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 Abstract 

Brain morphology and cognitive ability change with age.  Grey and white matter volumes 

decrease markedly by the 7th decade of life when cognitive decreases first become readily 

detectable. As a consequence, the shape complexity of the cortical mantle may also change. The 

purpose of this study is to examine changes over a five year period in brain structural complexity 

in late life, and to investigate cognitive correlates of any changes. 

Brain magnetic resonance images at 1.5 Tesla were acquired from the Aberdeen 1936 Birth 

Cohort at about ages 68 years (243 participants) and 73 years (148 participants returned). 

Measures of brain complexity were extracted using fractal dimension (FD) and calculated using 

the box-counting method. White matter complexity, brain volumes and cognitive performance 

were measured at both 68 and 73 years. Childhood ability was measured at age 11 using the 

Moray House Test. 

FD and brain volume decrease significantly from age 68 to 73 years. Using a multilevel linear 

modelling approach, we conclude that individual decreases in late life white matter complexity 

are not associated with differences in executive function but are linked to information processing 

speed, auditory-verbal learning, and reasoning in specific models-with adjustment for childhood 

mental ability. A significant association was found after adjustment for age, brain volume and 

childhood mental ability. 

Complexity of white matter is associated with higher fluid cognitive ability and, in a longitudinal 

study, predicts retention of cognitive ability within late life. 
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1. Introduction 

Age-related cognitive decline is a poorly understood and increasing public health problem. 

Successful cognitive aging is associated with higher cortical volumes (Harrison et al., 2012; Staff 

2012) and greater retention of brain volumes in late life (Staff et al., 2006). Over the life course, 

grey matter (GM) volume reaches a maximum in the first decade of life, followed by a gradual 

decline, which accelerates later in life such that 13% is lost by the eighth decade (Courchesne et 

al., 2000); while white matter (WM) volume increases until late adulthood before it declines. 

Between ages 63 and 75, brain anatomy is characterized by shrinkage due to approximate equal 

loss of GM and WM but with a non-homogeneous pattern of atrophy (Lemaitre et al., 2005).  

Volumetric measurements provide important information about the relative anatomy of cortical 

regions, but can explain only a small proportion of cognitive variance and do not represent fine 

structural changes in shape and integrity that accompany age-related changes in volume. Cortical 

sulcal anatomy is highly variable across different ages and between individuals (Kochunov et al., 

2005). Cortical structural variability is partly captured by brain complexity using fractal 

dimension (FD), which measures the complexity of cortical folding described by gyri and thus 

characterises the architectural pattern of cortex (Bullmore et al., 1994; Free et al., 1996). FD is a 

single numerical value representing brain morphological complexity, allowing inter- and intra-

individual comparisons. In general, higher FD values represent greater complexity of cortical 

surface. FD has been compared between children and adolescents and also between young and 

old adults (Blanton et al., 2001; Zhang et al., 2007) using cross-sectional observations. These 
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studies found higher cortical complexity in adolescents and less complexity in adulthood 

(Farahibozorg, Hashemi-Golpayegani, Ashburner 2014) with the lowest values of FD for people 

in the eighth and ninth decades. FD has also been investigated in schizophrenia (Narr et al., 

2004; Sandu et al., 2008b; Yotter et al., 2011), manic depression (Bullmore et al., 1994), 

obsessive-compulsive disorder (Ha et al., 2005), Alzheimer’s disease (King et al., 2010); 

intellectual disability (Sandu et al., 2014), epilepsy (Free et al., 1996), Williams syndrome 

(Thompson et al., 2005) and dyslexia (Sandu et al., 2008a) . Cortical complexity measured by 

FD is also positively correlated with the number of years of education and the intelligence 

quotient (Im et al., 2006). Brain complexity has also provided an insight into variation of 

cognitive performance throughout the human life span (Mustafa et al., 2012). FD thus provides 

information that is complementary to volumetric measurements of the brain and correlates with 

aging, cognitive ability and the presence of neurological disorders. 

