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Abstract

A computational framework is presented for relating the kurtosis tensor for water diffusion in 

brain to tissue models of brain microstructure. The tissue models are assumed to be comprised of 

non-exchanging compartments that may be associated with various microstructural spaces 

separated by cell membranes. Within each compartment the water diffusion is regarded as 

Gaussian, although the diffusion for the full system would typically be non-Gaussian. The model 

parameters are determined so as to minimize the Frobenius norm of the difference between the 

measured kurtosis tensor and the model kurtosis tensor. This framework, referred to as kurtosis 

analysis of neural diffusion organization (KANDO), may be used to help provide a biophysical 

interpretation to the information provided by the kurtosis tensor. In addition, KANDO combined 

with diffusional kurtosis imaging can furnish a practical approach for developing candidate 

biomarkers for neuropathologies that involve alterations in tissue microstructure. KANDO is 

illustrated for simple tissue models of white and gray matter using data obtained from healthy 

human subjects.
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Introduction

Non-Gaussianity of water diffusion within the brain can be quantified by the diffusional 

kurtosis tensor, which may be measured with MRI using diffusional kurtosis imaging (DKI) 
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(Hori et al., 2012; Jensen and Helpern, 2010; Jensen et al., 2005; Lu et al., 2006; Poot et al., 

2010; Steven et al., 2014; Wu and Cheung, 2010). This kurtosis tensor allows a number of 

rotationally invariant diffusion metrics to be calculated, including the mean kurtosis (MK), 

the axial kurtosis, and the radial kurtosis. These metrics are believed to reflect the 

heterogeneity of the intra-voxel diffusion environment and are thus indicators of 

microstructural complexity. A number of studies have shown that kurtosis-based diffusion 

metrics are altered for a variety of neuropathologies, such as stroke (Cheung et al., 2012; 

Hui et al., 2012; Jensen et al., 2011), cancer (Raab et al., 2010; Van Cauter et al., 2012), 

Alzheimer’s disease (Benitez et al., 2014; Falangola et al., 2013; Fieremans et al., 2013; 

Gong et al., 2013), epilepsy (Gao et al., 2012; Lee et al., 2013; Lee et al., 2014; Zhang et al., 

2013), Parkinson’s disease (Kamagata et al., 2014; Kamagata et al., 2013), attention deficit 

hyperactivity disorder (Adisetiyo et al., 2014; Helpern et al., 2011), trauma (Grossman et al., 

2012; Grossman et al., 2013; Zhuo et al., 2012), and autism (Lazar et al., 2014).

Since the kurtosis tensor is a pure diffusion measure, without any explicit connections to 

specific properties of brain tissue microstructure, a clear-cut biophysical interpretation of the 

information it provides for a particular circumstance (e.g., brain region or disease) is often 

challenging (Rudrapatna et al., 2014). It may therefore be useful to combine the kurtosis 

tensor with tissue models that relate the diffusion information of the kurtosis tensor to 

particular microstructural features of cellular compartments. With the help of such models, 

the biological significance of observed changes in kurtosis can be better understood. In 

addition, the model parameters may serve as candidate biomarkers for microstructural 

alterations associated with disease.

One such tissue model for the kurtosis tensor has been previously proposed, although its 

applicability is limited to white matter for which the axons are largely unidirectional 

(Fieremans et al., 2011). An example of the relationships implied by this model is the 

formula

(1)

where faxon is the fraction of MRI-visible water contained within axons and Kmax is the 

maximum value of the diffusional kurtosis as a function of the diffusion direction. This 

model has already been applied to Alzheimer’s disease (Benitez et al., 2014; Fieremans et 

al., 2013), stroke (Hui et al., 2012), and autism (Lazar et al., 2014).

