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Abstract

Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that
the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this
function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of
the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the
joint estimation of activation and HRF by means of a rank constraint, forcing the estimated HRF to be equal across
events or experimental conditions, yet permitting it to differ across voxels. Model estimation leads to an optimization
problem that we propose to solve with an efficient quasi-Newton method, exploiting fast gradient computations. This
model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs
which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different
HRF modeling methods in terms of encoding and decoding score on two different datasets. Our results show that the
R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it as an attractive
method both from the points of view of accuracy and computational efficiency.

Keywords: Functional MRI (fMRI), Hemodynamic response function (HRF), machine learning, optimization, BOLD,
Finite inpulse response (FIR), decoding, encoding

1. Introduction

The use of machine learning techniques to predict the
cognitive state of a subject from their functional MRI
(fMRI) data recorded during task performance has be-
come a popular analysis approach for neuroimaging stud-
ies over the last decade (Cox and Savoy, 2003; Haynes
and Rees, 2006). It is now commonly referred to as brain
reading or decoding. In this setting, the BOLD signal
is used to predict the task or stimulus that the subject
was performing. Although it is possible to perform decod-
ing directly on raw BOLD signal (Mourão Miranda et al.,
2007; Miyawaki et al., 2008), the common approach in fast
event-related designs consists in extracting the activation
coefficients (beta-maps) from the BOLD signal to perform
the decoding analysis on these estimates. Similarly, in the
voxel-based encoding models (Kay et al., 2008; Naselaris
et al., 2011), the activation coefficients are extracted from
the BOLD signal, this time to learn a model to predict the
BOLD response in a given voxel, based on a given represen-
tation of the stimuli. In addition, a third approach, known
as representational similarity analysis or RSA (Kriegesko-
rte et al., 2008) takes as input the activation coefficients.
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In this case a comparison is made between the similarity
observed in the activation coefficients, quantified by a cor-
relation measure, and the similarity between the stimuli,
quantified by a similarity measure defined from the exper-
imental setting.

These activation coefficients are computed by means of
the General Linear Model (GLM) (Friston et al., 1995).
While this approach has been successfully used in a wide
range of studies, it does suffer from limitations (Poline and
Brett, 2012). For instance, the GLM commonly relies on
a data-independent canonical form of the hemodynamic
response function (HRF) to estimate the activation coef-
ficient. However it is known (Handwerker et al., 2004;
Badillo et al., 2013b) that the shape of this response func-
tion can vary substantially across subjects and brain re-
gions. This suggests that an adaptive modeling of this
response function should improve the accuracy of subse-
quent analysis.

To overcome the aforementioned limitation, Finite Im-
pulse Response (FIR) models have been proposed within
the GLM framework (Dale, 1999; Glover, 1999). These
models do not assume any particular shape for the HRF
and amount to estimating a large number of parameters in
order to identify it. While the FIR-based modeling makes
it possible to estimate the activation coefficient and the
HRF simultaneously, the increased flexibility has a cost.
The estimator is less robust and prone to overfitting, i.e.
to generalize badly to unseen data. In general, FIR models
are most appropriate for studies focused on the characteri-
zation of the shape of the hemodynamic response, and not
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for studies that are primarily focused on detecting activa-
tion (Poldrack et al., 2011, Chapter 5).

Several strategies aiming at reducing the number of de-
grees of freedom of the FIR model - and thus at limiting
the risk of overfitting - have been proposed. One possi-
bility is to constrain the shape of the HRF to be a linear
combination of a small number of basis functions. A com-
mon choice of basis is formed by three elements consist-
ing of a reference HRF as well as its time and dispersion
derivatives (Friston et al., 1998), although it is also pos-
sible to compute a basis set that spans a desired function
space (Woolrich et al., 2004). More generally, one can also
define a parametric model of the HRF and estimate the
parameters that best fit this function (Lindquist and Wa-
ger, 2007). However, in this case the estimated HRF may
no longer be a linear function of the input parameters.

Sensitivity to noise and overfitting can also be reduced
through regularization. For example, temporal regulariza-
tion has been used in the smooth FIR (Goutte et al., 2000;
Ciuciu et al., 2003; Casanova et al., 2008) to favor solutions
with small second order time derivative. These approaches
require the setting of one or several hyperparameters, at
the voxel or potentially at the parcel level (if several vox-
els in a pre-defined parcel are assumed to share some as-
pects of the HRF timecourse). Even if efficient techniques
such as generalized cross-validation (Golub et al., 1979)
can be used to choose the regularization parameters, these
methods are inherently more costly than basis-constrained
methods. Basis-constrained methods also require setting
the number of basis elements; however, this parameter is
not continuous (as in the case of regularized methods),
and in practice only few values are explored: for example
the 3-element basis set formed by a reference HRF plus
derivatives and the FIR model. This paper focuses on
basis-constrained regularization of the HRF to avoid deal-
ing with hyperparameter selection with the goal of remain-
ing computationally attractive. A different approach to in-
crease robustness of the estimates consists in linking the es-
timated HRFs across a predefined brain parcel, taking ad-
vantage of the spatially dependent nature of fMRI (Wang
et al., 2013). However, hemodynamically-informed parcel-
lations (Chaari et al., 2012; Badillo et al., 2013a) rely on
the computation of a large number of estimations at the
voxel or sub-parcel level. In this setting, the development
of voxel-wise estimation procedures is complementary to
the development of parcellation methods in that more ro-
bust estimation methods at the voxel level would naturally
translate into more robust parcellation methods. In this
paper we focus on voxel-wise estimation methods.

We propose a method for the simultaneous estimation of
HRF and activation coefficients based on low-rank model-
ing. Within this model, and as in (Makni et al., 2008; Kay
et al., 2008; Vincent et al., 2010; Degras and Lindquist,
2014), the HRF is constrained to be equal across the dif-
ferent conditions, yet permitting it to be different across
voxels. Unlike previous works, we formulate this model as
a constrained least squares problem, where the vector of

coefficients is constrained to lie within the space of rank
one matrices. We formulate the model within the frame-
work of smooth optimization and use quasi-Newton meth-
ods to find the vector of estimates. This model was briefly
presented in the conference paper (Pedregosa et al., 2013).
Here we provide more experimental validation and a more
detailed presentation of the method. We also added re-
sults using a GLM with separate designs (Mumford et al.,
2012). Ten alternative approaches are now compared on
two publicly available datasets. The solver has also been
significantly improved to scale to full brain data.

