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Abstract

Voluntary locomotion is accompanied by large increases in cortical activity and localized 

increases in cerebral blood volume (CBV). We sought to quantitatively determine the spatial and 

temporal dynamics of voluntary locomotion-evoked cerebral hemodynamic changes. We 

measured single vessel dilations using two-photon microscopy and cortex-wide changes in CBV-

related signal using intrinsic optical signal (IOS) imaging in head-fixed mice freely locomoting on 

a spherical treadmill. During bouts of locomotion, arteries dilated rapidly, while veins distended 

slightly and recovered slowly. The dynamics of diameter changes of both vessel types could be 

captured using a simple linear convolution model. Using these single vessel measurements, we 

developed a novel analysis approach to separate out spatially and temporally distinct arterial and 

venous components of the location-specific hemodynamic response functions (HRF) for IOS. The 

HRF of each pixel of was well fit by a sum of a fast arterial and a slow venous component. The 

HRFs of pixels in the limb representations of somatosensory cortex had a large arterial 

contribution, while in the frontal cortex the arterial contribution to the HRF was negligible. The 

venous contribution was much less localized, and was substantial in the frontal cortex. The spatial 

pattern and amplitude of these HRFs in response to locomotion in the cortex was robust across 

imaging sessions. Separating the more localized, arterial component from the diffuse venous 

signals will be useful for dealing with the dynamic signals generated by naturalistic stimuli.
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Introduction

Changes in cerebral blood volume, flow, and oxygenation are widely used to infer neural 

activity (Logothetis, 2008). Because increases in neural activity, which can last for only a 

few milliseconds, are usually much briefer than the hemodynamic response, which evolves 

over seconds, it is necessary to use a quantitative model to relate the two. The hemodynamic 

signal is usually assumed to be a convolution of neural activity or sensory stimulus with the 

hemodynamic response function (HRF, also known as a kernel) (Boynton et al., 1996; 

Friston et al., 1994; Glover, 1999; Vazquez and Noll, 1998; Hirano et al., 2011; Logothetis 

et al., 2001; Martindale et al., 2003). Typically, the HRF is fit with a gamma distribution 

function (Boynton et al., 1996; Hirano et al., 2011), but there is evidence that the CBV HRF 

may be the sum of multiple components (Silva et al., 2007). Because HRFs differ across 

cortical location (Handwerker et al., 2004), and layer (Hirano et al., 2011), potentially due to 

neural and vascular differences (Tsai et al., 2009), it is useful to mechanistically understand 

their vascular origin.

The CBV HRF will be determined by the dynamics of volume changes in various vascular 

compartments. Arterial dilation, which is mediated by smooth muscle relaxation and is 

thought to be under the control of neural activity, follows stimulation within a second 

(Hillman et al., 2007; Kim et al., 2007; Drew et al., 2011; Tian et al., 2010). The distention 

of veins takes place over tens of seconds in response to prolonged stimuli (Drew et al., 2011; 

Kim and Kim, 2010), and is thought to reflect the passive mechanical properties of the 

vessel wall (Clark, 1933; Edvinsson et al., 1983). Theoretical models incorporating the fast 

arterial and slow venous components reproduce the observed cerebral hemodynamic 

response well (Barrett et al., 2012; Kim et al., 2013). However, there is spatial variation in 

HRFs across the brain (Aquino et al., 2014; Bieβmann et al., 2012; Handwerker et al., 2004), 

which may underlie the diverse temporal profiles of hemodynamic responses across the 

entire cortex (Gonzalez-Castillo et al., 2012; Vickery et al., 2011).

The arterial and venous CBV changes induced by long sensory stimulation have different 

spatial extents (Kim and Kim, 2010), with the arterial component being more spatially 

restricted. This suggests that spatial variation (Handwerker et al., 2004) in HRFs might be 

due to differences in arterial and venous contributions to the HRF. Since the spatial pattern 

of the arterial response is thought to be more closely related to the spatial pattern of neural 

activity (Moon et al., 2013), brief, temporally isolated stimuli will give a hemodynamic 

response that more precisely reflects the underlying neural activity. However, using 

impulse-like stimuli is not always possible, particularly when using ‘naturalistic’ stimuli, 

which have multiple time-scales (Kay et al., 2008; Ben-Yakov et al., 2012; Honey et al., 

2012; Naselaris et al., 2011). A method of separating the more localized arterial response 

from the less specific venous response to temporally extended stimuli would be very helpful 

for these stimulation paradigms.

Here, we investigated the vascular mechanisms underlying the hemodynamic response 

function in the superficial layers of the cortex in response to exercise. Previous work on the 

existence, localization and even direction of cerebral blood flow and volume changes during 

exercise are contentious (reviewed in (Ide and Secher, 2000)), with some studies showing no 
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changes (Globus et al., 1983), some showing global, non-specific increases (Herholz et al., 

1987), and other showing localized increases (Jørgensen et al., 1992; Linkis et al., 1995). 

One explanation for the discrepancies among these studies, which use different 

methodologies and durations of exercise, is that different techniques have different 

sensitivity to arterial versus venous changes. We have previously shown, using intrinsic 

optical signal (IOS) imaging in head-fixed, voluntarily locomoting mice, that in the first few 

seconds of locomotion, the frontal cortex shows little to no change in blood volume, while 

there are substantial increases in blood volume in the limb representations of sensory cortex 

(Huo et al., 2014). Because arteries and veins have very different temporal (Kim and Kim, 

2010; Drew et al., 2011; Gao and Drew, 2014) and spatial (Moon et al., 2013) dynamics, we 

wanted to determine if the discrepancies in the spatial extent of the hemodynamic response 

to exercise could be due to different spatial extents of arterial and venous changes.

Using two-photon laser scanning microscopy (2PLSM) (Drew et al., 2011; Shih et al., 

2012), we measured individual vessel dilation dynamics during voluntary locomotion in 

awake, head-fixed mice (Dombeck et al., 2007; Nimmerjahn et al., 2009; Huo et al., 2014). 

