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Abstract

All neuroimaging packages can handle group analysis with t-tests or general linear modeling

(GLM). However, they are quite hamstrung when there are multiple within-subject factors or

when quantitative covariates are involved in the presence of a within-subject factor. In addition,

sphericity is typically assumed for the variance–covariance structure when there are more than two

levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and

GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the

group level with the following advantages: a) there is no limit on the number of factors as long as

sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with

within- subject factors; c) when a within-subject factor is involved, three testing methodologies

are provided: traditional univariate testing (UVT)with sphericity assumption (UVT-UC) and with

correction when the assumption is violated (UVT-SC), and within-subject multivariate testing

(MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing

(HT) approach that achieves equal or higher power via combining traditional sphericity correction

methods (Greenhouse–Geisser and Huynh–Feldt) with MVT-WS.

To validate the MVM methodology, we performed simulations to assess the controllability

for false positives and power achievement. A real FMRI dataset was analyzed to

demonstrate the capability of the MVM approach. The methodology has been implemented

into an open source program 3dMVM in AFNI, and all the statistical tests can be performed
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through symbolic coding with variable names instead of the tedious process of dummy

coding. Our data indicates that the severity of sphericity violation varies substantially across

brain regions. The differences among various modeling methodologies were addressed

through direct comparisons between the MVM approach and some of the GLM

implementations in the field, and the following two issues were raised: a) the improper

formulation of test statistics in some univariate GLM implementations when a within-

subject factor is involved in a data structure with two or more factors, and b) the unjustified

presumption of uniform sphericity violation and the practice of estimating the variance–

covariance structure through pooling across brain regions.

Introduction

In the research endeavor towards addressing a specific hypothesis, conventional voxel-wise

FMRI group analysis is a vital step that allows the investigator to make a general statement

at the population level. In the typical methodology for such a leap of generalization from

individual results to the group level one takes the effect estimates from individual subject

analysis and treats them as raw data in a general linear model (GLM), with an underlying

assumption that those effect estimates are either equally reliable across all subjects or with

negligible within-subject variability relative to the between-subjects counterpart. The effect

estimates are regression coefficients (usually referred to as β values) or linear combinations.

And the GLMs traditionally include Student’s t-tests (including paired, one-and two-sample

versions), multiple regression, and AN(C)OVA.

The difficulty of modeling multi-way AN(C)OVA

For categorical variables, the dichotomy of between-subjects and within-subject factors is

necessary because the levels (or groups) of the former can be considered independent while

this is generally not true for the latter. Such differentiation necessitates accounting for the

correlations among the levels of a within-subject factor, and leads to the different treatments

between two-sample and paired t tests as well as numerous types of AN(C)OVA in terms of

the number of explanatory variables and their types (categorical or quantitative, between-or

within-subject). The computations for Student's t-tests and multiple regression are quite

straightforward and economical. In contrast, under the conventional ANOVA platform with

rigid data structure (i.e., equal numbers of subjects across groups and no missing data), one

calculates the sum of squares (SS) for each effect term through simplified formulas, and then

obtains their respective ratios as F-statistics for significance testing. The process is

computationally efficient through the SS formulas, but each ANOVA formulation with

different factor types or with an extra factor leads to a different model framework because of

the unique variance partitioning involved. This can become very tedious especially when

unique random effects have to be accounted for in the case of within-or intra-subject

(repeated-or longitudinal-measures) factors. For example, a two-way within-subject

ANOVA is more complicated than its one-way counterpart in formulating the F-statistics.

Because of this limitation, the ANOVA methodology adopted in AFNI (Cox, 1996) is

currently constrained to up to four fixed-effects factors through separate programs 3dANOVA,

3dANOVA2, 3dANOVA3, and GroupAna.
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As an alternative, GLM is more flexible than the ANOVA platform at the cost of additional

computation complexity. For example, GLM can accommodate unequal numbers of subjects

across groups. However, unlike the efficient SS computation under the ANOVA framework,

each categorical variable under GLM is dummy coded by multiple indicators. The

complication of the coding process occurs when a within-subject factor is involved, and the

subjects are also required to be entered in the model through dummy coding, to account for

the random effects (intercepts). If more than one within-subject factor is formulated under

GLM, all the possible interactions between those within-subject factors and subjects except

the one with the highest order are also required. It is because of this complication that the

GLM implementations in both FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and SPM (http://

www.fil.ion.ucl.ac.uk/spm) can properly handle only one within-subject factor, and

statistical tests involving any between-subjects factors cannot be validly performed in the

same model because of the complexity in variance partitioning. Even if the software allows

for more than one within-subject factor (e.g., two-or three-way within-subject ANOVA), the

results would be incorrect as no differentiation in error partition is implemented. In addition,

it is invalid under their GLM implementations to test the effect at a specific factor level

(e.g., male group, positive condition, or negative condition of the female group) or a level

combination whose weights do not sum to zero (e.g., sum of positive and negative

conditions) because the residuals are used in variance estimation. In contrast, GLM Flex

(McLaren et al., 2011) is a Matlab-based package that allows the handling of such cases

without the inflated false positive rate (FPR) for group comparisons that occurred with the

previous alternative Flexible Factorial Design in SPM and its comparable

implementation within the General Linear Model setup in the group analysis scheme

FEAT of FSL. In addition, GLM Flex can model interactions among up to five fixed-effects

variables that users encode with dummy variables.

Sphericity violation

The traditional approach to handling a within-subject factor with more than two levels (e.g.,

one-way within-subject ANOVA) is susceptible to the violation of a correlational

assumption: sphericity or compound symmetry. The compound symmetry assumption

requires that the variances and covariances of the different levels of the within-subject factor

are homogeneous (identical), while the sphericity assumption, an extension of the

homogeneity of variance assumption in between-subjects ANOVA, states that all the

variances of the level differences are equal. Note that compound symmetry is also known as

uniformity, intraclass correlation model, or exchangeable correlation structure, and

sphericity is sometimes referred to as circularity. Although sphericity is the necessary and

sufficient condition for the validity of the F-statistics in traditional within-subject ANOVAs,

compound symmetry is much easier to verify, and is a special case of the sphericity

assumption, thus is a sufficient but not necessary condition: If compound symmetry is

satisfied, then sphericity is met. On the other hand, sphericity almost means compound

symmetry: it is possible, but rare, for data to violate compound symmetry even when

sphericity is valid.

Data variability and correlations across conditions at the group level arise because of

neurological basis and intrinsic heterogeneity across subjects. For example, a subject who
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responds more strongly than the group average to the positive condition may also have a

higher response to the negative or neutral condition. However, the correlation (proportion of

shared or overlapping variance) between the positive and negative conditions is not

necessarily the same as between positive and neutral conditions, and between negative and

neutral conditions. The deviation from sphericity could lead to inflated significance.

However, the traditional correction through adjusting for the degrees of freedom has never

been adopted in the neuroimaging packages. Instead one proposed method was to estimate

the correlations through pooling across all the “active” voxels in the whole brain (Glaser and

Friston, 2007), which has been adopted at both individual and group levels in SPM.

However, the presumption of a global correlation structure has not been systematically

validated.

The difficulty of modeling quantitative covariates together with within-

subject factors

Due to experimental constraints, samples (trials or subjects) are not always randomly

manipulable. For example, it is unrealistic to expect each subject to respond to all trials with

the same reaction time (RT) or to have the same average RT. The resulting variability can be

modeled through amplitude correlation (or parametric modulation) at the individual trial

level, while across-subjects variations can be controlled or accounted for in group analysis

through the incorporation of relevant quantitative covariates (e.g., age, IQ, RT, etc.).On

other occasions, the association itself between the brain response and a quantitative

covariate is of interest, and necessitates considering it as an explanatory variable.

If a model contains only quantitative covariates or if the only categorical explanatory

variables are between-subjects factors, modeling quantitative covariates is relatively easy

and straightforward through a univariate regression or general linear model (GLM). On the

other hand, the classical ANCOVA usually includes at least one between-subjects factor as

well as one or more quantitative covariates. It is of note that the historical incarnation of

ANCOVA emphasizes additivity and does not consider any interactions between factors and

quantitative covariates. This is the reason for the notion of homogeneity or parallelism of

slopes, which is totally unnecessary when the interactions are included. Furthermore, the

concept of ANCOVA is basically subsumed under GLM; if not for the legacy usage, the

ANCOVA nomenclature can be fully abandoned to avoid confusion. When a within-subject

factor is involved, the situation becomes complicated under the univariate modeling

framework, and so far no neuroimaging software has the capability to do this except via the

linear mixed-effects modeling (LME) approach (Chen et al., 2013). Here we will explore the

possibility of modeling a quantitative covariate in the presence of a within-subject factor

under the multivariate framework.

A motivational example

Tomotivate the present exposition of the MVM approach, we present a real FMRI group

study to demonstrate a typical design that accounts for a confounding effect, varying age

across subjects. Briefly, the experiment involved one between-subjects factor, group (two

levels: 21 children and 29 adults) and one within-subject factor (two levels: congruent and
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incongruent conditions). Stimuli were large letters (either “H” or “S”) composed of smaller

letters (“H” or ”S”). For half of the stimuli, the large letter and the component letters were

congruent (e.g., “H” composed of “H”s) and for half they were incongruent (e.g., “H”

composed of “S”s). Parameters for the whole brain BOLD data on a 3.0 T scanner were:

voxel size of 3.75 × 3.75 × 5.0mm3, 24 contiguously interleaved axial slices, and TR of1250

ms (TE=25 ms, FOV=240 mm, flip angle= 35°). Six runs of EPI data were acquired for each

subject, and each run lasted for 380 s with 304 brain volumes. The task followed an event-

related design with six runs of 96 trials each, three global runs interleaved with three local

runs (order counterbalanced across subjects). Subjects used a two-button box to identify the

large letter during global runs and the component letter during local runs. Trials lasted 2500

ms: the stimulus was presented for 200 ms, followed by a fixation point for 2300 ms. Inter-

trial intervals were jittered with a varying number of TRs. This allowed for a trial-by-trial

analysis of how the subject’s BOLD response varied with changes in RT.

The EPI time series went through the following preprocessing steps: slice timing and head

motion correction, spatial normalization to a Talairach template (TT_N27) at a voxel size of

3.5 × 3.5 × 3.5 mm3, smoothing with an isotropic FWHM of 6 mm, and scaling by the

voxel-wise mean value. The scaling step during preprocessing enables one to interpret each

regression coefficient of interest as an approximate estimate of percent signal change

relative to the temporal mean. To capture the subtle BOLD response shape under a

condition, each trial was modeled with 10 basis (tent or piecewise linear spline) functions,

each of which spanned one TR (or 1.25 s). In addition, the subject’s RT at each trial was

incorporated as a modulation variable. In other words, two effects per condition were

estimated in the time series regression at the individual level: one reveals the response curve

associated with the average RT while the other shows the marginal effect of RT (response

amplitude change when RT increases by 1 s) at each time point subsequent to the stimulus.

In addition, the following confounding effects were included in the time series regression

model for each subject: third-order Legendre polynomials accounting for slow drifts,

incorrect trials (misses), censored time points with extreme head motion, and the six head

motion parameters.

