other case, the whole strand thickness is covered by just one voxel (red squares). Therefore, the 

same strand appears in the image with different partial volume effects. This can be seen on the FA 

maps in Fig. 6b, which shows the six fiber strands of the resolution phantom from the side. In a first 



evaluation, we compared the resulting TBSS skeletons that were generated from the different images 

in order to see whether the TBSS skeletonization step produces consistent results. In a second 

experiment, we compared the FA values on the skeleton in order to test potential biases that occur 

during the skeleton projection step of TBSS.  

 

Influence of image noise 

Different subsets of the repetitions of the in vivo dataset I were used to study the effect of noise 

level on the TBSS result. In a first evaluation, we varied the number of used repetitions between one 

(strong influence of noise) to ten repetitions (lowest influence of noise). In a second evaluation, we 

chose different subsets of two repetitions in order to assess the test-retest capabilities of TBSS. In 

both evaluations, a standard TBSS-analysis was performed for each of the subsets. 

 

Effect of the user-specified settings 

Two parameters that commonly differ between TBSS studies were varied in order to see how strong 

TBSS results depend on the user input: (i) the choice of the registration target and (ii) the FA 

threshold defined in the skeletonization process. In a first evaluation, the choice of the registration 

target was varied between two options, including the FMRIB58 template, which is provided with the 

TBSS software, and a study-specific target, i.e. the most representative subject from a group of 

subjects. In a second evaluation, the FA threshold in the skeletonization process was varied between 

0.15 and 0.3. The analysis is performed for both in vivo datasets. 

 

3. Results 

3.1 Influence of adjacent WM tracts 

The results in this section were obtained from the in vivo dataset I/II. Figures 2e/f show examples of 

misassigned voxels from the CB to the CC and vice versa (white and black arrows). The contribution 

of one tract to the other is not binary, even on a voxel-basis, since the registration and interpolation 

steps introduce a blurring to the binary segmentations. The blue arrows in Fig. 2e/f, for example, 

point to yellow voxels, where the original colors green and red overlap. Black skeleton voxels 

represent voxels that could not be identified as being part of the CB or the CC. A quantitative analysis 

of the subject-specific percentages of voxels that were misassigned is shown in Fig. 2g/h. The analysis 

differentiates voxels with a contribution, denoted as x, of the wrong WM tract of above 50% and in 

the range of 10-50%. In summary, 15% of all skeleton voxels had a contribution of 10% or more of 

the wrong fiber tract. This percentage not only varied strongly across subjects (Fig. 2g), but also 

between the patient and control groups (Fig. 2h, for 10% ≤ x < 50%: p=0.001 for dataset I and 



p=0.039 for dataset II). In particular, in patients, the overall number of affected skeleton voxels was 

25% higher than in controls. 

The conceptual limitation of the TBSS skeletonization and projection step is demonstrated using the 

synthetic FA map. Fig. 3a shows the input FA image of two fiber strands and the resulting FA 

skeleton. The TBSS projection step applies a distance transform to the skeleton (Fig. 3b) in order to 

determine the search area for the local FA maximum. The resulting search area for the upper 

skeleton voxel is highlighted in Fig. 3c. It can be seen that the search area partially covers the 

neighboring fiber tract (Fig. 3d). This is a potential source of misassignment (yellow arrow), especially 

if the neighboring tract has high FA values. Whenever adjacent WM tract bundles are of different 

diameter, the search area of the thinner bundle can reach to the thicker bundle and the example 

demonstrates that even under ideal conditions with a perfect registration and no noise or partial 

volume, voxels can be misassigned by this procedure. The second source of voxel misassignments 

that we investigated was the quality of image alignment in the context of tract assignment. To this 

end, we used the in vivo datasets. The overall percentage of voxels, which have a contribution of at 

least 10% of the neighboring strand, could be reduced by a factor of about seven by replacing the 

TBSS registration procedure with the DTI-TK image registration approach (Fig. 4b). Fig. 4c 

demonstrates this effect on the statistical results of TBSS. In particular, conventional TBSS found 

highly significant group differences in both the CB and the CC. In dataset II this result is more 

pronounced than in dataset I. However, when using the DTI-TK image registration method, the group 

differences in the CC became spatially more homogeneous for dataset I and the group differences in 

the CB disappeared completely for both dataset types. This effect is also reproducible for other 

registration targets (IXI adult template and study specific template created with DTI-TK; see 

Supplement 1). 

