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Abstract

The goal of the present study was to examine relationships between individual differences in 

resting state functional connectivity as ascertained by fMRI (rs-fcMRI) and performance on tasks 

of executive function (EF), broadly defined as the ability to regulate thoughts and actions. Unlike 

most previous research that focused on the relationship between rs-fcMRI and a single behavioral 

measure of EF, in the current study we examined the relationship of rs-fcMRI with individual 

differences in subcomponents of EF. Ninety-one adults completed a resting state fMRI scan and 

three separate EF tasks outside the magnet: inhibition of prepotent responses, task set shifting, and 

working memory updating. From these three measures, we derived estimates of common aspects 

of EF, as well as abilities specific to working memory updating and task shifting. Using 

Independent Components Analysis (ICA), we identified across the group of participants several 

networks of regions (Resting State Networks, RSNs) with temporally correlated time courses. We 

then used dual regression to explore how these RSNs covaried with individual differences in EF. 

Dual regression revealed that increased higher common EF was associated with connectivity of a) 

frontal pole with an attentional RSN, and b) Crus I and II of the cerebellum with the right 

frontoparietal RSN. Moreover, higher shifting-specific abilities were associated with increased 

connectivity of angular gyrus with a ventral attention RSN. The results of the current study 

suggest that the organization of the brain at rest may have important implications for individual 

differences in EF, and that individuals higher in EF may have expanded resting state networks as 

compared to individuals with lower EF.
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1 Introduction

When individuals are not engaged in an experimentally-directed task (i.e., are in a “resting 

state”), distinct networks of widely separated brain regions can be identified as sharing 

similar temporal patterns of functional activity (Fox & Raichle, 2007) – a phenomenon often 

referred to as “resting state functional connectivity MRI” (rs-fcMRI). These “resting state 

networks” [RSNs] show strong correspondence with regions that tend to co-activate during 

performance of a class of tasks (e.g., language processing tasks; Smith et al., 2009). 

Moreover, the organization of such networks has been found to have behavioral and clinical 

relevance. A large body of literature indicates that RSNs are altered across a plethora of 

neurological and clinical populations, including Alzheimer’s disease, schizophrenia, 

depression, attention deficit hyperactivity disorder, and others (for reviews see Greicius, 

2008; Zhang & Raichle, 2010).

More recently, research has focused on how individual differences in abilities among 

neurologically normal individuals are related to the organization and extent of networks 

identified by rs-fcMRI. For example, patterns of rs-MRI are associated with fluid 

intelligence (Cole et al., 2012), attentional vigilance (Thompson et al., 2012), performance 

on the trail making test (Seeley et al., 2007), working memory (Hampson et al., 2006; 

Gordon et al., 2012), and the ability to maintain attentional control in the face of distracting 

information (Kelly et al., 2008). In general, however, there is a paucity of studies that 

examine the relationship between rs-fcMRI and individual differences in executive function 

(EF), the ability to engage in and guide goal-oriented behavior. Because EF is a broad 

umbrella term that encompasses a wide variety of specific functions and component 

processes (Miyake et al., 2000), our approach in the current study is to examine the 

relationship between RSNs and individual differences in both general and specific 

subcomponents of EF in a large sample of participants. Moreover, we take a novel approach 

of investigating this issue by embedding our research within the framework of a prominent 

and well-grounded theoretical model of EF, known as the unity and diversity model (for a 

review, see Miyake & Friedman, 2012). This model, based on intercorrelated patterns of 

performance across individuals on multiple measures of EF, suggests that many important 

aspects of EF can be reduced into at least three latent factors. The first is a common EF 

factor, representing the unity aspect of the model, on which all measured EF tasks load. This 

factor is thought to represent the general capacity to maintain a task goal, or “attentional 

set,” and is thought to be a common feature of all EF tasks. The second two orthogonal 

factors represent the diversity aspect of the model and are more specific processes above and 

beyond common EF. Statistically speaking, these factors are residuals of the EF abilities 

once common EF has been taken into account. One factor, the shifting-specific factor, 

captures processes relating to flexibly shifting between different task or mental sets, while 

the other factor, the updating-specific factor, indexes the process of rapidly adding or 

deleting information from the contents of working memory.

