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Abstract

Brain lateralization is a widely studied topic, however there has been little work focused on 

lateralization of intrinsic networks (regions showing similar patterns of covariation among voxels) 

in the resting brain. In this study, we evaluate resting state network lateralization in an age and 

gender-balanced functional magnetic resonance imaging (fMRI) dataset comprising over 600 

healthy subjects ranging in age from 12 to 71. After establishing sample-wide network 

lateralization properties, we continue with an investigation of age and gender effects on network 

lateralization. All data was gathered on the same scanner and preprocessed using an automated 

pipeline (Scott et al., 2011). Networks were extracted via group independent component analysis 

(gICA) (Calhoun, Adali, Pearlson, & Pekar, 2001). Twenty-eight resting state networks discussed 

in previous (Allen et al., 2011) work were re-analyzed with a focus on lateralization. We 

calculated homotopic voxelwise measures of laterality in addition to a global lateralization 

measure, called the laterality cofactor, for each network. As expected, many of the intrinsic brain 

networks were lateralized. For example, the visual network was strongly right lateralized, auditory 

network and default mode networks were mostly left lateralized. Attentional and frontal networks 

included nodes that were left lateralized and other nodes that were right lateralized. Age was 

strongly related to lateralization in multiple regions including sensorimotor network regions 

precentral gyrus, postcentral gyrus and supramarginal gyrus; and visual network regions lingual 

gyrus; attentional network regions inferior parietal lobule, superior parietal lobule and middle 

temporal gyrus; and frontal network regions including the inferior frontal gyrus. Gender showed 

significant effects mainly in two regions, including visual and frontal networks. For example, the 

inferior frontal gyrus was more right lateralized in males. Significant effects of age were found in 

sensorimotor and visual networks on the global measure. In summary, we report a large-sample of 
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lateralization study that finds intrinsic functional brain networks to be highly lateralized, with 

regions that are strongly related to gender and age locally, and with age a strong factor in 

lateralization, and gender exhibiting a trend-level effect on global measures of laterality.
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Introduction

The idea that the two halves of our brain's cerebral cortex perform different functions has 

been known for centuries, starting with the seminal observations by Paul Broca (Broca, 

1861) and Carl Wernicke (Wernicke, 1874), and later confirmed and extended by the work 

of Roger Sperry (Sperry, 1974) and numerous others (see (Kenneth Hugdahl & 

Westerhausen, 2010) for an overview of research on brain laterality). In humans, the left 

hemisphere has been shown to be involved with functions associated with language such as 

grammar and vocabulary, as well as analytical and logical functions, while the right 

hemisphere is associated with non-verbal functions such as visuospatial, intuitive and 

sensory tasks (Breier, Simos, Zouridakis, & Papanicolaou, 1999; Cai, Van der Haegen, & 

Brysbaert, 2013; Clements et al., 2006; Gobbele et al., 2008; Gotts et al., 2013; Groen, 

Whitehouse, Badcock, & Bishop, 2012; Smith, Jonides, & Koeppe, 1996; Stephan et al., 

2003; Thomason et al., 2009). Other studies have probed how lateralization of the brain 

effects our perception of color, the formation of language, our understanding of mathematics 

(Herve, Zago, Petit, Mazoyer, & Tzourio-Mazoyer, 2013), and a whole range of other 

cognitive and emotional functions (Davidson, 1998; Hellige, 1993). Furthermore, research 

shows that lateralization is not uniquely human; cerebral lateralization has also been shown 

to occur in non-human primates (Bianki, 1981; Corballis, 2014; Denenberg, 1981; 

Denenberg, Garbanati, Sherman, Yutzey, & Kaplan, 1978; Hauser & Andersson, 1994) and 

songbirds (Bottjer, Glaessner, & Arnold, 1985; Nottebohm, 1970).

The invention of modern brain imaging techniques, such as positron emission tomography 

(PET) and fMRI, provide a new set of tools with which to study cerebral lateralization 

(Kenneth Hugdahl, 2011). Even though there have been several studies related to cerebral 

lateralization using PET or fMRI, most of them are focused on lateralization in task-related 

data. Very few studies on lateralization of brain activity at rest have been published. For 

example, (Liu, Stufflebeam, Sepulcre, Hedden, & Buckner, 2009) found 37 left lateralized 

and 47 right lateralized regions, and reported multiple separate factors contribute to 

lateralization of these regions and along with small sex differences. (Swanson et al., 2011) 

showed significant lateral differences between schizophrenia patients and healthy controls in 

the default mode network. (Gotts et al., 2013) claimed right and left hemispheres are 

lateralized in two distinct ways, left hemisphere preferably interacts more itself, while right 

hemisphere interacts with both hemispheres. (Nielsen, Zielinski, Ferguson, Lainhart, & 

Anderson, 2013) found 9 left and 11 right lateralized hubs on the resting brain and reported 

a small increase in lateralization with age and no gender effects. (Zuo et al., 2010) analysed 

the human brain's homotopic resting-state functional connectivity globally and found 
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regions that are effected by aging linearly, quadratic and cubically, also observed homotopic 

differences on functional connectivity between genders. (Zuo et al., 2012) explores the 

connectivity within a whole brain functional network using 4 different type of network 

centrality measures based on graph theory approaches on a dataset combined from 21 

centers. Results in that paper show that local or direct connectivity show a decrease with 

increasing age in connections with hub-like regions within the brain. (Filippi et al., 2013) 

reported higher resting state functional connectivity (RSFC) for men in parietal and occipital 

regions and higher functional connectivity (FNC) in cognitive and sensory regions, and 

higher RSFC for women in frontal, temporal regions, and in cerebellum, and higher FNC in 

attentional and right working memory networks. Moreover, (Zhu et al., 2014) found 

lateralization of speech production and reception areas in a small-scale (N = 25) resting state 

fMRI paradigm, but this analysis was restricted to the language area, not including other 

networks and network nodes.

Recent studies have indicated that both genetic and environmental factors can influence 

brain lateralization (Liu et al., 2009; Yoon, Fahim, Perusse, & Evans, 2010). While the idea 

that some cognitive functions are lateralized to left or right hemispheres has gained 

acceptance, there has been little work focusing on the lateralization of the brain's functional 

organization as assessed by functional connectivity, more specifically in the context of the 

lateralization of specific functional brain networks (rather than global measures of 

laterality). In addition, much of the previous brain imaging work has involved relatively 

small sample sizes, e.g. (Zhu et al., 2014) study only included 25 subjects and (Filippi et al., 

2013) studied only 48/56 men/women subjects. In this work we focus on resting fMRI data 

from over 600 subjects, representing one of the largest single site studies of functional 

connectivity of the human brain. We re-analyze data previously presented in (Allen et al., 

2011) with a focus on network lateralization. Using the functional networks detailed in 

(Allen et al., 2011), we assess gender and age effects on a local voxelwise measure of 

laterality (Swanson et al., 2011) and also a more global network-level measure. Previous 

functional imaging studies on the effects of gender and age on lateralization of brain 

activation have mostly been related to active task processing though there is some work on 

resting state activity, they analysed the whole brain rather than intrinsic networks (Zuo et al., 

2012; Zuo et al., 2010), and have also been confined to analysis of single brain areas, so 

called “blobs” e.g. (K. Hugdahl, Thomsen, & Ersland, 2006).

