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Abstract

Independent Component Analysis (ICA) is a widely applied data-driven method for parsing brain 

and non-brain EEG source signals, mixed by volume conduction to the scalp electrodes, into a set 

of maximally temporally and often functionally independent components (ICs). Many ICs may be 

identified with a precise physiological or non-physiological origin. However, this process is 

hindered by partial instability in ICA results that can arise from noise in the data. Here we propose 

RELICA (RELiable ICA), a novel method to characterize IC reliability within subjects. RELICA 

first computes IC “dipolarity” a measure of physiological plausibility, plus a measure of IC 

consistency across multiple decompositions of bootstrap versions of the input data. RELICA then 

uses these two measures to visualize and cluster the separated ICs, providing a within-subject 

measure of IC reliability that does not involve checking for its occurrence across subjects. We 

demonstrate the use of RELICA on EEG data recorded from 14 subjects performing a working 

memory experiment and show that many brain and ocular artifact ICs are correctly classified as 

“stable” (highly repeatable across decompositions of bootstrapped versions of the input data). 

Many stable ICs appear to originate in the brain, while other stable ICs account for identifiable 

non-brain processes such as line noise. RELICA might be used with any linear blind source 

separation algorithm to reduce the risk of basing conclusions on unstable or physiologically 

uninterpretable component processes.
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I. Introduction

Blind source separation (BSS) techniques and matrix factorization algorithms in general – 

Independent Component Analysis (ICA), Principal Component Analysis (PCA), Factor 

Analysis (FA), etc. – have been steadily gaining in popularity in the last years as viable 

techniques to preprocess multivariate data sets, to disentangle information linearly mixed by 

volume conduction in the recorded data channels, and to perform or prepare for more 

general data mining [1]. ICA in particular has been shown to have value for analysis of 

electroencephalographic (EEG) data. At frequencies of interest (from about 0.1 Hz to a few 

hundred Hz), each EEG scalp electrode channel records a linear mixture of volume-

conducted activities many of which index near-synchronous local field activity across a 

cortical patch [2]. Instead of solving the undercomplete inverse problem (i.e., determining 

the time-course and spatial distribution of current in each of a large number of possible 

cortical source areas from a limited number of scalp data channels), ICA separates the input 

scalp channel data into a complete set of maximally-independent component processes (as 

many as channels in the data) by projecting scalp electrode signals into a new spatial basis 

that may be used to assess individual EEG source dynamics without needing an explicit head 

model [3, 4]. ICA decomposition takes into account only the recorded signal time courses, 

and provides each component’s relative projection pattern to the scalp channels as well as 

the relative, time-varying signed amplitude of its source signal [5].

As with most factorization algorithms, the extracted components need to be interpreted 

before they can be used in further analyses. Unfortunately, this is often made difficult by 

several issues including inadequate data sampling (e.g., when recordings are too short and/or 

have too few channels), inadequate data pre-processing, algorithm deficiencies (lack of 

convergence, presence of local minima, etc.), and noise (from the electrodes and recording 

system and/or from a multitude of small, irresolvable signal sources). This has triggered 

particular interest (within several fields [6]) in finding new ways to assess two main 

characteristics of the extracted component processes: their reliability (both across and within 
subjects) and their physiological origins - which ones account for non-brain, and which 

brain source processes [7]. This latter question is of importance if ICA component signals 

are to be interpreted in the clinical domain [8].

Reliability across subjects refers to similarities in homologous ICs across subjects sampled 

from some homogeneous population. Studying across-subject IC clusters is a popular way of 

assessing the reliability of the results of an EEG study [9], one of the typical goals of ICA 

investigations being to find classes or clusters of brain-generated IC processes that occur 

frequently in the population of interest. This can be achieved visually [10], by employing 

different objective criteria [11], and/or by approaches including deterministic [12] or 

probabilistic [13] IC source localization.

Reliability within subjects refers to the physiological plausibility and statistical reliability of 

each IC across the data for each participant. Assessing these qualities is important for 

preventing unreliable ICs from obfuscating across-subjects IC analysis. Particularly in 

clinical settings, there may also be a need to know whether a particular component is 

reliably present and thus accurately represents a source process of interest in the patient. In 
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this work we stress two aspects of IC reliability, its “stability” (e.g., its within-subject 

reliability [14–17]) and determination of its physiological plausibility and brain or non-brain 

origin. The few methods so far proposed to assess the stability of individual ICs by taking 

advantage of data resampling [14–17] each have shortcomings, such as the requirement of a 

large number of ICA decompositions to avoid unrepresentative resampling, or the use of 

difficult to interpret metrics (see Discussion for more detail).

Regarding IC origins, many IC scalp maps have been shown to be compatible with 

generation in local field potential activity that is (fully or partially) coherent across a single 
cortical patch. The scalp projection of such a source is nearly equal to that of a single current 

dipole, termed its equivalent dipole, located near the center of the generating patch [18]. 

Recently, Delorme et al. [19] showed that the stability of an IC across subjects is predicted 

by the goodness-of-fit of the projection of the IC scalp map to the scalp projection pattern of 

its best-fitting single equivalent dipole model, and that the relative degree of temporal 

independence of a set of ICs returned by a blind source separation algorithm is predicted by 

the number of ICs whose scalp maps are well fit to the projections of their equivalent 

dipoles.