Theoretical considerations, computational modeling, and empirical research by our group 

and others suggest that these three EF factors are likely to be supported by overlapping yet 

somewhat distinct brain systems (Miyake & Friedman, 2012; Herd et al., in press). The 

ability to stably maintain a task goal is thought to rely on areas of lateral prefrontal cortex 
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extending from BA 10 through mid-dorsolateral prefrontal cortex (Banich, 2009; Braver, 

2012; Herd, Banich, & O’Reilly, 2006; Sakai, 2008), potentially including the anterior 

cingulate and frontal operculum as well (Dosenbach et al., 2008). Set shifting involves 

changes in the focus of attention and may engage more posterior regions of dorsolateral 

prefrontal cortex (e.g., inferior frontal junction) as well as parietal regions (e.g., intraparietal 

sulcus; Wager, Jonides, & Reading, 2004; Derrfuss et al., 2005). Working memory updating 

has been suggested to involve fronto-striatal connections and require input from the basal 

ganglia (Braver et al., 1997; O’Reilly & Frank, 2006; McNab & Klingberg, 2008). Using 

task-related fMRI across multiple EF tasks, Collette and colleagues (2005) found that 

regions commonly activated across EF tasks include the left superior parietal gyrus and the 

right intraparietal sulcus, and to a lesser degree, mid- and inferior prefrontal regions. 

Moreover, left frontopolar cortex (BA 10) activity was specifically associated with 

updating-specific EF, while activity of the left intraparietal sulcus was associated with 

shifting-specific EF.

Given the relatively limited scope of prior research on rs-fcMRI and EF, the current study 

had a number of major objectives. First, we wanted to determine whether patterns of rs-

fcMRI are associated with individual differences in both common and specific factors 

underlying EF. Second, given the research suggesting that these three EF factors may 

engage somewhat different brain regions, we wanted to ascertain whether different aspects 

of rs-fcMRI predicted individual differences for each of the three EF factors investigated 

(i.e., common EF, updating-specific EF, shifting-specific EF). Third, we wanted to 

disentangle whether individual differences in these three aspects of EF are associated with 

activity in RSNs that are composed of regions commonly activated across individuals when 

performing EF tasks (e.g., the fronto-parietal network), and/or whether they are influenced 

by activity in RSNs outside those traditionally thought to be engaged in EF (e.g., medial 

frontal/limbic network). Finally, we wanted to investigate how individual differences in EF 

might predict alterations in either the degree to which specific subregions coactivate as part 

of a particular RSNs (e.g., more intense connectivity of DLPFC within the fronto-parietal 

network) or the composition of particular RSNs (e.g., a greater spatial extent of the fronto-

parietal network). Our hypothesis was that rs-fcMRI would be associated with individual 

differences in these three aspects of EF. However, based on the paucity of prior research, 

our investigation was more exploratory with regards to how exactly such individual 

differences would manifest. To investigate these questions, we utilized dual regression to 

extract subject-specific versions of classic RSNs and then performed statistical tests to 

determine how individual variation in these RSNs predicted EF as characterized by the unity 

and diversity model.

2 Material and Methods

2.1 Participants

One hundred individuals aged 18 to 34 years (M = 22.3, SD = 9.92) from the University of 

Colorado Boulder participated for payment over two sessions. Participants were paid $25.00 

per hour for the fMRI session and $10.00 per hour for the behavioral session. Session one 

involved the administration of behavioral tasks that measured EF ability. Session two 
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involved the acquisition of anatomical and functional brain data via magnetic resonance 

imaging. The two sessions occurred within an average of 31.6 days of each other. Functional 

brain data from six participants were discarded due to excessive levels of movement during 

the scanning session (greater than 3mm in a single dimension). Additionally, data from three 

participants were discarded due to failure to comply with rules on one of more of the 

behavioral tasks. All presented results are from analyses of data from the remaining 91 

participants (48 females).

2.2 Procedures

In session one, three behavioral tasks were administered from the battery of nine tasks 

typically used in studies that have provided evidence for the unity and diversity model of EF 

(see Miyake et al., 2000; updated in Miyake & Friedman, 2012): antisaccade, category 

switching, and keep track. These three tasks were chosen because they load most highly on 

common EF, switching-specific, and updating-specific factors, respectively, in a prior large 

scale study in which the full battery of EF tasks was administered (Friedman et al., 2012). A 

variety of self-report questionnaires (e.g., emotion regulation style, trait rumination, worry, 

distractibility) and genetic data were acquired during session 1. Analyses of questionnaire 

data are outside the scope of the current study. Analyses of genetic data were not performed 

due to lack of a replication sample.