Ontogenetic mechanisms of cortical self-organization strongly influence the complex shape of 

the cerebral hemispheres with mechanical tension along axons being currently thought to be the 

main factor for generation of cortical sulci and gyri (Hilgetag and Barbas 2005; Van Essen 

1997). Mota and Herculano-Houzel (2012) have suggested that folding increases with 

connectivity through the WM and for the same number of neurons higher connectivity through 

the WM becomes responsible for a higher degree of folding. If confirmed, this implies that 

different degrees of folding exist for the same neuronal volume and suggest that folding 

complexity is likely to be an independent measure with functional significance. 

The literature provides a logical mechanism for the formation of structural complexity (Hilgetag 

and Barbas 2005; Mota and Herculano-Houzel 2012; Van Essen 1997) and has described cross-
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sectional observations that indicate its variation across the life span (Blanton et al., 2001; 

Esteban et al., 2010; Farahibozorg, Hashemi-Golpayegani, Ashburner 2014; Zhang et al., 2007). 

There is some limited cross-sectional evidence that complexity is associated with cognitive 

performance (Im et al., 2006; Mustafa et al., 2012). What is unclear is how, during non-

pathological cognitive development and aging, inter- and intra-individual cortical complexity 

changes and how this is related to cognitive change. Our particular interest is to investigate 

whether changes in brain complexity reflect performance on different cognitive tasks.  More 

broadly, we are concerned with examining if complexity can be used as a more subtle estimate of 

structural ‘brain aging’, in addition to or as an alternative to volumetric loss. 

We hypothesize that individual differences in WM complexity are associated with differences in 

cognitive ability in a group of well characterized older adults who were imaged and completed a 

range of cognitive tests on two occasions at age about 68 and about 73 years. We used cross 

sectional and longitudinal modelling methods to test the association between change in cognition 

in late life and WM complexity, after adjustment for age, brain volume and childhood mental 

ability, that may potentially confound these hypothesized relationships.  

2. Methods 

2.1 Participants  

T1 volumetric MR data were acquired from a well-characterized cohort of 243 individuals born 

in Aberdeen in 1936, known as the Aberdeen Birth Cohort of 1936 (ABC36) when aged around 

68 years. We invited those previously recruited who were living independently in the 

community, were without dementia and gave informed consent to further study. 148 agreed and 
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were imaged for a second time using an identical sequence and scanner, aged around 73 years 

(Whalley et al., 2011).  

2.2 Cognitive tests 

All participants took Raven’s Standard progressive Matrices (RPM) measuring nonverbal 

reasoning (Raven, Court, Raven 1977); the Digit Symbol Score (DS) evaluating the speed of 

information processing attention and visual short-term memory (Wechsler 1997); Auditory 

Verbal Learning Test (AVLT) assessing short-term and longer-term memory and learning (Rey 

1964);  Block Design (BLK) which test visuospatial skills (Wechsler 1997); and Uses of 

Common Objects (UFO), a measure of executive function or purposive action (Guilford et al., 

1978). The tests were applied at age 68 and repeated at age 73 by an experienced research 

psychologist. Data on childhood ability measured using the Moray House Test (MHT) at age 11, 

was archived by Scottish Council for Research in Education. The University of Aberdeen was 

granted access to these data. 

2.3 Image acquisition 

All brain MRI data at age 68 and 73 years were acquired on a 1.5 Tesla GE NVi system. Three 

dimensional (3D) images of the brain were acquired with a T1 SPGR (T1W) MR sequence with 

the following parameters; 20 ms repetition time (TR), 6 ms echo time (TE), 35° flip angle (α), 

number of slices 100 to 124, effective slice thickness 1.6 mm and matrix 256×256 with in-plane 

resolution 1 mm×1 mm.  
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2.4 Image processing  

MRI data pre-processing was completed using the free software Freesurfer (FS) 