 

3.2 Influence of partial volume and skeleton shape 

Fig. 5a illustrates the mismatch between the FA maximum search direction and the direction of 

residual registration misalignments in the fornix. Fig. 5b/c show the midsagittal view of the fornix 

(cyan colored rectangle in Fig. 5a). There is a good concordance between the mean FA skeleton 

(transparent blue) and the FA maps (background) of the subjects shown in first column of Fig. 5b/c 

(green arrows). Four further subjects are shown for each dataset and the red arrows indicate areas 

where the mean FA skeleton does not cover the fornix. The direction for the local maximum search is 

perpendicular to the skeleton sheet, which lies in the image plane, but the directions of the 

misalignments between the FA skeleton and the individual FA maps are within this plane (cf. Fig. 5a). 

In this case, the search for the local FA maxima, which should give the tract center, fails. 



Using the physical phantom datasets, Fig. 6d/e show the TBSS skeletons for the 2.5 mm thick strand 

in green and red, respectively. Using TBSS, the fibers were reduced to thin sheets with one voxel 

thickness. In the first case (green, Fig. 6c and d), this sheet appears thick in the side view and thin in 

the top view. The second sheet (red, Fig. 6c and e) appears thin in the side view and thick in the top 

view. The sheet orientation has an impact on the TBSS projection step, since the search direction for 

the local FA maximum is limited to the directions perpendicular to the sheet. This leads to search 

directions that are radial to the fiber-ring-plane (Fig. 6d, bottom) in the one case, and perpendicular 

in the other configuration (Fig. 6e, bottom). Fig. 6f shows a frequency distribution of the FA values 

derived from the fiber skeleton, demonstrating the influence of the above effect on the projected FA 

values. In comparison to the red skeleton (red bars), the green skeleton yielded an increased amount 

of high FA values (green bars). The reason for this effect is the flipping of the search direction of the 

TBSS projection step that influences the correct identification of FA maxima in the tract center. The 

FA values on the red skeleton tended to be lower, even though the red configuration was much less 

effected by partial volume effects than the green configuration. 

 

3.3 Influence of image noise level 

The influence of noise level on the skeleton structure as well as on the statistical results of the group-

comparison patients versus controls is demonstrated in Fig. 7 (in vivo dataset I). In the first two rows, 

different numbers of repetitions were used to calculate the diffusion tensors. The influence of noise 

level decreases from left to right. The results show increasing numbers of false-positive tract centers 

in the skeleton structure with increasing noise levels (green arrows). Furthermore, it can be seen that 

significant group differences between patients and controls were detected even on those purely 

noise induced structures (blue arrows).  

The level of significance for group differences between patients and controls was also heavily 

dependent on the noise level. The FA of the fornix, in this example, (red arrows) was significantly 

different between groups when using one repetition, but not when two repetitions were used. At 

three repetitions, the FA of the fornix again appeared as significantly different between patients and 

controls, while slightly decreasing in significance when going from three to ten repetitions (from 

p=0.02 to p=0.04). 

While Fig. 7a shows only one representing subset for each noise level (1, 2, 3 and 10 rep.), Fig. 7b 

shows four possible subsets with two repetitions each (subset 1 with repetition 1 and 2; subset 2 

with repetition 3 and 4; subset 3 with repetition 5 and 6; subset 4 with repetition 7 and 8). The FA 

skeleton differed only slightly from subset to subset. While subset 1 did not yield significant 

differences between patients and controls in the fornix, the remaining subsets did show significant 



differences in this area. Apart from the fornix, similar effects were found in other areas of the 

skeleton (black arrows). 