In session two, participants were scanned in a Siemens Tim Trio 3T scanner. During a 5.5 

minute resting state scan, participants were instructed to relax and close their eyes.

2.3 Session 1: Behavioral Tasks

Antisaccade task—(adapted from Roberts, Hager, & Heron, 1994). This task measures a 

person’s ability to inhibit an automatic process (an eye movement). Participants were 

instructed to focus on a centrally located fixation cross (lasting 1.5–3.5 sec). When the 

fixation cross disappeared, an initial box cue flashed 10 cm either to the right or to the left of 

fixation. The cue disappeared after a fixed interval (233, 200, or 183 ms), after which the 

target (a digit, 1 through 9) appeared for 150ms before being masked with gray cross-

hatching. Participants named the number they saw aloud and the experimenter typed in their 

response, triggering the next trial to begin. For some trials, the cue was helpful in that it 

indicated the location at which the target appeared (prosaccade trials). In other trials – 

antisaccade trials – the cue appeared on the opposite side of the screen as the target. The task 

began with a block of 18 prosaccade trials in which the cue disappeared after 183 ms to 

establish that participants could perform the easy prosaccade trials within the most stringent 

time demands. Participants were then given three blocks of 36 antisaccade trials (with 233, 

200, or 183 ms cue durations, respectively). Participants typically vary in their ability to 

identify the target on antisaccade trials because it is difficult to inhibit the automatic 

tendency to look towards an object, in this case the cue. The dependent measure was average 

accuracy for the three blocks of antisaccade trials.

Category Switch task—(adapted from Mayr & Kliegl, 2000). This task measures a 

person’s ability to quickly and accurately switch between different modes of categorization. 

Participants were asked to categorize words (e.g., alligator, knob, coat, lion) either with 
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regards to animacy (living/non-living) or size (smaller/larger than a soccer ball) depending 

on a cue that appeared above the word (heart or crossed arrows). After two pure blocks of 32 

trials each that involved categorizing items along a single dimensions (e.g., just on 

animacy), participants completed two blocks of 64 trials each that contained a mixture of 

trials in which some trials required judgments regarding animacy and others required 

judgments regarding size. The trials in these blocks were presented in a fixed pseudorandom 

order such that the subtasks occurred equally often, and 50% of the trials involved a switch 

from one subtask to the other. Participants were given unlimited time to respond on each 

trial, but were instructed to respond as swiftly and accurately as possible. The dependent 

measure was the switch cost: the difference between average reaction time for correct switch 

trials and correct repeat trials during the mixed blocks for each subject. Trials following 

errors were eliminated because it was not clear that the correct set was achieved (precluding 

categorization of whether the subsequent trial was either a switch or repeat trial). Reaction 

times identified as within-subject outliers by the Wilcox-Kessleman trimming procedure 

(Wilcox & Keselman, 2003) were also removed before averaging.

Keep Track task—(adapted from Yntema, 1963). This task measures the ability to update 

working memory. A stream of words is presented, one at a time. The words belong to six 

categories: relatives, countries, colors, animals, metals, and distances, with six words in each 

category. Participants were asked to keep track of the most recently presented words from 

two to five given categories and report them verbally at the end of the trial. Sixteen trials 

were administered, with each trial containing a stream of 15–25 words. After two practice 

trials with two categories to remember, there were four blocks, each with one two-, three-, 

four-, and five-category trial, for a total of 16 trials. The order of the trials within each block 

was fixed in a pseudorandom order. Each trial began with the list of categories, which 

remained at the bottom of the screen until the final recall. Each word appeared for 2000ms, 

followed by the next word. The dependent measure was each participant’s accuracy in 

recalling the target words.