(http://surfer.nmr.mgh.harvard.edu/) that provides a set of semi-automated tools for creating 

computerized models of the brain from MR imaging data and measuring the brain’s 

morphometric properties (Fischl et al., 2002). The pre-processing steps include motion 

correction, affine transformation to Talairach image space, non-uniform intensity normalisation 

for intensity inhomogeneity correction and removal of non-brain tissues. The second step 

involves cortical parcellation of the GM and WM surface, topology correction and surface based 

warping to align anatomically homologous points.  The segmentation is based on the voxel’s 

location in the volume, the neighbouring voxels’ tissue classes, and the intensity value in each 

voxel. It has been shown that this automatic labeling procedure is comparable in accuracy to 

manual labeling (Fischl et al., 2002). After processing was completed, the left and right cerebral 

white matters were extracted from the subcortical structure to form a whole white matter 

mask(256 × 256 × 256 mm3). The mask was not altered in any way (e.g. manual trimming). 

Segmented images with separated GM and WM are used for the calculation of white matter 

volume and whole brain volume (GM+WM).  

2.5 Calculation of the Fractal Dimension 

In order to characterize, in the second step of the analysis, the geometric complexity of WM, the 

WM obtained from the segmented images of the whole cerebrum served as a/the basis for the 

estimation of the fractal dimension. For the calculation of fractal dimension, the box-counting 

method is widely used and simple to apply. In the box-counting method, the object to be 

analyzed is covered with 3D boxes. The white matter structure is covered with boxes, which are 
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arranged in a regular lattice and the boxes containing white matter are counted. The process is 

illustrated in Fig.1 by a mid-coronal slice from one participant. WM volume is covered with 

boxes of increasing size. For illustration purposes, the linear size of the box is varied from 1 

voxel, corresponding in our case to 1 cubic mm, to 6 voxels. Note that the slice is extracted after 

the construction of the boxes on the three dimensional volume. 

 

Fig. 1 Legend: In an illustration of the box-counting method, the mid-coronal slice is covered with boxes of 

increasing size. The section is extracted after the construction of boxes on three-dimensional white matter volume. 

The number of boxes (N) of a given length needed to cover the whole structure varies with the 

linear size (r) of the box as N~ r-D, where D is the fractal dimension given by the slope in a 

double logarithmic plot of number of boxes versus box size. For irregular structures, D is a non-

integer number. This refers to the fine structure of the fractals: by decreasing the size of the ruler 

one covers more detail, thus the number of boxes varies in a different way than in smooth 
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objects. In the case of the brain this property holds for a limited range of scales that has to be 

determined (Sandu et al., 2008b). The selected range was chosen as the maximum interval for 

which the linear correlation coefficient is above a threshold (R2=0.9995). This describes the 

quality of the linear fit in the plot of logarithm of boxes size vs logarithm of number of boxes 

needed to assess the whole white mater structure. We illustrate this by showing how the edge 

length of the boxes increases by one voxel per iteration, within the range from r = 3 to r = 30 

voxels for whole brain WM. The absolute value of the slope of a linear regression line provides 

the fractal dimension of the WM volume (see Fig 2).  

 

Fig. 2 Legend: Logarithmic plot of the number of boxes containing white matter versus box radius. The fractal 

dimension given by the slope is 2.4507 
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The algorithm and a validation procedure of the method were presented in a previous study 

(Sandu et al., 2008b). This was done using digital phantoms with known fractal dimension and 

the reliability of the method was measured through an intraclass correlation coefficient 

(ICC>0.9) between data acquired from two different scanners. The analyses were based on in-

house developed software written in Matlab R2012a (Mathworks, Natick, MA, USA). 

2.6 Statistical analysis 

Statistical analysis was performed using SPSS 21 (Statistical Package for Social Sciences 21; 

IBM, Chicago, IL, USA). Data collected from healthy subjects in two waves (at 68 and 73 years 

old) were compared using paired two samples t-test. Relationships between cortical complexity 

and cognitive scores were examined using Pearson’s correlation. The correlation was also used 

to test the association between the precise scan interval and changes in WM volumes. 