Methods and Materials

Data, preprocessing, and group ICA were identical to (Allen et al., 2011), to allow 

comparisons of lateralization measures with previously extracted and discussed intrinsic 

networks. We re-summarize the methods in sections 2.1-2.4 for clarity and a flowchart is 

presented in Figure 1.

2.1 Participants

Existing data from a total of 603 subjects combined from 34 studies and the work of 18 

principal investigators at the Mind Research Network (MRN) on the same scanner with 

identical parameters were used for this study. In accordance with institutional guidelines at 
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the University of New Mexico, informed consent was obtained from all subjects. The data 

were all obtained using the same scanner, and were made anonymous before group analysis 

began. At the time of the scan, none of the subjects were taking psychoactive medications, 

nor did any have a history of psychiatric or neurological disorders. Subjects were excluded 

from the study if they were consuming high levels of alcohol (2.5 or more drinks a day) or 

nicotine (average of 11 or more cigarettes a day). Subjects whose functional scans showed 

extreme motion (maximum translation > 6mm, approximately 2 voxels) were also excluded 

from the study. Table 1 shows the demographic information of the subjects, with 305 

females and 298 males in the sample, gender is nearly balanced, and the age distributions for 

genders are also very similar. Handedness is not considered in this study, as the sample is 

mostly right-handed (46 ambidextrous or left-handed individuals) and preliminary tests in 

(Allen et al., 2011) did not indicate any handedness effects.

2.2 Data Acquisition

Images were collected using the 3-Tesla Siemens Trio scanner. High resolution T1-weighted 

structural images were obtained using a 5-echo MPRAGE sequence with TE = [1.64, 3.5, 

5.36, 7.22, 9.08] ms, TR = 2.53 s, TI = 1.2 s, flip angle = 7°, number of excitations = 1, slice 

thickness = 1 mm, field of view = 256 mm, resolution = 256 × 256. T2*-weighted functional 

images were obtained using a gradient-echo EPI sequence with TE = 29 ms, TR = 2 s, flip 

angle = 75 °, slice thickness = 3.5 mm, slice gap =1.05 mm, field of view = 240 mm, matrix 

size = 64×64, voxel size = 3.75×3.75×4.55 mm. Resting state scans were a minimum of 5 

minutes, 4 seconds (152 volumes). In order to match data quantity throughout participants, 

additional volumes, if collected, were not used. During the scan, subjects were told to stare 

passively at a fixation cross. They were also instructed to keep their eyes open, as it has been 

suggested this helps network delineation, when compared to eyes-closed conditions (Van 

Dijk et al., 2010).

2.3 Data Preprocessing

Functional and structural MRI data were preprocessed as in (Allen et al., 2011), using an 

automated preprocessing pipeline based on SPM5 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm5/) and a neuroinformatics system (Scott et al., 2011) developed at the MRN. 

Scanned data were automatically copied and archived to an analysis directory, where they 

were then preprocessed. In the functional data pipeline, the first four volumes were excluded 

in order to remove T1 equilibrium effects. Images are also realigned using INRIalign 

(Freire, Roche, & Mangin, 2002) and slice-timing correction is performed with the middle 

slice used as the reference frame. Data were then spatially normalized into the standard 

Montreal Neurological Institute (MNI) space, resliced to 3×3×3 mm voxels, and were then 

smoothed using a 10 mm full-width and half-maximum (FWHM) Gaussian kernel. 

Following automated preprocessing, the data were intensity normalized by dividing the time 

series of each voxel by its average intensity, converting data to percent signal change units 

(Allen et al., 2011).

For the structural data, spatial normalization, bias correction, tissue classification, and image 

registration were automatically performed using voxel-based morphometry (VBM) in 

SPM5, in which the above steps were incorporated into a unified model (Ashburner & 
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Friston, 2005). Unmodulated grey matter images estimating local grey matter concentration 

(GMC) are then matched with the functional image dimensions by being smoothed using a 

Gaussian kernel with a 10 mm FWHM and resliced to 3×3×3 mm.

2.4 Group Independent Component Analysis

Using gICA, data were decomposed into functional networks. When applied to fMRI data, 

gICA identifies temporally-coherent networks by estimating maximally independent spatial 

sources, or spatial maps (SMs), from their linearly-mixed fMRI signals, or time courses 

(TCs). For a detailed discussion of the gICA analysis performed on this data, refer to (Allen 

et al., 2011).

Out of the 75 components, a subset of 28 components, considered to be resting state 

networks (RSNs) are selected by inspecting the group-level SMs and average power spectra. 

We refer to (Allen et al., 2011) for the detailed discussion of the RSN selection. The usage 

of the term ‘network’ can be murky and (Erhardt, Allen, Damaraju, & Calhoun, 2011) 

suggest that it is incumbent upon authors to provide a meaningful interpretation of networks 

utilized in their study. In our study, we refer to regions that have temporally-coherent time 

series as ‘networks’, and thus use it interchangeably with the word component. We also 

calculated one sample t-tests of the SMs, and thresholded with the three standard deviations 

of the t-statistics of each of the component spatial maps, and created masks that 

corresponded to these thresholded regions. The most functionally active part of the 

components is shown in Figure 2 and corresponding regions in Table 2.

2.5 Lateralization maps

Spatial normalization to symmetric templates—Though two hemispheres of the 

brains look like mirror images of each other, several known (Giedd et al., 1999; Penhune, 

Zatorre, MacDonald, & Evans, 1996) asymmetries must be accounted for before performing 

anatomical or functional comparisons (Stevens, Calhoun, & Kiehl, 2005). (Swanson et al., 

2011) warped the data into a symmetric template in the spatial normalization process to 

overcome hemispheric asymmetries. We approached the problem with a different 

methodology. Since all subjects are already spatially normalized to the MNI template, we 

perform an additional normalization step, warping from the MNI template to a symmetrized 

version of the MNI template. This approach facilitates comparisons with (Allen et al., 2011) 

since, as a warping of one template to another, the additional symmetry normalization step is 

identical for all subjects and can be applied to component spatial maps following the gICA. 

The symmetric MNI template is an average of the template and its mirror image. The 

standard MNI template was then spatially normalized to the symmetric MNI template and 

this warping was applied to all component images for all subjects.

Calculation of voxelwise homotopic maps—For each subject, and for each 

component, we took the differences between component values on the right side of the 

cerebral cortex and its homotopic (geometrically corresponding) voxel on the left side and 

tested the difference with a one-sample t-test. For convenience, we plot voxels showing a 

positive difference (R>L) on the right side of the brain and voxels showing a negative 

difference (L>R) on the left side of the brain, that is:
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Where R represents the right hemisphere and L represents the left hemisphere for each 

homotopic voxel νh. From this point forward, we will refer to this quantity, B, as the 

laterality component.