At the group level, it is the RT marginal effects that are of most interest, and the four

explanatory variables considered are: a) one between-subjects factor, Group (two levels:

children and adults), b) two within- subject factors: Condition (two levels: congruent and

incongruent) and Component (10 time points where the profile of RT marginal effects were

estimated), and c) one quantitative covariate: age. This is seemingly a relatively simple

experimental design, but none of the FMRI packages except for the linear mixed-effects

(LME) modeling approach implemented into program 3dLME in AFNI can analyze this

situation simply because of the difficulty of modeling a quantitative covariate in the

presence of a within-subject factor.

Preview

The layout of the paper is as follows. First, we review the modeling platforms for ANOVA

and GLM, and elaborate their limitations. The MVM platform is then introduced to

overcome some of those limitations. Second, simulation data were generated to reveal how
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the MVM methodology performs in terms of controllability for false positives and false

negatives relative to alternative approaches, and the implementation of MVM strategy in

AFNI was applied to the experimental dataset. Finally, we discuss the limitations of MVM,

compare the strategy with other methodologies and its limitations, and raise some questions

about the current practice and implementations in group analysis. Our contributions here are

fourfold: a) The MVM method allows for any number of explanatory variables; b)

Quantitative covariates can be modeled in the presence of within-subject factors; c) The

MVM platform provides a convenient venue for voxel-wise correction for sphericity

violation; d) With our open-source program 3dMVM in AFNI, main effects, interactions and

post hoc tests can be performed through symbolic labels, relieving the user of the burden

from tedious dummy coding.

Throughout this article, regular italic letters (e.g., α) stand for scalars, boldfaced italic letters

in lower (a) and upper (X) case for column vectors and matrices respectively, and words in

monospaced font (3dMVM) for program names. It is of note that the word multivariate is used

here in the sense of treating the effect estimates from the same subject or from the levels of a

within-subject factor as the instantiations of simultaneous response (or outcome) variables.

This usage differs from the popular connotation in the FMRI field when the spatial structure

(multiple voxels) is modeled as the simultaneous response variables. Those cases include

multivariate pattern analysis (Haxby, 2012), independent component analysis, and machine

learning methods such as support vectormachine. Major acronyms used in the paper are

listed in Appendix F.

MVM platform

In contrast to the univariate GLM (Appendix A), the levels of a within-subject factor can be

treated as multiple simultaneous response variables under MVM. That is, each ANOVA

design can be subsumed as a special case of MVM. Furthermore, the extension also allows

the handling of simultaneous variables that are of different nature, unlike the scenario of a

within-subject factor under the ANOVA scheme where the same type of measurement (e.g.,

BOLD response in FMRI) is acquired under different conditions (e.g., positive, negative and

neutral emotions). For example, daily caloric intake, heart rate, body mass and height in

behavioral study, or correlation (or connectivity) measure under resting state, fractional

anisotropy, gray-matter volume, and task-related BOLD response from MRI data, can be

formulated in a four-variate model.

A multivariate GLM includes multivariate regression and MAN(C) OVA as special cases,

and can be expressed from a subject-wise perspective, ,

or through the variable-wise pivot, bj = Xaj + dj, or in the following concise form,

(1)

The n rows of the response matrix 

represent the data from the n subjects while the m columns correspond to the levels of

within-subject factor(s). When multiple within-subject factors occur, all their level
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combinations are flattened or unfolded from a multi-dimensional space onto a one-

dimensional row of B. For example, two within-subject factors with a and b levels

respectively are represented with an ab-variate model under MVM with m = ab in Eq. (1).

Unlike UVM, the within-subject factors are coded in B on the left-hand side of Eq. (1), and

only between-subjects variables such as subjects-grouping factors (e.g., sex, genotypes),

subject-specific measures (e.g., age, IQ) and their interactions are treated as explanatory

variables on the right-hand side. The same linear model is applied to all the m response

variables, which share the same model (or design) matrix X = (xih) = (x1, x2,…,

xn)T.Without loss of generality, X is assumed of full column-rank q. Each column of the

regression coefficient matrix A = (α hj) corresponds to a response variable, and each row is

associated with an explanatory variable. Lastly, the error matrix D = (δij)n × m = (δ1, δ2,…,

δn)T = (d1, d2,…, dm) is assumed nm-dimensional Gaussian: vec (D) ~ N (0, In ⊗ Σ), where

vec and ⊗ are column stacking and direct (or Kronecker) product operator respectively. As

in UVM, the assumptions for Eq. (1) are linearity, normality and homogeneity of variance–

covariance structure (same Σ across all the between-subjects effects). A striking feature of

coefficients Eq. (1) is that Σ embodies the correlations among the m error terms as well as

the m simultaneous variables and is estimated from the data instead of being presumed of

sphericity as in UVM.

The matrix representation of MVM in coefficients Eq. (1) vis-à-vis the vector counterpart of

GLM coefficients (Eq. (9) in Appendix A) is reflected in most properties and testing

statistics as well as the solutions for coefficients Eq. (1) (Appendix B), which require

(2)

That is, the total number of measuring units (e.g., subjects) cannot be less than the total

number of explanatory and simultaneous variables. Similarly, a counterpart exists in

partitioning the variability sources: the total sum of squares and cross products (SSP) can be

partitioned under the multivariate GLM into one SSP term for regression and the other for

the errors. The specific effect for a subject-grouping factor, quantitative covariate or an

interaction, corresponds to one or more columns in the model matrix X of coefficients Eq.

(1), and is represented in one or more rows of regression coefficients matrix A. Also similar

to UVM, significance testing for the hypothesis about a specific effect can be formulated as

SSPH against SSPE, with the former being the incremental or marginal SSP between the

reduced model under the hypothesis and the full model and the latter being the SSP for the

errors. In general, one may perform general linear testing (GLT) as functions of the elements

of A,

(3)

where the hypothesis matrix L, through premultiplying, specifies the weights among the

rows of A that are associated with groups or quantitative covariates, and the response

transformation matrix R, through postmultiplying, formulates the weighting among the

columns of A that correspond to the m response variables. It is assumed that L and R are full

of row- and column-rank respectively, and u < q, v < m. The matrix L (or R) plays a role of
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contrasting or weighted averaging among the groups of a between-subjects factor (or the

levels of a within-subject factor). Without loss of generality, the constant matrix C is usually

set to 0.

The GLT formulation Eq. (3), sometimes referred to as double linear or bilinear hypothesis,

provides a convenient form for effect testing including any effect associated with a within-

subject factor. For example, main effects and interactions can be considered as special cases

of GLTs with associated L and R. When R = 1m × 1, the hypothesis (Eq. (3) solely focuses

on between-subjects explanatory variables (columns in X) while effects among the levels of

the within-subject factors are averaged (or collapsed). In contrast, hypotheses regarding a

within-subject factor can be constructed via specifying the columns of R. Four MVT

statistics can be constructed (Appendix B) for Eq. (3) based on HE−1, a “ratio” between the

SSPH matrix H for the hypothesis (Eq. (3)) against the SSPE matrix E for the errors in the

full model (Eq. (1)). Under the null hypothesis, HE−1 = I. Without loss of generality, the

effects discussed here are limited to main effect of an explanatory variable and interactions

among two or more explanatory variables. Other effects can be treated as main effects or

interactions under a sub-model, or estimated through post hoc testing. For an effect not

associated with any within-subject factor, its testing can be performed by setting R = 1, and

is essentially equivalent to the counterpart under the univariate GLM. Complications occur

in making inference in regard to an effect associated with one or more within-subject

factors, and there are three possible testing approaches: a) strict multivariate testing (MVT)

in MAN(C)OVA, b) within-subject multivariate testing (MVT-WS), and c) univariate

testing (UVT) under the MVM platform. Here we only discuss the latter two situations as

they directly pertain to the univariate GLM.

Within-subject multivariate testing (MVT-WS)

Under the conventional MVM one can test the centroid in Rm at the group level, and such

centroid testing is composed of joint tests in the sense that the same hypothesis is tested

across the m response variables (Appendix C). However, when a within-subject factor with

m levels is modeled under UVM, the hypothesis about the centroid is typically not of direct

interest. Instead, the focus under MVM is usually on the main effect of the factor (or the

equality of the m levels) and the interactions between the factor and other explanatory

variables, and the testing strategy is typically referred to as within-subject multivariate

testing (MVT-WS), repeated-measures MA(C)OVA, or profile analysis. When only one

within-subject factor with m levels is involved, its associated R can be derived from the

corresponding effect coding matrix, converting the original m response variables into m − 1

unique deviations each of which represents the difference between a level and the average

across all levels. And the testing for the main effect now pertains to the (m − 1)-dimensional

centroid of those deviations. When there are k within-subject factors present (k > 1), the R
for each effect associated with one or more within-subject factors can be computed through

the Kronecker product,

(4)
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where R(i) takes the effect coding matrix if the i th within-subject factor is involved in the

effect, otherwise R(i) = 1ni, where ni is the number of levels for the i th within-subject factor

(i = 1, 2, ⋯, k) (Appendix C).

In summary, the MVM framework allows one to perform multivariate testing for the main

effect of a within-subject factor and its interactions with other variables. Unlike its

counterpart under the univariate GLM, the MVT-WS strategy estimates the variance–

covariance matrix based on the data instead of presuming a specific structure (e.g.,

sphericity). At the cost of degrees of freedom and with a higher demand for sample sizes as

shown in Eq. (2), it bypasses the stringent sphericity assumption made in the univariate

GLM, and can accommodate any possible variance–covariance structure. The choice of

effect coding here is for interpretation convenience and consistency, but it should be

emphasized that infinite coding methods exist. If a coding method is chosen so that the

columns of R(i) are orthonormal, the transformed variance–covariance matrix is diagonal

with equal variance and thus spherical. However, different coding strategies in R(i) do not

matter in terms of hypothesis testing because of the invariance property.

Univariate testing (UVT) under the MVM platform

Even though the levels of a within-subject factor are treated as simultaneous response

variables under the MVM framework (Eq. (1)), UVT can still be performed under MVM

thanks to the pivotal role played by the response transformation matrix R in Eq. (3).

Furthermore, if the dataset can also be analyzed under the univariate GLM, the UVT

statistics from MVM are exactly the same as they would be obtained through the univariate

approach. More importantly, MVM offers more UVT capability (e.g., unequal numbers of

subjects across groups, quantitative explanatory variable in the presence of within-subject

factor) and provides the option of correction for sphericity violation. Specifically, for an

effect of a between-subjects factor (or quantitative covariate) or their interaction, the

formulation of its F-statistic with H and E through L and R is done in the same way for

MVT-WS, and R essentially plays the role of averaging or collapsing among the levels of

each within-subject factor (if present). In fact H and E in this case correspond to the SS

terms under the corresponding UVT, leading to the same F-statistic as in the associated

UVM. For an effect that involves at least one within- subject factor, the UVT F-statistic is

different from the situation with MVT-WS. Once the associated R in Eq. (4) is constructed,

under the sphericity assumption its SS term and the corresponding SS term for errors can be

obtained (Fox et al., 2013) as tr(H (RTR)−1) and tr(E (RTR)−1). Under alternative coding

schemes that render an orthonormal transformation matrix R, unique portions of variance

among the transformed response variables can be captured, and the SS terms simplify to

tr(H) and tr(E).