To test the hypothesized association between the structural complexity of WM and cognitive 

abilities in late life, we used a multilevel linear modelling approach and the software MLwiN 

(Rasbash et al., 2009). We assumed that on each occasion cognitive ability is explained by a 

linear combination of age, brain volume and structural complexity summarized by equation 1. 

Each variable and the intercept were modelled as a fixed effect. Here, each cognitive test was 

standardized as an IQ-type score (aIQ, mean 100, standard deviation 15).  Age was expressed as 

years past their sixtieth birthday (Age+60). The WM fractal dimension and brain volume were 

also standardized (FDWM, mean = 0, standard deviation =1), using all of the data in our sample. 

Whole brain volumes and white matter volumes were also standardized (Vol, mean =0, standard 

deviation = 1).  The participants are identified by the subscript i and the occasion of testing by 

the subscript j. β0,j  is the intercept and represents the estimated cognitive ability at the age of 60 
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years, ei,j represents the residual.  Preliminary analysis of our data suggested FD differed 

between men and women, but after adjusting for brain volumes this relationship was not 

maintained. 

jijjjjji eVolFDWMAgeaIQ ,,3,260,1,0,             (1) 

In order to test a hypothesized association between complexity and life-long cognitive change, 

we extended our model to include childhood ability. As with adult ability, we standardized the 

MHT (Moray House Test) score into an IQ –type score (cIQ , mean = 100. standard deviation = 

15 ). 

jijjjjjji ecIQVolFDWMAgeaIQ ,,4,3,260,1,0,       (2) 

3. Results 

243 participants (128 male) were imaged aged around 68 years and of this original sample, 148 

participants, (80 male) were imaged at follow-up, aged around 73 years. FD values for WM and 

brain volumes were compared within subjects between ages 68 and 73 years using paired two 

samples t-test (Table 1). All comparisons showed significant decreases. FD values and brain 

volumes were significantly lower at wave 2 when compared to wave 1 and those participants 

who did not return for image at wave 2 had significantly smaller baseline FD and brain volumes. 

Decreased brain complexity with age is illustrated in the Figure 3.  The decline of complexity 

with age was further tested using a multilevel linear model which included volume as a 

covariable Equation 3. Here, the relationship with age was maintained after adjustment for 

volume (WM or whole brain). 
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jijjjji eVolAgeFDWM ,,260,1,0,       (3) 

 

Fig. 3 Legend: Complexity decline with age- plotting the changes in standardized white matter Fractal Dimension vs 

age past 60 years 

Table 1 compares raw cognitive rest test scores between test occasions. All cognitive test scores 

were expected to be positively correlated. To examine whether the hypothesized associations 

between FD and cognitive test scores are specific to particular cognitive domains or have general 

associations with all domains, we reduced data using principal component analysis. From 

cognitive test scores, we extracted the first un-rotated principal component, also known as the 

general factor (g), which explained 46% of the observed variance.  Individual factor loadings 

were: - RPM: 0.80 DS: 0.65, AVLT: 0.65, BLK: 0.69, UFO: 0.59.  DS, AVLT, g and BLK all 

showed significant decline over the testing period.  RPM remained unchanged and UFO showed 
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some improvement.  RPM and UFO results are probably attributable to practice effects.  Those 

of higher ability on RPM, UFO, g and BLK were more likely to provide wave 2 samples, age 

~73.  Those individuals who returned for wave 2 imaging were slightly younger at wave 1, age 

~68. 

 

 

 

 

 

 

 

 

Table 1 Legend: Means and standard deviations for the fractal dimension (FD) measurements of white matter (WM), 

brain volumes and the cognitive test scores: Raven’s standard progressive matrices test (RPM), digit symbol scores 

(DS), use of objects (UFO), auditory verbal learning test (AVLT), Block Design (BLK), general intelligence factor 

(g) using paired and unpaired t-tests between the different groups and measurement waves. Moray House Test 

(MHT) is childhood intelligence test at age 11. *** = p<.001 by paired t-test; ‘W1 Completed vs W1+2 Completed’. 