One Sample t-test—For each of the laterality components, and for each of the voxels, we 

computed a one sample t-test over 603 subjects. We then apply a mask that retains voxels 

whose t-values exceed one standard deviation of the t-statistics. In order to count only the 

most functionally active part of the component, these thresholded t-models are masked with 

the activation masks that were calculated previously, results are displayed in Figure 3.

2.6 Global Effects: Laterality cofactor

In addition to the voxelwise laterality, we also summarize the amount of laterality for a 

given functional component by computing a global laterality metric (called a laterality 

cofactor). This metric was applied to both our average models, as well as each of our 

subjects individually. The laterality cofactor was calculated by taking the differences 

between the sum of all intensities on the right and left hemispheres with respect to the sum 

of all intensities across the brain.

2.7 Local Effects: Voxelwise Modeling of Age and Gender Effects

In addition to evaluating the laterality of the brain networks based on average intensity 

across subjects, we also tested the relationship of lateralization to age and gender on each 

voxel by a linear regression of laterality on gender and age: Bν = β0 + βgenderXgender + 

βageXage + ε. Where Xage is age of the subject, Xgender is a number indicating the gender of 

subject with 1 for males and -1 for females. All β's are the parameter of the regression model 

with ε being the error parameter for the model. This analysis gives us the voxels that are 

significantly (p<0.05, following false discovery rate (FDR) correction for multiple 

comparisons) affected by age and gender (Genovese, Lazar, & Nichols, 2002). Surviving 

voxels in the most informative slices are shown in the result section. A similar analysis was 

performed to determine age and gender effects on the global laterality measure described 

above, and in the Appendix we present results of these analyses performed separately on 

subsets of the overall age distribution.

Results

The global laterality results were useful to summarize the overall laterality of the networks, 

but were much less sensitive to age and gender. In contrast, the voxelwise results were more 

sensitive and showed significant laterality effects with both age and gender. In the following 

we briefly summarize the global results and provide more details for the voxelwise results 

for age and gender.
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Global laterality effects (laterality cofactors)

The laterality cofactors for each component are displayed in Figure 4 and indicating regions 

summarized on Table 3. We designate a component as ‘lateralized’ if the absolute value of 

the laterality cofactor is greater than 0.2 and ‘highly lateralized’ if it is above 0.75. Most of 

the networks are lateralized. The laterality cofactors indicate that the basal-ganglia network 

(IC 21) is symmetric; the auditory network (IC 17) is highly left lateralized.

The sensorimotor networks has both left lateralized and right lateralized components. The 

lateralized regions are mostly occurring in L/R pairs, (postcentral gyrus, and supplementary 

motor) which is consistent with the right hemisphere control left part of the body, left 

hemisphere controls right part of the body phenomena (Janssen, Meulenbroek, & 

Steenbergen, 2011). Even though we have equally distributed (3 left and 3 right), the 

magnitude of lateralization is greater for the left lateralized component, which is also 

consistent with the left hemisphere dominant phenomena in the literature (Janssen et al., 

2011).

The visual network is the most dominantly right lateralized functional network. All six 

components of the visual network are right lateralized, on regions lingual gyrus, calcarine 

gyrus (Right BA 18), cerebellum, inferior temporal gyrus and superior occipital gyrus. (Liu 

et al., 2009) also indicated the visual cortex as one of the most strongly right lateralized 

regions.

The default mode network components are mostly left lateralized on regions middle 

occipital gyrus, mid orbital gyrus and middle temporal gyrus (ICs 53, 25, 68) with one right 

lateralized exception IC 50 on region of precuneus. Our results are parallel with the (Nielsen 

et al., 2013), which reports the default networks as left lateralized, and (Swanson et al., 

2011) that also indicates left dominancy in the default mode networks while indicating 

lateral differences between healthy control and schizophrenia patients.

The attentional network components are highly lateralized with the exception on ICs 72 and 

71. Angular gyrus and middle frontal gyrus (IC 34); inferior temporal gyrus (IC 52); 

temporal pole and middle frontal gyrus (IC 55); are highly left lateralized regions while IC 

60 (inferior parietal lobule, middle frontal gyrus) is highly right lateralized. The right-sided 

parietal lobule lateralizations fit nicely with previous work on asymmetry of spatial 

attention, including both healthy individuals e.g. (K. Hugdahl et al., 2006) and brain-

damaged patients showing signs of visuo-spatital attentional neglect (Berger & Posner, 

2000).

According to laterality cofactors, the frontal networks are the most sharply lateralized 

network, with two left (inferior frontal gyrus) and two right (inferior frontal and middle 

frontal gyrus) lateralized components.

Assessment of component lateralization null distribution

A possible question that might arise is how lateralized would the gICA results be by chance. 

To investigate this, we simulated group ICA on some synthetic data to observe the laterality 

on random data. We generated, for 20 trials, 2D random components according to logistic 
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distribution with 120 random time series for 40 subjects and combined them, later we 

applied group ICA on these simulated data and calculate the laterality cofactors on these 

components, the results are presented in Table 4 and Figure 5. Results show the probability 

of finding a lateralized component, above 0.2, is almost zero and provide additional support 

for the results reported in this paper.

Voxel-wise effects of age

Figure 6 shows the significant (p<0.05, following FDR correction for multiple comparisons) 

age effects on voxel-wise laterality, Table 5 shows the corresponding regions that are 

becoming less lateralized with aging. Sensorimotor networks contain the largest volume 

whose lateralization decreases (with respect to their mirror images) along with the visual, 

attentional and frontal networks that are also presenting many lateralized voxels. The left 

lateralized sensorimotor network components, 7, 23 and 38 have regions that are becoming 

more symmetric in postcentral gyrus, precentral gyrus and supramarginal gyrus. Right 

lateralized sensorimotor network, IC 24, is also becoming more symmetric in precentral 

gyrus.

The visual network component 67 (lingual gyrus), show decreased right lateralization with 

age. The attentional network components 34 and 52, show less left lateralization with age in 

inferior parietal lobule, superior parietal lobule and middle temporal gyrus. The right 

lateralized component 60 becomes more symmetric due to the changes in superior parietal 

lobule.

The right lateralized frontal network component 42, shows age-related changes in inferior 

frontal gyrus, becoming less right lateralized as age goes from 12 to 71. The left lateralized 

component, 20, has regions on the inferior frontal gyrus that are becoming less left 

lateralized.

Voxel-wise effects of gender

We display the significant (p<0.05, following FDR correction for multiple comparisons) 

gender effects on voxel-wise laterality in Figure 7. Corresponding regions that are more 

lateralized in females are shown at Table 6a, and regions that are more lateralized in males 

listed at Table 6b. In general, males showed more lateralization than did females. Right 

lateralized visual component 64 has left lingual gyrus being more active in females, 

indicating more right lateralization of this region in males. Frontal network component 20 

shows more left lateralization in males in the inferior frontal gyrus.