The purpose of this study is to develop a more general computational framework for relating 

the kurtosis tensor to tissue models of brain microstructure. This method, which we call 

kurtosis analysis of neural diffusion organization (KANDO), accommodates a variety of 

models that are suitable for both white matter and gray matter. The models are assumed to 

consist of ensembles of non-exchanging, Gaussian compartments. This is a plausible class of 

models that has been widely used to describe non-Gaussian diffusion in brain (Alexander et 

al., 2002; Assaf et al., 2004; Fieremans et al., 2011; Jespersen et al., 2007; Panagiotaki et al., 

2009; Panagiotaki et al., 2012; Wang et al., 2011; White et al., 2013; Zhang et al., 2012). 
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While the effects of water exchange between compartments are not incorporated explicitly, 

their consideration is important for a proper interpretation of these models.

The essence of KANDO is that the model parameters are determined by minimizing a cost 

function that corresponds to the square of the Frobenius norm (Signoretto et al., 2011) of the 

difference between the measured kurtosis tensor and the model kurtosis tensor. This 

contrasts with the algebraic approach utilized by Fieremans and coworkers (Fieremans et al., 

2011) in that KANDO requires nonlinear optimization. However, KANDO provides 

substantially more flexibility than is possible with purely algebraic methods, allowing for a 

much broader range of model types. Moreover, one can easily construct specific models for 

KANDO that yield results closely matching those of Fieremans and coworkers for white 

matter with unidirectional axons. In this sense, KANDO may be regarded as an extension of 

this prior work.

KANDO is quite analogous to the conventional method of fitting tissue models to the 

diffusion MRI (dMRI) signal (Assaf et al., 2004; Ferizi et al., 2013; Jespersen et al., 2007; 

Panagiotaki et al., 2009; Panagiotaki et al., 2012; Wang et al., 2011; White et al., 2013; 

Zhang et al., 2012) with a key difference being that KANDO utilizes only the kurtosis and 

diffusion tensors as inputs, rather than the full dMRI signal, in order to facilitate a clearer 

biophysical interpretation of the kurtosis tensor information. KANDO is particularly suitable 

as an adjunct for DKI, which is specifically designed for estimating the kurtosis and 

diffusion tensors. One distinction between KANDO and tissue modeling based on fits to the 

dMRI signal is that KANDO does not require the specification of imaging parameters, such 

as diffusion gradient directions and b-values, which may help to reduce the dependence on 

experimental details of results obtained with KANDO. Nonetheless, KANDO estimates for 

model parameters may be indirectly affected by imaging parameters, as these can influence 

the accuracy of the measured diffusion and kurtosis tensors (Jensen and Helpern, 2010). As 

KANDO only includes information encompassed by the kurtosis and diffusion tensors, it 

may be insensitive to certain microstructural features that affect the full signal.

The main goal of this article is to describe the general theory underlying KANDO. In 

addition, KANDO is illustrated for three simple models intended to represent white matter 

and gray matter. For these models, exemplary results are given based on DKI data obtained 

for healthy human volunteers. In addition, numerical simulations are described that examine 

potential sources of errors in parameter estimates obtained with KANDO.

Theory

General framework

A fundamental assumption of KANDO is that the tissue model consists of N+1 non-

exchanging water compartments. Each individual compartment is also assumed have 

Gaussian diffusion with its dynamics being completely determined by its diffusion tensor. 

Let the diffusion tensor for the nth compartment be indicated by D(n) and the corresponding 

water fraction by fn. Here the water fractions are relative only to water that is visible with 

dMRI. Thus some water pools with short T2, such as water within myelin (Stanisz et al., 

1999), might be excluded from the model, depending on the echo time of the dMRI 
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experiment. It should be noted that the total diffusion dynamics of a model with two or more 

Gaussian compartments will generally be non-Gaussian, as the sum of two or more Gaussian 

distributions is a non-Gaussian distribution except for the special case that all the 

distributions are identical.