###  = p<.001, #= p<.05, t-test ‘W1 Completed vs W1 only’. 

The multilevel linear model shown in equation 1 is seen in Table 2. It shows that, after 

adjustment for age, FD and WM volume, there is a significant association between processing 

 Imaging  
ID W1 Completed W1+2 Completed W1 Only 

Measurement Wave Wave 1  Wave 2   Wave 1  
Participation Completed Wave 1 

and 2 
Completed Wave 1 
and 2 

Completed Wave 1 
only 

N 148 148 94 
FDWM 2.47 (.019) 2.46 (.021)*** 2.46 (.023)# 
Volume WM (cm3) 447.2 (54.3) 431.6 (54.2)*** 432.3 (60.5)# 

Brain Volume (cm3) 912.6 (91.2) 881.2 (90.2)*** 886.9 (100.4)# 
  Cognition   

N 132-151 132-151 72-138 
RPM 39.1 (6.9) N=151 38.3 (7.2)  35.1 (6.6)### N=82 
DS 47.5 (10.2) N=132 41.3 (10.0)*** 43.6 (10.8) N=94 
UFO 13.6 (6.1) N=154 15.0 (5.2)*** 12.3 (4.9)### N=72 
AVLT 63.4 (14.4) N=148 59.7 (16.9)*** 60.1 (15.7) N=83 
BLK 27.2 (8.6) N=150 25.0 (9.6)*** 23.4 (8.7)# N=74 
MHT 46.0 (10.1) N=148  43.8 (11.1) N=94 
g .29 (.96) N=87 -.07 (1.03)*** -.22 (.96)### N=138 
Age (years) 68.6 (.6) N=148 72.7 (.5)*** 68.8 (.72)# N=94 
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speed (DS) and memory (AVLT) and WM complexity (FD). For DS and AVLT, a FD difference 

of 1 standard deviation represents an IQ difference of between 2.5 and 3 points. Table 2 shows 

intercepts significantly greater than zero as expected. The results used whole brain volume 

estimates as the Vol variable, repeating the results of an analysis using WM volume produced an 

almost identical set of results. 

 RPM DS AVLT BLK UFO g 

β0 intercept 95.8 (4.0)* 109.4 (4.1)* 104.3 (3.9)* 96.6 (3.9)* 92.8 (4.0)* 99.1 (4.3)*

β1 Age .41 (.39) -.95 (.41)* -.42 (.38) .32 (.38) .71 (.39) .07 (.43)

β2 FD 1.78 (1.21) 2.44 (1.24)* 2.92 (1.14)* -.71 (1.18) 1.26 (1.18) 1.93 (1.28)

β3 Volume  .085 (1.17) -1.35 (1.19) -1.15 (1.13) 4.91 (1.13)* .06 (1.16) -.08 (1.24)

σ2 220.8 (16.5) 217.6 (16.1) 210.8 (15.7) 204.9 (15.4) 221.2 (16.4) 221.1 (17.5)

-2*loglikelihood 2931.7 2786 2931.7 2880.7 2981.9 2619.2

Table 2 Legend: The multilevel linear model results (equation 1) for each of cognitive tests: Raven’s standard 

progressive matrices test (RPM), digit symbol scores (DS), auditory verbal learning test (AVLT), Block Design 

(BLK), use of objects (UFO), general intelligence factor (g) was standardized into an IQ-like score. Age was 

expressed as the number of years past their sixtieth birthday. The FD is the fractal dimension for white matter; the 

volume is brain volume.  β0 is the intercept and represents the estimated cognitive ability at the age of 60 years. β1, β2 

and β3 are the coefficients for corresponding measures. σ2 represents the residual or error and -2*loglikelihood 

represents the goodness of  fit, the smaller the value the better fit. The standard errors are in brackets. The significant 

association is marked with * where p<.05  

After introduction of childhood ability into the model -MHT (Equation 2), the effect of FD on 

cognition was maintained for DS and AVLT. In addition a significant association between the 

general factor g and RPM and FD was also seen (Table 3).  As in model 1, replacing brain 

volume with WM volume produced an almost identical set of results. The intercepts were 
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significantly greater than zero as expected as was the association between childhood ability and 

late life cognition. 