Based on these single vessel measurements, we developed a HRF model to quantify the 

spatiotemporal characteristics of optically measured pixel-wise CBV changes in the 

superficial layers. We demonstrate that using the temporal dynamics of the blood volume 

signal, distinct spatial maps of the localized arterial and diffuse venous responses could be 

extracted. The arterial and venous responses to locomotion were linear, and repeatable 

across trials. Using our linear convolution model to separate the more spatially localized 

arterial changes from the less localized venous responses should prove useful for 

experiments using dynamic stimuli (Hasson et al., 2010).

A subset of the IOS data presented here has been previously presented (Huo et al., 2014), 

and is reanalyzed below.

Methods

Animals

All care and experimental manipulation of animals were done in accordance with the 

Institutional Animal Care and Use Committee of Pennsylvania State University, University 

Park. A total of 18 male C57BL/6J mice (Jackson Laboratory) were used. Mice were 

maintained on a 12-hour light/dark cycle in isolated cages.

Surgery

Mice were 2–10 months old (25–40 g) at the time of surgery. All surgical procedures were 

performed under isoflurane anesthesia. For 2PLSM imaging, polished and reinforced 

thinned-skull (PoRTS) windows were implanted (Drew et al., 2010; Shih et al., 2012; Gao 

and Drew, 2014) in the right parietal cortex (N=10). Under anesthesia, a custom-machined 

titanium head-bolt was attached to the skull and 3 self-tapping, 3/32″ #000 (J.I. Morris) 

screws were implanted into the skull and connected to the head-bolt with dental cement. 

Using a hand drill (Foredome), the skull over the right parietal cortex was carefully thinned 

to ~30μm with a #7 bit (Fine Science Tools). It was then polished with 3f and 4f lapidary 
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polish (Convington Engineering, Redlands, CA, USA), and a #0 coverslip was attached to 

the skull with cyanoacrylate glue (Vibra-Tite, 32002). A meniscus-holding well was made 

with dental cement around the window. For IOS imaging, larger reinforced thinned-skull 

windows (Huo et al., 2014) that spanned frontal and parietal cortices were made either 

bilaterally (N=6) or unilaterally (N=2). For animals used for IOS imaging, the skull over 

frontal and parietal cortices in each hemisphere was thinned to remove skull vessels using a 

Foredom drill with the frontal-parietal suture sealed with cyanoacrylate glue and dental 

cement. Then the frontal-parietal suture was exposed and carefully thinned until the suture 

was flush with the frontal and parietal bones. Successful suture thinning was identified by 

absence of dural or pial vasculature remodeling after surgery. A #1 coverslip cut to the 

window size in each hemisphere was mounted using cyanoacrylate glue (Vibra-Tite, 32002). 

A custom machined titanium head-bolt was glued to the skull, centered on the midline 

suture, posterior to lambda. One self-tapping, 3/32″ #000 (J.I. Morris) screw was implanted 

into the skull over the olfactory bulb and connected to the head-bolt via midline suture using 

cyanoacrylate glue and black dental acrylic resin (Lang Dental Mfg. Co., REF 1530) to 

minimize skull movement, and to absorb reflected light. Keeping the skull intact is 

important for accurate measures of hemodynamic signals, as craniotomies are known to 

cause inflammation (Cole et al., 2011; Xu et al., 2007), changes in brain tissue mechanical 

properties (Hatashita and Hoff, 1987), and angiogenesis (Arieli et al., 2002; Drew et al., 

2010; Sohler et al., 1941), all of which are likely to disrupt the normal hemodynamic 

response.

Experiments

The treadmill (60 mm diameter) had one degree of freedom, and was covered with 

nonabrasive antislip tape. An optical rotary encoder (US Digital, E7PD-720-118) 

(Nimmerjahn et al., 2009) was attached to the treadmill axel to quantify the mouse’s 

velocity. Mice were habituated to being head-fixed on the spherical treadmill over 3–5 days. 

All experiments were performed within 8 months of surgery in sound attenuating boxes.

Before each 2PLSM imaging session, the mouse was briefly anesthetized with isoflurane 

and infraorbitally injected with 50 μL 5% (weight/volume) fluorescein conjugated dextran 

(70 kDa; Sigma-Aldrich). The two-photon microscope consists of a Sutter Movable 

Objective Microscope and a MaiTai HP laser, controlled by MPScan software (Nguyen et 

al., 2006). Images were acquired at 6–9 Hz for ~20 minutes/trial using water dipping 

objectives (Olympus, 10 × 0.3 N.A. 20 × 0.5 N.A., or 20 × 1.0 N.A.). For imaging of pial 

vessels, power exiting the objective was typically 15–20 mW at 800 nm. We selected a 

rectangular field of view containing both arteries and veins (Fig. 2A). A total of 151 arteries 

and 104 veins in 10 mice were imaged.

IOS and laser Doppler flowmetry (LDF) data were collected using custom-written software 

in LabView 8.6 (National Instruments). For IOS imaging, four 530 nm LEDs (Thorlabs, 

M530L2-C1) (Bouchard et al., 2009) passed through a ±10 nm filter (Thorlabs, FB530-10) 

were used to uniformly illuminate the cortical surface. A CCD camera (Dalsa, Pantera 

1M60) was used to acquire 12-bit images (Drew and Feldman, 2009). Each 256 × 256 pixel 

image had a resolution of 27–37 μm/pixel. A second camera (Microsoft, LifeCam Cinema) 
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was used to observe the mouse’s behavior. After the animal was habituated, we collected 

IOS data at a frame rate of 3 Hz (~33 minutes/trial). In order to measure the power spectrum 

of the intrinsic signal (Fig. 1), some trials were collected at 30 Hz, but these were not used 

for fitting of the arterial and venous parameters due to the short duration of the trial (~3 

minutes/trial).

For cerebral blood flow (CBF) measurements, an LDF optical probe (Oxford Optronix, 

OxyFlo) was placed at 30-degree angle to the window plane on the left hemisphere. When 

the LDF signal and IOS were recorded simultaneously, a 530 ± 5 nm filter was attached to 

the CCD camera to block light from the LDF probe.

At the conclusion of the experiments, mice were euthanized and the brain was processed for 

cytochrome oxidase staining (Drew and Feldman, 2007). The limb representations and 

barrels were aligned with the imaging windows using a combination of vascular images and 

fiduciary marks (Drew and Feldman, 2009). A polygon enclosing forelimb/hindlimb 

(FL/HL) representation was selected based on cytochrome oxidase staining (Fig. 1B).