Gender laterality cofactor effects

Laterality cofactors that are calculated for the male and female subgroups are shown at 

Figure 8. The two groups show differences mostly on the visual networks, which are more 

right lateralized for males. Several other networks also show slight differences between 

genders. Though the basal-ganglia (IC 21) is predominantly symmetric, it is right lateralized 

in males compared to the females. The visual network components 46 (lingual and calcarine 

gyrus) and 64 (calcarine gyrus) are more right lateralized in males. The default mode 

network component 68 is more lateralized in females.
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Figure 9 shows the beta values of regression analysis for gender effects on laterality 

cofactors. The effects are mild, with some uncorrected p-values less than 0.05, but none 

remain significant following FDR correction. The visual network component 46 (left lingual 

gyrus, left cingulate gyrus), (p<0.05, uncorrected) is more right lateralized in males, and the 

attentional network component 55 (temporal pole and middle temporal gyrus), (p<0.05, 

uncorrected) is more left lateralized in females.

Age laterality cofactor effects

The beta values of regression analysis of age effects on laterality cofactors are displayed in 

Figure 10. Significant age effects are reported for sensorimotor and visual networks, both 

showing a decrease in lateralization as subjects are getting older. The sensorimotor network 

component 38 (supramarginal gyrus) and visual network component 67 (cerebellum), 

survived 0.05 level FDR correction, components 38 and 67 becomes less left lateralized and 

less right lateralized respectively as age increases from 12 to 71. No other networks exhibit 

age effects with p-values less than 0.05.

Reproducibility of the results

As a further analysis, we randomly subgrouped samples into groups of 10, 25, 50 and 100 

for 50 trials and calculated the lateralization cofactors and present the results in Table 7. For 

each component, we calculated the variance among 50 trials and calculate the maximum 

value. The second column represents the error which is the absolute difference from of the 

full-sample laterality cofactors from the mean of the 50 trials with the corresponding number 

of samples used. The last column represents the mean of the absolute error among all 28 

components.

The table indicates that component lateralization is quiet robust. Even with a sample size of 

just 10, we get very reliable and stable results.

We performed two analyses to determine the required number of samples to observe gender 

effects. For the first analysis, we calculated how much we can reduce the number of samples 

in t-statistic formula before it no longer passes the FDR threshold. Results are presented in 

Table 8:

In addition, we replicated the analysis on subgroups; we find that gender effects are 

consistent in gender balanced samples of 250 subjects.

In a similar manner, we investigated the required number of samples for stable age effects. 

Analysis results are shown in Table 9. The required number of samples varies across 

components from as low as 34 for one component to as high as 235 for another. This reflects 

the complexity and diversity of the age effects.

It is not straightforward to generate a well-matched age distribution in sub-samples due to 

the non-uniform age distribution of the dataset. This makes it difficult to determine a precise 

number of required number of samples by replicating the analysis on subgroups as the 

required sample will be sensitive to the age distribution of the randomly chosen subgroups. 

This is further compounded by the fact that some of the age effects exhibit non-linear 
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properties. In order to obtain stable age effect results given these considerations, 

approximately 300 samples are required.

Discussion

We analyzed lateralization of resting state networks in a dataset of over 600 subjects, and 

studied how age and gender affects brain lateralization. Most of the intrinsic networks are 

lateralized, and sensorimotor (postcentral, precentral supramarginal gyrus), visual (lingual 

gyrus), attentional (inferior parietal lobule, superior parietal lobule, middle temporal gyrus) 

and frontal network (inferior frontal gyrus) have regions that are showing mostly decrease in 

lateralization with aging. Visual (lingual gyrus) and frontal network (inferior frontal gyrus) 

also have regions that are affected by gender.

Our results indicate that age is an important factor for lateralization and affecting most of the 

networks. We observe a decrease in lateralization in four sensorimotor network (3 left and 1 

right lateralized), which suggest that left dominancy of sensorimotor networks is getting 

balanced with aging. Our results are consistent with (Zuo et al., 2010), that found increasing 

homotopic resting state connectivity on sensorimotor regions, specifically linear increase in 

supplementary motor area and postcentral gyrus. (Zuo et al., 2010) interpret this change as 

increasing hemispheric cooperation for complex bimanual functions. We also found that 

attentional and frontal networks become more symmetric with aging. Though our result is 

conflicting with (Zuo et al., 2010) which indicates a decrease in homotopic resting state 

connectivity in high-order cognitive regions such as anterior cingulate, inferior parietal 

cortex, precuneus, it is parallel with others (Reuter-Lorenz et al., 2000) who found for young 

adult, verbal working memory is left and spatial working memory is right lateralized in 

anterior working memory whereas older adults have a global pattern of anterior bilateralized 

working memory for both visual and verbal memory. (Reuter-Lorenz et al., 2000) suggested 

this bilateralization can be an attempt to overcome neural decline. (Cabeza, Anderson, 

Locantore, & McIntosh, 2002) also found bilateral prefrontal cortex activity in older adults 

comparing to young adult, and compare the hemispheric asymmetries in two groups; low-

performing older adults versus high performing older adults; and found a hemispheric 

asymmetry reduction in high performing group, supporting the compensation theory that 

brain cognitive networks become more bilateral in order to compensate neural decline. If our 

results are supported by subsequent studies , the effects of age and gender on the 

components that intersect significantly with primary sensory and motor cortices, would tend 

to mitigate against recent findings of (Mueller et al., 2013) that primary sensory and motor 

cortices exhibit relatively less individual variation than the association cortex.

Some studies reports that gender is a factor in brain lateralization, while some studies report 

no gender effect on brain lateralization. Significant gender differences in intra and inter-

hemisphere connectivity were recently reported by (Ingalhalikar et al., 2013) in a DTI study, 

(Zuo et al., 2010) presented significant differences in regions of dorsolateral prefrontal 

cortex (BA 9 and 47) and amygdala for homotopic functional connectivity, and some small 

differences are also reported (Liu et al., 2009). In our study, voxelwise results showed 

gender to be a factor in lateralization of two regions, lingual gyrus (visual network) and 

inferior frontal gyrus (frontal network), suggesting males being more lateralized in both 
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regions; consistent with (Zuo et al., 2010) that reports females having higher homotopic 

functional connectivity with in posterior cingulate cortex, medial prefrontal cortex, and the 

superior and middle frontal cortex, comparing to males. They also found males having 

stronger homotopic connectivity in cerebellum, parahippocampal gyrus, and fusiform gyrus 

comparing to the females. (Good et al., 2001) reported several morphological asymmetries 

between genders, including right inferior frontal gyrus being increased in volume in females. 

Globally, the gender effect on lateralization cofactors are not significant which is consistent 

with (Nielsen et al., 2013) and meaningful given our relatively large sample size.