This is compatible with the assumption that ICs should typically represent the projection of 

local field activity that is synchronous or near synchronous across a single cortical patch, a 

set of such sources thus producing the spatially-fixed brain and non-brain EEG source 

locations and orientations and (maximally) temporally distinct (independently time-varying) 

source activity time series assumed by ICA to represent source projections.

Delorme et al. defined an index of decomposition “dipolarity,” the number of component 

scalp maps matching the projection of a single equivalent dipole with less than a given 

percent residual variance. Here we will also refer to this as the degree of “IC dipolarity.” 

Delorme et al. also defined Mutual Information Reduction (MIR), a quantitative measure (in 

bits/sec) of the degree of independence of the extracted component time series relative to the 

original channel data, and showed that MIR can also be used to measure the relative quality 

of an ICA decomposition, the two measures proving to be, on average, linearly coupled for 

the dozen data sets they considered [19].

In this paper we propose RELICA (for “RELiable ICA”), a method that combines the 

findings of Delorme et al. [19] with a bootstrap data decomposition procedure [20] to assess 

the reliability of ICs in terms of its within-subject “stability” and its possible brain origin 

(physiological plausibility). RELICA applies ICA decomposition multiple times to surrogate 

versions of the input data selected by bootstrap selection, either trial-by-trial (e.g., in Event 

Related Potential or ERP studies) or time point by time point.

As the ICA algorithm used within RELICA, we here chose to apply Infomax ICA [21, 22], 

one of the most popular and reliable ICA algorithms [19], whose GPU implementations 

(e.g., CUDAICA [23], BeamICA [24] ) make feasible its bootstrap repetition, for example 

here using the ICASSO approach [16] or (modified for the treatment of ERPs) ErpICASSO 

[20]. By way of comparison, we also performed the analysis using FastICA [25], as it has 

relatively low execution time in its non-iterative mode even without GPU support.
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RELICA proposes use of the distribution of IC dipolarities plus a measure of their 

replicability across surrogate decompositions as a joint quality index of IC physiological 

plausibility (via dipolarity) and replicability (stability) respectively. When both IC stability 

and dipolarity are high, then the IC is a likely candidate for retention and further processing 

as indexing a physiologically distinct (brain or non-brain) source process. If only the 

stability of an IC is acceptable, the IC may be a) artifactual (for example, line noise) and not 

of use for further processing of brain sources, or b) in some cases might represent (typically, 

small) activity from some mixture of source processes not unmixed by the ICA 

decomposition, or c) may be part of a subset of ICs that define a dependent subspace that is 

temporally independent of other single ICs and multidimensional IC subspaces (some 

posterior alpha activities)[26]. This may also be the case for source processes that appear to 

travel a long distance across cortex [19] such as slow waves, K-complexes, spindles [27–29], 

for emotion-related late potentials [30, 31], etc. If the joint quality index is not acceptable, 

the IC is likely not suitable for retention in further individual and group data processing. In 

the following sections we briefly review ICA decomposition and then outline the RELICA 

algorithm in detail. We illustrate its application using several examples of EEG data 

recorded in a working-memory experiment [11].

II. Materials and methods

The RELICA procedure proposed here was applied to EEG data acquired from fourteen 

volunteer subjects who performed a visual working-memory experiment approved by an 

Institutional Review Board of the University of California San Diego. Written consent was 

obtained from every subject; refer to [11] for further details. These data are publicly 

available (http://sccn.ucsd.edu/wiki/BSSComparison) and were used by Delorme et al. in 

their study [19]. Here, we included a 14th data set that was excluded from [19] because of 

low data quality. In each trial of the task periods these data record, a central fixation symbol 

was first presented for 5 s. Then a series of 3–7 letters were presented in sequence, some of 

which (colored black) were to be memorized while others (colored green) were to be 

ignored. Each letter was presented for 1.2 s with 200-ms gaps. Following an ensuing 2–4 s 

memory maintenance period, a probe letter was presented. The participant was asked to 

press one of two finger buttons with their dominant hand to indicate whether the letter was 

part of the memorized sequence or not. The participant then received auditory feedback on 

the correctness of their response (a confirmatory beep or cautionary buzz); this also signaled 

the end of the trial. On average a series of 100–150 task trials was performed by each of the 

14 subjects (7 male, 7 female, ages 20–40 years). Preprocessing of the data, performed using 

MATLAB scripts using the EEGLAB (12.0.2.2b) environment [9], comprised high-pass FIR 

filtering (above 0.5 Hz), epoch selection (from 700 ms before to 700 ms after each letter 

presentation), and whole-data mean channel (“baseline”) value removal, since Groppe et al. 

[17] showed that removing the whole-data channel means rather than each individual epoch 

baseline period mean, before ICA decomposition, dramatically improves ICA 

decomposition reliability and avoids introduction of high-amplitude, highfrequency 

abnormalities.

Figure 1 shows a scheme of the entire RELICA procedure following the preprocessing 

phase. Its concept is 1) to repeatedly decompose the data using Infomax (or another ICA 
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algorithm with acceptable performance) using the ErpICASSO bootstrap approach (red box 

in Figure 1), 2) to cluster the ICs from every bootstrap decomposition according to their 

similarity (as a measure of IC reliability), then 3) to calculate for each identified bootstrap 

IC cluster a cluster quality index QIc, and a measure of physiological plausibility of the 

cluster IC scalp maps (as the distribution of residual scalp map variance not accounted for by 

a single equivalent dipole model for ICs within the cluster; Fig. 1, red box). Here, for 

efficiency, we used the default parameter settings in the GPU-enabled BEAMICA tool [24] 

to perform the Infomax ICA decompositions. From these stability and dipolarity measures 

returned by RELICA, a decision may be made about the replicability and possible 

physiological interpretability of each IC. An optional further step, pairing ICs across 

decomposition algorithms (Fig. 1, dotted green), will be considered in the Discussion.