The contributions of this paper are two-fold. First, we
quantify the importance of HRF estimation in encoding
and decoding models. While the benefit of data-driven
estimates of the HRF have already been reported in the
case of decoding (Turner et al., 2012) and encoding ap-
proaches (Vu et al., 2011), we here provide a comprehen-
sive comparison of models. Second, we evaluate a method
called GLM with Rank-1 constraint (R1-GLM) that im-
proves encoding and decoding scores over state-of-the-art
methods while remaining computationally tractable on a
full brain volume. We propose an efficient algorithm for
this method and discuss practical issues such as initializa-
tion. Finally, we provide access to an open source software
implementation of the methods discussed in this paper.

Notation: ‖ · ‖ and ‖ · ‖∞ denote the Euclidean and in-
finity norm for vectors. We use lowercase boldface letter
to denote vectors and uppercase boldface letter to denote
matrices. I denotes the identity matrix, 1n denotes the vec-
tor of ones of size n, ⊗ denotes the Kronecker product and
vec(A) denotes the concatenation of the columns of a ma-
trix A into a single column vector. A† denotes the Moore-
Penrose pseudoinverse. Given the vectors {a1, . . . , ak} with
ai ∈ Rn for each 1 ≤ i ≤ k, we will use the notation
[a1, . . . , ak] ∈ Rn×k to represents the columnwise concate-
nation of the k vectors into a matrix of size n × k. We
will use Matlab-style colon notation to denote slices of an
array, that is x(1 : k) will denote the first k elements of x.

2. Methods

In this section we describe different methods for extract-
ing the HRF and activation coefficients from BOLD sig-
nals. We will refer to each different stimulus as condition
and we will call trial a unique presentation of a given stim-
ulus. We will denote by k the total number of stimuli,
y ∈ Rn the BOLD signal at a single voxel and n the total
number of images acquired.

2.1. The General Linear Model

The original GLM model (Friston et al., 1995) makes
the assumption that the hemodynamic response is a lin-
ear transformation of the underlying neuronal signal. We
define the n × k-matrix XGLM as the columnwise stacking
of different regressors, each one defined as the convolution
of a reference HRF (Boynton et al., 1996; Glover, 1999)
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with the stimulus onsets for the given condition. In this
work we used as reference HRF the one provided by the
software SPM 8 (Friston et al., 2011). Assuming additive
white noise, n ≥ k and XGLM to be full rank, the vector
of estimates is given by β̂GLM = X†GLMy, where β̂GLM is a
vector of size k representing the amplitude of each one of
the conditions in a given voxel.

A popular modification of this setting consists in extend-
ing the GLM design matrix with the temporal and width
derivatives of the reference HRF. This basis, formed by
the reference HRF and its derivatives with respect to time
and width parameters, will be used throughout this work.
We will refer to it as the 3HRF basis. In this case, each
one of the basis elements is convolved with the stimulus
onsets of each condition, obtaining a design matrix of size
n× 3k. This way, for each condition, we estimate the form
of the HRF as a sum of basis functions that correspond
to the first order Taylor expansion of the parametrization
of the response function. Another basis set that will be
used is the Finite Impulse Response (FIR) set. This basis
set spans the complete ambient vector space (of dimension
corresponding to the length of the impulse response) and
it is thus a flexible model for capturing the HRF shape. It
consists of the canonical unit vectors (also known as stick
function) for the given duration of the estimated HRF.
Other basis functions such as FMRIB’s Linear Optimal
Basis Sets (Woolrich et al., 2004) are equally possible but
were not considered in this work.

More generally, one can extend this approach to any
set of basis functions. Given the matrix formed by the
stacking of d basis elements B = [b1,b2, . . . ,bd], the design
matrix XB is formed by successively stacking the regressors
obtained by convolving each of the basis elements with the
stimulus onsets of each condition. This results in a matrix
of size n× dk and under the aforementioned conditions the
vector of estimates is given by β̂B = X†By. In this case,

β̂B is no longer a vector of size k: it has length k × d
instead and can no longer be interpreted as the amplitude
of the activation. One possibility to recover the trial-by-
trial reponse amplitude is to select the parameters from a
single time point as done by some of the models considered
in (Mumford et al., 2012), however this procedure assumes
that the peak BOLD response is located at that time point.
Another possibility is to construct the estimated HRF and
take as amplitude coefficient the peak amplitude of this
estimated HRF. This is the approach that we have used in
this paper.

2.2. GLM with rank constraint

In the basis-constrained GLM model, the HRF estima-
tion is performed independently for each condition. This
method works reliably whenever the number of conditions
is small, but in experimental designs with a large number
of conditions it performs poorly due to the limited condi-
tioning of the problem and the increasing variance of the
estimates.

At a given voxel, it is expected that for similar stimuli
the estimated HRF are also similar (Henson et al., 2002).
Hence, a natural idea is to promote a common HRF across
the various stimuli (given that they are sufficiently simi-
lar), which should result in more robust estimates (Makni
et al., 2008; Vincent et al., 2010). In this work we con-
sider a model in which a common HRF is shared across
the different stimuli. Besides the estimation of the HRF, a
unique coefficient is obtained per column of our event ma-
trix. This amounts to the estimation of k + d free param-
eters instead of k × d as in the standard basis-constrained
GLM setting.

The novelty of our method stems from the observa-
tion that the formulation of the GLM model with a com-
mon HRF across conditions translates to a rank constraint
on the vector of estimates. This assumption amounts
to enforcing the vector of estimates to be of the form
βB = [hβ1,hβ2, · · · ,hβk] for some HRF h ∈ Rd and a vector
of coefficients β ∈ Rk. More compactly, this can be written
as βB = vec(hβT ). This can be seen as a constraint on the
vector of coefficients to be the vectorization of a rank-one
matrix, hence the name Rank-1 GLM (R1-GLM).

In this model, the coefficients have no longer a closed
form expressions, but can be estimated by minimizing the
mean squared error of a bilinear model. Given XB and
y as before, Z ∈ Rn×q a matrix of nuisance parameters
such as drift regressors, we define FR1(h,β,ω,XB, y,Z) =
1
2‖y − XB vec(hβT ) − Zω‖2 to be the objective function to
be minimized. The optimization problem reads:

ĥ, β̂, ω̂ = arg min
h,β,ω

FR1(h,β,ω,XB, y,Z)

subject to ‖Bh‖∞ = 1 and 〈Bh,href〉 > 0 ,
(1)

The norm constraint is added to avoid the scale ambiguity
between h and β and the sign is chosen so that the es-
timated HRF correlates positively with a given reference
HRF href. Otherwise the signs of the HRF and β can
be simultaneously flipped without changing the value of
the cost function. Within its feasible set, the optimization
problem is smooth and is convex with respect to h, β and
ω, however it is not jointly convex in variables h, β and
ω.