For in vivo dataset II similar results were obtained (Supplement 2). The 45 diffusion directions of this 

dataset were split into two subsets of 22 diffusion directions. The significance maps differed 

between noise levels (22 vs 45 diffusion directions) as well as between the subsets (22 vs 22 

diffusion directions). 

 

3.4 Influence of the user 

Fig. 8 shows the different results obtained by using different registration targets. For in vivo dataset I 

with 30 subjects, the FMRIB58 target is characterized by a smoother FA map and a more clear 

depiction of the major WM structures in comparison to the study-specific registration target. This 

directly affected the structure of the FA skeleton (blue arrows) and the statistical results (green 

arrows). The fornix exhibited significant group differences when using the FMRIB58 target, but did 

not reveal significant group differences when using the study-specific atlas. This statement also holds 

true for in vivo dataset II with 100 subjects (green arrows), although differences in the mean FA 

skeleton shape due to the different registration targets are much less pronounced (blue arrows). For 

dataset II, additionally a study specific target is created with DTI-TK. The results obtained with this 

target are consistent with the results of the study-specific TBSS approach. One advantage of the DTI-

TK study specific target creation is that the computation time scales with n, whereas it scales with n2   

for the TBSS approach. The standard TBSS procedure requires 10,000 pair-wise image registrations 

for n=100 subjects. 

Fig. 9 shows the effect of varying the FA threshold in the skeletonization process. For in vivo dataset 

I, at a low threshold of 0.15, the FA skeleton also includes finer structures that disappear at higher 

threshold values. This also included some false-positive tract centers that we could not associate 

with any underlying WM tracts (see blue arrows, dataset I). At increasing threshold values, some 

known WM structures shrink or disappear (e.g. the capsula externa, fornix, cerebellum, see green 

arrows, dataset I/II). Interestingly, the significance levels between patients and controls were also 

altered for different threshold levels in both datasets. The fornix, for example, is present on all 

skeletons, but exhibited significant differences only at the lower threshold levels. The CC is 

characterized by a high FA (up to 0.9) and, here, neither the skeleton nor the statistical results are 

affected by the relatively small changes in the FA threshold (see red arrows, dataset I/II). 

 

4. Discussion 

TBSS is by far the most popular approach for performing voxel-wise DTI analyses. It provides 

dedicated processing steps and deals with smoothing and misalignment issues in diffusion MRI-based 



group analysis studies. However, it also builds upon a certain set of assumptions that we have 

investigated in detail in this work. Most TBSS users are well-informed about the major processing 

steps and well-aware of their major weaknesses, such as the abandonment of directional information 

in the skeletonization process. Unfortunately, though, this knowledge is not of much use when 

interpreting the final results of a TBSS study. TBSS results usually do look very appealing, and it is 

impossible to quantify or even see any underlying ambiguities in the data without taking further 

efforts and looking deeper into the data. In fact, while some publications have discussed potential 

improvements or weaknesses of TBSS (Edden and Jones, 2011; Keihaninejad et al., 2012; Van Hecke 

et al., 2010; Zalesky, 2011), it is mostly unknown how much these weaknesses can actually impact 

the final results of a typical group comparison and the conclusions drawn from it. In the present 

study, we explore several key issues in this regard in order to further raise awareness of the pitfalls of 

TBSS and to provide constructive suggestions for future improvements of the technique. 