EF scores—We extracted three factors – common EF, shifting-specific, and updating-

specific – in accordance with prior research. The lack of an inhibition-specific factor reflects 

a recent update to the unity and diversity framework that highlighted the complete overlap 

of common EF and inhibition-specific variance in behavioral tasks in several samples of 

adults and adolescents (Miyake & Friedman, 2012). Common EF was calculated by taking 

the average of each subject's three tasks converted to a Z-value (across the group of 91 

participants). Shifting-specific was the residual variance in the category switch task, 

regressing out common EF. Updating-specific was the residual variance in the keep track 

task, regressing out common EF. This procedure left shifting- and updating-specific 

orthogonal to Common EF; however, the shifting- and updating-specific residuals were 

significantly negatively correlated (r = −.61, p < 0.05). This method of calculating EF 

component scores is similar to that performed in a recent related study from our laboratory 

demonstrating that individual differences in these EF component scores predict individual 

differences in grey matter volume and gyrification index of prefrontal regions as well as 

fractional anisotropy of specific neural tracts that connect prefrontal regions with posterior 

brain areas (Smolker, Depue, et al., 2014). Shapiro-Wilks tests confirmed that all three EF 
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measures were normally distributed. Higher scores on three composite measures correspond 

to greater ability in that construct (i.e. - maintain a goal, shift between task/mental sets, or 

update working memory).

2.4 Session 2: Brain Imaging

Neuroanatomical data were acquired with T1-weighted MP RAGE sequence (acquisition 

parameters: repetition time (TR) = 2,530ms, echo time (TE) = 1.64, matrix size = 256 × 256 

× 192, flip angle (FA) = 7 deg., slice thickness = 1mm). Resting state data was acquired with 

a T2*-weighted echo-planar functional scan (acquisition parameters: number of volumes = 

165, TR = 2,000ms, TE = 29ms, matrix size = 64 × 64 × 33, FA = 75 deg., slice thickness = 

3.5mm, field of view (FOV) = 240mm).

Analysis of brain data was performed via a multi-step process (see Figure 1 for summary). 

First, Independent Components Analysis (ICA) was used to identify networks of brain 

regions whose activity was correlated across the group of participants. From these so-

identified ICA components, we selected those that were significantly correlated with those 

of a reference study with a larger number of individuals (Yeo et al., 2011) and discarded 

those that are were irrelevant to the current investigation (e.g., atypical RSNs and artifactual 

components; see below for procedure). For the relevant networks, dual regression was used 

to derive subject-specific maps of the group-identified RSNs. Finally, statistical analyses 

were performed to identify differences in the subject-specific RSN maps that predicted EF 

ability.

2.5 Preprocessing

All processing of brain data was performed in a standard install of FSL build 5.06 

(Jenkinson et al., 2012). To account for signal stabilization, the first four volumes of each 

individual functional scan were removed, yielding 161 volumes per subject for additional 

analysis. The functional scans were corrected for head motion using MCFLIRT, FSL’s 

motion correction tool. Brain extraction (BET) was used to remove signal associated with 

non-brain material (e.g., skull, sinuses, etc.). FSL’s FLIRT utility was used to perform a 

boundary-based registration of each participant’s functional scan to his or her anatomical 

volume and a 6 degree of freedom affine registration to MNI152 standard space. Finally, the 

scans were converted to 4mm voxel size, smoothed (5mm FWHM), and high-pass filtered (.

01 Hz threshold).

2.6 Independent Components Analysis

To decompose the functional brain data into various independent spatiotemporal 

components, Independent Components Analysis (ICA) was performed on the preprocessed 

functional scans using Melodic ICA version 3.14 (Beckmann & Smith, 2004). A 

dimensionality estimation using the Laplace approximation to the Bayesian evidence of the 

model order was performed (Beckman & Smith, 2004). This procedure yielded 29 

spatiotemporal components. While one common approach for identifying “classical” 

resting-state networks from a pool of ICA components is to have an expert subjectively label 

ICA components as signal (e.g., right frontoparietal network, default network, etc.) or noise 

(edge effects, movement, etc.), we opted to use a different RSN identification procedure to 
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select RSNs for further analysis. We statistically compared the spatial map of each ICA 

component to a set of 7 popular RSNs from analysis of resting-state data from 

approximately 1000 participants (Yeo et al., 2011). We used FLS’s “fslcc” tool to calculate 

Pearson’s r for each pairwise relationship and kept only those ICA components that yielded 

a significant spatial correlation (Pearson’s r > .207) with one of the RSNs from Yeo et al. 

(2011). This procedure identified and helped label 15 RSNs, and identified 14 ICA 

components that did not significantly correlate with a reference network. ICA components 

that did not significantly correlate with a reference network were eliminated from further 

analysis. Further inspection confirmed that the eliminated components were likely artifactual 

(e.g., edge effects) or were predominantly high frequency signal according to a power 

frequency distribution curve (i.e., physiological noise such as heartbeat-induced movement).