From a practical point of view this formulation has a
number of advantages. First, in contrast with the GLM
without rank-1 constraint the estimated coefficients are al-
ready factored into the estimated HRF and the activation
coefficients. That is, once the estimation of the model pa-
rameters from Eq. (1) is obtained, β̂ is a vector of size k
and ĥ is a vector of size d that can be both used in subse-
quent analysis, while in models without rank-1 constraint
only the vector of coefficients (equivalent to vec(hβT ) in
rank-1 constrained models) of size k × d is estimated. In
the latter case, the estimated HRF and the beta-maps still
have to be extracted from this vector by methods such as
normalization by the peak of the HRF, averaging or pro-
jecting to the set of Rank-1 matrices.
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Second, it is readily adapted to prediction on unseen
trials. While for classical (non rank-1 models) the HRF
estimation is performed per condition with no HRF asso-
ciated with unseen conditions, in this setting, because the
estimated HRF is linked and equal across conditions it is
natural to use this estimate on unseen conditions. This
setting occurs often in encoding models where prediction
on unseen trials is part of the cross-validation procedure.

This model can also be extended to a parametric HRF
model. That is, given the hemodynamic response defined
as a function h : Rd1 → Rd of some parameters α, we can
formulate the analogous model of Eq. (1) as an optimiza-
tion over the parameters α and β with the design matrix
XFIR given by the convolution of the event matrix with
the FIR basis:

α̂, β̂, ω̂ = arg min
α,β,ω

FR1(h(α),β,ω,XFIR, y,Z)

subject to ‖h(α)‖∞ = 1 and 〈h(α),href〉 > 0
(2)

In section 2.4 we will discuss optimization strategies for
both models.

2.3. Extension to separate designs

An extension to the classical GLM that improves the
estimation with correlated designs was proposed in (Mum-
ford et al., 2012). In this setting, each voxel is modeled
as a linear combination of two regressors in a design ma-
trix XGLM. The first one is the regressor associated with
a given condition and the second one is the sum of all
other regressors. This results in k design matrices, one for
each condition. The estimate for a given condition is given
by the first element in the two-dimensional array XSi

†y,
where XSi is the design matrix for condition i. We will
denote this model GLM with separate designs (GLMS).
It has been reported to find a better estimate in rapid
event designs leading to a boost in accuracy for decoding
tasks (Mumford et al., 2012; Schoenmakers et al., 2013;
Lei et al., 2013).

This approach was further extended in (Turner et al.,
2012) to include FIR basis instead of the predefined canon-
ical function. Here we employ it in the more general setting
of a predefined basis set. Given a set of basis functions we
construct the design matrix for condition i as the colum-
nwise concatenation of two matrices X0

BSi and X1
BSi. X0

BSi
is given by the columns associated with the current condi-
tion in the GLM matrix and X1

BSi is the sum of all other
columns. In this case, the vector of estimates is given by
the first d vectors of X†BSiy. See (Turner et al., 2012) for a
more complete description of the matrices X0

BSi and X1
BSi.

It is possible to use the same rank-1 constraint as be-
fore in the setting of separate designs, linking the HRF
across conditions. We will refer to this model as Rank-1
GLM with separate designs (R1-GLMS). In this case the
objective function has the form FR1-S(h,β,ω, r,XB, y,Z) =
1
2
∑k

i ‖y−βiX0
BSih−riX1

BSih−Zω‖2, where r ∈ Rd is a vector
representing the activation of all events except the event of
interest and will not be used in subsequent analyses. We

can compute the vector of estimates β̂ as the solution to
the optimization problem

β̂, ω̂, ĥ, r̂ = arg min
h,β,ω,r

FR1-S(h,β,ω, r,XB, y,Z)

subject to ‖Bh‖∞ = 1 and 〈Bh,href〉 > 0
(3)

2.4. Optimization

For the estimation of rank-1 models on a full brain vol-
ume, a model is estimate at each voxel separately. Since
a typical brain volume contains more than 40,000 voxels,
the efficiency of the estimation at a single voxel is of great
importance. In this section we will detail an efficient pro-
cedure based on quasi-Newton methods for the estimation
of R1-GLM and R1-GLMS models on a given voxel.

One approach to minimize (1) is to alternate the min-
imization with respect to the variables β, h and ω. By
recalling the Kronecker product identities (Horn and John-
son, 1991, Chapter 4.3), and using the identity vec(hβT ) =
β⊗ h we can rewrite the objective function (1) to be min-
imized as:

1
2
‖y − XB(β ⊗ h) − Zω‖2 = (4)

1
2
‖y − XB(I ⊗ h)β − Zω‖2 = (5)

1
2
‖y − XB(β ⊗ I)h − Zω‖2 . (6)

Updating h, β or ω sequentially thus amounts to solving
a (constrained) least squares problem at each iteration.
A similar procedure is detailed in (Degras and Lindquist,
2014). However, this approach requires computing the ma-
trices XB(β ⊗ I) and XB(I ⊗ h) at each iteration, which are
typically dense, resulting in a high computational cost per
iteration. Note also that the optimization problem is not
jointly convex in variables h,β,ω, therefore we cannot ap-
ply convergence guarantees from convex analysis.

We rather propose a more efficient approach by opti-
mizing both variables jointly. We define a global variable
z as the concatenation of (h,β,ω) into a single vector,
z = vec([h,β,ω]), and cast the problem as an optimiza-
tion with respect to this new variable. Generic solvers for
numerical optimization (Nocedal and Wright, 2006) can
then be used. The solvers that we will consider take as
input an objective function and its gradient. In this case,
the partial derivatives with respect to variable z can be
written as ∂FR1/∂z = vec([∂FR1/∂h, ∂FR1/∂β, ∂FR1/∂ω]),
whose expression can be easily derived using the aforemen-
tioned Kronecker product identities:

∂FR1

∂h
= − (βT

⊗ I)XT (y − X vec(hβT ) − Zω)

∂FR1

∂β
= − (I ⊗ hT )XT (y − X vec(hβT ) − Zω)

∂FR1

∂ω
= − ZT (y − X vec(hβT ) − Zω)
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If instead a parametric model of the HRF is used as
in Eq. (2), the equivalent partial derivatives can be easily
computed by the chain rule.