The two kinds of explanatory variables are differentially coded in the MVM formulation

(Eq. (1)) as follows. The within-subject factors are flattened and mapped onto R1 as the

columns in the data matrix B, the parameter matrix A and the residual matrix D. On the

other hand, the between-subjects factors and quantitative covariates are coded as the

columns in the model matrix X with the corresponding effect parameters expressed as the

rows in A, and each subject is associated with a row in B, X and D. It is of note that subjects
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are not explicitly represented among the columns of X in Eq. (1), unlike the univariate

GLM(Appendix A) in which all the response values form a column vector and subjects are

coded as columns for the random effects in the model matrix. The separate coding for the

two variable types in MVM is also reflected in the roles of L and R in formulating each

hypothesis, and provides a simpler solution in pairing the SS terms for each effect than the

univariate GLM. It is this separate treatment that not only makes its extended modeling

capabilities and advantages possible but also leads to elegant implementations. Unlike the

univariate GLM where the difficulty lies in the pairing for the denominator of each F-

statistic, the SSPE matrix E is fixed, and the UVT formulation under MVM hinges on the

construction of the SSPH matrix H, which translates to formulating the response

transformation matrix R. As R in Eq. (4) is either the coding matrix for a within-subject

factor or the Kronecker product of multiple coding matrices, it is much simpler than the

pairing process in the univariate GLM.

For example, the UVT for a factorial two-way within-subject ANOVA (Appendix C)

demonstrates that the flattened within-subject factors under MVM can be restored through

constructing a proper R in Eq. (3). The transformation provides a convenient hinge with

which any number of within-subject factors is multiplicatively flattened onto the left-hand

side of an MVM system, and later allows for the restoration of significance testing for main

effects and interactions in the UVM style. This process in and of itself is of little theoretical

value; rather, the appealing property of the transformation lies in the computational or

algorithmic perspective. The implementation advantage is that the user interface only

involves symbolic representations of all variables and factor levels without any direct

specification through dummy coding. In addition, the easy pairing for SS terms in the F-

statistic of each effect relieves one of the manual pairing process in the univariate GLM so

that the number of within-subject factors is no longer a limitation in implementation.

Furthermore, the sphericity verification and the correction for its violation (Appendix D)

become an intrinsic step for UVT under MVM because they depend on the transformation

matrix R and the SSPE matrix E.

Another appealing feature of MVM is in modeling quantitative covariates in the presence of

a within-subject factor. If such a covariate is at the subject level (i.e., between-subjects

covariate) and does not vary across the within-subject factor levels, treating the within-

subject factor levels as simultaneous response variables in MVM allows separate effect

modeling of the covariate for each factor level. In other words, a within-subject factor with

m levels is estimated with m different slopes for the quantitative covariate, which cannot be

handled under UVM. The significance testing for the m slopes can be performed under UVT

through the framework (Eq. (3)) or under MVT-WS. A quantitative covariate that varies

across the within-subject factor levels (i.e., within-subject covariate) cannot be modeled

under MVM, but can be analyzed through LME (Chen et al., 2013).

Implementation of MVM in AFNI

To recapitulate, the MVM framework includes AN(C)OVA and multiple regression as

special cases. In addition to the capability of MVT-WS, it lends us extended options when

performing UVT compared to the traditional approaches such as ANOVA and univariate
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GLM. For example, as each subject occupies one or more rows in the model formulation,

the impact of unequal numbers of subjects across groups would be limited on the degrees of

freedom and the orthogonality of variance partitioning, but not on modeling capability.

Subject-specific quantitative explanatory variables can be easily incorporated in the model

matrix X, even in the presence of within-subject factors. The construction of effect testing

through the hypothesis matrix L and the response transformation matrix R in Eq. (3) allows

for easy implementation with any number of explanatory variables, and the user is relieved

from having to deal with dummy coding. The Mauchly test for sphericity violation and the

correction for the inflatedl F-tests can be readily established.

The MVM framework has been implemented in the AFNI program 3dMVM in the open

source statistical language R (R Core Team, 2013), using the MVM function aov.car() in the

R package afex (Singmann, 2013). In addition to the capability of modeling quantitative

covariates at the subject (and the whole brain) level, 3dMVM can also handle quantitative

covariates at the voxel level (e.g., signal-to-fluctuation-noise ratio). Post hoc t-tests are

represented through symbolic representations based on R package phia (De Rosario-

Martinez, 2012), and they include pair-wise comparisons between two levels of a factor,

linear combinations (e.g., trend analysis) among multiple levels of a factor (weights not

having to sum to zero), and interactions among multiple factors that involve one or two

levels of each factor. For example, in a 3 × 3 × 3 ANOVA, all the 2 × 2 and 2 × 2 × 2

interactions are essentially t-tests, which can be performed in 3dMVM. Parallel computing on

multi-core systems can be invoked using R package snow (Tierney et al., 2013). Effect

coding was adopted for factors so that the intercept represents the overall average effect

across all factor levels and at the center of each quantitative covariate. Runtime varies from

minutes to hours, depending on data size, model complexity, and computing power.

The F-statistic for an effect that only involves between-subject variables (factors or

quantitative covariates) under MVM is uniquely determined because of the absence of

sphericity issue and is the same as would be obtained under UVM. In contrast, for any effect

that is associated with at least one within-subject factor, 3dMVM provides four versions of F-

statistic: a) within-subject multivariate testing (MVT-WS), b) univariate testing without

sphericity correction (UVT-UC), c) univariate testing with sphericity correction (UVT-SC)

through contingencies based on the Greenhouse–Geisser and Huynh–Feldt corrections

(Appendix D) (Girden, 1992),

and, d) hybrid testing (HT) that extends the UVT-SC approach,

(5)
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The two correction methods above, UVT-SC and HT, adopted at the voxel level in 3dMVM,

are similar to statistical packages such as car in R (Fox et al., 2013), GLM in IBM SPSS

Statistics (IBM Corp., 2012) and REPEATED statement in PROC GLM of SAS (SAS

Institute Inc., 2011) except that contingent schemes are adopted here. In addition, instead of

directly adjusting the degrees of freedom for sphericity correction, we opt to keep the

original degrees of freedom (constant across the brain) but change the F-value to match the

adjusted p-value, and this allows us to simplify the bookkeeping and visualization of the

output.

The variables and input data are specified through the long format of data frame, a standard

data structure in R. In keeping with AFNI’s interface for coding convention, variable type

declaration and general linear hypothesis tests in 3dMVM are specified through variable

names (e.g., condition) and symbolic labels (e.g., pos, neg, and neu). This is considerably

more appealing and less error-prone than manually dummy-coding the categorical variables

and model formulations. Neuroimaging data can be in AFNI or NIfTI format. The F-

statistics for individual explanatory variables and their interactions are automatically

generated instead of the user specifying regressors or assigning weights among the

regressors as in FSL, SPM, and GLM Flex. The Pillai–Bartlett trace is adopted as the default

for MVT-WS although the other three multivariate statistics are available as options. Two

types of F-statistic formulations are available, partially sequential and marginal (types II and

III in the SAS terminology). The user can request for post hoc tests through symbolic

coding, and both the amplitude and t-statistic are provided as output. A scripting template

for running 3dMVM is demonstrated in Appendix E.

Applications and results

Among the four approaches in testing an effect associated with a within-subject factor,

MVT-WS is considered the most effective when the response variables are moderately

correlated (e.g., between 0.4 and 0.7) (Tabachnick and Fidell, 2013)with the following

rationale: If the correlation is too low, the response variables are loosely independent of each

other and the variance–covariance structure is close to sphericity, thus the MVM approach

becomes inefficient and may lose power compared to the univariate methods; on the other

hand, when the correlation becomes high, the response variables can be considered the same

variable, and MVM would be costly in wasting high degrees of freedom. To effectively

compare these testing methods in light of power and controllability for false positive rate

(FPR), simulations and applications are needed.

Simulations of group analysis with 3dMVM Simulated data were generated with the following

parameters in a typical FMRI group analysis: two groups with 15 subjects in each, and their

hemodynamic response (HDR) functions lasting for 12 s but with a 2 s difference in peak

location (Fig. 1A). The HDRs are presumably estimated through 7 basis functions (e.g.,

TENT in AFNI) at the individual subject level to capture the shape differences. Each effect

component βij estimated from the i th subject in the j th group (i = 1, 2,‥, 7; j = 1, 2)

corresponds to the response amplitudes at TR grids, and are assumed to follow a

multivariate Gaussian distribution with a first order autoregressive AR(1) structure for the

variance-covariance matrix
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where σ = 0.3, and 10 equally-spaced values ρ = 0.0, 0.1,…, 0.9 were chosen to simulate the

extent of sphericity violation, ranging from none to high severity. Infinite correlation

structures exist as long as the matrices are symmetric positive semi-definite. The AR(1)

choice was based on two considerations, the nature of the data structure (HDR estimates at

consecutive time points) and the full spectrum of sphericity violation subject it spans: The

severity is a monotone increasing function of ρ (Fig. 1B). 5000 datasets were generated,

each of which was analyzed through 3dMVM with two explanatory variables, Group (2 levels)

and Component (7 effect estimates associated with the basis functions). This is essentially a

two-way mixed-design factorial ANOVA with one between- and one within-subject factor.

FPR and power were assessed through counting the datasets with the perspective F-statistic

surpassing the threshold corresponding to the nominal significance level of 0.05.

As a reference, UVT-UC for the main effect (or coincidence) of between-subjects factor

Group (whether the two groups have different areas under the curve,

, without involving sphericity violation because of a scalar

variance–covariance, shows an FPR very close to the nominal significance level of 0.05 (not

shown here). In contrast, UVT-UC for the interaction Group:Component (parallelism in

profile analysis, testing whether the HDR curves are commensurate or parallel with each

other: H0 : β11 − β12 = … = β71 − β72) has a reasonable control for FPR when ρ < 0.2 (no

ormild sphericity violation), but becomes increasingly out of control with higher ρ or more

severe sphericity violation (Fig. 1C). On the other hand, MVT-WS, UVT-SC and HT

perform well in FPR control (Fig. 1C) throughout the whole range of ρ.

With regard to power, all four tests for the interaction effect shows a decreasing trend as ρ

(and sphericity violation severity) becomes high (Fig. 1D), which is not unexpected because

higher serial correlation leads to more difficulty in untangling the components. UVT-SC

achieves roughly the same power when ρ < 0.2, but its power loss worsens with a large ρ.

On the other hand, there is a large power disadvantage for MVT-WS even when ρ = 0

compared to UVT-UC and UVT-SC. Its underperformance gradually deteriorates with a

large ρ but improve with ρ > 0.3. Around ρ = 0.65, MVT-WS overtakes UVT-SC, and its

outperformance expands further and finally exceeds UVT-UC around ρ = 0.87. As HT is

conditionally defined in Eq. (5) based on the sphericity measure εHF, its power performance

is roughly the higher one between MVT-WS and UVT-SC.