The following subsections describe the steps of the RELICA procedure more in detail. These 

include a) preliminary selection of ICA parameters (optional), b) bootstrap ICA 

decompositions and IC clustering, c) computation of an IC reliability index for each IC and 

d) cluster dipolarity for each IC cluster, followed by e) a test to decide on the usability of 

each IC in further source-resolved EEG analyses.

For purpose of clarity, here we call ICn the set of ICs belonging to the nth cluster, while ICn

is the single IC in the nth cluster closest to the cluster centroid and therefore, as suggested by 

Himberg et al. [16], the most representative or exemplar IC for the cluster. QIc is the overall 

quality index for an IC cluster. The “dipolarity” value for each cluster ICn is notated as 

dip(ICn); similarly the dipolarity of its exemplar ICn is notated as dip ICn . It is also possible 

to define the “dipolarity” of the data set dipd, after Delorme et al. [19], to be the number of 

component scalp maps that exhibit a dip(ICn) larger than a certain threshold.

A. Preliminarily selection of ICA parameters

A wide selection of ICA and related blind source separation algorithms have been provided 

in the literature. They share the same main goal but focus on different optimization 

approaches, for instance minimizing instantaneous dependence of the extracted components 

or reducing redundancy between lagged versions of the data [22]. In general, “slower” 

methods are reported [7, 32, 33] to be more accurate and less influenced by the choice of 

parameters than “faster” methods such as SOBI or FastICA. Here Infomax ICA as 

implemented in BeamICA [24] proved to have better performance using its default 

parameters with respect to FastICA. Note that BeamICA implements the original Infomax 

algorithm [21] without its extension by Girolami et al. [34] to take into account the few IC 

processes with a sub-gaussian probability density function (pdf). BeamICA decompositions 

were run on a Linux server with 72GB DDR3 RAM hosting an NVIDIA GTX Titan (2688 

CUDA cores) GPU board. On average, decompositions were completed in 280 seconds.

To optimize results of FastICA decomposition we tried many combinations of the following 

parameters: approach (deflatory, symmetric), nonlinearity (tanh – g(u) = tanh (au); pow3 – 

g(u) = u3; gauss−g(u) = ue
− 1

2au2
; skew – (u) = u2), maximum number of iterations (102, 103, 

104), stopping criterion (ε = 10−3, 10−4, 10−5, 10−6, 10−7), fine-tuning contrast function 
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(tanh, pow3, gauss, skew), step size (1, 0.8), stabilization (on, off). To determine the best 

combination we used the ICA evaluation measures used also by Delorme et al. [19] (mutual 

information reduction (MIR) effected by the decomposition and data set dipolarity). The 

FastICA parameters that seemed to perform best were the symmetric approach, g(u) = tanh 

(au), with a maximum number of iterations 104, ε = 10−5, fine tuning and stabilization 

parameters turned off, and step size = 1. In its symmetric approach, all the FastICA ICs are 

estimated in parallel (rather than estimating them one by one as in its deflationary approach). 

It is worth noting that only using this approach is FastICA fast enough to allow performing 

multiple decompositions on a reasonable time scale with entry-level equipment (e.g., 180 

sec per decomposition of 71 channels × 310,000 time points on an entry-level, dual-core, 

1.8-GHz AMD laptop). Despite its speed, FastICA also proved less reliable than Infomax; 

details are provided in the results section III.A.

B. Computing IC reliability indexes using the ErpICASSO approach

B1. ICA rationale—Given an initial multivariate data set x(t), ICA computes a n × p full 

rank “unmixing matrix” W that linearly projects the data set onto a m-dimensional one, s(t), 
such that s(t) = W x(t). W is a weight matrix that describes the contributions of the n ICs to 

each of the p variables. Each column of its pseudoinverse, (A, the “mixing” matrix) can be 

interpolated and visualized as a scalp map describing the relative weights and polarities of 

the component projections to each of the original n scalp electrodes. For several ICA 

algorithms including Infomax, the IC scalp maps for even the same data set may differ 

slightly across runs, in particular when, as here, the starting point for learning the weight 

matrix W is selected at random.

B2. Bootstrapping within RELICA—The bootstrapping procedure within RELICA 

comprises the following steps;

Data resampling: W is computed several times; each time the starting point of the 

algorithm is randomly selected as well as the distribution of epochs or time points. Using 

either the epoch-wise bootstrap ErpICASSO approach [20, 30] or point-wise ICASSO 

approach [16]). To form the surrogate data sets, epochs or of single time points are selected 

at random from the original data set with replacement always replicating the original data set 

size.

Clustering: The sets of ICs returned from the M bootstrap decompositions (Figure 1) are 

clustered according to their mutual similarity, σ, defined as the matrix of absolute values of 

the correlation coefficients between IC time courses, computed by

σi j = WRi jW
Τ

Choice of the number of disjoint clusters may be made using a number of different 

algorithms e.g., here the R-index algorithm [35]. As Himberg et al. suggest, it is reasonable 

to start studying the clusters from the number of clusters equal to the data dimension n. 