 

Anatomical inaccuracies at the skeleton projection step 

One of our major findings is the extent of anatomical inaccuracies that is inherent to the FA skeleton 

projection and the substantial bias that it can introduce. TBSS is known to be purely FA based, and it 

was previously reported that adjacent WM tracts are not necessarily separable based only on their 

FA (Kindlmann et al., 2007; Yushkevich et al., 2008). It was yet unknown, though, that the percentage 

of voxels that is misassigned to the wrong tract reaches such high numbers in two prominent tracts 

in the brain, the body of the CB and the CC. Interestingly, exactly this separation of the superior CB 

and the CC was explicitly stated to be solved and assumed to “work well” in the original TBSS 

publication (Smith et al. (2006), page 1494, second paragraph) despite the lack of any analysis in that 

article to substantiate this claim. We have shown that this assumption is not met and we have 

provided examples where inadequate separation of adjacent WM tracts occurs, even under ideal 

conditions, which are, perfect registration, no partial voluming, and infinite SNR. Under real 

conditions with residual misalignment, noise contributions, and partial volume effects, an even larger 

bias originating from the projection step can be expected.  

Do these confounding factors really make a difference? In other words, should one worry about the 

validity of the outcome results given these issues, or could one simply proceed and assume that 

these effects are negligible? One could possibly argue that a decreased confidence in the projection 

step will only increase the variability and, thus, may just lower the sensitivity of the technique for 

finding potential changes between groups. However, as we have shown in this work, the situation is 

much more severe. With standard TBSS settings, the complete superior CB was incorrectly identified 

as being significantly different between groups, which was purely due to anatomically inaccurate 

assignments during the skeleton projection procedure. This finding was consistent in both datasets 



that differ strongly considering number of subjects, field strength and number of gradient directions. 

Thus, our data suggests that this is an artefact that may occur regardless of the exact dataset 

description.   There are two main factors that can contribute to the observation that the FA in a large 

region would appear significantly different between groups as a result of voxel misassignment. First, 

since the projection depends on the quality of each subject’s alignment with the skeleton, which, in 

turn, is tightly bound to the morphology of the subject, the quality of assignments is highly group 

dependent if the disease at interest moderates morphology and not only microstructure (as 

demonstrated in the box plots in Fig. 2h). Second, due to the fact that TFCE accounts for statistical 

support from adjacent voxels in order to detect statistically significant differences in voxel clusters, 

the missing or increasing support of voxels in close proximity can quickly spread over the structure 

and can dramatically change the overall significance map. The statistical results obtained with TFCE 

are thus also influenced by the overall number of neighborhood voxels (i.e. the size of the skeleton 

sheet structure).  

 

Bias at the skeleton projection step 

Digging deeper into the skeleton projection step related to anatomical specificity, we have 

performed detailed analyses of the behavior of TBSS in images of a physical phantom with precisely 

defined fiber bundles with a diameter in the order of the voxel resolution. The assumed benefit of 

the TBSS projection step to compensate post registration alignment errors was previously analyzed 

by Zalesky (2011), in which it was reported that TBSS cannot compensate 90% of errors, but still gives 

good correspondence in the FA values. Looking at finer bundles such as the fornix, we expected that 

this FA value correspondence will also be strongly reduced. We were able to demonstrate that the 

positioning of the acquisition matrix and concomitant partial volume effects caused errors in the 

skeletonization projection, which is in line with previous findings by Edden and Jones (2011). One of 

the added benefits in this work is that we included well-defined phantom data that could act as a 

ground-truth reference of the underlying fiber architecture. One finding regarding the phantom 

experiments was particularly intriguing: we expected to find the highest FA values on the skeleton in 

cases where the imaging matrix is perfectly aligned with the phantom fiber tracts. In addition, with 

imperfect alignment the FA was expected to be lower due to partial voluming (Bach et al., 2013). 