Data Processing

All data analyses and statistical tests were performed in Matlab (MathWorks). To calculate 

baselines, about ten-second long periods were chosen in at the end of ~30 second period 

where there was no locomotion. This was long enough for the arterial and venous signal 

from any short running bouts preceding this period to become negligible.

For 2PLSM data, we removed artifacts from horizontal plane motion using frame-by-frame 

registration of the vessel images (Drew et al., 2011; Guizar-Sicairos et al., 2008). To 

quantify the diameter of a vessel, a rectangular box was manually drawn around a short 

segment (2–5 μm) of vessel (Fig. 2B). The pixel intensities were averaged along the long 

axis of the vessel, and the diameter, D, was calculated from the full width at half-maximum 

(Drew et al., 2011). Vessel diameter percentage changes, ΔD/D0, were calculated by 

normalizing to the average diameter during a ~10-second period: ΔD/D0 = (D−D0)/D0. Time 

series of ΔD/D0 were first filtered with a three-point median filter, and then low-pass filtered 

(Butterworth) at 3 Hz.

For IOS images, regions of interest (ROIs) enclosing the thinned-skull windows were 

selected. Data taken on different days were registered off-line. A ~10 second period within a 

long period of rest was used to calculated the baseline IOS image, R0, for each day. The 

calculated fractional change of IOS from baseline, ΔR/R0, was given by: ΔR/R0 = (R−R0)/R0. 

The ΔR/R0 data were mean-subtracted, and low-pass filtered at 1 Hz (Butterworth). We 

chose this cutoff frequency because it was adequate to capture the dynamics of the arterial 

response (see Supplementary Fig. S1).

For LDF data, we defined the baseline flux, Q0, by taking the average value of CBF during a 

~10-second period when the animal was stationary. For all trials taken on the same day, we 

normalized all LDF data against this value to obtain fractional change of CBF, ΔQ/Q0=(Q

−Q0)/Q0. The ΔQ/Q0 data were mean-subtracted and low-pass filtered at 5 Hz (Butterworth).
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Linear model

We constructed a linear convolution model to fit the observed changes in hemodynamic 

signals based on the assumption that the hemodynamic response to locomotion is a linear, 

time-invariant (LTI) system (Boynton et al., 1996; Cardoso et al., 2012; Glover, 1999; 

Vazquez and Noll, 1998). The input is the binarized locomotion signal. The output, or 

response, is any one of our hemodynamic measurements, including changes in diameter, 

ΔD/D0 from 2PLSM, changes in reflectance, ΔR/R0 from IOS, and changes in flux, ΔQ/Q0 

from the LDF signal. The transfer function to individual locomotion event, or the impulse 

response function, is the hemodynamic response function (HRF). This model can be 

described as,

(1)

where x is either the vessel diameter (D), the IOS signal (R), or the cerebral blood flow, Q, 

and consists of m data points. S⃑ is a vector of the same length as x⃑ that contains binary 

locomotion events, and h⃑
x is the measurement-specific HRF with n data points, where 

n≪m.

To identify locomotion events, velocity was low-pass filtered at 10 Hz. Acceleration was 

calculated as the absolute value of the first derivative of the filtered velocity. The 

acceleration of the ball should be proportional to the force the paws experience, and thus 

closely related to the neural activity driven by the tactile sensory input. Acceleration was 

binarized according to the equation:

(2)

where the threshold acceleration ac was chosen at 1×10−6 m/s2; aT is the instantaneous 

acceleration at time T, with a sampling rate of 30 kHz, and H(•) is the binary Heavyside 

function. We then converted the binarized acceleration signal, δ(T), to binary locomotion 

events, s(t), at the same temporal resolution as the corresponding hemodynamic 

measurement. We set s(t) to 1, representing a locomotion event, if at least 10% of δ(T) was 1 

within the time spanned between each two consecutive IOS images. Otherwise s(t) = 0. 

(Huo et al., 2014)

For model fitting, all free parameters in the linear convolution models were estimated by 

minimizing the mean-squared error (MSE) between the experimental data and estimates of 

the linear convolution model using the MATLAB function fminsearch. In this algorithm, we 

performed unconstrained nonlinear optimization by iteratively search for the next best 

parameter until the improvement of MSE was below a tolerance threshold (1×10−8) with a 

marginal change of parameter (<1×10−8). The initial value of each parameter was fixed at 

0.1 for all fittings, which was distant from the final fitted value.
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We also solved directly for the kernel (HRF) numerically (Keesman, 2011). Writing the 

linear convolution model in matrix form, we had

(3)

where . T(S⃑) is a matrix containing the Toeplitz transformation 

of locomotion events S⃑:

(4)

The matrix T is real as it contains only binary data. T is full rank column-wise as long as S⃑ is 

not empty, that is, there is at least one acceleration event above threshold. The vector H 
containing the impulse response h⃑

x, H={0, h⃑
x}T, where h0 is a constant shift, can be solved 

as:

(5)

To avoid boundary effects, we shifted the input S⃑ forward by truncating the first 10 seconds 

of data (see Supplementary Fig. S3A, S3C).

In order to estimate the maximal change of hemodynamic signal, Δxmax/x0, we convolved 

the fitted or numerically solved HRF with a saturating stimulus, mimicking a long bout of 

locomotion, such that the simulated hemodynamic signal plateaued (see Supplementary Fig. 

S3B, S3D) at the value of Δxmax/x0.

Other than early exploratory studies, we did not attempt to fit the CBV HRF with a gamma 

distribution function (Boynton et al, 1996), as numerical calculations of the CBV 

locomotion-evoked HRF clearly showed a different profile from gamma distribution (see 

Supplementary Fig. S3). Numerically calculated HRFs were similar across animals.