Here, 71 clusters of equivalent ICs from the bootstrap decompositions were identified using 

an agglomerative hierarchical clustering method, giving a dendrogram, with the group 
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average-linkage criterion as the agglomeration strategy. ICA decompositions that gave two 

or more ICs that were grouped by dendrogram clustering into the same cluster were 

excluded from further analysis, as we observed that the chance that, in this case, the 

decomposition had failed to converge is high.

CCA Space Visualization: Curvilinear Component Analysis (CCA) is a multidimensional 

scaling method used to project multivariate points into a (here) two-dimensional space so as 

to obtain a similarity map [16]. CCA projection enables a direct 2-D visualization of IC 

groupings in which visual proximity of points can be interpreted as similarity. Ideally, 

perfectly replicable ICs should collapse to a single point in this space. For each so-identified 

cluster, the IC exemplar was identified as the IC nearest in CCA measure space to the 

centroid of all the cluster ICs.

Quality Index: The quality index QIc measures directly the dispersion of an IC cluster 

within the 2-D CCA measure space, indirectly indexing the variability of the ICA 

decomposition. Thanks to the CCA scaling, the quality index QIc (defined as the difference 

between the average within-cluster similarities and average between-cluster similarities [20]) 

may be used to measure the compactness and isolation of the cluster from the other IC 

clusters. If C is the set of indices of all the estimated ICs, Cm the set of IC indices that 

belong to the mth cluster, C−m the set of IC indices that do not belong to the mth cluster, σij 

the similarity between ICs i, j is

QIc = 1
Cm

2 ∑
i, j ∈ Cm

σi j − 1
Cm C−m

∑
i, j ∈ Cm

∑
i, j ∈ C−m

σi j

B3. Mutual Information—Residual mutual information indicates the mutual 

information remaining among IC time courses, and can be used, along with decomposition 

dipolarity, to benchmark the efficiency of an ICA algorithm. Unfortunately, for high-

dimensional (many-channel) problems residual mutual information cannot be reliably 

estimated from a feasible amount of data. However, the Mutual Information Reduction 

(MIR) produced by any linear decomposition algorithm depends only on the difference 

between the sums of the marginal entropies of the original data set and its transform, as well 

as the (log) determinant of W. A detailed explanation of how to calculate MIR can be found 

in [19] and [36]. A function to compute MIR (getmir.m) is also available within the 

EEGLAB distribution.

B4. Dipolarity—The dipolarity of a single ICn, dip(ICn) is defined as dip(ICn) = 100(1 – 

resvar(ICn))% where resvar(ICn) is the residual variance (fitting error) between its scalp map 

projection and that of its single equivalent dipole, here computed using a best-fitting 

spherical four-shell model head incorporated into the DIPFIT plug-in (version 1.02) of the 

EEGLAB environment [9]). DIPFT uses a four-shell electrical head model (radius: 71, 72, 

79, 85 mm; shell conductances: 0.33, 0.0042, 1, 0.33 μS).
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C. Distribution of dip and QIc

For each data set1, we ran Infomax decomposition on each of 150 trial-by-trial bootstrap 

data sets with random initial starting points [20]. It is important to note that when 

performing bootstrapping, as reported in [8], the matrix inversion required to compute A 
from W (and vice versa) considerably degrades the performance of the decomposition. In the 

original ICASSO approach, the clustering and CCA projection steps are performed on the 

replicates of W (rows of Wi in Figure 1) to obtain the final unmixing matrix W. Mixing 

vectors (columns of A) are then computed as the pseudo-inverse of W. To obtain the final 

mixing matrix A while avoiding this matrix inversion, it is necessary to perform the 

clustering and CCA projection steps directly on columns of Ai (see Figure 1). Here we used 

this approach so as to minimize numerical instabilities.

Each IC cluster then groups the slightly different repetitions of the same IC as produced by 

each bootstrap ICA decomposition. For each of the n bootstrap IC clusters, we computed 

dip ICn  and all the others dip(ICn). We did not perform any dimensionality reduction; here n 

was equal to the number of EEG channels (71). We also estimated the probability density 

function (pdf) for dipolarity values of the ICs in each cluster using kernel density estimation 

[38] with a Gaussian kernel and an optimal width for estimating Gaussian distributions, as 

this is the width that minimizes the (L2) mean integrated squared error [39].

D. Component reliability criteria

To decide on the reliability of any IC (blue box, Figure 1) it is necessary to select two 

component retention thresholds based on IC cluster dipolarity (indexing physiological 

plausibility) and quality index (the compactness of the cluster indexing the stability of the 

component). However, the optimal retention thresholds are dependent on the type of data 

and clustering algorithm. A popular choice for acceptable dipolarity is 85% (e.g., [40–42]), 

although highly quasi-dipolar components may exhibit dipolarities above 95% [19].

Regarding QIc it is possible, as suggested by Himberg et al. [16] to order the clusters 

according to their quality index and to use as threshold the value at a “knee” (abrupt 

decrease) in the graph. Here we selected dipolarity and quality index retention thresholds of 

85% and 95% respectively, although for the purpose of this work using other thresholds 

(e.g., both 85%) would not strongly alter the results. In general, if the QIc is above the 

retention threshold the IC is considered stable, otherwise it may be rejected in further 

analyses, including inter-subject comparisons.