However, when the TBSS skeleton projection was applied, the contrary was found. We have shown 

that this effect occurs due to the ill-defined skeleton sheet orientation and the related projection 

path. This effect is quite relevant, also when looking at in-vivo datasets, especially when analyzing 

finer tubular (e.g., the fornix) or circular (e.g., the uncinate fasciculus) structures. In general, the 

dominant factor that defines the orientation of the skeleton sheet may actually be related to the 

variation in anatomical alignment, rather than by the shape of the structure. In other words, the 



smearing effect of imperfectly aligned structures when creating the mean FA template may lead to 

artificial sheet- or tubular-looking structures in the skeleton and can make a correct projection of the 

original structure impossible.  

While many authors might not be aware of this effect, the authors of the TBSS publication have 

briefly noticed potential problems with small tubular structures like the fornix. In particular, in their 

results, they confirmed the quality of the projection vectors in the fornix to ensure that their result is 

not a finding based on pure chance. As such a confirmation step would be advisable for every TBSS 

study that investigates finer structures, it would be a valuable future extension of TBSS to further 

simplify this type of verification within the application. However, looking at our in-vivo experiments 

in the fornix, the FA skeleton orientation seems to be primarily determined by the inter-subject 

variability of the fornix position rather than by its shape, leading to a vast amount of voxels on the 

fornix skeleton that project directly into the cerebrospinal fluid and which do not belong to the fornix 

at all. 

It is important to remember that in regions with complex fiber architecture, such as the area where 

the CC and corticospinal tract kiss/cross, it is much harder or even impossible to differentiate 

individual tracts while generating the skeleton and performing the projection procedure. In this 

context, we want to emphasize that the skeleton should be referred to as the FA skeleton, not the 

tract-skeleton, and that statistical results on this skeleton should be interpreted with these 

assignment problems in mind. A promising future improvement of TBSS could be to implement a 

skeletonization and projection step that does not ignore the directional information in the data. 

Yushkevich et al. (2008) use, for example, fiber tractography in order to distinguish between adjacent 

tracts. Until such a technique is developed in TBSS, one could consider an extended use of the “extra-

treatment” that was originally added to manually guide the skeleton projection in the temporal 

cingulum as one of the important tubular structures in the brain (Smith et al., 2006). However, a 

clear distinction between tubular and sheet-like is not always possible and the required regions of 

interest would have to be drawn manually to produce a study-specific template. Unfortunately, this 

would be a major obstacle for the usability of TBSS and would also further reduce the objectivity of 

such analyses. 

 

Statistical power and sensitivity to pathologies  

The original TBSS publication provided insights into the repeatability of FA measurements across 

sessions and across subjects (Smith et al., 2006), reporting an inter-session coefficient of variation 

between 3% and 5%, and an inter-subject coefficient of variation of between 5% and 15%. These 

numbers, however, were derived by manually defining and comparing 7 voxels of interest on the 

skeleton for different major structures and did not include important aspects that come up when 



considering the entire processing pipeline. In our experiments, we demonstrated the significant 

impact of noise on the final TBSS result. We showed that the noise level strongly affects the 

significance values of specific structures in the skeleton. We noticed that in terms of statistical 

significance these structures tended to appear or disappear as a whole rather than on voxel-level. 

We also observed this effect when varying the subsets for analysis while keeping the same level of 

noise and when changing the noise level for each subject’s dataset. While such effects can 

dramatically change the conclusions drawn in a study (Bells et al., 2012), these may also be 

attributed in part to the TFCE  approach (Smith and Nichols, 2009). 

Another problem that we identified in our experiments is the noise-dependency of the shape of the 

FA skeleton. This is critical not only because TFCE depends on the skeleton shape, but also because 

we have identified significant group differences on artificial, noise induced structures that are 

anatomically meaningless (e.g., a skeleton part within the cerebro-spinal fluid). Thus, statistical 

correction is a major and important area of research in the future. 