2.7 Dual Regression

Dual regression is a method that uses unthresholded group-level independent component 

maps to generate both subject-specific component time courses and subject-specific spatial 

maps as output (Beckmann et al., 2009). Here we focus on subject-specific spatial maps to 

examine how EF influences the composition of the networks. Dual regression can be broken 

down into two steps: First, for each subject, the group-average set of spatial maps is 

regressed (as spatial regressors in a multiple regression) on the subject’s 4D spatio-temporal 

dataset (i.e., brain volumes across time). This process results in a set of subject-specific time 

series, one per group-level component. Next, those time series are regressed (as temporal 

regressors, again in a multiple regression) into the same 4D dataset, resulting in a set of 

subject-specific components, one per group-level component. Subject-specific components 

are whole brain images. Some subjects express a given RSN that is very similar to the group 

level RSN while others have variations of the group level RSN (e.g., have an expanded RSN 

or high connectivity of a particular regions of a given RSN). Statistical analyses (discussed 

below) are performed on these whole brain subject-specific RSNs to determine areas covary 

with behavioral covariates of interest, in our case, level of EF.

In the present study, the associations between EF measures and subject-specific RSNs were 

analyzed using Randomise, FSL’s nonparametric permutation testing tool (Jenkinson et al., 

2012), with 5000 permutations and threshold free cluster enhancement (TFCE) to correct for 

multiple comparisons. Permutation testing was performed while controlling for between-

subject differences in transient movement throughout the scanning session in accordance 

with Van Dijk, Sabuncu, & Buckner (2012). Two summary motion regressors were created 

for each subject and entered into Randomise as control variables: average motion in the x, y, 

and z planes (mean translation) and average roll, pitch, and yaw (mean rotation) across the 

resting state run. The permutation testing procedure was run for each set of subject-specific 

RSNs (one for each group-level RSN of interest), thus the resulting statistical images reveal 

how variation in RSNs predict differences in EF. For example, the permutation testing 

procedure could reveal that individuals with an expanded RSN (i.e., expanded to areas 

outside the areas included in the group-level RSN) have greater EF.

To account for the possibility that performance of EF tasks in session one could affect 

resting-state functional connectivity in session two, we performed an additional series of 
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dual regression analyses adding time between session one and two as a covariate in addition 

to EF and motion variables. We found no difference in the observed effects of EF after the 

addition of this covariate and no main effects of time between sessions. For the sake of 

simplicity, only results from models that included EF, mean translation, and mean rotation 

are reported below.

3 Results

3.1 Behavioral Data

We performed a check to ensure the data was suitable for the proposed analyses. As 

anticipated, there were no floor or ceiling effects and scores varied considerably across the 

group of participants. Average results on measures of interest were slightly higher than 

performance in a large (n = 735+) population sample of young adults (mean age of 22.8 

compared to 20.8 in the current study; Friedman et al., in preparation) : The mean 

antisaccade accuracy was 75.5% (SD = 31.4), the mean category-switch switch cost was 

174.3 ms (SD = 123.9 ms), and the mean keep-track accuracy was 76.1% (SD = 8.33).

3.2 Independent Components Analysis

The 15 RSNs of interest in the present study were, with one exception, subsets of the large 

seven major RSNs identified by Yeo et al. (2011): visual, somatomotor, dorsal attention, 

limbic, ventral attention, default, and frontoparietal networks (see Figure 2). For all but 

Yeo’s ventral attention and limbic network, there was more than a single RSN that 

correlated significantly with the masks from Yeo et al. (2011). Additionally, five of the 15 

RSNs from the current study significantly correlated with more than one network (e.g., to 

both the ventral attention network and the frontoparietal network of Yeo et al. (2011). In 

Figure 2, we show the independent component (IC) numbers from our Melodic output under 

the label of the reference networks from Yeo et al. (2011). In Figure 2, our independent 

components are thresholded at a level consistent with previous research (z = 5, compared to 

3 < z < 9 (Rytty et al., 2013), 4 standard deviations above the mean (Allen et al, 2013), and p 