All reported summary data were in the form of mean ± standard deviation. All statistical 

tests using “ANOVA” were one-way ANOVA unless otherwise specified. Animal numbers 

were not predetermined, and all tests of statistical power were done post hoc.
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Results

Spatiotemporal features of locomotion-driven changes in the intrinsic optical signal

We acquired the CBV-related intrinsic optical signal (IOS) in the dorsal frontal and parietal 

cortices of awake mice that were head-fixed on top of a spherical treadmill. Decreases in 

fractional reflectance from the baseline, ΔR/R0, corresponded to increases in CBV (Malonek 

and Grinvald, 1996; Sirotin and Das, 2009). The hemodynamic response to locomotion had 

a characteristic multiphasic temporal profile (Fig. 1C). Following locomotion initiation, we 

observed a strong decrease in ΔR/R0 in the parietal cortex, especially the forelimb/hindlimb 

(FL/HL) representations in the primary sensory cortex (SI). At the conclusion of each 

locomotion event, ΔR/R0 initially recovered towards baseline rapidly, then with a slower 

time course, indicative of two distinct processes. For prolonged bouts of locomotion lasting 

tens of seconds or more, the decrease in ΔR/R0 in the parietal cortex could be >10%. 

However, there was little to no locomotion-driven changes in ΔR/R0 in the frontal cortex 

(Huo et al., 2014).

In order to accurately estimate the HRF, the input bandwidth must span the output 

bandwidth (Marmarelis and Marmarelis, 1978). This criterion was satisfied between the 

binarized locomotion power spectrum (the input) and the power spectrum of the average 

ΔR/R0 throughout the entire windows (the output) (Fig. 1D). In addition to the large, low 

frequency fluctuations in the reflectance signal driven by locomotion, there were small heart 

rate-induced fluctuations restricted to the frequency range of 8 – 12 Hz (Fig. 1D). Most 

locomotion events were brief (<1 s) (Fig. 1E). However, most of these short events are 

correlated in time (Fig. 1C), consistent with the large power at low frequencies in the power 

spectrum of binarized locomotion (Fig. 1D).

Dynamics of pial arterial and venous dilations

The fast and slow components of CBV increase in SI FL/HL areas measured with IOS (Fig. 

1B) could be due to multiple time-scale behavior at the individual vessel level, or to 

heterogeneous response dynamics across vessel types (Blinder et al., 2013; Shih et al., 

2012). To determine how individual vessel dynamics drive CBV changes during 

locomotion, we employed 2PLSM to visualize individual pial vessels (Drew et al., 2011; 

Shih et al., 2013) in the SI FL/HL representations of mice head-fixed on the treadmill (Fig. 

2A). We focused on pial vessels because voluntary locomotion drives very small dilations of 

penetrating vessels (Gao, Greene, and Drew, unpublished results), which therefore are not 

likely to contribute substantially to changes in the intrinsic signal. During periods of 

quiescence, we observed spontaneous, low-frequency fluctuations in the diameters of pial 

arteries (Fig. 2C, < 20% peak-to-peak), consistent with measurements in stationary mice 

(Drew et al., 2011) and with measurements in the IOS (Huo et al., 2014), while pial veins 

exhibited very small changes in diameter (Fig. 2C).

The pial arteries dilated strongly and rapidly in response to both brief and prolonged 

voluntary locomotion events (45.1% ± 26.7% peak dilation). At the cessation of locomotion, 

the arteries constricted back to their baseline diameter within a few seconds (Fig. 2C). In 

contrast, dilations of pial veins were only apparent after longer bouts of locomotion due to 
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their smaller amplitudes (15.4% ± 15.5% peak dilation). The diameters of veins took tens of 

seconds to return to baseline (Fig. 2C). Locomotion-driven arterial and venous dilations 

were very similar in magnitude and time course to those evoked by vibrissae stimulation in 

stationary mice, and exhibited the same spontaneous dilations in the absence of overt 

sensory stimulation (Drew et al., 2011) (see Supplementary Fig. S1). However these 

dilations are substantially larger than those of vessels in anesthetized animals (Drew et al., 

2010; Tian et al., 2011), consistent with the observation that anesthesia profoundly disrupts 

the activity of neurons (Chapin and Lin, 1984) and astrocytes (Thrane et al., 2012), making 

anesthesia more akin to a coma than reflecting normal brain function (Brown et al., 2010). 

The similarities of the vascular responses to passively presented sensory stimuli and to 

somatosensory stimulation that was actively generated suggested that the hemodynamic 

response was not affected by the behavioral state (locomoting vs. stationary) in the awake 

condition.

HRFs of pial vessel in response to voluntary locomotion

To quantify the relationship between individual vessel dilation and locomotion stimulus, we 

used a linear convolution model:

(6)

where D⃑ is the time series of vessel diameter, D0 is the baseline diameter at rest, S⃑ is a 

vector of the binary locomotion events, c is a constant offset term, and e⃑ is the vector of 

errors (assumed to be Gaussian) that is minimized in the fitting. We used binarized 

locomotion (thresholded absolute acceleration) because in initial experiments we found that 

the correlation between the hemodynamic signal and the binarized locomotion was stronger 

than between the hemodynamic signal and raw velocity (not shown). To characterize the 

dilation of an individual vessel in response to locomotion, we approximated the HRF, h⃑
D, as 

a decaying exponential function, where each vessel’s behavior was described by its dilation 

amplitude (AD) and time constant (τD) of recovery, such that at each time point t,

(7)

The dynamics of individual arteries and veins were well estimated with this model by fitting 

the parameters AD, τD, and c to individual trials (Fig. 3) (Pearson’s correlation coefficient, 

cc = 0.62 ± 0.16 for arteries; cc = 0.52 ± 0.16 for veins).

The fits for the time constants, τD, of arteries (5.5 ± 5.1 s) were significantly faster than 

those of veins (25.1 ± 17.9 s; ANOVA: p<0.001) (Fig. 3A). The amplitudes, AD, of arterial 

HRF (10.8% ± 7.0%) were ~10-fold larger than that of the veins (0.9% ± 0.7%; ANOVA: 

p<0.001). The maximal dilation, AD,max, obtained by convolving with a simulated stimulus 

with long enough duration that it saturates the vessel dilatory response, was significantly 

larger in arteries (33.9% ± 26.7%) than in veins (16.8% ± 12.0%; ANOVA: p<0.001). 