The current trend of increasing the resolution in diffusion weighted MRI potentially intensifies the 

problems of skeleton-based analyses. Reducing a full tract bundle to a one voxel thick skeleton 

becomes increasingly problematic with smaller voxel sizes (higher resolutions) with regard to 

statistical power, since a much higher percentage of the information in the image gets eliminated in 

the projection step. Therefore, and in light of increasingly accurate registration schemes and multi-

compartment modeling, the original motivation of TBSS and the skeleton projection may need to be 

reconsidered. Note that this is in line with a current study that shows improved results via high-

quality non-linear registration as compared to the registration-projection in TBSS (de Groot et al., 

2013). This optimized registration approach is also sensitive to pathologies that may be overlooked 

using TBSS, e.g. in cases where the tract perimeter and not the tract center is affected by a disease. It 

is obvious that TBSS should not be used for topology changing diseases such as brain tumors. 

 

TBSS is state of the art – some recommendations for use 

Despite the methodological considerations presented in this work, TBSS is still the leading technique 

for voxel-wise DTI analyses at the moment as many alternative approaches are far less reproducible 

and may have similar problems in many of the discussed situations. In addition, one of the major 

strengths of TBSS is the minimal input required from the user. To encourage TBSS users to maximize 

the robustness and validity of their analyses we would like to conclude our discussion with 

suggestions for best practice. Two major obstacles for TBSS becoming completely objective are the 

degrees of freedom in the interpretation of results and the remaining parameter settings of the 

method. 



First, the unambiguity in interpretation of the results is particularly unwarranted if studies only show 

a single arbitrary slice position from the multiplanar image maps. This problem could be alleviated by 

showing multiple equidistant slices in the image. Furthermore, when reporting and interpreting 

results, as demonstrated experimentally in this paper, this should be done with great care and, 

ideally, only after a check of the plausibility of the results. For example, for structures that are in 

close proximity to each other, such as the CC and CB, the potential influence of post-registration 

misalignments and voxel misassignments could be checked using a similar approach as we have 

adopted in our experiments, that is, by following the segmentations of structures throughout the 

pipeline. A further post-hoc evaluation can be performed by splitting the healthy controls into two 

groups and looking for any unexpected false-positives when performing TBSS on these two groups. In 

this design, no regions with significant differences are then expected. Furthermore, TBSS offers an 

“extra-treatment” to manually guide the skeleton projection for tubular structures. As we have 

shown that the standard projection procedure leads to significant artifacts in tubular structures, this 

extra-treatment should be considered whenever tubular structures are of special interest to a study. 

 

The second obstacle, which is related to the parameter settings in TBSS, is much harder to tackle. The 

parameters allow the method to suit many different scenarios with different requirements on the 

one hand, but they leave room for tweaking TBSS to produce nice-looking results that are not really 

stable to obtain. The choice of the registration target, for example, has previously been investigated 

by (Keihaninejad et al. (2012)) and it was proposed to apply group-wise atlas construction in order to 

improve the alignment of DTI data and, consequently, the specificity and sensitivity of TBSS-results. 

In our analyses, we further investigated the effect of choosing different registration targets, and 

noticed that a large variation is introduced in the FA skeleton geometry and, subsequently, in the 

final statistical results. Keihaninejad et al. (2012) reported that the fornix appears significantly 

different between AD patients and controls when registering to the FMRIB58 template and that the 

significance vanishes if a group-wise atlas is chosen as registration target. We analyzed this using two 

further AD datasets with up to one hundred subjects and the effect emerged even more clearly. In 

contrast to Keihaninejad et al. (2012) differences in the statistical results already occurred when 

switching between the two TBSS standard options: 1. registration to the FMRIB58 template or 2. 

registration to the most representative subject of the group. Similar findings were obtained by 

varying another important user setting, the FA threshold in the skeletonizing process. Again, some 

structures were detected to be significantly different between groups for one setting, but not for the 

other. This is precarious, since many users do not have the knowledge or expertise to evaluate such 

effects in detail. In addition, the optimal parameters for their specific study cannot be known in 

advance.  