It is physically appealing to associate the model compartments with cellular compartments 

of the tissue microstructure, and this is generally justified for cells with low permeability 

plasma membranes. For example, water within myelinated axons has an exchange time with 

the surrounding extracellular space that is long compared to typical diffusion times used for 

dMRI (Nilsson et al., 2013), and thus this compartment can plausibly be approximated as 

non-exchanging. However, other cell types, such as astrocytes, may have substantially 

shorter exchange times (Badaut et al., 2011; Solenov et al., 2004). When the exchange time 

is small compared to the diffusion time, a cellular compartment can be regarded as being in 

fast exchange with the extracellular space, and it is then effectively part of a larger 

composite compartment that includes the extracellular space and possibly other cellular 

compartments also in fast exchange. As there is currently limited knowledge of the 

exchange times for glial cells and unmyelinated neurites, the precise correspondence 

between model and cellular compartments may not always be self-evident. When the 

exchange and diffusion times are comparable, the model compartments can take on a more 

ambiguous “apparent” status.

The total diffusion tensor for the model is

(2)

where the N+1 compartments are numbered from n = 0 to n = N and with the water fractions 

being normalized so that

(3)

D is regarded as a measured quantity that is a fixed input from a modeling perspective. It is 

convenient to introduce the “reduced” diffusion tensors defined by

(4)

where D̄ = Tr(D)/3 is the mean diffusivity for the total system. These reduced tensors are 

dimensionless and serve to simplify the mathematical expressions that follow. In terms of 

the reduced tensors, Eq. (2) takes the form
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(5)

Since Δ depends only on D, it is also a given input for KANDO.

Let us now assume that the reduced diffusion tensors for compartments n=1,2,…, N, as well 

as their corresponding water fractions, are specified functions of a set of M model 

parameters (a1, a2,…, aM) so that we have Δ(n)(am) and fn(am), for n=1,2,…, N. These 

functions would be based on the biophysical assumptions for the water diffusion dynamics 

in brain tissue that one wishes to employ. By applying Eqs. (3) and (5), we also have

(6)

and

(7)

which determines f0 and Δ(0) in terms of the model parameters.

Here the compartment for n= 0 plays a special role in that its properties are inferred from 

Eqs. (6) and (7) rather than being modeled directly. This “slack” compartment should be 

chosen so that its water fraction f0 is unlikely to vanish, as that would lead to singularities in 

the KANDO optimization procedure described below. In addition, it may be convenient for 

the slack compartment to represent a component of brain tissue that is less amenable to 

detailed modeling (e.g., the extracellular space).

As for D and Δ, the measured kurtosis tensor for the total system, W, is considered to be a 

known quantity, as determined for example with DKI. On the other hand, the total kurtosis 

tensor for the model, Wmod, is related to the reduced diffusion tensors by (Lazar et al., 2008)

(8)

with Δij, , and  representing the components of Δ, Δ(n), and Wmod, respectively. 

The component indices for all the tensors run from 1 to 3. Wmod is therefore a specified 

function of the model parameters am.
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The basic computational problem of KANDO is to optimize the model parameters am in 

order to minimize the cost function

(9)

so that the model and measured kurtosis tensors are as “close” as possible. This cost 

function simply corresponds to the square of the Frobenius norm of the difference between 

the predicted and measured kurtosis tensors. The Frobenius norm is the natural extension to 

tensors of the l2 vector norm (Signoretto et al., 2011).

Since the kurtosis tensor has 15 independent degrees of freedom, the number of model 

parameters should, in principle, be chosen to be no more than this. In practice, the number of 

model parameters would usually be substantially less. In most cases, minimization of C 

corresponds to a nonlinear optimization problem. If the number of model parameters is 

modest, such problems can often be conveniently solved using standard numerical 

algorithms, although computational challenges such as multiple local minima may well 

occur. For the special case of completely isotropic tissue, the kurtosis tensor has only a 

single independent degree of freedom, and KANDO therefore can only support a single 

model parameter. The same can also hold true for nearly isotropic tissue, such as gray 

matter, as the observed anisotropy may largely reflect the effects of signal noise.

In order that the model parameters correspond to physically meaningful diffusion dynamics, 

the minimization of C would usually be subject to constraints that ensure the reduced 

diffusion tensors Δ(n) are semi-positive definite and that the water fractions lie in the range 0 

≤ fn ≤1. Imposing additional conditions, such as maximum values for diffusivities, may also 

be of value.