Similarly, in response to a single locomotion event, the total dilation integrated over time, 

ADτD, was significantly larger in arteries (5.57 ± 3.93 s) than in veins (2.61 ± 2.01 s; 

Huo et al. Page 9

Neuroimage. Author manuscript; available in PMC 2016 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



ANOVA: p<0.001) (Fig. 3B). Time constants, integrated areas and goodness-of-fit, 

measured by cc, were all consistent across animals (see Supplementary Fig. S2). Smaller 

arteries had larger dilation amplitudes (log linear regression, slope = −0.02 μm−1, p<0.001), 

whereas veins showed no size dependence of responses (p>0.05), consistent with previous 

observations (Drew et al., 2011; Lee et al., 2001).

HRF of CBV-based intrinsic signal changes

Dilations of arteries and veins will increase local blood volume, decreasing reflectance in 

IOS. The correlation between locomotion and ΔR/R0 change in the parietal cortex was 

always significant (Pearson’s correlation coefficient, t-test: p<0.001), but not in the frontal 

cortex (t-test: p>0.05), implying the linearity in the strongly responding parietal cortex. For 

each pixel, we fit the ΔR/R0 measurements in response to locomotion with a linear 

convolution model, similar to the one used for single vessels:

(8)

Here ΔR⃑
i/Ri0 is the fractional change of reflectance from baseline of pixel i, ci is a constant 

offset associated with pixel i, and e⃑i is a time-varying error term that is minimized for each 

pixel during the fitting. We constrained the HRF of the ith pixel, h⃑
Ri, to be weighted sum of 

a fast arterial and slow venous component:

(9)

where fast decay time constant τa was fixed at 4 s, and slow decay τv at 40 s, based on our 

2PLSM measurements. The pixel-specific weights, ai and vi, reflect the individual 

contributions of arteries and veins to blood volume increases within the area of the ith pixel. 

We assumed that any responses of capillaries were subsumed into one or both of these terms 

(Kim & Kim 2011; Hall et al. 2014). The values of ai and vi were fitted to the entire trial of 

each pixel (Fig. 4A). Due to its strong hemodynamic response to locomotion, the parietal 

cortex yielded a significantly higher average correlation between the fitted and actual 

responses (cc = 0.70 ± 0.07) than in the frontal cortex (cc = 0.40 ± 0.06; ANOVA: p < 

0.001) (Fig. 4B, 5C). This model does not capture the ongoing, spontaneous fluctuation in 

the hemodynamic signal (Fox and Raichle, 2007; Mayhew et al., 1996; White et al., 2011), 

effectively setting an upper bound on the quality of our fit. HRFs directly calculated from 

binarized locomotion and changes in reflectance yielded a similar shape as our bi-

exponential HRF construction (see Supplementary Fig. S3A), implying that our parametric 

simplification captured the essential features of the responses. We found that the exact 

values of time constants used for the arterial and venous component did not affect fit 

significantly, so long as they were well separated in value and both resided within the range 

of time constants for arterial and venous dilation, respectively, to capture the dynamics of 

the response. More complicated models, potentially including non-linearities, could improve 

upon the quality of the fits. Varying the time constants by 50% did not change the spatial 

pattern or the correlation of the fits (see Supplementary Fig. S4). The advantage of using the 
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simplified parameterized HRF is that both ai and vi, which have clear physical 

interpretations, could be visualized and analyzed independently from each other.

Differing spatial pattern of the arterial and venous responses

We then looked at the spatial patterns of the arterial and venous fitting parameters, ai and vi. 

The fit amplitude of a pixel will not only depend on the fractional change in CBV, but on the 

relative amount of blood volume in the pixel. The pixels containing large surface vessels 

will have a larger fractional blood volume than parenchymal pixels, and thus will be more 

prominent. We found that the patterns of arterial and venous weights consistently separated 

out the large vessels in the arterial and venous networks (Fig. 5A), with the pixels containing 

large arteries having large values of ai, and pixels containing large veins having large values 

of vi. The parenchyma exhibited a mixture of the arteries and veins due to the contribution of 

pial vessels that were smaller than a single pixel, signals from penetrating arterioles and 

ascending venules, and potentially capillaries (Hall et al., 2014; Stefanovic et al., 2008). 

Visualizing the spatial pattern of the component fit amplitudes revealed distinct arterial and 

venous ‘maps’, and that the arterial response to locomotion was more localized than the 

venous response (Fig. 5A). We quantified this localization by measuring the area of 

activation of the venous and arterial maps. We defined the area as the area greater than half 

of the 99%tile peak response. The size of the activation area was 4.2 mm2 ± 1.9 mm2 in the 

arterial map, significantly smaller than the 6.1 mm2 ± 1.9 mm2 in the venous map (ANOVA: 

p<0.05; N=8) (Fig. 5B). The average window size was 12.9 mm2 ± 1.7 mm2. The power 

(1−β) of the ANOVA testing differences in spatial spread between arteries and veins was 

0.95.

We quantified the relative changes in arterial and venous volumes in response to saturating 

stimulation from our fits. The fractional contribution of the arterial component was given 

by:

(10)

where N is the number of pixels in the area of interest (either the FL/HL representation or 

the entire window area) and i represents the pixel. Based on the construction of HRF (9), the 

maximum arterial (venous) contribution for each pixel ai,max (vi,max) is given by:

(11)

where fs is the frame rate at which the IOS is measured. The arterial and venous components 

of CBV response to locomotion had nearly equal magnitude (Fig. 5C) in the FL/HL 

representation (arterial 45.8% ± 13.6%; venous 54.2% ± 13.6%; ANOVA: p>0.05, N=8). 

When we examined the relative contributions across the entire window area, the arterial 

contribution dropped to 32.0% ± 14.2% (venous 68.0% ± 14.2%; ANOVA: p<0.01, N=8) 

(Fig. 5C). This result was due to the regional ‘negative’ arterial contribution to CBV, as the 

fitted values of ai in the frontal cortex were negative (Fig. 5A). These results show that even 

during prolonged bouts of locomotion, which probably drive venous distention to their 
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physiological limits, the arterial volume contribution to blood volume changes is large and 

cannot be assumed to be negligible, contrary to the assumptions underlying the balloon 

model of the BOLD signal (Buxton et al., 1998).