As a consequence, we propose a clear rule for TBSS studies in this regard: only report results that are 

based on the default parameter settings given by TBSS, as long as there is no clear evidence from 

literature not to do so. All settings that deviate from the default configuration in TBSS should be 

explicitly mentioned and motivated. In addition, the stability of findings with regard to the FA 

skeleton threshold should be checked for low-FA structures like the fornix or the capsula externa as 

these can be particularly unreliable. Furthermore, with regard to the choice of the registration target, 

a recommendation can already be made on basis of both previous studies and our work: replace the 

TBSS registration step with tensor-based, group-wise registration, e.g. using DTI-TK. 

Our recommendations for a specific TBSS processing pipeline are summarized in table 1. Two further 

tables show our recommendations regarding the interpretation of TBSS results (table 2) and future 

improvements of TBSS (table 3).  Finally, to ensure complete reproducibility and examination of the 

results, we encourage researchers to make their datasets available (either publicly or upon request), 

which is already common practice in many other research fields.  
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Fig. 1 – Collapse of different white matter tracts. In regions where pathways of different structures 

merge (yellow ellipses), the skeletonization step causes these different bundles to collapse on top of 

each other. Therefore, it is virtually impossible to assign the FA values to the same anatomical 

structure across subject in a consistent way. Legend: colored – tensor color map of a human brain; 

white – FA skeleton; yellow ellipses – regions where the superior part of the CC and the corona 

radiata merge. 



 

Fig. 2 – Influence of adjacent white matter tracts. (a) Sagittal and coronal view of an exemplary FA 

map and the region of interest (blue). The cyan highlighted area is shown in b-f. (b) Coronal view of 

FA values in the region of interest. (c) Segmentation of the CB (green) and the CC (red). (d) 

Segmentation after registration and resampling. (e+f) Result of the skeleton projection step in two 

different subjects. Some CB-voxels were assigned to the CC-skeleton (white arrows) and vice versa 

(black arrow). Blue arrows indicated voxels whose FA values are a mixture of CB and CC FA values. 
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Black skeleton voxels represents voxels, which could not be identified as CB or CC voxels previously. 

(g) Fraction of voxels per subject that had a relative contribution x of the “wrong” tract to the FA 

values of the skeleton (in vivio datasets I/II). (h) Patients and controls differed significantly for 0.1≤x< 

0.5 (p=0.001 for dataset I, p=0.039 for dataset II). Outliers are indicated by ‘+’. 

 

Fig. 3 – Potential source of misassignment. (a) Synthetic FA map (simulating a coronal view of the CC 

and the CB as in Fig. 2b). The obtained FA skeleton is shown in blue. (b) Distance map calculated by 

TBSS (higher intensities reflect larger distances to the skeleton). (c) The search area for local FA 

maxima for the upper fiber strand (yellow area). (d) The misassignment of a voxel from the bottom 

tract (the maximal FA value in the search area) to the upper skeleton (yellow arrow).  



 

 

Fig. 4 – Impact of misassignments on TBSS results. (a) The position of the region shown in c is 

highlighted cyan colored. (b) The fraction of voxels per subject, which have a contribution of at least 

10% of the neighboring strand, strongly depends on the registration technique. (c) Sagittal view 

(upper tract: CB, lower tract: CC) of the TBSS statistical results obtained by the TBSS standard 

pipeline, as well as with an advanced tensor-based registration technique (DTI-TK). Both in vivo 

dataset types are investigated. The DTI-TK registration decreased the number of misassigned voxels 

by factor seven. The highly significant differences in the CB that were identified by the conventional 

pipeline completely disappear when the number of misassignments is decreased. 