For the sake of efficiency, it is essential to avoid evaluat-
ing the Kronecker products naively, but rather reformulate
them using the above mentioned Kronecker identities. For
example, the matrix M = X(I⊗h) should not be computed
explicitly but should rather be stored as a linear operator
such that when applied to a vector β ∈ Rk it computes
M(β) = X(β ⊗ h), avoiding thus the explicit computation
of I ⊗ h.

Similar equations can be derived for the rank-1 model
with separate designs of Eq. (3) (R1-GLMS), in which
case the variable z is defined as the concatenation of
(h,β,ω, r), i.e. z = vec([h,β,ω, r]). The gradient of
FR1-S with respect to z can be computed as ∂FR1-S/∂z =
vec([∂FR1-S/∂h, ∂FR1-S/∂β, ∂FR1-S/∂ω, FR1-S/∂r]). The
partial derivatives read:

∂F
∂h =

∑k
i −(X0

BSi
βi − X1

BSi
ri)T (y − βiX0

BSi
h − wiX1

BSi
h)

∂F
∂βi

= −(X0
BSi

h)T (y − βiX0
BSi

h − wiX1
BSi

h)
∂F
∂ωi

= −ZT (y − βiX0
BSi

h − wiX1
BSi

h)
∂F
∂ri

= −(X1
BSi

h)T (y − βiX0
BSi

h − wiX1
BSi

h)

A good initialization plays a crucial role in the conver-
gence of any iterative algorithm. Furthermore, for non-
convex problems a good initialization prevents the algo-
rithm from converging to undesired local minima. We have
used as initialization for the R1-GLM and R1-GLMS mod-
els the solution given by the GLM with separate designs
(GLMS). Since the GLM with separate designs scales lin-
early in the number of voxels, this significantly reduces
computation time whenever an important number of vox-
els is considered.

Whenever the design matrix XB has more rows than
columns (as is the case in both datasets we consider with B
the 3HRF basis), it is possible to find an orthogonal trans-
formation that significantly speeds up the computation of
the Rank-1 model. Let Q,R be the “thin” QR decompo-
sition of XB ∈ Rn×dk, that is, QR = XB with Q ∈ Rn×dk

an orthogonal matrix and R ∈ Rdk×dk a triangular matrix.
Because of the invariance of the Euclidean norm to orthog-
onal transformations, the change of variable XB ← QT XB,
y← QT y yields a Rank-1 model in Eq. (1) with equivalent
solutions. This reduces the size of the design matrix to a
square triangular matrix of size dk × dk (instead of n × dk)
and reduces the explained variable y to a vector of size kd
(instead of n). After this change of variable, the conver-
gence of the Rank-1 model is significantly faster due to the
faster computation of the objective function and its par-
tial derivatives. We have observed that the total running
time of the algorithm can be reduced by 30% using this
transformation.

Some numerical solvers such as L-BFGS-B (Liu and No-
cedal, 1989) require the constraints to be given as box con-
straints. While our original problem includes an equal-
ity constraint we can easily adapt it to use convex box

constraints instead. We replace the equality constraint
‖Bh‖∞ = 1 by the convex inequality constraint ‖Bh‖∞ ≤ 1,
which is equivalent to the box constraint −1 ≤ (Bh)i ≤ 1
supported by the above solver. However, this change of
constraint allows solutions in which h can be arbitrarily
close to zero. To avoid such degenerate cases we add the
smooth term −‖B(:, 1)h1‖

2
2 to the cost function. Since there

is a free scale parameter between h and β, this does not
bias the problem, but forces Bh to lie as far as possible from
the origin (thus saturating the box constraints). Once a
descent direction has been found by the L-BFGS-B method
we perform a line search procedure to determine the step
length. The line-search procedure was implemented to
satisfy the strong Wolfe conditions (Nocedal and Wright,
2006). Finally, when the optimization algorithm has con-
verged to a stationary point, we rescale the solution setting
to ensure that the equality constraint. This still leaves a
sign ambiguity between the estimated HRF and the asso-
ciated beta-maps. To make these parameters identifiable,
the sign of the estimated HRF will be chosen so that these
correlate positively with the reference HRF.

We have compared several first-order (Conjugate Gra-
dient), quasi-Newton (L-BFGS) and Newton methods on
this problems and found that in general quasi-Newton
methods performed best in terms of computation time.
In our implementation, we adopt the L-BFGS-B as the
default solver.

In Algorithm 1 we describe an algorithm based on L-
BFGS that can be used to optimize R1-GLM and R1-
GLMS models (a reference implementation for the Python
language is described in subsection Software). Variable r
is only used for the R1-GLMS method and its use is de-
noted within parenthesis, i.e. (, r), so that for the R1-GLM
it can simply be ignored.

The full estimation of the R1-GLM model with 3HRF
basis for one subject of the dataset described in section
Dataset 2: decoding of potential gain levels (16 × 3 condi-
tions, 720 time points, 41, 622 voxels) took 14 minutes in
a 8-cores Intel Xeon 2.67GHz machine. The total running
time for the 17 subjects was less than four hours.

2.5. Software

We provide a software implementation of all the mod-
els discussed in this section in the freely available (BSD
licensed) pure-Python package hrf estimation 5.

3. Data description

With the aim of making the results in this paper easily
reproducible, we have chosen two freely available datasets
to validate our approach and to compare different HRF
modeling techniques.

5https://pypi.python.org/pypi/hrf estimation
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Algorithm 1 Optimization of R1-GLM and R1-GLMS
models

Input: Given initial points β0 ∈ Rk,h0 ∈ Rd,ω0 ∈ Rq (, r0 ∈

Rk), convergence tolerance ε > 0, inverse Hessian ap-
proximation H0.

Output: βm,hm

1: (Optional): Compute the QR decomposition of XB,
QR = XB, and replace XB ← QT XB, y← QT y

2: Initialization. Set m← 0, z← vec([h0,β0,ω0(, r0)])
3: while ‖∇ f ‖ > ε do
4: Compute search direction. Set pm ←

−Hm∇ f (hm,βm,ωm(, rm)) by means of the L-BFGS
algorithm.

5: Set zm+1 = zm + γmpm, where γm is computed from a
line search procedure subject to the box constraints
‖hm‖∞ ≤ 1.