(signal > noise) > .5 (FSL default)). This threshold was also used for determining the parent 

network of any region later identified in the Dual Regression analyses. Any IC that 

significantly correlated with more than one template network is grouped in Figure 2 with the 

template network with which it is most strongly correlated. The three networks that 

correlated with Yeo’s visual network were composed of regions extending from occipital 

pole through cuneal cortex and lingual gyrus (ICs 1, 12, and 18). The three networks that 

correlated with Yeo’s somatomotor network were composed of the superior pre- and post-

central gyrus (IC 6), primary auditory cortex and superior temporal gyrus (IC 11), and post-

central gyrus (IC 24). There was a single network that extended through orbitofrontal and 

ventromedial prefrontal cortex that correlated with Yeo’s limbic network (IC 28). The three 

networks that correlated with the Yeo’s dorsal attention network were composed of 

dorsolateral frontal, parietal, and occipital regions (ICs 14, 17 and 26). The single networks 

that correlated with Yeo’s ventral attention network was composed of a conglomerate of 

medial and lateral frontal regions (IC 4). The two networks that correlated with Yeo’s 

default network were composed of medial prefrontal cortex, posterior cingulate cortex, and 

precuneus (ICs 10 and 15). Finally, there were two networks that correlated with Yeo’s 
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frontoparietal networks: classic right and left frontoparietal networks (ICs 5 and 9, 

respectively). In Figure 3, we show ICs from the current study (plotted in multiple colors) 

next to template networks of Yeo et al. (2011) (plotted in red).

3.3 Dual Regression

Common EF—Individual differences in common EF were associated with variation of two 

RSNs. First, we observed that increased connectivity of Crus I and II of the cerebellum 

within the right frontoparietal network (IC 5) was associated with greater common EF 

ability (Figure 4a; p(corrected) = 0.037). Second, we observed that expansion of IC14, a dorsal 

attentional RSN, to two regions – the left frontopolar cortex (Figure 4b; p(corrected) = 0.028) 

and right cerebellar regions (Figure 4c; p(corrected) = 0.035) – was associated with greater 

common EF. The frontopolar region is part of ICs 4 and 9.

Shifting-specific—Greater shifting-specific EF was associated with increased coupling of 

the left angular gyrus with IC 11, a network that correlated significantly with both the 

somatomotor and ventral attention template networks. (Figure 4d; p(corrected) = 0.007). Left 

angular gyrus is not part of IC 11 from the group level ICA analysis.

4 Discussion

Our findings indicate that aspects of the functional architecture of the resting brain are 

associated with variation amongst individuals in different aspects of EF. While an 

abundance of studies have identified sets of regions that consistently coactivate together 

during periods of rest, we have shown that the composition of these networks vary based on 

individual differences in EF. More specifically, higher common EF is associated with 

intensity differences within the right frontoparietal RSN, and the expansion of an attention 

RSN to frontopolar cortex and cerebellum. Better shifting-specific ability was associated 

with expansion of a somatomotor/attention network to angular gyrus. No relationships were 

observed between rs-fcMRI and updating-specific ability.

4.1 Common EF

Higher common EF was associated with differences in the right frontoparietal RSN. 

Specifically, increased coupling between the right frontoparietal RSN and Crus I and II of 

the cerebellum predicted higher common EF. Such a result is consistent with task-based 

research showing that frontal and parietal regions emerge as important in both region-of-

interest (Alvarez & Emory, 2006; Buckner, 2013) and network-based analyses (Zhang & Li, 

2012) of executive function tasks. This result is also in line with work that shows a strong 

connection between Crus I/II and frontoparietal regions both functionally (Buckner et al., 

2011) and anatomically (Kelly & Strick, 2003). Additionally, Crus I and II have been shown 

to activate in task-based fMRI studies of working memory and EF, and greater activation 

and functional connectivity of these regions is associated with better performance (Bernard 

et al., 2013; Salmi et al., 2010; Stoodley & Schmahmann, 2009). This result supplements 

these task-based findings by demonstrating that the degree to which Crus I and II couples 

with the frontoparietal network at rest predicts differences in EF. The exact role of 

cerebellar regions in the service of EF is still debated. Two prominent theories stemming 
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from the motor control literature suggest that cerebellum is crucial for timing of cognitive 

events and/or provides a means for predicting the outcome of implemented plans (Ivry & 

Keele, 1989; Ramnani, 2006). While our study cannot speak directly to these theories, we 

have shown that a key difference between individuals with high versus low Common EF 

may be the degree to which cerebellum is involved in a network of regions broadly 

implicated in higher-order cognitive operations.