 RPM DS AVLT BLK UFO g 

β0 intercept 72.6(5.6)* 74.4 (6.1)* 71.6 (6.0)* 61.0 (5.8)* 67.4 (6.3)* 48.1 (5.8)* 

β1 Age .26 (.34) -1.07 (.34)* -.51 (.36) .18 (.35) .64 (.37) -.16 (.36) 

β2 Volume -.42 (1.01) -1.53 (1.10) -1.29 (1.06) 4.67 (1.05) * -.13 (1.11) -.43 (1.04) 

β3 FD 2.72 (1.05)* 3.00 (1.15)* 3.30 (1.07)* -.14 (1.10) 1.60 (1.14) 2.75 (1.08)* 

β4 IQ MHT .50 (.05)* .36 (.05)* .33 (.05)* .37 (.05)* .26 (.05)* .53 (.05)* 

σ2 164.9 (12.4) 188.0 (14.4) 186.3 (13.9) 175.1 (13.2) 206.3 (15.3) 156.5 (12.4) 

-2*loglilkelihood 2827.7 2737.2 2887.3 2825.1  2956.6 2509.4 

Table 3 Legend: The multilevel linear model results (equation 2) for each of the cognitive tests: Raven’s standard 

progressive matrices test (RPM), digit symbol scores (DS), auditory verbal learning test (AVLT), Block Design 

(BLK), use of objects (UFO), general intelligence factor (g) was standardized into an IQ-like score. Age was 

expressed as the number of years past their sixtieth birthday. The FD is the fractal dimension for white matter and 

the Volume is its volume. Moray House Test (MHT) is childhood intelligence test at age 11. β0 is the intercept and 

represents the estimated cognitive ability at the age of 60 years. β1, β2, β3 and β4 are the coefficients for corresponding 

measures. σ2 represents the residual or error and -2*loglikelihood represents the goodness of  fit, the smaller the 

value the better fit. The standard errors are in brackets. The significant association is marked with * where p<.05.  

All significant FD beta values are significant after correction for multiple comparisons, for each 

cognitive test, using a False Discovery Rate (FDR) procedure (Benjamini and Hochberg 1995)  

and an acceptable FDR of 0.05. The value for g was not included in the multiple comparison 

correction since it is a summary measure of the other variables. 
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 Tables 2 and 3 suggest an inter-individual association between cognition and FD. However, it is 

unclear if cognition and FD show intra-individual variation, in other words that a change in FD is 

associated with a change in cognition in that participant. When correlations are examined 

between changes in cortical complexity and change in cognition, a significant correlation was 

found between FD and DS and g (Table 4).  

 ∆RPM ∆DS ∆AVLT ∆BLK ∆UFO ∆g 

∆FD .018 .208* .120 .177 .103 .270* 

N 117 104 118 119 123 87 

 

Table 4 Legend: Pearson correlation between the change in the fractal dimension (∆FD) and the changes in 

cognitive variables: Raven’s standard progressive matrices test (∆RPM), digit symbol scores (∆DS), auditory verbal 

learning test (∆AVLT), Block Design (∆BLK), use of objects (∆UFO), general intelligence factor (∆g) with age, 

where N is the number tested participants and * means p<.05. 

Using linear regression, we investigated whether correlations remained significant after 

adjustment for confounding by age, change in brain volume and WM volume. We found no 

significant association.  

4. Discussion  

Here, using longitudinal measures of brain structural complexity and cognition, we observe inter-

individual associations between WM structural complexity and cognition, specifically with 

processing speed (DS) and verbal memory (AVLT) in late life. After adjustment for childhood 

cognitive ability, we find further associations between reasoning (RPM) and general cognitive 

ability (g). We also find some evidence of an intra-individual association, but this was not 
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maintained after adjustment for confounding by age and brain volume.   In conclusion, structural 

brain complexity is associated with higher cognitive ability and appears to decline in late life. 