1As reported by Groppe et al ([17] D. M. Groppe, S. Makeig, and M. Kutas, “Identifying reliable independent components via split-
half comparisons,” Neuroimage, vol. 45, pp. 1199–211, May 1 2009.), Efron et al. ([37] B. Efron and R. Tibshirani, An Introduction to 
the Bootstrap: Chapman & Hall, New York, 1993.) advises on performing 1000 runs when computing bias-corrected and accelerated 
bootstrap confidence intervals. Meineke et al. ([15] F. Meinecke, A. Ziehe, M. Kawanabe, and K. R. Muller, “A resampling approach 
to estimate the stability of one-dimensional or multidimensional independent components,” IEEE Trans Biomed Eng, vol. 49, pp. 
1514–25, Dec 2002.) do not specify; Himberg et al. ([16] J. Himberg, A. Hyvarinen, and F. Esposito, “Validating the independent 
components of neuroimaging time series via clustering and visualization,” Neuroimage, vol. 22, pp. 1214–22, Jul 2004.) performs 
bootstrapping 15 times per data set. Groppe et al. also report Harmeling saying, via personal communication, that he starts with 100 
bootstrap runs per data set, although noting that the ideal number of runs is reached when the reliability algorithm’s grouping matrix 
stops changing. Basing on these considerations and computational power available we empirically estimated 150 runs to be a sufficient 
number for the purpose of this study.
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In sum, there are three main classes into which ICs can be sorted according to their 

reliability:

i. When quality index and dipolarity are above their retention thresholds, then the 

IC can be considered stable and physiologically plausible can be therefore called 

reliable.

ii. When the quality index is above the retention threshold and the dipolarity below 

it, then the IC is either artifactual or might represent two or more processes that 

are mixed because of the limited number of channels or their participation in a 

dependent subspace.

iii. When the quality index is below its retention threshold, then the IC is not stable. 

In this case it is possible to analyze dip ICn  and the distribution of dip(ICn). In 

fact if dip ICn ± std dip ICn  is above threshold, the IC may simply have 

captured inseparable “noise” (degrading the QIc). In that case, it may also be 

useful to compute the variance explained by the IC. Depending on the perceived 

quality of such an IC, it is possible to include it in further analyses. In all the 

other cases, however, it may be advisable to discard it or, if data sets from 

multiple subjects are available, to further check it for replicability across 

subjects. For instance, if the dip ICn  is above threshold but inconsistent with the 

distribution of dip(ICn), then the IC was likely obtained by chance.

When an IC falls into the first condition (I) then it can be deemed as reliable and usable in 

further processing. If it falls into the second condition (II), by visual inspection or other 

testing it can be further tagged either as artifactual (having a non-brain origin) or as mixing 

multiple processes. ICs falling into the third condition (III), particularly those with marginal 

dipolarity values, can either be discarded or their repeatability across subjects can be further 

checked. RELICA users may set their own thresholds depending on the reliability of the 

ICA decomposition method they choose. For instance in the case of FastICA (which is 

known to give less consistent results than other methods [19]) the threshold for QIc needs be 

set lower (e.g., 85%) to take into account the intrinsic instability, relative to Infomax, of the 

FastICA algorithm.

III. Results

A. Comparison of FastICA and Infomax algorithms

Despite its speed, FastICA proved less reliable than Infomax; approximately 20% of 

decompositions failed to converge and, replicating the earlier report of Delorme et al. [19], 

those that succeeded delivered less mutual information reduction (MIR) than the Infomax 

decompositions. Table 1 shows a comparison of several parameters that define the 

performance of an ICA algorithm on EEG data: MIR, RV5% (the number of ICs with 

dipolarity greater than 95% - quasi-dipolar components) and the median QIc (the median 

quality index provided by RELICA). The highest values for each data set are shaded and the 

median values across the data sets are shown on the right. It can be seen from Table 1 that, 

overall, Infomax provides greater MIR for all but one (aberrant) data set (one dropped by 
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Delorme et al., [19] from their analysis), it gives a median of 1.5 more dipolar components, 

and gives a 10% higher median QIc than FastICA.

B. ErpICASSO results on a representative data set

Having selected a satisfactorily-performing algorithm (e.g., Infomax) the next steps are to 

decide on IC reliability by performing ErpICASSO, then for each cluster n to compute IC 

cluster dipolarity dip ICn , the dipolarity distribution of dip(ICn) and quality index QIcn, 

then finally using these quantities to estimate reliability for this IC cluster.

Figure 2 shows the results of Infomax-based ErpICASSO for one data set: each cluster 

represents an IC equivalence class; its dimension is closely related to its QIc (see Methods 

for more details). The Figure also shows scalp maps and power spectral densities (PSDs) for 

eight IC clusters selected to demonstrate the procedure adopted here. Bootstrap IC clusters 

2, 3 and 10 respectively account for activity contributed to the scalp data by blinks, neck 

muscle activity and line noise (60 Hz); IC clusters 9 and 33 account for posterior alpha and 

central mu rhythm activities. The QIc for these clusters is over 96%, reflecting the fact that 

each cluster is tight and well-separated from others. IC clusters 46, 47 show maximal frontal 

and parietal projections respectively.

C. Quality index and dipolarity

Panel A of Figure 3 shows the IC clusters of all the data sets placed in the bivariate (QIc, 
dipolarity) space with acceptability thresholds of 95% and 85% respectively (red lines).

Although most IC clusters are in Class I (bottom left – zone of acceptance) many appear also 

in Class II, and Class III. Interestingly, although there is relatively little correlation between 

the two measures (R2 = 0.25) there are no dipolar component clusters with a QIc < 40% 

(bottom right of panel A). Panel B shows the distribution of IC clusters for each data set 

across the three classes. As expected, the IC clusters in Class II are not many. A mean of 15 

IC clusters per data set are in Class I, deemed very reliable (being both physiologically 

plausible and stable).