Additionally, Common EF was associated with variation in a network supporting attention 

to the external environment (IC 14). Individuals with greater common EF showed increased 

coupling of frontopolar region with this attentional RSN, which is composed of lateral 

frontal and superior parietal/occipital regions. An attention network similar to IC 14 has 

previously been linked to performance on the antisaccade task (Schaeffer et al., 2013), 

which is a task that loads strongly on the Common EF construct (Miyake & Friedman, 

2012). Notably though, the frontopolar region identified in the dual regression analysis has 

not been characterized as part of the dorsal attention network and is not contained within the 

dorsal attention RSN that was identified at the group level of the current study. Rather, this 

frontopolar region is part of two frontoparietal RSNs – ICs 4 and 9. Importantly, this 

frontopolar region has previously been linked to maintenance of goals and abstract task sets 

(Ramnani & Owen, 2004; Vincent et al., 2008; Christoff et al., 2009; Dosenbach et al., 

2008; Orr & Banich, 2014). As such, co-activation of regions implicated in the maintenance 

of abstract representation and/or goals with the attentional machinery to implement those 

goals, characterizes individuals with high levels of common EF.

In summary, alterations in resting state networks associated with high common EF can be 

characterized as expanded compared to those with low common EF, encompassing both 

higher-order areas involved in setting abstract goals (i.e., frontopolar cortex) and lower-level 

regions that could aid in implement those goals more automatically (i.e., cerebellum).

4.2 Shifting-specific

Higher Shifting-specific EF was associated with variation in a somatomotor/attentional RSN 

(IC 11), suggesting it is involved in sensory aspects of spatial processing. Specifically, 

individuals with higher EF had greater recruitment of the angular gyrus, which lies outside 

IC. Lateral parietal regions are frequently implicated in executive processes, and are 

especially important for shifting-specific aspects of EF (Collette et al., 2005; Esterman et al., 

2009), perhaps due to their ability to integrate multimodal information. Additionally, this 

particular region of the angular gyrus is characterized by a distinct pattern of anatomical 

connectivity to a variety of regions implicated in higher order cognitive process, such as 

ventrolateral prefrontal cortex, among others (Uddin et al., 2010). Shifting-specific tasks 

depends not only on active abilities to move from one task set to the other, but also the 

passive linking between lower order centers of control and appropriate targets (e.g., motor 

regions). It may be that individuals with higher shifting-specific EF effectively utilize 

parietal regions to control the stimulus-response mappings that are required to perform 

different tasks.
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4.3 Updating-specific

One unexpected aspect of our findings was a lack of a relationship between individual 

differences in updating-specific ability and any rs-fcMRI network or region. On the basis of 

both theoretical and empirical findings regarding the neural substrates of updating (Frank, 

Loughry, & O’Reilly, 2001), one might have predicted a priori that connectivity between 

the DLPFC and basal ganglia might influence individual differences in updating ability. 

However, we did not find such an effect. Our null results may arise because of the 

qualitative differences between processes supporting updating-specific EF as compared to 

common EF and shifting-specific EF. Updating requires the contents of working memory to 

be manipulated, and as such may rely more on a more circumscribed brain region, notably 

DLPFC, without connectivity to other regions playing as much of a role. In contrast, when 

switching between tasks, new task sets and stimulus-response mappings need to be loaded to 

perform the task, and hence switching may rely on a more distributed network (e.g., 

frontopolar regions for selecting the task set, parietal regions for stimulus-response 

mappings, etc.). Of course one must be circumspect when discussing potential reasons for a 

null result.

4.4 General Discussion

One notable aspect of our results was that different RSNs were associated with different 

aspects of EF. As such, our findings support the idea that EF represents a family of abilities. 

More importantly, however, it suggests that these different abilities may preferentially 

recruit distinct neural substrates, at least with respect to individual differences in EF.