The main effect of Component (or first-order interaction) indicates whether the average

HDR curve between the two groups is a flat line or constancy (H0 : β11 + β12 = … = β71 +

β72), a special case of hypothesis of parallelism (the average HDR curve parallel to the null).

Its simulated results show a similar pattern (not illustrated here) to the second-order

interaction effect, Group:Component, in both FPR control and power.
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It is of note that our simulation results with an AR(1) correlation structure are not consistent

with the previous notion that MANOVA is most powerful when the correlations among the

response variables are in the range of (0.4, 0.7) (Tabachnick and Fidell, 2013). Instead

MVT-WS underperforms compared to UVT-SC when ρ < 0.65, but MVT-WS (and HT)

overtakes UVT-SC in power when ρ ≥ 0.65. In other words, UVT-SC is preferred when the

sphericity violation is moderate (e.g., εHF < 0.65), but MVT-WS outperforms UVT-SC

when sphericity is severely violated (εHF ≥ 0.65).

Applying 3dMVM to real data

How do the testing approaches (UVT-UC, UVT-SC,MVT-WS, and HT) perform when

applied to real data? What does a real dataset reveal about the heterogeneity of the variance–

covariance structure in the brain? Does MVT-WS identify any significant regions that would

not be detected under UVT? To address these questions, we applied MVM to the data

presented in the Introduction section with n =50 (2 groups: 21 children and 29 adults), m =

20 (2 conditions with each having 10 estimates of RT marginal effect) and design matrix X
of q = 4 columns in Eq. (1): all ones (intercept or average effect across groups), effect

coding for the two groups, the average age effect between the two groups, and the

interaction Group:Age (or group difference in age effect). The age values were centered

within each group so that the group effect can be interpreted as the difference between the

two groups at their respective average age. Runtime was about 90 min using 12 processors

on a Linux system (Fedora 14) with Intel® Xeon® X5650 at 2.67 GHz.

We focused on the three-way interaction Group:Condition:Component that indicated

whether the two groups had the same or parallel profile of RT marginal effect differences

between the two conditions. Four F-statistics, UVT-UC, UVT-SC, MVT-WS, and HT, for

the interaction were obtained and then, due to different degrees of freedom, converted to Z-

values for direct comparisons. Their overall performance can be assessed through

histograms of pair-wise differences in Z-value (Fig. 2) and a slice of significance map in a

coronal view (Fig. 3A). In general, UVT-UC, at the cost of poor control for FPR, showed

the highest power among all four tests in almost all regions (A, D, F in Fig. 2). Some

exceptions exist; for example, MVT-WS rendered significant results at regions where other

tests failed, as shown at the region (crosshair) in Fig. 3A and Voxel 1 in Figs. 3(B and C).

The outperformance of MVT-WS is also seen in the voxel count in Figs. 2(D and E). With

FPR well-controlled, it is not unexpected to see that UVT-SC achieved lower power than

UVT-UC (Fig. 2F; Voxels 2–5 in B and C of Fig. 3). On the other hand, UVT-SC achieved

higher power than MVT-WS at some regions (Fig. 2E, Voxels 3–5 in B and C of Fig. 3)

while at other regions MVT-WS outperformed (Fig. 2E; Voxels 1 and 2 in Figs. 3(B and

C)). HT largely takes its statistical value from either UVT-SC or MVT-WS based on the

severity of sphericity violation in the contingency table (Eq. (5)). However, as indicated at

Voxels 2, 3, and 5 in Figs. 2(B and C) and in Figs. 3(B and C), the significance level of HT

is not always the higher value between the two. Even though the simulations indicated that

HT had equal or higher power than UVT-SC and MVT (Fig. 1), it does not necessarily

render equal or higher significance when applied to each specific dataset due to the nature of

randomness. The voxels in Fig. 3 were selected from clusters, not isolated voxels, that

survived a liberal voxel-level significance of 0.05. In addition to statistical significance, the
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spatial extent and the profile patterns of the RT colorbar marginal effects were consistent

across voxels within each cluster (not shown here) as well as across regions (Fig. 3C),

providing additional evidence for the existence of the effects under investigation. One

observation of interest is that, when the sample size is proper, MVT and UVT usually

converge; however, discrepancies of significance inference between UVT and MVT

typically occur when the sphericity violation is severe (e.g., εHF < 0.55) as shown at Voxels

1, 3, and 5. This revelation underscores the importance of combining both UVT and MVT in

data analysis.

One popular practice in correcting for sphericity violation is to assume a uniform correlation

structure within and across the brain regions, and thus the structure could be estimated by

pooling all the voxels among those regions that reach some level of significance (Glaser and

Friston, 2007). However, to our knowledge the uniformity assumption has not been

empirically tested. With MVM and our empirical data, we found substantially broad

variations in the violation severity from the perfect sphericity (Fig. 3B; Fig. 4) both within

and across regions, raising questions about the brain-wide pooling strategy. Per reviewer's

request, we performed direct comparisons of the MVM approach to the modeling strategies

adopted in SPM and GLM Flex. To do so, we had to reduce the original model by removing

two explanatory variables, quantitative covariate RT and within-subject factor Condition,

through averaging the two conditions. In such a mixed two-way ANOVA with one between-

subjects factor Group and one within- subject factor Component, we compared the three

omnibus tests: main effects for Group and Component, and their interaction. As shown in

Fig. 5A, 3dMVM and GLM Flex provided identical Group effect except for differences

ascribable to numerical roundoff errors. However, SPM's Flexible Factorial Design

returned largely inflated statistical significance values resulting from the incorrect

implementation of the F-statistic for the between-subjects effect (McLaren et al., 2011) with

a smaller denominator (MSS (A) instead of MSBS (A)) as well as larger number of degrees of

freedom (432 instead of 48) for the F-statistic of the group effect (the between-subjects

factor A in Eq. (7) of Appendix A). On the other hand, the three programs rendered similar

interaction effect Group:Component (Fig. 5B) at a liberal voxel-wise significance level of

0.05. However, closer comparisons show that the effect significance differed between MVM

and the other two programs. This is the result of the differing assumptions about the spatial

distribution of the variance–covariance structure. The amount and direction of bias were

strongly correlated with the extent of sphericity violation relative to the average as

demonstrated in the scatterplot of Fig. 5B.

Discussion

Group analysis is an essential part of neuroimaging investigations to make generalizations.

As a routine step, most studies can be analyzed through Student’s t-tests or simple

ANOVAs. The majority of researchers are trained in the conventional ANOVA-style, and

are thus familiar with such procedures. In some situations, it might be more straightforward

to adopt a piecemeal strategy and parse the individual Student’s t-tests than to utilize one

full model. Under other circumstances, Student’s t-tests and simple ANOVAs no longer

meet the needs as they did in the early days of neuroimaging, and sophisticated modeling

strategies are needed. Nowadays a longitudinal study scenario would not be farfetched with
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seven explanatory variables, including four between-subjects factors: sex (male and female),

disease (patient and control), genotypes (two homo-and one hetero-zygote), multiple sites/

scanners; two within-subject factors: condition (positive, negative and neutral stimuli),

clarity (clear and vague); and one quantitative covariate: age. Even if this scenario could be

analyzed through a piecemeal fashion (without modeling the age effect), one would be

inundated by the sheer number (~200) of individual t-tests.

There are some reasons why it is advantageous to adopt the traditional approach of one

integrative model that incorporates all the explanatory variables. When numerous

explanatory variables are involved, the omnibus F-test for an intersection (or global null)

hypothesis regarding a main or interaction effect offers the safeguard of weak family-wise

error (FWE) rate control, a minimum requirement in such a multiple comparison scenario

relative to the strong FWE correction for the post hoc tests. In addition, the omnibus F-

statistic provides a search guide for particular comparisons without exhaustively

enumerating all possible combinations. Another benefit is that, compared to the piecemeal

tests involving one group, merging all the data into one comprehensive model may increase

statistical power by enlarging or borrowing sample sizes across groups. Lastly, due to

sampling constraints or other reasons, it is sometimes desirable to control or account for

confounding effects such as age and IQ, and such quantitative covariates are easier and more

economical (with lower cost in degrees of freedom) to handle in a full model than the

piecemeal fashion. Traditional ANOVAs, as adopted in 3dANOVA, 3dANOVA2, 3dANOVA3

and GroupAna in AFNI, are performed through frugal computations of SS terms for the

numerator and denominator of each F formulation. Their applications are limited from the

following perspectives: A) Each specific model is associated with a unique set of F-ratios

based on the numbers of factors and factor types (between- or within-subject), which is a

considerable deterrent when extending the modeling scope; B) Quantitative covariates

cannot be incorporated; C) A rigid data structure requires an equal number of subjects across

groups; D) Sphericity testing and correction for its violation are generally not available

under the SS computation schemes. In contrast, the univariate GLM approach offers a more

versatile and inclusive platform for a full model strategy. In addition to being capable of

seamlessly incorporating quantitative covariates, GLM has the potential to analyze cases

with a large number of explanatory variables. This modeling strategy has been implemented

in programs such as 3dRegAna in AFNI, GLM of FEAT in FSL, Full and Flexible

Factorial Design in SPM, and the stand-alone programGLM Flex. However, their

applications are hindered by three limitations. The pairing of numerator and denominator in

each F-statistic is tedious, and depends on the variable type (between- or within-subject

factor, or quantitative covariate) as well as on the number of explanatory variables. This

UVM limitation prevents the strategy from extending to an arbitrary number of variables.

Furthermore, there is no direct correction available for sphericity violation under the

univariate GLM. Lastly, it is difficult to model a quantitative covariate with a within-subject

factor.

In the literature, modeling a quantitative covariate is usually restricted to standard multiple

regression (in the absence of between-subjects factors) or ANCOVA with between-subjects

factors but no within-subject factors. It is rare to see discussions about modeling a
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quantitative variable in the presence of one or more within-subject factors. One suggestion

(Rutherford, 2001) is that one can break down, for example, a mixed two-way factorial

ANCOVA (one between-and one within-subject factor plus a quantitative covariate) into

two separate analyses. As the quantitative variable would not have any impact on the

comparisons among the levels of the within-subject factor, it would be unnecessary to

consider modeling such a quantitative covariate when testing the within-subject factor

effects. However, the inclusion of a quantitative explanatory variable is not just important

for improving a specific effect estimate, but also for increasing the statistical power by

accounting for knowable source of variability. On the other hand, if the correlation between

the levels and the quantitative covariate is not a nuisance but a goal, a workaround solution

proposed was to reduce the within-subject factor into multiple pairwise comparisons among

the levels, and then run traditional ANCOVAs on each comparison. However, such practice

presumes that the correlation between each level and the quantitative covariate is constant

across all levels, a presumption that may not necessarily hold unless tested, unlike in MVM

where each level is treated as a response variable with a separate covariate effect. Lastly, the

piecemeal approach is suboptimal and may become unbearably cumbersome as the number

of variables increases.