D. Examples

In this section we explore further the problem of the reliability of the ICs identified in Figure 

2. Figure 4 shows the scalp maps and the corresponding distribution of dip(ICn) of ICs 

belonging to each cluster. The dotted red line highlights dip ICn . When the QIc and 

dipolarities are high (IC bootstrap clusters 2, 9 and 33), the distribution of dip(ICn) is very 

narrow. These IC clusters, according to the criteria explained in the Methods section, are in 

Class I and should be retained for further analysis, as also confirmed by their high inter-

subject repeatability (see [19]). This is true also for cluster IC3 although the standard 

deviation of its distribution of dipolarity values across bootstrap decompositions is higher 

(7%). Line noise (IC10) falls into Class II and is very reliably detected by ICA with a high 

QIc. However for this cluster dipolarity is low and dipolarity distribution wide. IC clusters 

46 and 47 have a low quality index, but their dipolarity is above threshold and very narrow, 

suggesting that they may indeed have a brain origin although slightly corrupted by noise or 
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exhibit activity only intermittently. In this case it may be necessary to perform inter-subject 

validation to decide on their inclusion in further processing. IC cluster 26, on the other hand, 

has acceptable dipolarity 85% although its distribution is wide (standard deviation 12%). 

These aspects and its low explained variance (0.2%) suggest excluding this IC from further 

analyses.

IV. Discussion

Here we propose a new way to estimate the reliability of (maximally) independent EEG 

component processes extracted by Independent Component Analysis, an increasingly often-

used method for removing contributions of non-brain (artifact) sources from EEG/MEG data 

[7, 43, 44] as well as for separating individual cortical sources [41, 45, 46]. The RELICA 

technique proposed here estimates IC reliability in terms both of “stability” (statistical 

stability to noise and intermittency) and physiological “validity” (the plausibility that the 

recovered ICs originate in a single brain source). Combining these measures can indicate 

which ICs to retain in further analyses (e.g., analyses of brain source activities only).

A. ICA Component Stability

One of the main issues concerning blind source separation algorithms is that the input data 

are projected into a new space which may (also) be difficult to associate with any 

physiological meaning, particularly considering that the accuracy and validity of the results 

may depend on the quality of the ICA approach, including both the ICA algorithm and the 

algorithm parameters used, as well as data amount and quality. In the brain, with a few 

exceptions, far-field potentials emerging from a restricted spatial source domain should be 

independent from the far-field signals reaching the scalp electrodes from other domains. 

Therefore, ICs that exhibit maximally-independent time courses should also be able to be 

modeled using a single equivalent dipole model with low residual variance [3, 47]. Although 

in theory (or, using infinite data and processing resolution) ICA algorithms should perform 

the same, given the same independency maximization goal, as Delorme et al. reported [19] 

results may depend on the algorithm used.

In particular, Delorme et al. estimated the performance of different ICA algorithms based on 

their ability to reduce the mutual information present in these same channel data, and to 

extract a larger number of nearly-dipolar component processes. According to their results, 

some “slower” ICA algorithms including AMICA [26] and Infomax, have better 

performance than other methods including the “faster” and popular FastICA algorithm 

(tested by them using its symmetric mode and default parameters).

We confirmed these findings by applying RELICA to the same data sets: every quality 

parameter of the ICA decomposition (e.g., Mutual Information Reduction, Average QIc, 

etc.) was better with Infomax than FastICA. Note that ICA processing speed of “slower” 

algorithms may be dramatically increased by optimal programming and processing on 

graphic processing unit GPU hardware [23] which indeed are able to make the speed of 

Infomax decomposition comparable to that of FastICA.
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In any case, when highly parallel or GPU computing power is not available FastICA settings 

need to be chosen carefully in applications to EEG data; in particular the deflationary 

approach should be avoided. Further study of FastICA is required to assess with certainty 

differences in performance between different FastICA approaches.

B. Reliability

Given the blind nature of their extraction, independent components (representing 

information sources in multichannel EEG data) need to be interpreted in the light of the 

application at hand [32, 48, 49]. A wrong interpretation, however, may be suggested by 

artifacts of the ICA extraction algorithm. A seemingly “good” IC may arise by chance if, 1) 

the algorithm did not converge properly, 2) the data were not preprocessed adequately (e.g., 

the presence of non-stereotyped artifacts including body and electrode movement artifacts 

can greatly impair the ICA decomposition [3, 43, 44, 50, 51]), 3) the algorithm was not 

trained on enough data, or even 4) the algorithm became stuck in a local minimum. Several 

papers address the problem of IC reliability using a between-subjects approach [11, 33, 46, 

52, 53], identifying most frequently-occurring ICs in a population of interest. However, as 

explained by Groppe et al. [17], between-subject differences (head shape, alertness and 

cortical folding) may greatly impair results of this method (but see Tsai et al. [54]). “Within-

subject” ICA reliability estimation approaches, whenever possible, are to be preferred, as 

ICA is more accurately performed on single-subject data and by maintaining only reliable 

ICs it is possible to prevent mistakes in selection for subsequent subject group analysis.

Expert users typically perform a “validity check” to sort out ICs within subjects or to 

perform between-subject reliability tests. However, a stability check is as important for ICA 

decomposition because brain sources of interest may often explain relatively little of the 

variance of the EEG data. In other words, the problem of reliability cannot be dismissed as 

easily as in the PCA case in which components are ordered according to residual variance 

and only the first few (largest) are then further explored [6, 34].