The age effects on the laterality cofactors are varying, some components are linear, some 

nonlinear, some are additive and some components are subtractive. For instance, 

lateralization of Component 47 (inferior frontal gyrus) increases significantly with age for 

subjects between 12 and 29 years old , decreases with age for subjects aged 30 to 71, (see 

Appendix). Evaluated over the whole population (ages 12 to 71) however, lateralization of 

the inferior frontal gyrus trends negatively with age , indicating a non-linear age effect 

which is consistent with the work by (Zuo et al., 2010) where linear, quadratic and cubical 

age related changes reported on the whole brain resting state functional connectivity. In 

general, there appear to be more nonlinear effects at the younger age range. In a recent 

large-scale study (N = 1782) (Hirnstein, Westerhausen, Korsnes, & Hugdahl, 2013) found 

no main-effect of sex on a dichotic listening task, which assesses auditory laterality, but that 

sex interacted with age. In brief, these authors found that the laterality index increased with 

increasing age, driven by the females. These behavioral findings however were not 

corroborated in an fMRI study on a selected sub-sample (N = 104) wherein males still 

showed greater behavioral asymmetry. Thus, the relationship between sex and age effects on 

brain asymmetry and lateralization is complex, and with intrinsic interactions between the 

two factors, future research should therefore ideally include both younger and older subjects 

when studying sex differences and brain function, which would also apply to analysis of 

cortical networks, and neuronal connectivity.

In this work, we studied the lateralization in resting state networks, rather than brain 

lateralization in general. Were we to ignore networks, some of the lateralized regions would 

appear highly symmetric. For example, ICs 23 and 24 (left and right postcentral gyrus), look 

like mirror images of one another. This indicates the power of our analysis comparing to the 

whole brain analysis. The model order is very crucial and unfortunately, though various 

estimation approaches exist, there is no analytic way to determine perfect model order. We 

also performed an eigenvalue analysis on the ICs to evaluate the ability of the components to 

be well captured when using variance as the criteria. To do so, we used PCA to decompose 

the group average component-by-voxels matrices. Results showed that to capture 90% of the 

variance 50 components are needed, and 60 components are needed to capture 95% of the 

variance. Based on this, we conclude that there is considerable value in these higher model 

order approach.

Limitations

We should consider some limitation interpreting the results. Firstly, we do not have 

information about the education or IQ level or other domains such as the working memory 
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of subject during the scanning process. Also, subjects have not been tested to measure their 

behavior abilities; they may not be balanced with verbal ability, motor skills or visuospatial 

attention. Though our subjects are ranging from age 12 to 71, they do not cover the most 

rapidly changing ages of childhood, and the distribution of age is not uniform. Moreover, for 

comparison purposes we focused on the resting state networks extracted from a previous 

study that has ICA model order of 75, but it would also be interesting to evaluate the age and 

gender related changes for higher and lower model orders using different criteria to 

determine dimensionality. Even though we used a large sample size, subjects were scanned 

with a minimum of 5 minutes (152 volumes), this may limit the sensitivity detection of the 

effects. Besides, even though, we warped the data into a symmetric template to count for 

well-known structural asymmetries, the possibility that additional structural asymmetries 

might still be present should be considered while interpreting the results. Finally, there are 

many other ways to measure the amount of lateralization of a component; we choose one 

method, the laterality cofactor, due to its simplicity, in addition to the voxelwise homotopic 

effects.

Conclusion

In summary, we analyze lateralization of 28 resting state networks in a large fMRI dataset 

consisting of over 600 healthy subjects ranging in age from 12 to 71. We found many of the 

intrinsic brain networks are highly lateralized, with several regions (sensorimotor, visual, 

attentional and frontal) showing a strong relationship with age and two networks (visual and 

frontal) showed voxelwise differences between genders. On the global measure of laterality, 

age was found as strong factor and gender exhibiting a trend-level effect. Our results support 

the theory that multiple brain networks grow more bilateral in an attempt to compensate 

neural decline with aging. In future work, investigating compensation effects by studying 

changes lateralization in subjects with injured brains or lesions, and examining age effects in 

more details in subgroups such as childhood, teenage, young adults etc. with more balanced 

numbers of subjects across the full age range, are promising research directions. Significant 

gender effects were also found, but showed a more complex pattern of change in which 

greater lateralization was observed in some regions in females and other regions in males. In 

summary, our approach of focusing on network-specific lateralization thus appears to be a 

promising and sensitive tools for studying brain organization.
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Appendix

In order to check if the age effects are varying over age, we divide the data into two age 

subgroups; teenagers and young adult versus adults, and calculated laterality cofactors in 

each subgroup. We used the cut-off age as 29, just to match with some previous work 

(Nielsen et al., 2013). Later, we performed a robust regression analysis on these laterality 

cofactors for both groups.
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Nonlinear effects

We also subgroup the subjects into two different age groups to look at the age effects to test 

for nonlinear aging effects. In general there were many more changes in lateralization at the 

younger (age range 12 to 29) versus the older age range (range 30 to 71). Figure 11 shows 

the laterality cofactors for the two subgroups. Almost all networks have differences in 

laterality cofactors of two subgroups. Among them, basal ganglia, sensorimotor and visual 

networks have the most remarkable differences. The basal ganglia network (IC 21) is more 

right lateralized for the elder age group, while it is symmetric for young age group. The 

sensorimotor network components 7 and 29 are more lateralized and component 56 is less 

lateralized in the elder age group. Components 23, 24 and 38 are almost identical for both 

groups. The visual network component 46 is more right lateralized and 48 are less right 

lateralized at elder age group. The other components 64, 67, 39 and 59 are similar. The 

auditory network (IC 17) is more left lateralized in the elder age group. The default mode 

networks are more right lateralized for the elder age group (IC 53, 25, 68), with the 

exception of IC 50 which is essentially symmetric in the elder age group while right 

lateralized in the young age group. The attentional network components 34, 60, 52 and 55 

are not showing changes with age while 72 and 71 are. IC 72 is more lateralized in the elder 

age group while IC 71 is more lateralized at young age group. The frontal network 

components 55, 42, 20 are 49 same for both age groups, and with component 47 slightly 

more lateralized in the elder age group.

Subgroup Age 12 to 29

Beta values of the regression analysis on the laterality cofactors for the subjects aging from 

12 to 29 are presented in Figure 12a. In general, aging from 12 to 29 makes networks less 

lateralized, in other words more symmetric. Three components survive 0.05 level FDR 

correction, the auditory network component 17, sensorimotor network component 29 and 

frontal network component 47. Component 17, the auditory network including left superior 

temporal gyrus, is becoming less left lateralized as age increases from 12 to 29. While it is 

hard to make firm conclusions about the impact of learning language and subsequent 

pruning of the cortex on the observed lateralization, it is consistent with the idea that 

lateralization at the younger ages provides a benefit for learning language (DeKeyser, 2013).

Component 29, part of visual network including the paracentral lobule, is growing less right 

lateralized with age. Component 47, a part of the frontal network including left inferior 

frontal gyrus and left middle frontal gyrus, and it is growing more left lateralized as age goes 

from 12 to 29. (Xiao, 2012) reported that early developed native spoken language is 

processed by the left inferior frontal gyrus, while late developed written language is 

proceeded by the left middle frontal gyrus in a manner dependent on the age of language 

acquisition. Age 12 to 29 is during a phase of rapid acquisition of written language and 

vocabulary. As (Xiao, 2012) reported, the increase in the left middle frontal gyrus due to 

acquisition of new vocabulary is consistent with the increase in left lateralization.

Sensorimotor network component 38, regions of supramarginal and middle temporal gyrus, 

is decreasing in lateralization (p<0.05) as age goes from 12 to 29, visual network component 
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64 and 67, regions of calcarine and lingual gyrus respectively, and both are also growing 

less right lateralized (p<0.05) as age increases from 12 to 29.