Due to some flaws in software design or implementation, misuses or outright model

misspecification is often seen even in seemingly simple analyses (McLaren et al., 2011). For

example, effect estimates from multiple runs or sessions from each subject are easily and

incorrectly entered as independent samples in t-tests; two-sample t-tests and between-

subjects ANOVAs (e.g., "full factorial design") are mistakenly used to handle situations

involving a within-subject factor; a mixed ANOVA with one between-and one within-

subject factor implemented in univariate GLM (e.g., "flexible factorial design") is

inappropriately adopted to make inferences about the effect of the between-subjects factor or

the effect at a specific factor level; improper analysis for a two-or three-way within-subject

ANOVA is performed in GLM (e.g., "flexible Factorial Design") where no error

differentiation is considered. In contrast, an interface that requires the user to explicitly

specify the structural model for the data in terms of the explanatory variables (in symbolic

form) has the potential to force clarity into the statistical analysis choice.

Overview of the MVM methodology

Multivariate GLM, as a progenitor of the theory of algebraic invariants, has been available

for over 50 years, but its wide applications are generally discouraged (Tabachnick and

Fidell, 2013). A few reasons have contributed to its unpopularity in general. Compared to

UVM, MVM’s theory is less tractable, and is generally not covered in basic statistics

education. In addition, most multivariate models can also be formulated under the univariate

platform, but the multivariate approach is generally considered not as powerful as the latter.

Also, the various testing statistics under MVM are not as well-behaved or as simple as the

popular t-and F-statistics. Its high computational cost is another hindering factor cramping

its wide applicability. Nevertheless, the MVM provides two irreplaceable advantages, one in

implementing the traditional UVT methodology, and the other in offering MVT as an

auxiliary test. Its role as a scaffold allows for any number of within- subject factors under

UVT and further augments the UVT by the capability to correct for sphericity violation. Its
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adaptive flexibility in capturing the correlations among the levels of a within-subject factor

under MVT complements UVT. Specifically, the deviations among the levels of a within-

subjects factor are traditionally entered into UVM as random effects, leading to a

parsimonious assumption for the covariance structure. In contrast, in MVM those deviations

are treated as simultaneous response variables, allowing for estimating the correlations.

We have implemented the MVM methodology as an alternative to the univariate GLM in

the program 3dMVM in AFNI. A flattening process transforms the levels for each within-

subject factor as well as the level combinations across multiple within-subject factors into

simultaneous response variables, and separates the within-subject factors from the between-

subjects variables on the two sides of the MVM system. The platform renders the same

results as the univariate GLM when no within-subject factors are involved in the hypothesis.

On the other hand, when an omnibus hypothesis is associated with one or more within-

subject factors, two types of testing, MVT-WS and UVT, can be performed through a

folding process. The former is constructed through proper specifications of L, R, and C in

general linear hypothesis (Eq. (3)) in which the variance–covariance structure Σ is estimated

instead of being assumed spherical. Similar to the univariate GLM, the impact of unequal

numbers of subjects across groups would be limited by the degrees of freedom and the

broken orthogonality, not by modeling capability. It is the separation between within-and

between-subjects variables and the construction of the response transformation matrix R in

Eq. (3) that allow for easy implementation with any number of explanatory variables, and

the user is relieved of directly dealing with dummy coding. In addition, the Mauchly test for

sphericity violation and the correction for over-liberal F-tests in UVT are readily

incorporated. Among the four F-tests (UVT-UC, UVT-SC, HT, andMVT-WS) implemented

in 3dMVM for each omnibus hypothesis that involves a within-subject factor, the latter three

tests possess well-behaved control of FPR. Consistent with previous studies (O’brien and

Kaiser, 1985; Maxwell and Delaney, 2004), our simulations and analysis results with real

data indicated that there is no single preferable testing method that uniformly achieves the

highest power. It is the combination of UVT and MVT that not only expands the modeling

capabilities but also benefits in combined detection power (Barcikowski and Robey, 1984;

Looney and Stanley, 1989). Their complementary role is evidenced by the situations when

one test but not the other reveals significance, which usually occurs when sphericity is

severely violated. For example, Voxel 1 in Fig. 3 illustrates the importance of significance

detection through MVT-WS that would not be revealed through the univariate GLM or

UVT.

It is more often the rule than the exception that the variance–covariance matrix Σ for a

within-subject factor with more than two levels is not spherical. The data-driven approach of

MVM for estimating Σ is more adaptive to allow for any correlation pattern, but pays the

price in statistical power when sphericity violation is negligible or moderate; the power loss

is reflected in the reduction of denominator degrees of freedom for the F-statistic (cf., the

corresponding UVT F-statistic). On the other hand, MVT-WS is preferred when the

violation is severe. In contrast, UVT makes a parsimonious assumption about spherical

structure Σ, and produces the same results as the univariate GLM. However, UVT under the

MVM platform excels in two aspects relative to the univariate GLM. First, sphericity testing
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is available, and the violation, if significant, can be corrected through adjustment in the

degrees of freedom. Secondly, incorporating a quantitative explanatory variable in the

presence of a within-subject factor is available under MVM but not under the univariate

GLM.

In future work, we plan to extend the MVM framework to two situations. First, when the

BOLD response shape is captured through multiple basis functions, MVM offers further

detection power than what has been demonstrated here in the real data application. The

second scenario is that multiple response variables in different modalities (or units) can be

readily analyzed in the traditional MVT fashion. For example, connectivity measures of

resting state at various seed regions are truly simultaneous response variables and can be

formulated in an MVM system to test the centroid. Similarly, a correlation (or connectivity)

measure under resting state, fractional anisotropy on the white matter tract, gray matter

volume, and task-related BOLD response from MRI data would constitute a four-variate

model.

Comparisons with other implementations in neuroimaging

For within-subject experiment designs, there are three modeling approaches: UVM, MVM,

and linear mixed-effects modeling (LME). Theoretically, LME (e.g., as implemented in the

AFNI program 3dLME) is considered the most inclusive platform, and UVM naturally

generalizes to LME that is advantageous under several circumstances (Bernal-Rusiel et al.,

2012; Chen et al., 2013), including missing data, modeling quantitative covariates that vary

within-subject (e.g., RT measures under positive, negative and neutral conditions), and data

with genetic information. However, the LME framework becomes lackluster in practice

especially when dealing with conventional AN(C)OVAs for two reasons. First, its flexibility

to model the variance–covariance structure excels in model building and comparison, but

becomes impractical in the situation of massively univariate modeling. In addition, the

difficulty in assigning degrees of freedom leads to its heavy reliance on asymptotic

properties. When the sample size is not large enough, it is unrealistic to adopt numerical

approximations such as bootstrapping and Markov Chain Monte Carlo (MCMC) simulation

sampling for neuroimaging data analysis.

The Matlab package GLM Flex, FSL (GLM in FEAT) and SPM (Full and Flexible

Factorial Design) all provide the univariate GLM methodology. Among them, GLM

Flex is the closest in capability to 3dMVM with the following differences: a) 3dMVM

canmodel quantitative covariates in the presence of within-subject factors; b) Symbolic

representation for factor levels provides a more user-friendly interface for both input and

output; c) 3dMVM provides voxel-wise sphericity correction instead of assuming one

variance–covariance structure over the whole brain; d) No upper bound exists in 3dMVM

upon the number of explanatory variables, provided that the sample size is appropriate (e.g.,

at least five observations per variable). By way of illustration, neither FSL nor SPM can

analyze the dataset presented in the Applications and results section. In addition, their

implementations are problematic when a within-subject factor is involved in a data structure

with two or more factors due to the undifferentiated pairing for the F-statistic denominator

that can lead to higher FPR than intended. Specifically, the SS for errors is adopted for all
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the omnibus F-statistic formulation, thus only the F-statistics for the effects associated with

the highest order interaction among the within-subject factors are appropriately constructed.

For instance, in the presence of a within-subject factor, inferences regarding a between-

subjects factor are invalid (McLaren et al., 2011); similarly, a two-way within-subject

ANOVA, when analyzed in SPM or FSL, would lead to inflated significance for the main

effect for both factors. For the same reason, testing for most post hoc hypotheses under the

SPM and FSL implementations is equally problematic (e.g., the effect of positive condition

in the control group in a two-way mixed ANOVA).

Furthermore, perfect sphericity is assumed in FSL, while SPM and GLM Flex presume a

uniform variance–covariance structure in the “activated” regions, which is estimated through

pooling (Glaser and Friston, 2007). First, the spatial homogeneity presumption is unrelated

to the formulation of F-statistics in UVT (McLaren et al. 2011). Even if the whole brain

shares the same correlation structure, the denominator for the F-statistic of a between-

subjects factor, as well as the degrees of freedom, should still be properly specified, as

shown in Appendix A. Additionally, the power (or sensitivity) consideration in statistic

selection should be based on a solid ground, not at the sacrifice of proper FPR

controllability. Furthermore, if the sphericity violation is spatially homogeneous in the brain,

this pooling method offers an economical approach. However, our empirical data suggested

that such a presumption does not hold well (Fig. 4): substantial variability in sphericity

violation exists within and across regions. If this violation in a region happens to be around

the global average, the correction method may work reasonably well for that region.

However, a cluster whose violation severity is much higher (mostly the warm colors in Figs.

4B–D and the scatterplot in Fig. 5) would suffer from an unnecessary penalty in power. On

the other hand, those regions with much lower violation (mostly the blue voxels in Figs. 4B–

D and the scatterplot in Fig. 5) would be unjustifiably rendered with inflated significance.

The voxels selected in SPM and GLM Flex for spatially averaging of the variance–

covariance structure are only limited to those whose significance reaches a threshold (e.g.,

0.001), but the estimated variance–covariance structure is then applied to all the data,

causing further biases across the whole brain. The biased statistical significance introduced

by this procedure may impact the characteristics of clusters (e.g. peak, shape and size) as

well as their survival for multiple testing correction – without extensive testing (beyond the

scope of this paper) it is impossible to judge the import of this effect. Lastly, the smoothing

process of the variance–covariance structure among the selected voxels is typically not

accounted for in the FWE correction.

Our simulation results showed that the MVM approach is robust at the voxel level in terms

of FPR control and power achievement, and the spatial extent of noise can be reasonably

handled through the FWE correction. In the majority of FMRI packages, spatial smoothing

during preprocessing is used to improve the signal-to-noise ratio, and the smoothness of the

noise is taken into account in multiple testing corrections for FWE. Furthermore, paired t-

tests (a special one-way within-subject ANOVA with a 2 × 2 variance–covariance matrix)

are performed voxel-wise without taking into account the spatial structure in the brain

among all packages. One may argue that the amount of noise embedded in the FMRI data

justifies the pooling process under the presumption of uniform correlation structure across
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the brain. As the correlation structure demonstrates the extent of synchronization across the

factor levels (e.g., a subject who responds stronger to the positive condition relative to the

group average may also have a higher response to the negative and neutral conditions), the

uniformity presumption boils down to the following question: is the synchronization the

same across the whole brain? Even though our evidence of nonuniform correlation (Fig. 5)

could be discounted by the fact that FMRI data are noisy, and it may well be nearly

impossible to resolve with full certainty regarding the uniformity presumption in the absence

of a gold standard with real data (How to measure the robustness? Are more identified blobs

better or worse?), there is no compelling evidence to suggest the validity of the presumption.