6: m← m + 1
7: end while
8: Extract R1-GLM(S) parameters from zm. Set hm ←

zm(1 : d),βm ← zm(d + 1 : m + d)
9: Normalize and set sign so that the estimated HRF

is positively correlated with a reference HRF: qm ←

‖hm‖∞sign(hT
mhref), hm ← hm/qm, βm ← βmqm

3.1. Dataset 1: encoding of visual information

The first dataset we will consider is described in (Kay
et al., 2008; Naselaris et al., 2009; Kay et al., 2011). It
contains BOLD fMRI responses in human subjects view-
ing natural images. As in (Kay et al., 2008), we performed
prediction of BOLD signal following the visual presenta-
tion of natural images and compared it against the mea-
sured fMRI BOLD signal. As the procedure consists of
predicting the fMRI data from stimuli descriptors, it is an
encoding model. This dataset is publicly available from
http://crcns.org

Two subjects viewed 1750 training images, each pre-
sented twice, and 120 validation images, each presented 10
times, while fixating a central cross. Images were flashed 3
times per second (200 ms on-off-on-off-on) for one second
every 4 seconds, leading to a rapid event-related design.
The data were acquired in 5 scanner sessions on 5 different
days, each comprising 5 runs of 70 training images –each
image being presented twice within the run– and 2 runs
of validation images showing 12 images, 10 times each.
The images were recorded from the occipital cortex at a
spatial resolution of 2mm×2mm×2.5mm and a temporal
resolution of 1 second. Every brain volume for each sub-
ject has been aligned to the first volume of the first run of
the first session for that subject. Across-session alignment
was performed manually. Additionally, data were tempo-
rally interpolated to account for slice-timing differences.
See (Kay et al., 2008) for further preprocessing details.

We performed local detrending using a Savitzky-Golay
filter (Savitzky and Golay, 1964) with a polynomial of de-
gree 4 and a window length of 91 TR. The activation co-

efficients (beta-map) and HRF were extracted from the
training set by means of the different methods we would
like to compare. The training set consisted of 80% of the
original session (4 out of 5 runs). This resulted in esti-
mated coefficients (beta-map) for each of the 70×4 images
in the training set.

We proceed to train the encoding model. The stimuli
are handled as local image contrasts, that are represented
by spatially smoothed Gabor pyramid transform modu-
lus with 2 orientations and 4 scales. Ridge regression
(regularization parameter chosen by Generalized Cross-
Validation (Golub et al., 1979)) was then used to learn
a predictor of voxel activity on the training set. By using
this encoding model and the estimated HRF it is possi-
ble to predict the BOLD signal for the 70 images in the
test set (20 % of the original session). We emphasize that
learning the HRF on the training set instead of on the full
dataset is necessary to avoid overfitting while assessing
the quality of the estimated HRF by any HRF-learning
method: otherwise, the estimation of the HRF may in-
corporate specificities of the test set leading to artificially
higher scores.

In a first step, we perform the image identification task
from (Kay et al., 2008). From the training set we estimate
the activation coefficients that will be used to compute
the activation maps. We use an encoding model using
Gabor filters that predicts the activation coefficient from
the training stimuli. From the stimuli in the validation set
we predict the activation coefficients that we then use to
identify the correct image. The predicted image is the one
yielding the highest correlation with the measured activity.
This procedure mimics the one presented in (Kay et al.,
2008, Supplementary material).

In a second step, we report score as the Pearson correla-
tion between the measurements and the predicted BOLD
signal on left out data. The prediction of BOLD signal
on the test set is performed from conditions that were not
present in the train set. In order to do this, an HRF for
these conditions is necessary. As highlighted in the meth-
ods section, the construction of an HRF for these condi-
tions is ambiguous for non Rank-1 methods that perform
HRF estimation on the different stimuli. In these cases
we chose to use the mean HRF across conditions as the
HRF for unseen conditions. Finally, linear predictions on
the left out fold were compared to the measured BOLD
signals.

3.2. Dataset 2: decoding of potential gain levels

The second dataset described in (Tom et al., 2007) is
a gambling task where each of the 17 subjects was asked
to accept or reject gambles that offered a 50/50 chance
of gaining or losing money. The magnitude of the poten-
tial gain and loss was independently varied across 16 levels
between trials. Each gamble has an amount of potential
gains and potential losses that can be used as class label.
In this experiment, we only considered gain levels. This
leads to the challenge of predicting or decoding the gain
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level from brain images. The dataset is publicly avail-
able from http://openfmri.org under the name mixed-
gambles task dataset.

The data preprocessing included slice timing, motion
correction, coregistration to the anatomical images, tis-
sue segmentation, normalization to MNI space and was
performed using the SPM 8 software through the Pypre-
process6 interface.

For all subjects three runs were recorded, each consist-
ing of 240 images with a repetition time (TR) of 2 seconds
and a stimulus presentation at every 4 seconds. In order to
perform HRF estimation on more data than what is avail-
able on a single run, we performed the estimation on the
three runs simultaneously. This assumes HRF consistency
across runs, which was obtained by concatenating the data
from the three runs and creating a block-diagonal design
matrix correspondingly (each block is the design of one
run).

After training a regression model on 90% of the data,
we predict the gain level on the remaining 10%. As a
performance measure we use Kendall tau rank correlation
coefficient (Kendall, 1938) between the true gain levels and
the predicted levels, which is a measure for the orderings
of the data. We argue that this evaluation metric is better
suited than a regression loss for this task because of the
discrete and ordered nature of the labels. Also, this loss
is less sensible to shrinkage of the prediction that might
occur when penalizing a regression model (Bekhti et al.,
2014). The Kendall tau coefficient always lies within the
interval [−1, 1], with 1 being perfect agreement between
the two rankings and −1 perfect disagreement. Chance
level lies at zero. This metric was previously proposed for
fMRI decoding with ordered labels in (Doyle et al., 2013).

4. Results

In order to compare the different methods discussed pre-
viously, we ran the same encoding and decoding studies
while varying the estimation method for the activation co-
efficients (beta-maps). The methods we considered are
standard GLM (denoted GLM), GLM with separate de-
signs (GLMS), Rank-1 GLM (R1-GLM) and Rank-1 GLM
with separate designs (R1-GLMS). For all these models we
consider different basis sets for estimating the HRF: a set
of three elements formed by the reference HRF and its time
and dispersion derivative, a FIR basis set (of size 20 in the
first dataset and of size 10 in the second dataset) formed
by the canonical vectors and the single basis set formed by
the reference HRF (denoted “fixed HRF”), which in this
case is the HRF used by the SPM 8 software.