Repeatability and robustness of fit parameters

Since studies using fMRI have typically found hemodynamic responses to be unreliable 

across trials widely spaced in time (Bennett and Miller, 2010), it is important for us to 

determine if the changes we observed to relatively natural stimuli are robust across trials. 

We tested if the parameters fitted on one trial (within-trial fitting) could predict the 

hemodynamic response to locomotion on a different trial (cross-trial prediction). Voluntary 

locomotion trials on the same mouse were separated in time by 1 to 94 days (mean of 16 ± 

12 days). The measured ΔR/R0 on one trial and predicted response using the parameters 

from a different trial were very similar (Fig. 6; also see Supplementary Fig. S5). The 

temporal dynamics of a single pixel (Fig. 6A) and the spatial specificity of the entire window 

(Fig. 6B) were both well predicted using the parameters fitted on a different trial. For all 

trials within an animal, we averaged all correlation coefficients between each cross-trial 

prediction and the measured data within the FL/HL representations. The fitting quality of 

cross-trial prediction was 89.3% ± 7.7% of the fitting quality of within-trial estimates (Fig. 

6C). The fitted model could also be used to decode locomotion patterns (see Supplementary 

Fig. S6). These results show that the CBV response to locomotion is spatially and 

temporally robust and repeatable.

HRF of cerebral blood flow response to locomotion

Since vessel dilation lowers vascular resistance and thus increases blood flow, we next 

quantified the relationship between locomotion and changes of CBF. We measured local 

CBF using LDF in the frontal and parietal cortices (Fig. 7A, also see Supplementary Fig. 

S7). Again we fit the CBF with a linear convolution model,

(12)

where ΔQ⃑/Q0 represents the fractional change of CBF from baseline, and h⃑
Q is the CBF 

HRF to locomotion. The HRF is approximated with an exponential kernel,

(13)

where the amplitude AQ and time constant τQ, along with the constant term c, are free 

parameters. In the parietal cortex, the correlation coefficient between data and the fitted 

response was consistently high (cc = 0.74 ± 0.07, N=3), showing that this linear model is a 

good estimation of the CBF response to locomotion. In the frontal cortex, the goodness-of-

fit was poor due to the small CBF response (see Supplementary Fig. S7). Again we tested 

the robustness of CBF response to locomotion in the parietal cortex of each animal. We 

found that the goodness-of-fit of cross-trial predictions were not significantly different from 

the within-trial fitting (Fig. 7B). The time constant of the HRF relating CBF to locomotion 
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was slightly shorter than the time constant of arterial dilation (Fig. 7C) (τQ = 2.62 ± 1.33 s). 

These results indicate that the pial arterial dilation in response to locomotion drives a 

corresponding linear increase in CBF.

Discussion

Hemodynamic signals, such as changes in cerebral blood flow and volume, are several steps 

removed from the neural activity that drives them (Attwell et al., 2010; Buxton, 2012), and 

are shaped by the architecture of the vascular network (Gardner, 2010). For this reason it is 

critical both to have a quantitative description of the hemodynamic response function in 

order to better interpret observed hemodynamic signals, and to understand the mechanistic 

basis of the microscopic changes in the vasculature that generate the HRF. Here, we 

demonstrated that macroscopic blood volume-related hemodynamic response to voluntary 

locomotion, measured using IOS imaging, could be separated into arterial and venous 

components with distinct spatial patterns, and that these spatial patterns of HRFs were 

robust across time.

An important limitation of this study is that though our optical approach gives us a much 

higher spatial resolution laterally than magnetic-resonance based imaging techniques, our 

IOS measurements are from hemodynamic changes in the superficial layers, due to light 

scattering by brain tissue and absorbance by hemoglobin (Tian et al., 2011). This is an 

important caveat, as several studies have shown small, but significant, laminar differences in 

stimulus-evoked CBV increases (indicative of dilation), in anesthetized animals (Hirano et 

al., 2011; Kim & Kim, 2010; Polaowsky & Kim 2014). As the vessels in the deeper layers 

may respond differently than the pial vessels, it remains to be seen if the dynamics of vessels 

in deeper layers can be captured using a two-component linear model like the one presented 

here. Recent advances in non-linear microscopy imaging techniques (Kobat et al., 2009; 

Horton et al., 2013) should enable measurements of single-vessel dynamics throughout the 

depth of the cortex in the future.

Interestingly, the HRFs obtained here are similar to the CBV HRF measured in response to 

electrical stimulation in anesthetized rats (Silva et al., 2007; Hirano et al., 2011), and the 

dynamics in the visual cortex of anesthetized cats (Kim and Kim, 2010). The distinct fast 

and slow components of the HRFs are similar to those seen in individual arteries and veins 

of mice that are stationary, but awake (Drew et al., 2011). This suggests that the combined 

arterial/venous response to stimulation is a fundamental, invariant feature of the cerebral 

vascular system across many physiological states. Additionally, for stimuli lasting less than 

a few seconds, the arterial component of the change in CBV is larger than the venous 

component, which is important in understanding the physiological basis of the BOLD signal 

(Buxton, 2012; Kim et al., 2013). Our results cannot be directly compared to BOLD signal 

HRFs in humans because the BOLD signal reflects primarily venous oxygenation changes, 

not arterial dilation (Kim and Ogawa, 2012), and thus has different temporal dynamics. We 

did not explicitly model any capillary dilation, as it is not clear whether the capillary dilation 

takes place on the time scale of seconds (Hall et al., 2014) or tens of seconds (Stefanovic et 

al., 2008), slightly and passively in response to upstream arteriole dilation (Kornfield and 

Newman, 2014), or not at all (Fernandez-Klett et al., 2010; Drew et al., 2011). Due to the 
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light scattering properties of the brain (Tian et al., 2011) and laminar differences in 

vasculature (Tsai et al., 2009), the IOS from the parenchyma will contain a mix of capillary 

and large surface vessel signals. Our results show that the dynamics of parenchymal signals 

can be explained with a sum of arterial and venous signals, which implies that during 

voluntary locomotion, there is little dilation from capillaries and/or that the capillaries dilate 

with a mix of fast and slow dynamics that can be subsumed into the arterial and/or venous 

components.