A large gap exists between the presumption and the fact that FMRI data are noisy: noisy

data do not translate to a uniform correlation structure. We believe that the principle of

parsimony (Occam's razor) favors a method with less stringent assumptions. In light of these

considerations, we argue that the voxel-wise sphericity correction for UVT stands on firmer

ground than one with a stronger presumption that is difficult to validate with real or

simulated data (What spatial distribution should one assume about the correlation structure

in simulations?). The associated computational cost is well worth it, to ensure reasonably

accurate statistical inferences.

Current limitations of MVM

3dMVM is computationally inefficient compared to the SS method; most analyses take half an

hour or more. In addition, there are other limitations. a)With the parsimonious assumption

of sphericity, the univariate GLM pays a low price in degrees of freedom through pooling

the variances across the levels of a within-subject factor. In contrast, those levels are treated

as separate response variables under MVM with the requirement (Eq. (2)) dictating that the

total number of subjects be at least greater than or equal to the total number of simultaneous

and explanatory variables. For example, suppose that the BOLD response for each of three

emotion conditions is modeled by 8 basis functions. With one group of subjects, the MVM

platform needs at least 3 × 8 + 1=25 subjects. Such a stringent requirement is not needed in

the univariate GLM. b) Within-subject quantitative covariates cannot be modeled in 3dMVM.

For example, suppose that one considers the average RT under each of the three emotion

conditions as an explanatory variable at the group level. Such a scenario would have to be

handled through LME (Chen et al., 2013). c) Even though unequal numbers of subjects are

not an issue under MVM, a subject with missing data would have to be abandoned in the

analysis. For example, if one subject performed positive and neutral, but not negative, tasks,

the subject’s available data could not be utilized with MVM but can be utilized with LME

(Chen et al., 2013) or through data imputation. d) 3dMVM cannot handle LME models with

sophisticated hierarchical data structures such as subjects of monozygotic or dizygotic twins,

siblings, or parents from multiple families (Chen et al., 2013).

What if a cluster fails to survive rigorous corrections?

There are strong indications that a large portion of activations are likely unidentified at the

individual subject level due to the lack of power (Gonzalez-Castillo et al., 2012). The

detection failure (false negative rate) at the group level would probably be equally high, if

not higher. Even though most scientific investigations place a heavily-lopsided emphasis on
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the FPR controllability, the sensitivity or power is the primary focus under some

circumstances, such as pre-surgical detection where the efficiency is usually less than 10%

(Button et al., 2013). Several possibilities may lead to a cluster not achieving the desired

significance at the group level under a rigorous procedure: a) To reach a specific power

level, a huge number of subjects are usually required, which most studies lack due to

financial and/or time costs; b) Spatial alignment is composed of multiple steps including

cross-TR, cross-session, cross-modality and cross-subject components, increasing the

chance of misalignment. Suboptimal or even erroneous alignment procedure surely would

have a big impact on the power performance at the group level; c) Variations in response

magnitude or signal-to-noise ratio across regions as well as variations in spatial extent

(region size) may lead to different efficiency in activation detection across regions.

Intrinsically small response magnitudes or small regions, such as the amygdala, require a

smaller voxel-wise p-value to survive multiple testing correction compared to their larger

counterparts, which may not be always tenable. The small volume correction (SVC) method

is not always a legitimate solution, especially when other regions are of interest at the same

time. d) If a two-tailed test, when appropriate, is strictly performed instead of two one-tailed

tests,1 or if both multiple testing correction for the same hypothesis and multiple

comparisons correction for different hypotheses are rigorously executed at the same time,

many studies would face the power deficiency issue.

Similarly, a region without sphericity correction (e.g., the cluster at the left inferior parietal

lobule of Fig. 4D and UVT-UC in Fig. 3A) may survive the FWE correction while those

tests under sphericity correction (UVT-SC, HT, and MVT-WS in Fig. 3A) may fail. In other

words, the investigator could face a difficult situation between two choices: a statistically

rigorous approach leads to results that fail to reach the cluster-level significance, and another

approach with invalid presumption (uniform or perfect sphericity) renders easy result

reporting. We recommend that the investigator perform the appropriate and rigorous

correction, and in the meantime consider the less rigorous results. If clusters that do not

survive rigorous corrections do agree with prior evidence (particularly from other

modalities) or have substantial effect sizes (e.g., in percent signal change), then the results

can be reported with the caveat that they would not survive the proper correction. Such

results are still of suggestive value and provide a benchmark for future confirmation. In

contrast to the omnipresence, over-obsession and distorted impression of lopsided focus on

statistic values only (e.g., color-coded blobs of t-values) in the field, the response magnitude

should be presented, providing a solid ground for cross-region comparisons, cross-

examinations, replicability, power analysis, and meta analysis across studies (Sullivan and

Feinn, 2012). Our suggestion of reporting effect magnitudes is aligned with and

complementary to a recent proposal to avoid the misinterpretations of significance maps

(Engel and Burton, 2013). For example, as manifested in Fig. 3B, Voxel 5 in the left inferior

parietal lobule of Fig. 4D and UVT-UC in Fig. 3A was statistically significant only under

UVT-UC at a p-value of 0.0036, marginally significant under UVT-SC (p = 0.057), and not

1Unless the directionality of a contrast is a priori known, the commonly practiced one tailed t-tests are problematic especially when
both directions are considered simultaneously in the same study. The Bonferroni method for multiple comparison corrections with two
simultaneous one-tailed t-tests is essentially the same as running a two-tailed t-test. The software should not make a decision for the
user in terms of one-versus two sided testing, nor should it preclude the user from the proper testing options.
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significant under MVT-WS (p = 0.40). The cluster where Voxel 5 resided had a spatial

extent of 155 voxels (6646 mm3) at the voxel-wise significance level of 0.05, and it would

not survive an FWE correction at the whole brain level based on Monte Carlo simulations,

which requires a minimum cluster size of 247 voxels (10,590 mm3) with an FWHM of 10

mm. One could easily dismiss the reliability of the cluster purely based on the stringent

statistical thresholding as well as the fact that sphericity correction was not performed.

However, if one examines the substantial effect magnitude and the similar profiles and

patterns with other regions (Fig. 3C), it is hard to fully deny the suggestive value of

reporting the cluster together with its effect sizes and profiles.

Conclusion

The MVM scheme provides a unified and inclusive platform that enables us to offer a

comprehensive alternative to univariate GLM typically encountered in neuroimaging group

analysis with four tests: within-subject multivariate testing, univariate testing with and

without sphericity correction, and hybrid testing. Our implementation of MVM provides a

unique program 3dMVM with modeling capabilities beyond the current packages. Its interface

is easy-to-use, and allows the user to specify models and data structure through symbolic

representations. In addition to handling the traditional univariate GLM, it can analyze the

situations where there are a large number of explanatory variables or when a quantitative

covariate is involved in the presence of one or more within-subject factors. As the severity

of sphericity violation is usually inhomogeneous across the brain, 3dMVM offers a rigorous

correction method at the voxel level.
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Appendix A. UVM approach to AN(C)OVA through GLM

The univariate modeling (UVM) approach for AN(C)OVA or GLM involves one response

variable, which is the brain response magnitude in the context of neuroimaging data

analysis. Suppose that one is interested in teasing apart the effects on the BOLD response

among q quantitative covariates, one between-subjects factor A, and one within-subject

factor B. The relevant effects can be formulated as a cell means model,

(6)

where βi(j)k is the i th subject’s effect estimate (e.g., BOLD response) at the j th level (group)

of factor A and k th level of factor B, xi(j)h and αh are the i th subject’s value of the h th

explanatory variable and its associated group effect, , and  are respectively

the fixed effect at the j th level of factor A, the fixed effect at the k th level of factor B, and
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their interaction effect, bi(j) is a random effect term, indicating the deviation of the i th

subject at the j th level of factor A from all the fixed effects, and δi(j)k represents the random

error associated with the i th subject at the j th level of factor A and the k th level of factor B.

The index notation i(j) emphasizes that each subject is nested within a specific group. For

simplicity, we assume a balanced design with equal number of subjects across groups. i = 1,

2,…, n ; j = 1, 2,…, a ; k = 1, 2,…, b.

Subjects in the model (Eq. (6)) are sometimes considered the levels of a random factor S.

There are no random effects associated with those between-subjects variables (factors or

quantitative measures) because each subject takes only one value for each such explanatory

variable. In contrast, each subject is measured as many times as the number of levels for

each within-subject factor; therefore, the random term, bi(j), indicates the deviation of the i

th subject from the respective fixed effects, , and . It is noteworthy

that no direct random effect is included for  because such an interaction effect between

factor B and subjects S cannot be differentiated from the residual term δi(j)k, unless there are

multiple measures from each combination.

Without the presence of quantitative covariates (q = 1 and xi(j)1 = 1), the model (Eq. (6)) is

traditionally called a mixed factorial two-way ANOVA. To obtain the F-statistic for each

fixed effect in the ANOVA frame-work, one pairs an appropriate variance source as

numerator with another as denominator. Each variance source can be explicitly expressed as

the mean squares (MS), which is the sum of squares (SS) for the errors associated with each

fixed effect, adjusted by their respective degrees of freedom. More specifically, the F-

statistics for main effects of factors A and B and their interaction in a mixed factorial two-

way ANOVA (Eq. (6) with q =1) can be constructed as (Neter et al., 1996)

(7)

where

(8)

In the absence of multiple measures from each combination, MSBS(A) is the same as MSE,

the mean squares of the errors. The nice feature about the explicit expression of the MS

terms is that they can be numerically hard-coded into a program through the summation of
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data and their squares respectively, leading to highly efficient computations involving only

simple and direct SS terms. This scheme has been adopted into programs 3dANOVA,

3dANOVA2, 3dANOVA3, and GroupAna in AFNI, and their runtime for FMRI group analysis

is typically in seconds. For example, a mixed factorial two-way ANOVA can be analyzed

with 3dANOVA3-type 5.

However, the limitations for the direct computation of SS terms are quite obvious. This

calculation requires a rigid data structure, and cannot deal with an unbalanced design

(unequal numbers of subjects across groups) or missing data. Any quantitative covariates

cannot be analyzed under the framework either. The number of factors that can be

incorporated in the model is programatically limited. To expand the applicability of the

ANOVA platform, one can transform the cell means model (Eq. (6)) into a regression

counterpart in which an effect (fixed or random) for a categorical variable is typically

dummy coded in the model (or design)matrix. For the convenience of interpretation, we

choose effect coding (sum-to-zero or orthogonal contrast) in which the reference (or base)

level is set to −1 so that each level other than the reference takes 1 in its associated regressor

and 0 otherwise. The intercept α1 is associated with xi(j)1 = 1; when a quantitative covariate

is present, α1 illustrates the effect associated with the center value of the variable.