 



 

Fig. 5 – mean FA skeleton and anatomical concordance in individual subjects. (a) Because of the 

mismatch between search and misalignment direction, the TBSS skeletonization step could not 

compensate residual registration misalignments in the fornix. The area highlighted in cyan is depicted 

in b and c. (b+c) Midsagittal view of the fornix with good (green arrows) and bad (red arrows)  

concordance between the mean FA skeleton and the fornix. Five subjects are shown for each in vivo 

dataset type. The red arrows indicate areas where the FA skeleton does not cover the fornix and the 

search for the tract center has to fail. Legend: transparent blue / blue – mean FA skeleton; grayscale 

background – FA maps. 



 

Fig. 6 – Influence of resolution/partial volume and skeleton shape. (a) Circular phantom spindle 

with 6 fiber strands (blue) of square cross-section. (b) Slice through the phantom FA image using the 

FOV that was illustrated in (c) by the green (b, right) and red (b, left) squares. (c) Schematic depiction 

of one of the fiber strands and two different positions of the FOV (green and red squares). (d) Side 

view (top) and top view (bottom) of the FA skeleton (green) of the 2.5 mm thick strand for the FOV 

that was illustrated in green. (e) Same as (d), but using the FOV that was illustrated in red. Please 

note the flipping orientation of the FA skeleton sheets in green vs. red, resulting in different search 



directions for the TBSS projection step. (f) The frequency distribution of the projected FA values for 

the red and the green skeleton. The FA values on the red skeleton tended to be lower, even though 

the red configuration was much less effected by partial volume effects than the green configuration. 

 

Fig. 7 - Influence of image noise.  (a) TBSS significance maps obtained using different numbers of 

repetitions (1, 2, 3 and 10, in vivo dataset I). Higher noise levels lead to false-positive tracts in the 

skeleton (green arrows). Some false-positive tracts were subject to significant group differences (blue 

arrows). The noise induced parts of the skeleton largely disappear when using all 10 repetitions. The 

significance levels of group differences (e.g. in the fornix) go up and down for different numbers of 

repetitions (red arrows). (b) Four possible subsets of two repetitions each are shown. The FA 

skeleton differs only slightly from subset to subset. The fornix shows significant differences in 3 of 

the 4 subsets. Significance of differences also changes in the CC (black arrows). Corresponding results 

were obtained for in vivo dataset II (see Supplement 2). Legend: grayscale background – mean FA; 

black lines – FA skeleton; colors ranging from red to yellow – significant (p≤0.05) differences between 

Alzheimer’s disease patients and controls (same colorbar as in Fig. 4, red: low significance, yellow: 

high significance); Tra – transversal view; Sag – sagittal view. 



 



Fig. 8 – Influence of the user I: registration target. (legend similar to Fig. 7) TBSS results were 

generated using the FMRIB58 target and then compared to TBSS results obtained by using a study-

specific target. For dataset I the study-specific target exhibited a more brittle FA skeleton with 

potentially false-positive tract centers (blue arrows). This effect vanishes for dataset II with 100 

subjects. The statistical results were also influenced by the choice of the registration target (see 

green arrows, e.g. in the fornix). This statement holds true in both datasets. For dataset II an 

alternative study specific target is created with DTI-TK and the results are consistent with the study 

specific TBSS approach.  

 

Fig. 9 – Influence of the user II: FA threshold.  (legend similar to Fig. 7) TBSS was performed at 

different FA thresholds. For dataset I the FA skeleton at lower FA thresholds shows finer but 

potentially false-positive white matter tracts (blue arrows). At higher thresholds, the white matter 



tracts are more precisely defined. These effects vanish if a higher number of subjects is used (dataset 

II).  The significance level of group differences was highly dependent on the FA threshold for both 

datasets. The fornix, for example, was represented on all skeletons, but was only found to be 

significantly altered at threshold levels of 0.2 or below. At higher thresholds, important structures 

begin to disappear from the skeleton (e.g. the capsula externa, fornix, cerebellum, see green arrows). 

The FA skeleton as well as statistical results at the CC are not influenced by the relatively low changes 

in the FA threshold (see red arrows). 