Subgroup Age 30 to 71

In Figure 12b, we present the beta values of the regression analysis on the laterality 

cofactors data age interval 30 to 71. There is no significant age effect in this age interval 

surviving from 0.05 level FDR correction, however component 23 of sensorimotor network 

has p-value less than 0.05, with the region of precentral gyrus and it is growing more left 

lateralized as age goes from 30 to 71.

Nonlinear gender effect

On two age subgroups, we also look at the gender effects to test if the gender effects vary 

with aging. Figure 13 and 14 shows the beta values of regression analysis for gender effects 

on the laterality cofactor for the young and elder subgroup, respectively. For both groups, no 

component survives from FDR correction, but some components have p-values less than 

0.05.

In the younger group, visual network component 46 is more right lateralized (p<0.05) on 

males. In the elder group, left lateralized component 55 (attentional) and component 47 

(frontal) are more left lateralized on females, and right lateralized component 60 

(attentional) is more lateralized at males.
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Highlights

• Dataset consisting of over 600 healthy subjects ranging in age from 12 to 71.

• Most intrinsic networks are highly lateralized.

• Several regions show a decrease in lateralization with aging.

• Significant gender effects are found in two regions.
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Figure 1. 
Flowchart of the data processing, see section 2 for details.
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Figure 2. 
Spatial maps of the 28 components that are identified as RSNs, plotted as one sample t-

statistics, thresholded with tc>3σc, and are displayed at the three most informative slices. 

RSNs are divided into groups based on their anatomical and functional properties and 

include basal ganglia (BG), auditory (AUD), sensorimotor (MOT), visual (VIS), default-

mode (DMN), attentional (ATTN), and frontal (FRONT) networks. We refer to Allen et all 

for the details of grouping.
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Figure 3. 
One sample t-statistics of the laterality component masked with the RSN activation mask, 

and thresholded with tb> σb. RSNs are displayed at the same coordinates with the SMs and 

grouped with a similar matter with Fig 2. RSNs are divided into groups based on their 

anatomical and functional properties and include basal ganglia (BG), auditory (AUD), 

sensorimotor (MOT), visual (VIS), default-mode (DMN), attentional (ATTN), and frontal 

(FRONT) networks. We refer to Allen et all for the details of grouping.
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Figure 4. 
Laterality cofactors for each component over 600 subjects that are ranging from age 12 to 

71. The cofactors that have absolute value above the 0.75 (red line) are called highly 

lateralized and the cofactors that have absolute value above 0.2 are called lateralized.
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Figure 5. Probability distribution of the absolute laterality cofactors on synthetic dataset
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Figure 6. 
Age effects on each voxel and each component, voxels that survives FDR correction shown 

in color, are displayed at the same coordinates with the SMs and grouped with a similar 

matter with Fig 2. RSNs are divided into groups based on their anatomical and functional 

properties and include basal ganglia (BG), auditory (AUD), sensorimotor (MOT), visual 

(VIS), default-mode (DMN), attentional (ATTN), and frontal (FRONT) networks. We refer 

to Allen et all for the details of grouping.
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Figure 7. 
Gender effects on each voxel and each component, voxels that survives FDR correction 

shown in color, are displayed at the same coordinates with the SMs and grouped with a 

similar matter with Fig 2. RSNs are divided into groups based on their anatomical and 

functional properties and include basal ganglia (BG), auditory (AUD), sensorimotor (MOT), 

visual (VIS), default-mode (DMN), attentional (ATTN), and frontal (FRONT) networks. We 

refer to Allen et all for the details of grouping.
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Figure 8. 
Laterality Cofactors for gender subgroups. Visible blue bars shows the components that are 

more lateralized for males, visible red bars shows the components that are more lateralized 

for females.
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Figure 9. 
Beta values for Gender effects on laterality cofactors. Blue bars show the components that 

are more lateralized for females, Red bars shows the components that are more lateralized 

for males. No components survive from 0.05 level FDR correction. Component 46 is more 

lateralized for males (P<0.05) and component 55 is more lateralized for females (P<0.05).
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Figure 10. 
Beta values for Age effects on laterality cofactors. Blue bars show the components that are 

more lateralized as age goes from 12 to 71. Red bars show the components that are less 

lateralized as age goes from 12 to 71. Components 38 and 67 (dashed circulated) survive 

0.05 level FDR correction, and are getting less lateralized as age goes from 12 to 71. No 

other component has p-value smaller than 0.05, besides the ones that also survive FDR 

correction.
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Figure 11. 
Laterality cofactors for different subgroups. Blue bar shows components that are more 

lateralized for the age group 12 to 29 and red bars show the components that are more 

lateralized for age group 30 to 71.
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Figure 12. 
a-) Beta values for Age effects on laterality cofactors for the subgrouped data between 12 to 

29. Blue bars show the components that are more lateralized as age goes from 12 to 29, Red 

bars show the components that are less lateralized as age goes from 12 to 29. Component 17, 

29 and 47 (dashed circulated) survive 0.05 FDR correction, components 17 and 29 are 

getting less lateralized and component 47 is getting more lateralized as age goes from 12 to 

29. Component 38, 64, 67 (green circulated) do not survive FDR correction, but they have p-

values smaller than 0.05, and are getting less lateralized as age goes from 12 to 29.

b-) Beta values for Age effects on laterality cofactors for the subgrouped data between 30 to 

71. Blue bars show the components that are more lateralized as age goes from 30 to 71, Red 

bars show the components that are less lateralized as age goes from 30 to 71. No component 
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survives 0.05 FDR correction. Component 23 (outlined in green) does not survive FDR 

correction, but it has a p-value smaller than 0.05, and is getting more lateralized as age goes 

from 30 to 71.
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Figure 13. 
Gender effects on the data age subgroup ranging from 12 to 29. Blue bars show the 

components that are more lateralized for females, Red bars show the components that are 

more lateralized for males. No components survive 0.05 level FDR correction. Component 

46 is more lateralized for males (P<0.05).
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Figure 14. 
Gender effects on the data subgroup ranging from 30 to 71. Blue bars show the components 

that are more lateralized for females, Red bars show the components that are more 

lateralized for males. No components survive 0.05 level FDR correction. Components 60, 55 

and 47 are more lateralized for females (P<0.05).
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Table 2

The talairach table associated with the each selected RSN shown on Fig 2, BA = Brodmann area; VI = number 

of voxels in each cluster; tmax = maximum t-statistic in each cluster; Coordinate = coordinate (in mm) of 

tmax in MNI space, following LPI convention (Allen et al., 2011).

BASAL GANGLIA NETWORKS BA VI tmax Coords.

IC 21(0.98)

R Putamen 1454 108.7 25 -1 0

L Putamen 1407 108.7 -25 -3 0

AUDITORY NETWORKS BA VI tmax Coords.