A second insight obtained from our decomposition of the hemodynamic response into 

venous and arterial components is that the spatial pattern of the contributions of the 

components varied across the cortex. By fitting the HRFs in a location-dependent manner, 

we were able to determine that the spatial extent of the arterial component of the CBV was 

significantly smaller than the spatial extent of the venous component. This indicates that the 

‘point spread function’ of the venous volume change is broader than that of the arterial 

component. This knowledge, coupled with reconstructions of the vasculature (Blinder et al., 

2013; Weber et al., 2008), should help constrain models of blood flow dynamics in the 

cortex (Boas et al., 2008). By separating the changes in arterial and venous components of 

the CBV, we are able to show that voluntary exercise immediately induces localized arterial 

blood volume increase, followed by slow, diffuse venous blood volume increases. These 

results solve a long-standing issue as to how localized increases in cerebral blood flow and 

volume are during exercise, showing that diffuse spatial blood volume increases can follow 

prolonged bouts of locomotion. Additionally, because of the larger venous contribution at 

locations distant from the center of hemodynamic activation, these more remote areas will 

have a slower HRF, consistent with a model of a poroelastic brain interacting with a 

vascular network (Aquino et al., 2014).

The mean correlation coefficients between our fits and the data, which use a behavioral 

input, are comparable to those of the fMRI BOLD response in anesthetized monkeys, using 

neural activity as the input to the linear system (Logothetis, 2002). The tight relationship we 

observed between behavior and the hemodynamic signal is surprising for several reasons. 

First, awake mice, even at rest, have ongoing neural activity in the brain, which partially 

contributes to the spontaneous hemodynamic fluctuations we observed and could not 

account for with our model. Secondly, the locomotion stimulus is of variable duration, 

which means any temporal non-linearity will reduce the correlation between the data and the 

predicted response. Lastly, because the level of spontaneous neural activity is substantially 

higher in the awake animal, one might suspect the proportional change in activity evoked by 

stimulation, the modulation amplitude of the neural activity, to be lower than in the 

anesthetized animal (Fiser et al., 2004; Goard and Dan, 2009; Goense and Logothetis, 2008), 

which would be expected to lower the dynamic range of the locomotion-evoked cerebral 

hemodynamic signal. Despite all these potential effects that would compromise the 

correlation between behavior and the resulting hemodynamic signal, we still observed a 

highly linear cerebral hemodynamic response, suggesting that although the local ‘average’ 

neural activity measured using electrophysiology may be a poor indicator of changes in 

cerebral blood flow and volume (Devor et al., 2008; Sirotin and Das, 2009, Huo et al., 

2014), these hemodynamic changes are still precisely controlled.
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The dilations we observed in the cortical surface arterioles, both in response to locomotion 

and spontaneously (Figs. 2 & S1), were approximately three to five times larger than those 

seen in anesthetized mice (Drew et al., 2011; Nizar et al., 2013). Our results build on a 

substantial body of work showing that anesthesia profoundly disrupts neurovascular 

coupling, neural metabolism and the hemodynamic responses. The seminal work of Martin 

and colleagues (Martin et al., 2002, 2006a, &2006b) showed that there is an increase in the 

strength of neurovascular coupling, and the response to hypercapnia in awake relative to 

anesthetized rats. The dynamics of these responses are much faster in awake rats than in 

anesthetized rats. Recent work has found similar slowing and reductions of the 

hemodynamic responses by anesthesia in the vibrissae and visual cortices of mice (Drew et 

al., 2011; Pisauro et al., 2013). In addition to changes in the hemodynamic response, 

anesthesia severely disrupts brain metabolism. The anesthetic alpha-chloralose, widely used 

in neurovascular coupling studies, decreases glucose metabolism in the cortex by more than 

50% relative to the awake state (Dudley et al., 1982), the same magnitude of metabolic 

decrease of found in vegetative coma patients relative to “locked-in” patients and healthy 

controls (Levy et al., 1987). The BOLD response is significantly larger in magnitude in 

awake monkeys than under anesthesia (Goense and Logothetis, 2008). Thus, the awake and 

anesthetized brains are in profoundly different states, making it problematic to use the 

results of anesthetized animal studies to interpret the result of human neuroimaging studies.

Although we did not make measurements of blood gases (Drew et al., 2011), the arterial 

dilation we observed here was unlikely to be caused by changes in CO2 concentration in the 

blood for two reasons. Arterial dilations caused by hypercapnia take several minutes under 

un-physiologically high CO2 levels to reach the magnitude we observed (Ngai and Winn, 

1996), though exposure to high CO2 in the awake animal can cause faster hemodynamic 

responses associated with neural desynchronization (Martin et al, 2006a), and the observed 

increases in blood flow, blood volume and arterial diameter all peaked within seconds of the 

onset of locomotion, with very similar amplitudes and dynamics as seen during responses to 

sensory stimulation of the vibrissae (Drew et al., 2011). Secondly, moderate exercise in rats, 

comparable to our voluntary locomotion paradigm, causes hypocapnia (Fregosi & Dempsey, 

1984), which would tend to cause vasoconstriction, not the vasodilation we see here.

Empirical models of the HRF grounded in measurement of individual pial vessel dynamics 

allow the separation of cerebral hemodynamic signals into distinct vascular components. 

Particularly, the ability to separate well localized arterial changes from more diffuse venous 

signals should improve the resolution and accuracy in functional connectivity studies (Fox 

and Raichle, 2007), reconstructions of stimuli from cerebral hemodynamic signals 

(Naselaris et al., 2011), and in understanding the microvascular mechanisms of vascular 

malfunction associated with neurodegenerative diseases (Iadecola, 2013) and aging 