Furthermore, α1 can be interpreted as the average effect across the factor levels including

subjects. Each other regression coefficient,  or bi(j), reveals the corresponding effect

relative to the group average, thus effect coding is also called deviation coding. For

example, the ANCOVA model (Eq. (6)) can be represented and extended to a GLM or

Gauss-Markov setup,

(9)

where b is the stacking of all the response variable values. X is assumed of full column rank,

and its columns are associated with two categories. First, they include the regressors for the

fixed effects. For example, the ANCOVA model (Eq. (6)) can be expressed in Eq. (9) with

the fixed-effects columns in X coded by intercept (xi(j)1 = 1), quantitative covariates xi(j)h (h

= 2, 3,… q), m − 1 columns for the M groups (levels of factor A), l − 1 columns for the l

levels of within-subject factor B, (m − 1)(l − 1) columns for the interaction between factors

A and B. Secondly, they may contain the regressors for the random effects: each group is

represented through effect coding with as many as the number of subjects in that group

minus 1. d is the stacking of error terms that are confounded with the random effects of

interaction between factor B and subjects. Another natural extension is that the GLM

formulation (Eq. (9)) can be expressed as a special case of LME model (Chen et al., 2013).

Instead of direct computations in the cell means model (Eq. (6)), each SS term can be

obtained by solving the full GLM (Eq. (9)) through ordinary least squares (OLS) against the

respective reduced model. Specifically, the SS term for the errors for the full GLM (Eq. (9))

is expressed as

(10)
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where P = X(XTX)−1XT is the orthogonal projection matrix of b onto the space spanned by

the columns of X, and In is an identity matrix of size n × n. SSE in Eq. (10) characterizes the

data variability in the L2-space that cannot be accounted for by the explanatory variables (or

the columns of X) in the full model. When the columns associated with a specific effect

(e.g., factor A) are removed from X, the resultant SSE for the reduced (or restricted) model

would be higher than the one from the full model, and the incremental (or marginal) SSE

captures the contribution in SS attributable to the corresponding effect (e.g., factor A). That

is, each of the SS terms (e.g., SSA, SSB, SSAB, and SSS (A)) can be computed using Eq. (10)

but with the coding columns (e.g., for A, B, AB, and S respectively) removed from X and

then subtracting the SSE for the full model. Such computations in Eq. (10) are apparently not

as efficient as the direct formulas (Eq. (8) in Appendix A), and thus the GLM runtime is

usually in the order of minutes or longer. However, one advantage of GLM over the direct

SS computations is the availability of modeling unbalanced designs. It is of note that, with

equal numbers of subjects across groups and with no missing data, model regressors are

orthogonal, and the additivity of the SS terms (Eq. (8)) holds for the model (Eq. (6)); that is,

the total SS equals the sum of all individual SS terms. Equivalently, the additivity is

translated to the orthogonality of the regressors in the GLM (Eq. (9)). An unbalanced data

structure (as is the case with missing data) leads to the loss of orthogonality, and the

additivity of the SS terms is broken, leading to the sensitivity of the SS terms and thus the F-

statistics to the variable orders in the model. This is the source of diverse and controversial

adoption of schemes: sequential, hierarchical or partially sequential, and marginal SS

computations, also known as types I, II, and III respectively. A second advantage is that

quantitative covariates can be modeled in the absence of within-subject factors under the

GLM framework, and Eq. (9) reduces to multiple regression or ANCOVA. Within the AFNI

package, this is the approach adopted in programs such as 3dttest++ and 3dRegAna. The

third advantage of GLM is the flexible choice of explanatory variables and their interactions.

For example, if the highest order interaction in the model is deemed nonexistent, it can be

removed from the model. The downside of the flexibility is that, similar to the situation of

unbalanced design, it leads to the loss of additivity and orthogonality of the SS terms. In

contrast, ANOVA is rigid in the sense that all main effects and interactions have to be

included in the model and computation even if some effects are deemed not present.

For a two-way mixed factorial ANOVA without multiple measures (cf. Eq. (6) with q = 1

and xi(j)1 = 1), the denominator for the F-statistics of B and AB is the mean squares of errors

(MSE), which can be directly computed as in Eq. (10). However, the proper denominator for

the F-statistic of the between-subjects factor A is not MSE but MSS (A). Mistakenly using

MSE instead of MSS (A) as the denominator creates inflated significance for factor A as

clearly demonstrated by McLaren et al. (2011). Such an artificial inflation also occurs when

making a post hoc inference for the effect of a specific factor level or the linear combination

of multiple levels when their weights do not add up to zero. As the number of within-subject

factors increases, each extra factor requires a separate model with unique random effects and

separate variance partitioning. Consequentially the pairing for the denominators of F-

statistics becomes numerically tedious and even unwieldy for both the direct SS

computations and the GLM scheme. It is this challenge that leads to the upper bound of four

within-subject factors in the AFNI ANOVA suite. For GLM implementations, only the
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Matlab package GLM Flex allows for more than one within-subject factor with the

capability of modeling up to five fixed-effects variables, and properly handles omnibus

testing for between-subjects factors as well as post hoc inferences.

As the complexities of FMRI experiment design and the resultant group analysis deepen, the

limitation on the number of variables will become paramount. Another challenge under the

UVM platform (both direct SS computations and GLM) is that quantitative covariates

cannot be directly modeled in the presence of a within-subject factor. Further- more,

whenever there are more than two levels for a within-subject factor, the F-statistics for the

main and interaction effects are by default constructed under the sphericity assumption for

the variance–covariance matrix and thus inflated. No correction is currently provided in the

AFNI ANOVA suite or in FSL. Only SPM and GLM Flex deal with the issue by estimating

the variance–covariance matrix under the assumption that all “activated” voxels and regions

(e.g., under the voxel-wise significance of 0.001) share the same correlation structure. Such

an assumption would only hold if no heterogeneity exists across voxels and regions, and

may become questionable in reality. These limitations are some of the motivations that lead

to our exploration of the MVM approach for FMRI group analysis.

Appendix B. MVM under a constraint and the associated testing statistics

Just as in univariate GLM, the least squares estimates (LSE) for A and E in the MVM

system (Eq. (1)) are (Rencher and Christensen, 2012)

(11)

where the quadratic form Q = BT(I − P)B = BT (I − X(XTX)−1 XT)B = BT B ÂT XT B is the

counterpart of residual sum of squares (RSS) in UVM, and also paralleling is that P =

X(XTX)−1XT is the orthogonal projection matrix that is symmetric and idempotent. In other

words, P projects Rn onto the space spanned by the columns of the design matrix X : PB =

XÂ, and P(I − P) = 0.

To solve the MVM (Eq. (1)) under the constraint (Eq. (3)), we adopt a two-step procedure,

which also demonstrates intuitively the transformation role of R in Eq. (3). First, we

consider transforming the response data B in the original MVM system (Eq. (1)) through BR

= BR, and solve a new MVM framework,

(12)

The resultant LSE solutions are

(13)

The original GLT (Eq. (3)) now serves as a constraint or general linear hypothesis,
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(14)

for the new MVM (Eq. (12)). Following the same algebraic operations as in univariate GLM

(Seber, 2008), we obtain the LSE solutions for the MVM system (Eq. (12)) under the

constraint (Eq. (9)),

(15)

It can be further shown (Seber, 1984) that, under the hypothesis (Eq. (3)), the SSP matrices

for the hypothesis and errors are respectively

where Wv (k, Δ) denotes a v-dimensional Wishart distribution with k degrees of freedom and

parameter matrix Δ, a generalized version of χ2 (or more generally Γ) distribution. The

diagonals of H and E are the SS terms for the hypothesis and errors respectively for the

traditional univariate tests. An intuitive connection here based on the transformed system

(Eq. (12)) is that H corresponds to the incremental variance–covariance matrix in Eq. (15)

relative to Eq. (13) while E is associated with Σ̂
R in Eq. (13).

Four versions of testing statistics (Rencher and Christensen, 2012) are typically adopted for

the hypothesis (Eq. (3)) through the eigen-values λ1, λ2,…, λr of HE−1,

where det and tr are determinant and trace functions that summarize the sum of squares and

the shared variances among the response variables into a scalar, often referred to as

generalized sample variance. The Lawley–Hotelling trace can be viewed as the L1-norm of

the eigenvalue vector or generalized entropy index GE(1). Roy’s largest root is the L∞-norm

of the eigenvalue vector, GE(∞), the spectral or L2-norm ‖HE−1‖2. Wilks’ λ is GE(−1) on

(1 + λ1, 1 + λ2,…, 1 + λr) up to a monotone transformation each.

The four multivariate testing statistics are exact tests, but are not equivalent with each other

in general. However, when only two groups of subjects are involved, there is only one

eigenvalue, so they become equivalent and reduce to Hotelling’s T2. For easier thresholding

of significance testing, they can be approximated by F-statistic. As indicators of relationship
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between explanatory and response variables, they differ slightly in their approaches to

aggregating the variabilities across the response variables accounted for by the explanatory

variables or under Eq. (3). Roy’s largest root, as the union-interaction principle test, only

considers the largest effect on the response variables (or largest loading on the associated

eigenvector). The other three are compound tests that involve all the response variables.

Equivalent to the likelihood ratio test, Wilks's λ is the most intuitively interpretable with a

range between 0 and 1. For example, a small Wilks's λ indicates greater accountability.

Specifically, 0 (or 1) means a perfect (or no) relationship between the explanatory and the

response variables. And 1 minus Wilks's λ is the multivariate counterpart of coefficient of

determination R2 in univariate GLM, showing the proportion of data variability in the

response variables that is accounted for by the explanatory variables. The Pillai–Bartlett

trace sums over the variances that can be explained by the discriminant variables (or the

greatest separation of the explanatory variables), and is considered the most reliable among

the four and provides the best protection against false positives when the sample size is

relatively small. The Lawley–Hotelling trace represents the most significant linear

combination of the response variables. When the sample is reasonably large, the latter three

MVT statistics render similar results.

When R = I, the general linear hypothesis (Eq. (3)) corresponds to the conventional

multivariate testing (Appendix B). In addition, the eigenvectors associated with λ1, λ2,…, λr

are orthogonal with each other, and are the linear combinations of the response variables.

Each eigenvalue indicates the amount of variability that can be accounted for by the

associated eigenvector.

Appendix C. Examples of formulating GLT matrices

We start with two special scenarios that are the multivariate versions of one- and two-

sample t-tests. In the first case of multivariate one-sample test, each subject is measured in

Rm, X = 1 n × 1, and A is of size 1 × m. An m-variate analog of univariate one-sample

hypothesis can be expressed under Eq. (3) as,

(16a)

(16b)

This is a one-sample Hotelling’s T2-test, the multivariate analog of the univariate one-

sample t-test. The null hypothesis (Eq. (16a)) states that the group centroid is at the origin of

Rm.