Regarding stability, a few methods have been proposed for assessing the stability across the 

data set of individual ICs. Harmelling et al. [14] used “noise injection,” to identify ICs that 

were most (and least) altered after adding white Gaussian noise to the data. Meinecke et al. 

[15], in line with Harmelling et al. [14] and Himberg et al. [16], proposed using bootstrap 

resampling to estimate IC reliability. Groppe et al. [17], in an effort to overcome the need of 

performing many bootstrap decompositions using slow ICA algorithms (e.g., single-

processor Infomax [21, 22]), assessed IC reliability by applying ICA decomposition 

separately to split halves of a data set.

Each of these methods has shortcomings. Bootstrap-based methods require multiple 

decompositions using the same algorithm to ensure adequate resampling of the data [14–16, 

55]: while this is acceptable for algorithms such as GPU-optimized Infomax or FastICA, 

doing so with slower algorithms (which may take many hours to converge) may often be 

unfeasible. Also, as suggested by Groppe et al. [17], IC reliability metrics are often hard to 

interpret (in particular, it is not easy to determine which threshold value is best to classify 

ICs as “reliable” or “unreliable”). His split-half comparison method requires only three ICA 

decompositions: one on the whole data set and two on split halves of the data. On the 
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downside, as reported by the authors, this approach may underestimate IC reliability: it may 

be overly conservative as, particularly for small data sets, splitting the data in half could 

degrade considerably the ICA algorithm performance thus tagging most ICs as unreliable. 

Also, it considers only the reliability of single ICs, whereas bootstrapping and noise 

injection enable consideration as well of IC subspaces.

In sum, testing the accuracy of the results of an ICA decomposition is in general not 

straightforward: it is necessary to know in advance the characteristics of the ICs, for instance 

using simulated EEG data which, unfortunately, is not easily obtained since it is not clear 

how a realistic EEG should behave in terms of number and size of sources. Indeed, as all the 

other methods to determine IC reliability, also with RELICA it is not always clear how to set 

the acceptability thresholds (e.g., for dipolarity and quality index) to fully classify reliable 

and unreliable ICs. Although components with high quality and exceeding an 85% dipolarity 

threshold typically seem to be brain components [19], it is sometimes difficult to 

discriminate between other components within “gray” zones of these measures. In such 

cases users should visualize the bootstrap IC cluster reliability distributions and decide 

whether to trust the value of dip ICn .

While this does not affect the validity of RELICA results, it is worth noting that a general 

limitation of ICA is the fact that considering different time epochs for the analysis might 

result in different components extracted (those most expressed during this data segment): 

ICA may be required to separate components that may be very briefly active, and in so doing 

missing the component structure in other inactive periods. For this reason, non-stationary 

algorithms such as AMICA [26] may be useful, at the cost of greater difficulty of analysis 

and interpretation. For best results, the experimenter should carefully define the time region 

of interest to apply ICA to, though on the other hand the expected quality of an ICA 

decomposition depends on data length (e.g., the more data decomposed, the higher the 

decomposition dipolarity).

On a general note it is also important to note that with Infomax and other instantaneous ICA 

decomposition methods, a ‘source’ is a single signal projecting simultaneously and with a 

fixed spatial distribution to the recording channels. In general, distributed cortical activities 

(e.g., [30] ) should not have this property (exact simultaneity and fixed projection). 

Distributed phenomena are accounted in ICA models as weak or transient coupling of 

otherwise and maximally independent sources, each of which (again because of the fixed 

scalp projection requirement, and the extreme weighting of cortical connectivity towards 

short connections) typically must represent a signal synchronous across a single cortical 

patch. Exceptions to this may include an IC capturing simultaneous blinking of both eyes, 

synchronous alpha activity in two bilaterally symmetric posterior source areas, etc.

C. RELICA results

For each data set RELICA identified on average 15 reliable and physiologically plausible 

ICs (see Figure 3). The brain ICs selected as examples in Figure 2 (IC clusters 2, 9, 33) have 

a high quality index and are tightly clustered in the CCA space, and their dipolarity 

distributions are narrow and well centered on the representative value dip ICn  (Figure 4). 
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While cluster IC3 has high dipolarity, its distribution of dipolarities is higher (7%). Cluster 

IC10 is also interesting: its quality index is one of the highest shown, but its dipolarity is low 

and its origin is line noise (as its PSD plot shows). Cluster IC26, without more information, 

may be discarded from further analysis of brain source processes in these data given its wide 

distribution, low quality and low variance explained. Clusters IC46 and IC47 give evidence 

of a situation in which QIc is low although dipolarity is above threshold and dipolarity 

distribution is narrow (standard deviation 3%). The fact that plausibility and stability are 

here not equivalent is clearly shown in Figure 3. However, it is interesting to note that no 

high dipolar component cluster exhibited a low quality index (red box).

Here we used an ErpICASSO approach [20], based on ICASSO [16] modified according to 

[8] so as to avoid computing the inverse of an ill-conditioned unmixing matrix. As explained 

in the Methods section, users should remember that, within the ICASSO or ErpICASSO 

(bootstrap) approaches the columns of A (or rows of W) are extracted by computing the 

various centroids of the clusters, making the resulting matrices ill-conditioned, so when A+ 

(or W+) is computed, results may be unreliable. When dealing with trials, the correct way of 

implementing bootstrap resampling is to consider as the bootstrap unit the trial itself. Point-

to-point bootstrap (as in the ICASSO approach) would here yield better-clustered results, but 

stability would be overestimated.