Although our findings clearly demonstrate a relationship between individual differences in 

EF and rs-fcMRI, our study cannot speak directly to the source of that relationship. On the 

one hand, a dominant theme emerging from prior literature is that patterns of rs-fcMRI 

reflect the intrinsic functional organization of the brain (Fox & Raichle, 2007), sculpted by a 

history of coherent neuronal firing and anatomical wiring between distributed brain regions 

(Wig, Schlaggar, & Petersen, 2011). Indeed, patterns of rs-fcMRI are stable across time 

within individuals (Guo et al., 2012; Shehzad et al., 2009), relate to a variety of genetic 

factors (Glahn et al., 2010), and persist to some degree under various stages of 

consciousness and anesthesia (Boly et al., 2008; Greicius et al., 2008). From this 

perspective, the findings of the present study may potentially reflect an individual’s 

biological heritage, such as genetic influences on EF that might influence the structural 

and/or functional connectivity of the brain (see Friedman et al., 2008 for evidence of genetic 

influences on EF). However, this does not preclude environmental influences also working 

to sculpt brain activity, such as the amount of training/schooling during childhood with 

regards to activities or tasks that require EF (Diamond, 2012), SES (Hackman & Farah, 

2009), or other such factors. The relationship between behavior-related RSN variability and 

specific individual traits, whether they have genetic and/or experiential causes, is an 

important direction for future work.

It is also possible that aspects of an individual’s state at the time of scanning may influence 

the patterns we observed. Several recent findings suggest that patterns of functional 

connectivity may be partially influenced by the participant’s mental/task state (Andrews-

Reineberg et al. Page 11

Neuroimage. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Hanna et al., 2010; Doucet et al., 2012; Shirer et al., 2012), and can be modified on a rapid 

time scale (Lewis et al., 2009; Tambini, Ketz, & Davachi, 2010; Stevens, Buckner, & 

Schacter, 2010). Future research should also explore the possibility that behavior-related 

RSN variability is caused by differences in the cognitive processes of high versus low EF 

individuals during resting-state scans (e.g., high EF individuals plan their day, while low EF 

individuals daydream).

Although we believe our findings establish a strong groundwork for further exploration of 

neuropsychological correlates of executive function as assessed during resting state, it will 

be important for future studies to replicate our findings and examine their possible 

dysfunction in psychiatric and neurological disorders. In addition to replication and 

extension, future studies should consider genetic and behavioral variation that could account 

for differences between high and low EF individuals’ resting-state functional connectivity.

4.5 Conclusion

In a large group of individuals, we demonstrate that the resting state architecture of the brain 

is associated with individual differences in different aspects of a theoretically motivated 

framework of EF – the unity and diversity model. The results are notable for providing a 

fine-grained picture of the relationships with specific regions within and outside of well-

known RSNs. In the case of common EF, individuals higher in EF had greater recruitment of 

cerebellar regions within a group-identified frontoparietal RSN, and increased coupling of a 

frontopolar region to an attention RSN. Those individuals higher in shifting-specific EF had 

increased coupling of angular gyrus and a somatomotor/attention network. The current study 

significantly expands our knowledge of neural influences on EF, showing that variability in 

EF across individuals man be sculpted by patterns of resting-state functional connectivity 

within and between large-scale cognitive brain networks.
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Figure 1. 
The data processing pipeline for resting state data in the current study.
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Figure 2. 
Resting-state networks from the current study thresholded at z > 5. The RSNs are grouped 

into seven categories based on relation to reference networks – visual, somatomotor, limbic, 

dorsal attention, ventral attention, default, and frontoparietal. Independent components that 

significantly overlapped with more than one template are grouped with the template they 

correlate most strongly. In addition to the pictured groupings, independent components 11 

and 14 significantly overlapped with the ventral attention template network; independent 

component 9 also significantly overlapped with the default template network; and 
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independent components 4 and 26 significantly overlapped with the frontoparietal template 

network.
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Figure 3. 
Resting state networks from the current study compared to reference networks (Yeo et al., 

2011). Reference networks are plotted on the left in red. RSNs from the current study were 

spatially combined into a single image and plotted in contrasting colors.
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Figure 4. 
Dual regression analyses reveal RSNs vary with common and switching-specific 

components of EF. The input RSN for dual regression is plotted in warm colors as 

background image. The dual regression result is plotted as an overlay in blue. Blue regions 

are regions that covary with individual differences in EF. For all results within the input 

RSN (4a), increased intensity of the highlighted region (thresholded at p(corrected) < .05) 

corresponds to higher EF construct scores. For outside-group-network results (4b, c), 

expansion of the input RSN to the highlighted region corresponds to higher EF construct 
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scores. Next to each dual regression result is a scatterplot of parameter estimates extracted 

from the voxels identified in the dual regression analysis for each participant’s independent 

component plotted against each participant’s EF score. For size of significant clusters 

identified in the dual regression analysis, see Table 1.
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