Because Eq. (5) is used in the construction of the function , the total diffusion 

tensor for the model will always be exactly equal to the measured diffusion tensor. The 

model prediction for the kurtosis tensor, however, will differ from the measured kurtosis 

tensor, except for the exceptional circumstance that the cost function can be reduced to zero.

From minimizing C, one obtains estimates for the model parameters am, which by design 

should reflect certain microstructural tissue properties. In addition, KANDO yields estimates 

for the volume fractions of all the compartments, as well as their individual diffusion 

tensors. In this way, the microstructural organization of the diffusion dynamics is 

characterized. For well-conceived models, there should typically be a unique global 

minimum for C that yields a unique set of model parameters.

In the above, we have used a finite number of compartments denoted with the discrete index 

n. However, it is straightforward to generalize this KANDO formalism to include an infinite 

number of compartments denoted with a continuous index. This is useful, for example, in 

modeling neurites with a continuous distribution of orientations.
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Example 1: white matter with unidirectional axons

As a first example of KANDO, we consider a model for white matter with unidirectional 

axons, as illustrated in the first panel of Fig. 1. The physical assumptions underlying this 

model are essentially the same as those for the algebraic approach considered by Fieremans 

and coworkers (Fieremans et al., 2011), who have provided a detailed discussion of their 

validity.

Since two compartments are considered, we have N = 1. The slack compartment is taken to 

represent both water in the extracellular space and water in glial cells, which are treated as a 

single composite compartment, and the n = 1 compartment is taken to represent water within 

axons. Water within myelin is assumed to not contribute significantly to the dMRI signal 

and is therefore neglected.

The intra-axonal water for the n = 1 compartment is regarded as being confined to thin 

cylinders oriented parallel to the principal eigenvector, e, of the total diffusion tensor D. 

This principal eigenvector, corresponding to the largest eigenvalue of D, is normalized so 

that |e| = 1. Because of the thin cylinder approximation, the reduced diffusion tensor 

components for the n = 1 compartment can be written as

(10)

where ei is a component of e. The intra-axonal diffusivity then vanishes for directions 

perpendicular to e, and the intrinsic intra-axonal diffusivity (i.e., the diffusivity along the 

cylinder axis) is D ̄a1≡ D*.

As discussed in the Appendix, the axonal water fraction for this model may be estimated, 

depending on which assumptions are made, from the total kurtosis maximized over either all 

diffusion directions or over just diffusion directions that are perpendicular to e, as indicated 

by Eqs. (A.22) and (A.23). Thus we set

(11)

with Kmax being the global maximum for the total kurtosis and with K⊥,max being the 

maximum over directions perpendicular to e. The option using Kmax may at times be the 

more accurate estimate, as it represents the true global maximum, but the option using 

K⊥,max is based on milder assumptions and is therefore potentially more foolproof (see last 

sentence of Appendix). While prior work has only utilized the Kmax option (Benitez et al., 

2014; Fieremans et al., 2013; Fieremans et al., 2011; Gong et al., 2014; Hui et al., 2012; 

Lazar et al., 2014), we consider both in this study. Since Kmax and K⊥, max are determined 

by D and W, these are known quantities, as then is f1. As a consequence, this model has a 

single free model parameter, a1, so that M=1.

From Eqs. (6) and (11), we have

Hui et al. Page 7

Neuroimage. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(12)

implying that f0 is also independent of a1, and from Eq. (7) we have

(13)

Combining Eqs. (8), (10) and (13) then yields

(14)

Thus Wmod depends quadratically on a1, and as then follows from Eq. (9), the cost function 

C is a quartic polynomial in a1. Note that a1 is the only degree of freedom for Wmod, with 

the other parameters in Eq. (14) being fixed by the measured diffusion and kurtosis tensors. 

In order to ensure that the reduced diffusion tensors for the two compartments are both semi-

positive definite, the minimization of C should be carried out subject to the constraint

(15)

where λ1 is the largest eigenvalue of D.