It should be reminded that the focus of this study is not
the study of the HRF in itself (such as variability across
subjects, tasks or regions) but instead its possible impact
on the accuracy of encoding and decoding paradigms. For

6https://github.com/neurospin/pypreprocess

this reason we report encoding and decoding scores but
we do not investigate any of the possible HRF variability
factors.

4.1. Dataset 1: encoding of visual information

In the original study, 500 voxels were used to perform
image identification. These voxels were selected as the
voxels with the highest correlation with the true BOLD
signal on left-out data using a (classical) GLM with the
reference HRF. These voxels are therefore not the ones
naturally benefiting the most from HRF estimation.

We first present the scores obtained in the image iden-
tification task for different variants of the GLM. This can
be seen in Figure 1. The displayed score is the count of
correctly identified images over the total number of images
(chance level is therefore at 1/120). The identification al-
gorithm here only uses the beta-maps obtained from the
train and validation set. This makes the estimation of the
HRF an intermediate result in this model. However, we
expect that a correct estimation of the HRF directly trans-
lates into a better estimation of the activation coefficients
in the sense of being able to acheive higher predictive accu-
racy. Our results are consistent with this hypothesis and
in this task the rank-one (R1) and glm-separate (GLMS)
models outperform the classical GLM model. The ben-
efits range from 0.9% for R1-GLM in subject 2 to 8.2%
for the same method and subject 1. It is worth noticing
that methods with FIR basis obtain a higher score than
methods using the 3HRF basis.

In order to test whether this increase is statistically
significant we performed the following statistical test.
The success of recovering the correct image can be
modeled as a binomial distribution, with pA being be the
probability of recovering the correct image with method
A and pB be the probability of recovering the correct
image with method B. We define the null hypothesis
H0 as the statement that both probabilities are equal,
H0 : pA = pB, and the alternate hypothesis that both
probabilities and not equal, H1 : p1 , p2 (this test is some-
times known as the binomial proportion test (Röhmel
and Mansmann, 1999)). The score test statistic for

the one-tailed test is T = (pA − pB)/
√

p(1 − p) 2
n , where

p = (pA + pB)/2 and n is the number of repetitions,
in this case n = 120. This statistic is normally dis-
tributed for large n. The p-value associated with this
statistical test when comparing every model (by order
of performance) with the model “GLM with with fixed
HRF” is (0.10, 0.10, 0.15, 0.19, 0.21, 0.26, 0.5, 0.5, 0.82, 0.81)
for the first subject and
(0.18, 0.18, 0.25, 0.34, 0.34, 0.44, 0.5, 0.5, 0.86, 0.93) for
the second.

We will now use a different metric for evaluating the
performance of the encoding model. This metric is the
Pearson correlation between the BOLD predicted by the
encoding model and the true BOLD signal, averaged across
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GLM with FIR basis
GLM with 3HRF basis
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Image Identification Performance, subject 2

R1-GLMS
R1-GLM
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Figure 1: Image identification score (higher is better) on two differ-
ent subjects from the first dataset. The metric counts the number of
correctly identified images over the total number of images (chance
level is 1/120 ≈ 0.008). This metric is less sensitive to the shape
of the HRF than the voxel-wise encoding score. The benefits range
from 0.9% points to 8.2% points across R1-constrained methods and
subjects. The highest score is achieved by a R1-GLM method with
a FIR basis set for subject 1 and by a R1-GLMS with FIR basis for
subject 2.

GLM with FIR basis
GLM with fixed HRF

GLMS with fixed HRF
GLM with 3HRF basis

GLMS with 3HRF basis
R1-GLM with 3HRF basis

R1-GLMS with 3HRF basis
GLMS with FIR basis

R1-GLMS with FIR basis
R1-GLM with FIR basis

0.011
0.058 ***
0.063 ***
0.067 **

0.149 ***
0.168 ***

0.185 ***
0.204 ***

0.216
0.219 ***

p-value = *< 0.05, **< 10−3, ***< 10−6

Average Correlation Score, subject 1

R1-GLMS
R1-GLM

GLMS
GLM

GLM with FIR basis
GLM with fixed HRF

GLM with 3HRF basis
GLMS with fixed HRF

GLMS with 3HRF basis
R1-GLM with 3HRF basis

R1-GLMS with 3HRF basis
R1-GLM with FIR basis

GLMS with FIR basis
R1-GLMS with FIR basis

0.011
0.064 ***
0.064
0.069 **

0.147 ***
0.156 **

0.181 ***
0.194 ***

0.202 ***
0.223 ***

p-value = *< 0.05, **< 10−3, ***< 10−6

Average Correlation Score, subject 2

R1-GLMS
R1-GLM

GLMS
GLM

Figure 2: Average correlation score (higher is better) on two differ-
ent subjects from the first dataset. The average correlation score is
the Pearson correlation between the predicted BOLD and the true
BOLD signal on left-out session, averaged across voxels and sessions.
Methods that perform constrained HRF estimation significantly out-
perform methods that use a fixed reference HRF. As for the image
identification performance, the best performing method for subject
1 is the R1-GLM, while for subject 2 it is the R1-GLMS model,
both with FIR basis. In underlined typography is the GLM with a
fixed HRF which is the method used by default in most software dis-
tributions. A Wilcoxon signed-rank test is performed between each
method and the next one in the ordered result list by considering the
leave-one-session out cross-validation scores for each method. We re-
port p-values to assess whether the score differences are statistically
significant.
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voxels. We will compute the this metric on a left-out ses-
sion, which results in five scores for each method, corre-
sponding to each of the cross-validation folds. Given two
methods, a Wilcoxon signed-rank test can be used on these
cross-validation scores to assess whether the score obtained
by the two methods are significantly different. This way,
irrespective of the variance across voxels, which is inherent
to the study, we can reliably assess the relative ranking of
the different models. In Figure 2 we show the scores for
each method (averaged across sessions) and the p-value
corresponding the Wilcoxon test between a given method
and the previous one by order of performance.

We observed in Figure 2 that methods that learn the
HRF together with some sort of regularization (be it Rank-
1 constraint or induced by separate designs) perform no-
ticeably better than methods that perform unconstrained
HRF estimation, highlighting the importance of a robust
estimation of the HRF as opposed to a free estimation as
performed by the standard GLM model with FIR basis.
This suggests that R1 and GLMS methods permit includ-
ing FIR basis sets while minimizing the risk of overfitting
inherent to the classical GLM model.