Decline of brain volume with age is well established (Sowell, Thompson, Toga 2004; Staff 2012) 

and there are also studies measuring specific volumes as correlates of cognitive aging (Salthouse 

2011; Staff et al., 2006). Differences in the FD value between adults and elderly people are 

reported by Zhang et al. (2006; 2007)  and by Lee et al. (2004). Cortical fractal complexity is 

reduced with increasing age as the surface of the brain becomes smoother and the sulci become 

wider and less curved. Our results indicate that this reduction is not entirely explained by a 

concurrent reduction in volume. It is not established whether the FD effects seen in elderly 

people described by Zhang et al. (2007) and Lee et al. (2004)  are a continuation of the reduction 

of FD which begins in adolescent/young adult brain. These results suggest that reduction in 

cortical complexity occurs in late life; however, it remains unclear whether there is a stable 

period before our period of observation in late adulthood. 

The initial multilevel linear model (1) indicated an association with processing speed and 

memory. It is unclear why this relationship is domain specific. Cortical sulcal variability was 

investigated in correlation with cognitive performance from five cognitive domains including 

attention/processing speed, memory, language and executive function by Liu et al.  (2011).  They 

found that processing speed performance was correlated with spans of most sulci in elderly. This 

finding helps consolidate our results, stressing once more that the speed of information 

processing decreases with age in late adulthood and is correlated with the structural brain 

complexity. The greater the WM complexity, the greater the information processing speeds in 

healthy participants. 
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Cognitive tests may differ in the effect of practice on performance and our model is less sensitive 

in those domains most subject to practice effects. When we introduced childhood ability into our 

model, RPM and the general factor (g) became significant. This result is essentially a 

confirmation of a previous work (Mustafa et al., 2012) but with additional longitudinal data. That 

is, that structural complexity is associated with lifelong cognitive differences. Here, we also 

show that this is a general effect and not limited to a specific domain.  

The correlation between change in FD and change in DS and g would indicate that intra-

individual structural change is an estimate of brain aging associated with cognitive decline. 

However, this relationship was not maintained after adjustment for volume and, therefore, we 

have not showed it to be independent predictor of decline. 

Taking the results of these two analyses together, we have demonstrated that greater WM 

complexity is associated with retention of cognitive ability across the life course and individual 

differences in ability in late life. It may well be that FD is a measure of resilience to cognitive 

decline and those with less structural complexity may be more vulnerable to cognitive decline, 

mild cognitive impairment and dementia. It is conjecture to attribute a causal relationship 

between structural complexity and intelligence. An alternative explanation would be that 

complexity and intelligence share a common causal origin. However, systems theory suggests 

that more complex systems are more robust to perturbation and insult. Lipsitz (2004) has 

suggested that with ageing and disease, there is a loss of complexity in many integrated 

physiological processes. Normal physiological function requires the integration of intricate 

networks of control systems, feedback loops, and other regulatory mechanisms to enable a 

system to simultaneously perform the many necessary and varied activities.  Here, we suggest 
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that more complex structure may well be better able to maintain this intricate networks and 

therefore outputs (cognitive performance). 

The strengths of this study are the novelty of longitudinal analysis of change in brain structural 

complexity in well-characterized normal people. A weakness of our study is similar to those 

examining cognitive decline in late life; namely, drop out and practice effects.  It is clear from 

Table 1 that those retained in the study have larger and more complex brains and had superior 

cognitive abilities. It is generally true that aging is kinder to the more gifted (Bourne et al., 2007) 

and our results may well be skewed because of this differential retention. However, 

demonstration of FD differences in this relatively healthy sample makes our results more 

generalizable to the general older population. Future work could investigate whether localized 

measurements of brain structural complexity are informative in decline in specific cognitive 

abilities and dementia risk. 

Understanding development, maturation and decline of the brain will inform the development of 

strategies to maximize resilience in the face of decline or reserve. Identifying those at risk of 

decline and the factors that endow us with the ability to overcome brain change brought about by 

aging and disease will inform policy and health care. 
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