(D’esposito et al., 2003).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

CBV cerebral blood volume

CBF cerebral blood flow

HRF hemodynamic response function

IOS intrinsic optical signal

2PLSM two-photon laser scanning microscopy

LDF laser Doppler flowmetry

LTI linear, time-invariant

MSE mean-squared error

cc correlation coefficient

ROI region of interest

FOV field of view

FL forelimb

HL hindlimb
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Figure 1. Cortical CBV responses show region-specific dynamics during locomotion
(A) Experiment setup for IOS imaging. The head-fixed mouse was free to run on a spherical 

treadmill with one degree of freedom. The cortex of the mouse was illuminated with 530nm 

light. (B) IOS image of cortex revealed in the thinned-skull window (left). Body 

representations in the primary somatosenso-ry cortex (SI) and surrounding areas within the 

window (right) were identified with cytochrome oxidase staining. FC: frontal cortex; FL: 

forelimb; HL: hindlimb; V: vibrissae. Scale bar = 1 mm. (C) The ball velocity during 60-

second trial of voluntary locomotion was recorded with rotary encoder (top), and then 

converted to binary locomotion events (middle). The average fractional changes of 

reflectance, ΔR/R0 (bottom), from the FL/HL representation (enclosed by green polygons in 

(B)) and FC (enclosed in blue contours in (B)), are plotted within this period, demonstrating 

the localized response. (D) Power spectrum density (PSD) plots of locomotion events (gray) 

and averaged ΔR/R0 in FL/HL area (green) and FC (blue). Arrow denotes heart-rate related 

oscillations. (E) Fraction of continuous locomotion events at different durations. The height 

of each bar represents the mean across animals. Error bars show the minimum (lower limit) 

and the maximum (upper limit) across all animals. N = 8 mice.
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Figure 2. Locomotion-driven pial vessel dilations can be fitted with a linear model
(A) Left: Histologically identified hindlimb (green) overlaid on an image of a PoRTS 

window. Scale bar = 0.5 mm. 2PLSM FOV is enclosed in the black rectangle. Right: 

schematic depicts of an artery (red) and a vein (blue) from FOV. Scale bar = 20 μm. (B) 

Examples of 1-second average image of FOV under 2PLSM when the animal was at rest 

(left) and during locomotion (right). Diameter changes of the artery and the vein were 

recorded from the vessel segments within red and blue rectangular ROIs, respectively. Scale 

bar = 20 μm. (C) During voluntary locomotion (black trace), fractional change of diameters 

of the artery (ΔDa/Da0, red) and the vein (ΔDv/Dv0, blue) shown in (B). Using binarized 

locomotion events (gray dots) as inputs, each diameter was fitted with a linear model (gray 

trace). The correlation coefficient between the fits and the actual vessel response was 0.83 

for the artery and 0.57 for the vein.
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Figure 3. Quantification of time courses and amplitudes of responses of pial arteries and veins to 
locomotion using a linear model reveals distinct dynamics
(A) Fitted time constants (τD) of vessel recovery from dilation were significantly smaller for 

arteries (red) than for veins (blue) (ANOVA: p<0.001). Red and blue arrowheads indicate 

the mean of for arteries (5.5 ± 5.1 s) and veins (25.1 ± 17.9 s), respectively. (B) Values of 

integrated areas of the estimated impulse response showed larger arterial (5.57 ± 3.93 s−1, 

red) than venous (2.61 ± 2.01 s−1, blue) diameter changes (ANOVA: p<0.001). (C) 

Correlation coefficients (cc) between the data and model fitting for arteries (0.62 ± 0.16) and 

veins (0.52 ± 0.16) were similar across vessel diameters. Data from a total of 151 arteries 

and 104 veins were included in each plot.
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Figure 4. Linear convolution model captures the temporal dynamics of CBV response to 
locomotion
(A) Top: Example of pixel-wise model fitting. For a sample pixel signified in (B), we fitted 

the time series of ΔR/R0 (top black) with a linear convolution model (magenta; cc = 0.83). 

Middle: The model consisted of two dynamic components, a fast arterial (red) and a slow 

venous (blue) component, and a constant offset (purple). Bottom: Binary locomotion events 

(gray dots) were derived from recorded locomotion velocity (black). (B) Amplitude of the 

fast component, ai (red), and amplitude of the slow component, vi (blue), for all pixels 

within the ROI (white outline). (C) Correlation coefficients (cc) between the ΔR/R0 data and 

the fitted data of all pixels within the ROI. The correlation was highest in the regions with 

largest decrease in reflectance. Scale bars: 1 mm.
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Figure 5. Spatially distinct arterial and venous contributions to cortical CBV changes during 
locomotion
(A) Fitted fast component, ai (left), and slow component, vi (right), of all pixels within ROI 

(white outline) for two different trials. The fast components reliably recovered the arterial 

network; while the slow components recovered the venous network. Side plots show the 

medial-lateral average of ai (red) and vi (blue) in the left hemisphere. Scale bar = 1 mm. (B) 

The mean area of arterial (red) or venous (blue) map of pixels with fit amplitudes greater 

than 50% of the peak response. The peak is defined as the 99%tile of the arterial or venous 

component amplitude response over the entire window. Activated areas of individual mice 

are shown in black dots. *: p<0.05. (C) Average fractional contributions to the dynamic 

component of CBV response for arteries (red), or veins (blue), over the entire window 

(white bars), or only the SI FL/HL area (filled bars). N=8 mice.
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Figure 6. Fitted HRFs are stable across trials
(A) Example of cross-validation of fit parameters. Averaged IOS across all pixels within the 

SI FL/HL area (blue polygon in (B)), all model parameters were fitted to one trial (‘fit’, 

upper panel, cc=0.83) and applied to another trial (‘prediction’, lower panel, cc=0.86). (B) 

Goodness-of-fit, measured by correlation coefficients between measured data and model fit, 

of within-trial fitting, ccfit (upper panel), and of cross-trial prediction, ccprediction (lower 

panel), in the entire window. Blue polygons enclose SI FL/HL area in each hemisphere. 

Scale bars = 1 mm. (C) Comparing the average cc within the SI FL/HL area, with error bars, 

of within-trial (magenta) and cross-trial (purple) estimates for each animal. N=8 mice.
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Figure 7. Locomotion-induced changes in CBF have linear dynamics
(A) Example of fitting the linear model (magenta) to 60-second trial of fractional change of 

CBF from baseline, ΔQ⃑/Q0 (green), in the FL/HL representation. Locomotion events are 

shown as gray dots. (B) Comparison of average cc between within-trial model fitting 

(magenta circle) and cross-trial prediction (purple square), with error bars, for all 3 animals. 

(C) Fitted time constants, τQ, of all trials (black dots) averaged for each animal (bars).
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