D. A possible future step: Pairing ICs across algorithms

A key aspect of RELICA is that it can be used, in theory, in conjunction with virtually any 

ICA or linear factorization algorithm. Some ICA algorithms involve intensive computations 

(e.g., AMICA), thus making it prohibitive to use them within the RELICA framework unless 

specialized hardware (e.g., GPU) and programming are available. It is plausible that reliable 

components (Class I) are also replicable across algorithms (see Delorme et al. [19]). 

However, proof of this can be achieved only by applying RELICA using each algorithm. 

Should this be demonstrated, it would be possible to add to RELICA the step of pairing 

RELICA ICs to ICs obtained using another ICA algorithm of choice (green dotted box in 

Figure 1). The procedure would be then to use a preferred ICA algorithm first, then to 

perform RELICA using it to gain insight into the structure of the IC space stability and 

dipolarity space, and finally to pair the ICs from the two methods as far as possible. This 

way, advantages of different methods might be combined: it would be possible to use a 

preferred ICA algorithm to compute information on IC dipolarity while computing bootstrap 

IC reliability using RELICA.

V. Conclusions

In this work we introduce RELICA, a novel method to help scientists decide on the 

reliability of the extracted independent EEG component processes based on their “stability” 

and physiological “plausibility.” We then demonstrated the application of RELICA to the 

EEG data of 14 subjects performing a working-memory experiment. We identified on 

average 15 reliable (i.e. stable and physiologically plausible) independent component 

processes per subject (of a possible 71) and discussed how to use the information produced 

by RELICA to decide or further explore uncertain cases. The RELICA framework could be 
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applied to virtually any linear factorization algorithm. Here, thanks to GPU computing and 

ever-increasing computational power, we were able to test it both using Infomax ICA and 

using a less robust but also computationally less intensive approach, FastICA.
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Highlights

• RELICA computes ICs reliability as stability and physiological plausibility

• RELICA for the first time combines data bootstrapping and ICs source 

localization

• RELICA helps scientists make more confident choices on which ICs to 

discard

• Applied on 14 EEG data sets, RELICA found 15 reliable IC processes per 

data set

• We selected Infomax but RELICA can be used with other factorization 

algorithms
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Figure 1. 
A schematic of the RELICA method to test the reliability of independent component (IC) 

processes separated from EEG data sets. The data set is first decomposed using an 

ErpICASSO approach (red box); for each resulting IC cluster a reliability decision is made 

(blue box). Within ErpICASSO, the ICA decomposition is performed n times, each time 

yielding a matrix Ai and Wi. ICs are clustered according to their similarities, and one IC 

ICn  is extracted from each cluster. Then the IC dipolarity, dip ICn , QIc and dip(ICn,i) 

distributions are computed. Based on those values, it is possible to decide on the reliability 

of a component. For multi-subject experiments, it is possible to add measures of between-

subject stability of components as in the ICA data analysis approach now embodied in 

EEGLAB. (The green box and dotted line represent an optional step that could be added to 

RELICA, as explained in the Discussion).
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Figure 2. 
Results of ErpICASSO decomposition applied to a representative data set. Red numbers 

label the extracted ICs. No dimensionality reduction was performed; n equals the number of 

EEG channels, here 71. Each dot represents an IC produced by a bootstrap ICA 

decomposition, projected using CCA on a two-dimensional space with arbitrary units. The 

(IC) dots are clustered; the centroid is highlighted in orange. The smaller and more definite 

the cluster, the higher the quality index QIc (e.g., 99 % for cluster IC2). A few select 

examples are singled out and their centroid scalp maps are shown outside the main box 

along with their Power Spectral Densities (PSDs), QIc, and dipolarity values. A sample 

representation of the equivalent dipole model for the cluster IC33 exemplar in template brain 

3-D space (IC9) is shown on the right. The labels are colored according to the three classes 

detailed in the Methods section: Class I, black (high QIc, high dipolarity); Class II, blue 

(high QIc, low dipolarity); Class III, red (low QIc). The bootstrap IC clusters shown account 

respectively for line noise (10), blink-related activity (2), neck EMG activity (3), posterior 

alpha activity (9), central mu rhythm activity (33), frontal activity (47) and parietal activity 

(46).
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Figure 3. 
Panel A presents a scatterplot of dipolarity versus quality index values for the IC clusters of 

all the bootstrap data sets. The red lines (85% and 95% thresholds respectively for dipolarity 

and quality index) divide the IC dipolarity and quality space into the three Classes identified 

in the Methods section. The box on the right corner of the panel shows a “forbidden region” 

(range 0–45% and 75–100% for dipolarity), suggesting that high dipolar components cannot 

have extremely low QIc. Panel B shows for each data set (1 to 14) the number of ICs in each 

class.
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Figure 4. 
Centroid scalp maps and distribution of dip(ICn) of eight select bootstrap IC clusters 

extracted from a representative data set. A fit of the distribution of dip(ICn) was computed 

using kernel density estimation (black curve), and the value of dip ICn  is marked by a 

dotted red line. Each panel indicates the quality index QIc (which measures the variability of 

the ICA decomposition, from 0% – max. variability to 100% – min. variability), the 

dipolarity and standard deviation, and variance explained of each bootstrap component 

cluster. The titles are colored according to the IC classes as defined in Figure 2 and in the 

Methods section.
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