IC 17 (0.98)

L Superior Temporal Gyrus 22 2374 107 -51 -18 7

R Superior Temporal Gyrus 22 2257 108.3 52 -15 5

R Middle Cingulate Cortex 24 165 42.8 2 -4 49

SENSORIMOTOR NETWORKS BA VI tmax Coords

IC 07 (0.98)

L Precentral Gyrus 6 1814 81 -52 -9 31

R Precentral Gyrus 6 1694 78.3 52 -7 29

L Cerebellum (Declive) 116 45.5 -16 -63 -22

R Cerebellum (Declive) 84 40.9 17 -63 -21

IC 23 (0.98)

L Precentral Gyrus 4 3623 86.8 -35 -27 54

R Cerebellum 342 40.3 24 -52 -23

R Postcentral Gyrus 252 35.6 44 -28 56

R Inferior Frontal Gyrus 45 79 23.7 54 29 0

R Precuneus 76 26.7 8 -62 32

IC 24 (0.98)

R Precentral Gyrus 4 3882 83.3 37 -25 53

R Middle Temporal Gyrus 165 36.1 50 -64 -2

L Cerebellum 99 26.1 -20 -53 -24

L Middle Temporal Gyrus 63 23.5 -61 -28 -8

L Middle Temporal Gyrus 44 24.5 -51 -70 4

IC 29 (0.98)

Bi Paracentral lobule 6 3199 100.9 1 -28 61

L Insula 13 44 40.1 -35 -24 15

IC 38 (0.98)

L Supra marginal Gyrus 2 1377 110.5 -55 -34 37

R Supramarginal Gyrus 2 963 96.2 56 -32 40

L inferior Frontal Gyrus 44 207 58.6 -48 5 18

Bi Middle Cingulate Cortex 24 189 51.5 1 7 38

L Middle Temporal Gyrus 37 128 54.4 -57 -60 -2

IC 56 (0.97)
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BASAL GANGLIA NETWORKS BA VI tmax Coords.

Bi Supplementary Motor Area 6 3770 122.7 1 -3 61

R Superior Temporal Gyrus 22 193 48.2 50 8 4

L Inferior Frontal Gyrus 44 149 42.7 -53 5 14

R Inferior Frontal Gyrus 40 61 41.1 58 -29 24

L Inferior Frontal Gyrus 40 26 35.9 -58 -32 23

VISUAL NETWORKS BA VI tmax Coords.

IC 46 (0.96)

Bi Lingual Gyrus 17,18 3654 87.3 1 -87 -2

Bi Middle Cingulate Cortex 31 230 34.1 1 -45 32

IC 64 (0.90)

Bi Calcarine Gyrus 17,18 3694 117.9 1 -71 13

IC 67 (0.89)

R Lingual Gyrus 18 1740 97.7 17 -55 -9

L Lingual Gyrus 18 1820 94.8 -15 -56 -8

IC 48 (0.96)

R Lingual Gyrus 18,19 1367 86.5 29 -76 -8

L Lingual Gyrus 18,19 1324 83.6 -29 -76 -7

L Inferior Parietal Lobule 40 43 41 -49 -55 42

IC 39 (0.97)

R Inferior Temporal Gyrus 37 1800 91.9 48 -63 -8

L Inferior Temporal Gyrus 37 667 80.7 -47 -63 -14

R Inferior Parietal Lobule 40 33 46.2 42 -39 50

IC 59 (0.92)

Bi Cuneus 19 3079 113.7 2 -84 28

DEFAULT- MODE NETWORKS BA VI tmax Coords.

IC 50 (0.96)

Bi Precuneus 7 2902 102.5 1 -64 43

IC 53 (0.95)

Bi Posterior Cingulate Cortex 23 2387 139.6 0 -52 22

L Angular Gyrus 39 332 71.5 -43 -69 33

R Angular Gyrus 39 194 59.8 47 -66 32

Bi Medial Frontal Gyrus 10 61 50.7 -1 45 -9

IC 25 (0.98)

Bi Anterior Cingulate Cortex 32 3126 114.5 0 41 4

Bi Middle Cingulate Cortex 31 358 53.6 1 -30 41

R Inferior Frontal Gyrus 93 48.2 32 22 -15

R Middle Frontal Gyrus 46 63 37.8 40 43 8

IC 68 (0.85)

L Middle Frontal Gyrus 8 1490 95.2 -26 26 42

R Middle Frontal Gyrus 8 1210 87.9 26 33 41

Bi Middle Cingulate Cortex 32 450 67.6 0 21 40
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BASAL GANGLIA NETWORKS BA VI tmax Coords.

ATTENTIONAL NETWORKS BA VI tmax Coords.

IC 34 (0.98)

L Inferior Parietal Lobule 40 1383 124.6 -47 -57 39

L Middle Frontal Gyrus 8 1000 76.3 -27 24 49

R Inferior Parietal Lobule 40 482 75.3 49 -54 39

L Precuneus 31 373 63.4 -6 -52 37

L Middle Temporal Gyrus 21 233 75.3 -62 -37 -12

R Superior Temporal Gyrus 22 124 44.1 56 0 2

IC 60 (0.93)

R Inferior Parietal Lobule 40 2480 120.8 42 -56 42

R Middle Frontal Gyrus 8 2137 87.3 34 24 44

L Superior Temporal Gyrus 22 318 46.9 -61 -2 0

R Middle Temporal Gyrus 21 249 58.7 64 -39 -11

L Inferior Parietal Lobule 40 163 45.7 -45 -53 45

IC 52 (0.96)

L Angular Gyrus 39 2841 100.6 -33 -64 31

L Inferior Frontal Gyrus 45 295 54.2 -43 24 21

R Superior Parietal Lobule 7 283 57.8 27 -65 44

L Middle Frontal Gyrus 6 119 52.3 -25 1 60

L Superior Temporal Gyrus 22 24 40.4 -50 -5 -4

IC 72 (0.93)

Bi Precuneus 7 3283 105.2 0 -53 61

L Superior Frontal Gyrus 9 111 35.8 -32 38 39

R Middle Frontal Gyrus 6 85 32.4 26 0 60

L Middle Frontal Gyrus 6 80 32.4 -23 0 63

R Superior Frontal Gyrus 9 53 30.3 33 39 35

IC 71 (0.88)

R Superior Temporal Gyrus 22 1775 95 57 -44 11

L Superior Temporal Gyrus 22 1337 89 -56 -48 18

Bi Precuneus 7 123 51 1 -51 51

R Precentral Gyrus 6 44 50 51 2 50

IC 55 (0.95)

Bi Cingulate Gyrus 32 1210 92.8 0 22 45

L Insula 47 670 103.1 -46 15 -5

R Insula 47 331 80.8 45 18 -6

L Middle Frontal Gyrus 10 217 65.4 -32 53 21

FRONTAL NETWORKS BA VI tmax Coords.

IC 42 (0.98)

R Inferior Frontal Gyrus 45 3371 105.7 50 23 2

L Insula 44 132 40 -41 10 -2

L Inferior Frontal Gyrus 45 70 35.3 -42 39 5
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BASAL GANGLIA NETWORKS BA VI tmax Coords.