We also observed that models using the GLM with sep-
arate designs from (Mumford et al., 2012) perform signif-
icantly better on this dataset than the standard design,
which is consistent with the purpose of these models. It
improves estimation in highly correlated designs. The best
performing model for both subjects in this task is the R1-
GLMS with FIR basis, followed by the R1-GLM with FIR
basis model for subject 1 and GLMS with FIR basis for
subject 2. The difference between both models (Wilcoxon
signed-rank test) was significant with a p-value < 10−6.
Since the results for both subjects are similar, we will only
use subject 1 for the rest of the figures.

To further inspect the results, we investigated the esti-
mation and encoding scores at the voxel level. This pro-
vides some valuable information. For example, parameters
such as time-to-peak, width and undershoot of the esti-
mated HRF can be used to characterize the mis-modeling
of a reference HRF for the current study. Also, a voxel-
wise comparison of the different methods can be used to
identify which voxels exhibit a greater improvement for a
given method. In the upper part of Figure 3 we show the
HRF estimated on the first subject by our best performing
method (the Rank-1 with separate designs and FIR basis).
For comparison we also present two commonly used refer-
ence HRFs: one used in the software SPM and one defined
in (Glover, 1999, auditory study) and used by software
such as NiPy7 and fmristat8. Because the HRF estimation
will fail on voxels for which there is not enough signal, we
only show the estimated HRF for voxels for which the en-
coding score is above the mean encoding score. In this plot
the time-to-peak of the estimated HRF is color coded. One
can observe a substantial variability in the time to peak,

7http://nipy.org
8http://www.math.mcgill.ca/keith/fmristat/

Figure 3: Top: HRF estimated by the R1-GLMS method on voxels
for which the encoding score was above the mean encoding score (first
dataset), color coded according to the time to peak of the estimated
HRFs. The difference in the estimated HRFs suggests a substantial
variability at the voxel level within a single subject and a single task.
Bottom: voxel-wise encoding score for the best performing method
(R1-GLMS with FIR basis) versus a standard GLM (GLM with fixed
HRF) across voxels. The metric is Pearson correlation. Points above
the black diagonal correspond to voxels that exhibit a higher score
with the R1-GLMS method than with a standard GLM.
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confirming the existence of a non-negligeable variability of
the estimated HRFs, even within a single subject and a
single task. In particular, we found that only 50% of the
estimated HRFs on the full brain volume peaked between
4.5 and 5.5 seconds.

In the lower part of Figure 3 we can see a scatter plot
in which the coordinates of each point are the encoding
scores with two different methods. The first coordinate (X-
axis) is given by the score using a canonical GLM whilst
the second coordinate (Y-axis) corresponds to the Rank-1
separate with FIR basis. Points above the black diagonal
exhibit a higher score with our method than with a canon-
ical GLM. As previously, the color represents the time to
peak of the estimated HRF. From this plot we can see that
voxels that have a low correlation score using a canoni-
cal GLM do not gain significant improvement by using a
Rank-1 Separate FIR model instead. However, voxels that
already exhibit a sufficiently high correlation score using a
canonical GLM (> 0.05) see a significant increase in per-
formance when estimated using our method.

These results suggest as a strategy to limit the compu-
tational cost of learning the HRF on an encoding study to
perform first a standard GLM (or GLMS) on the full vol-
ume and then perform HRF estimation only on the best
performing voxels.

The methods that we have considered for HRF estima-
tion can be subdivided according to the design matrices
they use (standard or separate) and the basis they use to
generate the estimated HRF (3HRF and FIR). We now
focus on the performance gains of each of these individual
components. In the upper part of Figure 4 we consider
the top-performing model, the Rank-1 GLMS, and com-
pare the performance of two different basis sets: FIR with
20 elements in the Y-axis and the reference HRF plus its
time and dispersion derivatives (3HRF) in the X-axis. The
abundance of points above the diagonal demonstrates the
superiority of the FIR basis on this dataset. The color
trend in this plot suggests that the score improvement of
the FIR basis with respect to the 3HRF basis becomes
more pronounced as the time-to-peak of the estimated
HRF deviates from the reference HRF (peak at 5s), which
can be explained by observing that the 3HRF basis corre-
sponds to a local model around the time-to-peak. In the
bottom part of this figure we compare the different de-
sign matrices (standard or separate). Here we can see the
voxel-wise encoding score for two Rank-1 models with FIR
basis and different design matrices: separate design on the
Y-axis and classical design on the X-axis. Although both
models give similar results, a Wilcoxon signed-rank test
on the leave-one-session-out cross-validation score con-
firmed the superiority of the separate designs model in
this dataset with p-value < 10−3.

In Figure 5 we can see the voxel-wise encoding score
on a single acquisition slice. In the upper column, the
score is plotted on each voxel and thresholded at a value
of 0.045, which would correspond to a p-value < 0.05 for
testing non-correlation assuming each signal is normally

Figure 4: Voxel-wise encoding score for different models that per-
form HRF estimation (first dataset). As in figure 3, color codes for
the time to peak of the estimated HRF at the given voxel. Top: two
Rank-1 separate design models with different basis functions: FIR
with 20 elements in the Y-axis and the reference HRF with its time
and dispersion derivatives (3HRF) in the X-axis. The color trend in
this plot suggests that the score improvement of the FIR basis with
respect to the 3HRF becomes more pronounced as the time-to-peak
of the estimated HRF deviates from the reference HRF (peak at 5s).
This can be explained by taking into account that the 3HRF basis
is a local model of the HRF around the peak time of the canoni-
cal HRF. Bottom: voxel-wise encoding score for two Rank-1 models
with FIR basis and different design matrices: separate design on the
Y-axis and classical design on the X-axis. Although both models
give similar results, a Wilcoxon signed-rank test on the leave-one-
session-out cross-validation score (averaged across voxels) confirmed
the superiority of the separate designs model in this dataset with
p-value < 10−3.
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Figure 5: Voxel-wise encoding scores on a single acquisition slice for
different estimation methods (first dataset). The metric is Pearson
correlation. In the upper column, the voxel-wise score is thresholded
at a value of 0.045 (p-value < 0.05), while in the bottom row the 0.055
contour (p-value < 0.001) for the same data is shown as a green line.
Despite lacking proper segmentations of visual areas, the estimation
methods produce results that highlight meaningful regions of interest
around the calcarine fissure. This is particularly visible in the third
column where our method R1-GLMS produces results with higher
sensitivity than the standard GLM method. In the bottom row it
can be seen how the top performing voxels follow well the folding of
the gray matter.

distributed, while in the bottom row the 0.055 contour
(p-value < 0.001) for the same data is shown as a green
line. Here it can be seen how the top performing voxels
follow the gray matter. A possible hypothesis to explain
the increase of the encoding score between the method R1-
GLMS with FIR basis and the same method with 3HRF
basis could be related either to the shape of the HRF de-
viating more from a canonical shape in lateral visual areas
or to the higher signal-to-noise ratio often found in the
visual cortex when compared to lateral visual areas.