In the multivariate two-sample case, X and A are of size n × 2 and 2 × m respectively. With

effect coding, the hypothesis for group comparison in Rm and its testing formulation under

Eq. (3) are respectively,

(17a)
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(17b)

The hypothesis (Eq. (17a)) compares the centroid in Rm between the groups, and its

associated test is a two-sample Hotelling’s T2, the multivariate analog of the univariate two

sample t-test. One may also perform testing for each group’s effect with respectively

The within-subject MVT (MVT-WS) hypothesis of interest parallel to Eq. (16a) is the factor

main effect in one-way within-subject ANOVA,

(18a)

(18b)

Notice that the response transformation matrix R5 is essentially the effect coding matrix for

the within-subject factor under UVM with each column representing the contrast between

the first and last levels. This representation also embodies the transformation from the

centroid hypothesis (Eq. (16a)) to the main effect hypothesis (Eq. (18a)). Alternatively the

namesake for R5 has another perspective: Eq. (18a) can be formulated by transforming the

original m response variables to m − 1 variables with each of the first m − 1 response

variables subtracting the m-th variable. In other words, after the transformation, Eq. (18a)

under the new MVM with m − 1 response variables becomes a conventional multivariate

hypothesis with R = Im − 1 for an Rm − 1 centroid: (α1 − αm, α2 − αm,…, αm − 1 − αm) =

01× (m − 1). A generic derivation for the transformation can be found in Appendix B.

Similarly, the MVT-WS hypothesis of interest parallel to Eq. (17a) is the interaction

between the factor and the two groups in the mixed factorial two-way ANOVA,

It should be easy now to formulate the MVT-WS version of main effect hypothesis for the

within-subject factor (α․1 = α․2= … = α․m) and for the groups (α1․ = α2․) throughL = (1,0),

R = R5 and L = (0, 1), R = 1m × 1 respectively. The center dot (·) here in the effect parameter

index notations indicates the averaging or collapsing among the levels of the corresponding

factor.

The above cases can be naturally extended to the situations with more explanatory variables.

For example, a two-way between-subjects ANOVA is a trivial case because of the absence
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of within-subject factors. Thus the response transformation matrix is scalar, R = 1, and the

multivariate model reduces to a UVM system.

For a mixed factorial two-way ANOVA (model (1) with q =1)with between-subjects factor

A of a levels and within-subject factor B of b levels, the main effects for factors A and B and

their interaction A:B can be tested under MVM through Eq. (3) with the following

where  is the effect coding matrix for factor B. And the F-statistics

from the above GLTs are equivalent to Eq. (7) if the data structure is balanced.

For a factorial two-way within-subject ANOVA with factors A and B of a and b levels

respectively, one can similarly analyze the data under the MVM framework and obtain the

MVT-WS results via Eq. (3) with

where  and RA : B = R(A) ⊗ R(B) are the effect coding matrices for

factor A and interaction A : B respectively.

Appendix D. The Mauchly test and sphericity corrections

The Mauchly test for sphericity verifies whether Σ in Eq. (1) is proportional to identity

matrix, and can be performed through (Timm, 2002)

where Ẽ = R̃T ER̃, R̃ is an orthogonormal matrix whose columns are normalized orthogonal

columns of the response transformation matrix R in Eq. (3), E is the SSP matrix for the

errors, and v is the number of columns in R. W is close to 1 if Ẽ is approximately a diagonal

matrix, and – ln W can be approximated by χ2-distribution with a scaling factor.

Furthermore, the Greenhouse-Geisser and Huynh-Feldt measures of sphericity can be

computed as well under UVM (Keselman et al., 2001),
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where 1/v ≤ εGG ≤ εHF ≤ 1 and perfect sphericity corresponds to the upper bound εGG = εHF

= 1 and the lower bound instantiates the case when there is one dominating eigenvalue (thus

the data can be approximated in one-dimension). The correction for sphericity violation can

be performed through multiplying both the numerator and denominator degrees of freedom

in the original F-statistic by either εGG or εHF. The Greenhouse-Geisser measure tends to be

over-conservative when the violation is not severe while the Huynh-Feldt modification is

too liberal when sphericity is significantly violated.

Appendix E

Interface for running 3dMVMProgram 3dMVM is run, for example, on a tcsh terminal with a

command script as the following. As in the notional convention in R, the operator * between

the variables a and b means a * b = a + b + a : b, while + and : represent addition and

interaction among the variables. As in most AFNI program, the specific usage and the

options can be found in command 3dMVM -help at the terminal.

3dMVM -prefix OutputFile -jobs 8 \

-bsVars ’Group*Age’ -wsVars ’Cond*Component’ \

-qVars ’Age’ -SC -MV -num_glt 40 \

-

-dataTabel \

Subj Group Age Cond Component InputFile \

S1 Child 2.3 Con tent1 S1_Con_t1+tlrc \

S1 Child 2.3 Con tent2 S1_Con_t2+tlrc \

-

S1 Child 2.3 Con tent10 S1_Con_t10+tlrc \

-

S50 Adult −1.9 Inc tent1 S50_Con_t1+tlrc \

S50 Adult −1.9 Inc tent2 S50_Con_t2+tlrc \

-

S50 Adult −1.9 Inc tent10 S50_Con_t10+tlrc

Appendix F. List of acronyms used in the paper

AN(C)OVA

analysis of (co)variance

FPR false positive rate

FWE family-wise error

GLM general linear model

GLT general linear testing

HDR hemodynamic response
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HT hybrid testing defined in Eq. (5)

LSE least squares estimate

MAN(C)OVA multivariate analysis of (co)variance

MLE linear mixed-effects modeling

MSE mean squares of errors

MVM multivariate modeling

MVT multivariate testing

MVT-WS multivariate testing for a within-subject effect

SS sum of squares

SSP sum of squares and product

SSPE sum of squares and product for errors

SSPH sum of squares and product for the hypothesis

UVM univariate modeling

UVT univariate testing

UVT-SC univariate testing with sphericity correction

UVT-UC univariate testing with sphericity uncorrected
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Highlights

• AN(C)OVA can be analyzed via multivariate modeling.

• There is no limit on the number of explanatory variables.

• Quantitative covariates can be modeled in the presence of a within subject

factor.

• Sphericity violation can be corrected at the voxel level.

• Model and all tests can be specified via symbolic labels.
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Fig. 1.
Simulation data and results for the interaction Group:Component. (A) The presumed HDR

functions with a post stimulus undershoot for the two groups, with a difference of 2 s in

shifted peak location, were generated by a convolution program waver in AFNI, and

sampled at TR=2 s (shown with vertical dotted lines). (B) Average sphericity measure ε

across 5000 simulations for the two methods, GG and HF. Notice that 1/6 ≤ εGG ≤ εHF ≤ 1

(Appendix D). (C) Controllability for false positives in univariate testing (UVT) of

Group:Component without correction (UVT-UC) (red) is poor when the serial correlation

becomes high. The traditional sphericity correction (UVT-SC) (blue), within-subject

multivariate testing (MVT-WS) (green), and hybrid testing (HT) are well behaved. (D)

UVT-SC (blue) pays the cost in power relative to UVT-UC (red). Compared to UVT-SC

(blue), MVT-WS (green) underperforms when ρ < 0.65 but excels when ρ≥ 0.65. Even

though mostly worse than UVT-UC in power, HT (purple) achieves a detection rate that is

approximately the higher one between MVT-WS and UVT-SC. The curves in (B), (C) and

(D) were fitted to simulated results (plotting symbols) through loess smoothing with the

second order of local polynomials.
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Fig. 2.
Histograms of Z -value differences at 2383 voxels (resolution: 3.5 × 3.5 × 3.5 mm3) that

reached the voxel-wise significance level of 0.05 for HT. The Z-values were converted from

the original F-values with different degrees of freedom. Six pairwise comparisons are

shown: (A) HT and UVT-UC, (B) HT and UVT-SC, (C) HT and MVT-WS, (D) MVT-WS

and UVT-UC, (E) MVT-WS and UVT-SC, (F) UVT-UC and UVT-SC. Cell width is 0.1 in

Z -value difference. The spikes in (B) and (C), with a height of 958 and 1437 voxels

respectively, were chopped off for a comparable representation among the histograms, and

they indicate that little difference existed between the two tests at most voxels.
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Fig. 3.
(A) Four tests are illustrated on a coronal slice (Z = 27) with colored voxels at the 0.05 level.

No multiple testing correction or cluster-level thresholding was applied. Voxel 1 in (B) and

(C) is located at the crosshair. The left brain is shown on the right. (B) The Mauchly test,

sphericity measures (εGG and εHF) and the four testing statistics are shown at six voxels

from the three-way interaction. The extent of sphericity violation is broad among the six

voxels. (C) RT marginal effects in condition comparisons (first two columns) and in the

three-way interaction are plotted at the six voxels in (B) with each profile spanning over 11
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TRs or 13.75 s. In addition to the statistical significance presented in (B), the RT marginal

effect profiles of each group at both conditions and the three-way interactions provided

strong evidence for the existence of the associated effects at these voxels.

Chen et al. Page 39

Neuroimage. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
Spatial in homogeneity of εHF values is illustrated through a histogram (A), an axial (X= −

2) (B), a sagittal (Y = 36) (C) and a coronal (Z = 27) view (D) at 5192 voxels (resolution:

3.5 × 3.5 × 3.5 mm3) that reached the significance level of 0.05 for UVT-UC. Cell width in

(A) is 0.01. The distribution of εGG (not shown here) is similar. Notice that 1/9 ≤ εGG ≤ εHF

≤ 1 (Appendix D), mean(εGG) = 0.439, sd (εGG) = 0.105, mean (εHF) = 0.488, sd(εHF) =

0.130. Coronal view (D) and the colored clusters are the same as in Fig. 3A. Red, green and

blue in (B) and (C) correspond to no, mild, and severe violation of sphericity assumption. A

substantial amount of variability in εHF exists within and across brain regions; that is, the

severity of sphericity violation is spatially heterogeneous.
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Fig. 5.
Performance comparisons on a two-way ANOVA with one between-subjects (Group) and

one within-subject (Component) factor among three modeling strategies: 3dMVM in AFNI,

Flexible Factorial Design in SPM (SPM8 v5236), and Matlab package GLM Flex.

The original F-statistic values with different degrees of freedom were converted to Z -values

for direct comparisons. The color-coded Z -value maps are thresholded at the voxel-wise

significance level of 0.05 and shown at the same focus point of (X, Y, Z) = (−2, 36, 27) as in

Figs. 3A and 4. (A) 3dMVM and GLM Flex rendered virtually identical group effect while
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Flexible Factorial Design dramatically inflated the significance due to the incorrect

formulation of F-statistic for the between-subjects effect: both the denominator (MSS (A)

versus MSBS (A) for factor A in Eq. (7) of Appendix A) and the associated degrees of

freedom (432 versus 48) were impropriate. The inflation is also demonstrated in the

scatterplot of the Z -values in the brain on the right-hand side. (B) The three programs gave

similar interaction effect, but the subtle differences lie in the biases of Flexible

Factorial Design and GLM Flex on the significance. UVT-SC was adopted here in

3dMVM for comparisons. As shown in the scatterplot of Z-value differences, the biases at

each voxel are positively correlated with the deviation of sphericity violation from the

average among the selected voxels. The slight differences between Flexible Factorial

Design and GLM Flex were likely due to different selected voxels for the pooling process

of the correlation structure.
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