R Supramarginal Gyrus 2 65 35.5 58 -36 36

R Middle Temporal Gyrus 56 33 63 -45 0

L Inferior Parietal Lobule 40 37 31.9 -58 -40 49

R Caudate Nucleus 31 33.5 12 8 5

IC 20 (0.98)

L Inferior Frontal Gyrus 44,45 1781 103.2 -55 22 7

R Inferior Frontal Gyrus 45 252 50.7 56 26 4

IC 47 (0.95)

L Middle Frontal Gyrus 9 1020 110.8 -48 17 29

R Middle Frontal Gyrus 9,46 885 97.1 49 22 25

Bi Superior Medial Gyrus 8 259 64.1 -1 32 46

R Superior Parietal Lobule 7 38 49.3 33 -60 49

IC 49 (0.97)

R Middle Frontal Gyrus 10 1661 84.3 31 55 7

L Pyramis 144 42.2 -39 -66 -44

L Middle Frontal Gyrus 10 64 33.4 -31 52 8
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Table 3

The Talairach table associated with the each t-model of RSN (shown on Fig 3), BA = Brodmann area; VI = 

number of voxels in each cluster; tmax = maximum t-statistic in each cluster; Coordinate =coordinate (in mm) 

of tmax in MNI space, following LPI convention.

BASAL GANGLIA NETWORKS BA VI tmax Coords.

IC 21

L Pallidum 534 18 -22 -3 0

R Putamen 47 446 24 24 18 -9

AUDITORY NETWORKS BA VI tmax Coords.

IC 17

L Superior Temporal Gyrus 42 902 71 -72 -21 9

SENSORIMOTOR NETWORKS BA VI tmax Coords.

IC 07

L Postcentral Gyrus 6 777 75 -66 -9 36

IC 23

L Postcentral Gyrus 1 2460 85 -48 -33 66

IC 24

R Postcentral Gyrus 2 2669 68 54 -24 54

IC 38

L SupraMarginal Gyrus 40 1128 97 -69 -27 33

IC 56

R Supplementary Motor Area 6 725 75 3 3 78

L Supplementary Motor Area 6 118 69 -9 6 78

IC 29

R Paracentral Lobule 575 64 6 -27 81

VISUAL NETWORKS BA VI tmax Coords.

IC 46

L Lingual Gyrus 17 554 25 -18 -93 -18

L Calcarine Gyrus 18 425 66 3 -105 3

IC 64

R Calcarine Gyrus 31 626 17 12 -69 18

IC 67

R Cerebellum (VI) 19 1598 20 24, -66, -24

IC 48

R Lingual Gyrus 18 524 39 39 -90 -21

IC 39

R Inferior Temporal Gyrus 19 2021 76 48 -84 -9

L Inferior Temporal Gyrus 37 36 63 -57 -66 -21

IC 59

R Superior Occipital Gyrus 19 374 112 18 -96 33

DEFAULT-MODE NETWORKS BA VI tmax Coords.
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BASAL GANGLIA NETWORKS BA VI tmax Coords.

IC 50

R Precuneus 7 645 74 3 -84 48

IC 53

L Middle Occipital Gyrus 39 231 56 -6 -39 15

IC 25

L Mid Orbital Gyrus 10 933 47 -3 63 -9

IC 68

L Middle Frontal Gyrus 6 428 35 -21 9 60

ATTENTIONAL NETWORKS BA VI tmax Coords.

IC 34

L Angular Gyrus 40 1414 118 -60,-63,33

Left Middle Frontal Gyrus 8 543 69 -45 15 54

IC 60

R Inferior Parietal Lobule 40 1497 90 51 -57 45

R Middle Frontal Gyrus 8 1197 77 36 15 57

IC 52

L Inferior Temporal Gyrus 37 2387 62 -60 66 -12

IC 72

R Precuneus 7 265 92 3 -57 72

L Superior Parietal Lobule 7 297 79 -18 -63 72

IC 71

R Angular Gyrus 40 1299 36 60 -54 24

IC 55

L Temporal Pole 47 699 63 -57 21 -12

L Middle Frontal Gyrus 10 333 57 -39 63 18

FRONTAL-NETWORKS BA VI tmax Coords.

IC 42

R Inferior Frontal Gyrus 47 2351 88 51 33 -9

IC 20

L Inferior Frontal Gyrus 47 2012 75 -57 27 -9

IC 47

L Inferior Frontal Gyrus 9 745 74 -60 21 33

IC 49

R Middle Frontal Gyrus 10 1796 66 39 57 3
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Table 4
Statistics of the simulated laterality cofactors

Absolute Maximum Absolute Minimum Absolute Mean Absolute Variance

0.234 0 0.052 0.0015
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Table 5

The Talairach table associated with the FDR surviving regions on age effects, that are becoming less 

lateralized as age goes from 12 to 71, each (shown on Fig 6), BA = Brodmann area; VI = number of voxels in 

each cluster; Coords = coordinate (in mm) of tmax in MNI space, following LPI convention.

SENSORIMOTOR NETWORKS BA VI Coords

IC 07

L Postcentral Gyrus 6 130 -66 -6 33

IC 23

L Precentral Gyrus 6 1912 -36 -24 69

IC 24

R Precentral Gyrus 4 2088 36 -27 69

IC 38

L Postcentral Gyrus 2 182 -66 -21 24

L SupraMarginal Gyrus 40 181 -63 -48 24

VISUAL NETWORKS BA VI Coords

IC 67

R Lingual Gyrus 19 416 21 -63 -6

ATTENTIONAL NETWORKS BA VI Coords

IC 34

L Inferior Parietal Lobule 40 345 -42 -57 60

IC 60

R Superior Parietal Lobule 40 747 45 -48 60

IC 52

L Superior Parietal Lobule 7 428 -27 -60 66

L Middle Temporal Gyrus 37 421 -57 -66 -3

FRONTAL-NETWORKS BA VI Coords

IC 42

R Inferior Frontal Gyrus 47 1154 54 21 -6

IC 20

L Inferior Frontal Gyrus 45 364 -63 21 3
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Table 6

a-) The Talairach table associated with the FDR surviving regions on gender effects, that are more lateralized 

at females, each (shown on Fig 7), BA = Brodmann area; VI = number of voxels in each cluster; Coords = 

coordinate (in mm) of tmax in MNI space, following LPI convention, b-) The Talairach table associated with 

the FDR surviving regions on gender effects, that are more lateralized at males, each (shown on Fig 7), BA = 

Brodmann area; VI = number of voxels in each cluster; Coords = coordinate (in mm) of tmax in MNI space, 

following LPI convention.

a-)

VISUAL NETWORKS BA VI. Coord.

IC 64

L Lingual Gyrus 18 93 -9 -78 -3

b-)

FRONTAL NETWORKS BA VI. Coord.

IC 20

L inferior Frontal Gyrus 47 285 -51 27 -6
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Table 7

Robustness test on the laterality cofactor.

#samples Maximum Variance Maximum Error Mean of Absolute Error

10 0.1 0.25 0.06

25 0.067 0.076 0.025

50 0.046 0.075 0.016

100 0.017 0.045 0.011
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Table 8
Required number of samples to observe gender effects for each component

Component #20 #64

Required Number of Samples 172 294
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