4.2. Dataset 2: decoding of potential gain levels

The mean decoding score was computed over 50 ran-
dom splittings of the data, with a test set of size 10%.
The decoding regression model consisted of univariate fea-
ture selection (ANOVA) followed by a Ridge regression
classifier as implemented in scikit-learn (Pedregosa et al.,
2011). Both parameters, number of voxels and amount
of `2 regularization in Ridge regression, were chosen by
cross-validation.

The mean score for the 10 models considered can be seen
in Figure 6. Similarly to how we assessed superiority of a
given method in encoding, we will say that a given method
outperforms another if the paired difference of both scores
(this time across folds) is significantly greater than zero.
This is computed by performing a Wilcoxon signed rank
test across voxels. For this reason we report p-values to-
gether with the mean score in Figure 6.

As was the case in encoding, Rank-1 constrained meth-
ods obtain the highest scores. In this case however, meth-
ods with 3HRF basis outperform methods using FIR basis.

GLM with FIR basis
GLM with dHRF basis
GLMS with FIR basis

R1-GLM with FIR basis
GLMS with 3HRF basis

R1-GLMS with FIR basis
GLM with fixed HRF

R1-GLMS with 3HRF basis
GLMS with fixed HRF

R1-GLM with 3HRF basis

0.134
0.148

0.162 *
0.176

0.217 ***
0.227

0.247 *
0.248
0.254

0.276 **

p-value = *< 0.05, **< 10−3, ***< 10−6

Average Decoding Score

R1-GLMS
R1-GLM

GLMS
GLM

Figure 6: Averaged decoding score for the different method consid-
ered (higher is better) on the second dataset. The metric is Kendall
tau. Methods that perform constrained HRF estimation significantly
outperform methods that use a fixed (reference) HRF. In particular,
the best performing method is the R1-GLM with 3HRF basis, fol-
lowed by the R1-GLMS with 3HRF basis. In underlined typography
is the GLM with a fixed HRF which is the method used by default in
most software distributions. As in Figure 2, a Wilcoxon signed-rank
test is performed and the p-value reported between a given method
and the next method in the ordered result list to assess whether the
difference in score is significant.

This can be explained by factors such as smaller sample
size of each of the runs, smaller number of trials in the
dataset and experimental design.

5. Discussion

We have compared different HRF modeling techniques
and examined their generalization score on two different
datasets: one in which the main task was an encoding
task and one in which it was a decoding task. We com-
pared 10 different methods that share a common formu-
lation within the context of the General Linear Model.
This includes models with canonical and separate designs,
with and without HRF estimation constrained by a ba-
sis set, and with and without rank-1 constraint. We have
focused on voxel-independent models of the HRF, possi-
bly constrained by a basis set, and have omitted for ef-
ficiency reasons other possible models such as Bayesian
models (Marrelec et al., 2003; Ciuciu et al., 2003; Makni
et al., 2005) and regularized methods (Goutte et al., 2000;
Casanova et al., 2008).

Other models such as spatial models (Vincent et al.,
2010), and multi-subject methods (Zhang et al., 2012,
2013) that adaptively learn the HRF across several sub-
jects are outside the scope of this work. The latter models
are more relevant in the case of standard group studies
and second level analysis.

Our first dataset consists of an encoding study and re-
vealed that it is possible to boost the encoding score by ap-
propriately modeling the HRF. We used two different met-
rics to assess the quality of our estimates. The first metric
is the fraction of correctly identified images by an encoding
model. For this we computed the activation coefficients on
both the training and validation dataset. We then learned
a predictive model of the activation coefficients from the
stimuli. This was used to identify a novel image from a set
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of 120 potential images from which the activation coeffi-
cients were previously computed. The benefits range from
0.9% points to 8.2% points across R1-constrained methods
and subjects. The best-performing model in this task is
the R1-GLM with FIR basis. The second metric is the
Pearson correlation. By considering the voxel-wise score
on a full brain volume we observed that the increase in
performance obtained by estimating the HRF was not ho-
mogeneous across voxels and more important for voxels
that already exhibited a good score with a classical design
(GLM) and a fixed HRF. The best-performing method is
the Rank-1 with separate designs (R1-GLMS) and FIR
basis model, providing a significant improvement over the
second best-performing model. We also found substantial
variability of the shape in the estimated HRF within a
single subject and a single task.

The second dataset consists of a decoding task and the
results confirmed that constrained (rank-1) estimation of
the HRF also increased the decoding score of a classifier.
The metric here is Kendall tau. However, in this case
the best performing basis was no longer FIR basis con-
sisting of ten elements but the three elements 3HRF basis
(HRF and derivatives) instead, which can be explained
by factors such as differences in acquisition parameters,
signal-to-noise ratio or by the regions involved in the task.

A higher performance increase was observed when con-
sidering the correlation score within the encoding model.
This higher sensitivity to a correct (or incorrect) estima-
tion of the HRF can be explained by the fact that the
estimation of the HRF is used to generate the BOLD sig-
nal on the test set. The metric is the correlation between
the generated signal and the BOLD signal. It is thus nat-
ural to expect that a correct estimation of the HRF has a
higher impact on the results.

In the decoding setup, activation coefficients (beta-map)
are computed but the evaluation metric is the accuracy at
predicting the stimulus type. The validation metric used
for decoding is less sensitive to the HRF estimation proce-
dure than the correlation metric from the encoding study,
although it allowed us to observe a statistically significant
improvement.

6. Conclusion

We have presented a method for the joint estimation of
HRF and activation coefficients within the GLM frame-
work. Based on ideas from previous literature (Makni
et al., 2008; Vincent et al., 2010) we assume the HRF
to be equal across conditions but variable across voxels.
Unlike previous work, we cast our model as an optimiza-
tion problem and propose an efficient algorithm based on
quasi-Newton methods. We also extend this approach to
the setting of GLM with separate designs.

We quantify the improvement in terms of generalization
score in both encoding and decoding settings. Our results
show that the rank-1 constrained method (R1-GLM and

R1-GLMS) outperforms competing methods in both en-
coding and decoding settings.
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