An additional optional constraint is requiring the intrinsic intra-axonal diffusivity to be less 

than or equal to a set maximum value, , which can be expressed as

(16)

For example, one could choose  so as to be equal the free diffusivity of 

water at body temperature (Holz et al., 2000). This extra condition may be helpful in 

reducing outliers arising from noise, imaging artifacts, and partial volume effects.

Example 2: white matter with crossing fibers

In white matter regions with crossing fibers, a single direction is inadequate to characterize 

the axonal geometry. By calculating the diffusion orientation distribution function (dODF), 

multiple fiber directions can be detected using dMRI, with the fiber directions corresponding 

to the dODF maxima (Lazar et al., 2008; Tuch, 2004; Wedeen et al., 2005). Recently, an 

approximate analytical expression for the dODF in terms of the kurtosis and diffusion 

tensors has been derived (Jensen et al., 2014a). Fiber directions obtained with this “kurtosis 

dODF” may thus be incorporated into KANDO for the modeling of white matter with fiber 

crossings.

Hui et al. Page 8

Neuroimage. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here we consider the case where two fiber bundles intersect within a given voxel (see Fig. 1, 

second panel). Assume that the fiber directions are given by the vectors v(1) and v(2). As 

these can be determined from D and W, via the kurtosis dODF, v(1) and v(2) may be treated 

as fixed inputs for KANDO. The KANDO compartments are then the extra-axonal space 

(slack), axons oriented in the direction v(1) (n=1) and axons oriented in the direction v(2) (n= 

2), and so we have N= 2. Myelin water is neglected, as for Example 1. The magnitudes of 

both direction vectors are normalized to unity. We assume that the direction v(1) corresponds 

to the larger of the dODF maxima and hence to the dominant fiber direction. Since the 

kurtosis dODF typically detects relatively few voxels with more than two intra-voxel fiber 

directions (Jensen et al., 2014a), this example is potentially applicable to many white matter 

regions. This is assuming, of course, that the kurtosis dODF provides an adequate 

description of the fiber architecture.

Again using the thin cylinder approximation, the components of the reduced diffusion 

tensors for compartments 1 and 2, are given by

(17)

and

(18)

where  indicates a component of v(1) and  indicates a component of v(2). The intrinsic 

intra-axonal diffusivity is then D*= D̄a1 for both compartments.

The total axonal water fraction, f1 + f2, is determined by the total kurtosis, K⊥, in a direction 

orthogonal to both v(1) and v(2), as discussed in the Appendix. Specifically,

(19)

as follows from Eq. (A.15). We can then choose

(20)

which together with Eq. (19) implies that

(21)

and that M= 2. The water fraction for the slack compartment must be
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(22)

which is a fixed parameter, and the reduced diffusion tensor for the slack compartment is

(23)

as follows from Eq. (7).

With these results and the help of Eq. (8), Wmod (am) for this model is readily constructed, 

and its components are seen to be multivariate polynomials of degrees up to 4. This implies 

that the cost function C is a multivariate polynomial of degree 8.

In minimizing C, one should impose constraints to guarantee that the parameters a1 and a2 

are in physically allowed ranges. To specify these conditions, it is convenient to introduce 

the pair of vectors

(24)

where

(25)

One may easily verify that |v(±)|=1 and v(+)·v(−)= 0. Therefore, v(+) and v(−) constitute a set 

of orthonormal basis vectors that span the plane containing v(1) and v(2). Let us also define

(26)

The required constraints on a1 and a2 can then be written as

(27)

(28)

and

(29)

Hui et al. Page 10

Neuroimage. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The lower bound of Eq. (28) is based on the assumption that v(1) is the dominant fiber 

direction. The final condition of Eq. (29) is needed to ensure that Δ(0) is semi-positive 

definite. The constraint of Eq. (16) may be additionally imposed to further restrict the 

allowed values of a1.

This model is also suitable for voxels with a single fiber direction, as this corresponds to the 

special case for which f2 = 0. However in such cases, K⊥ is not well defined, and so in Eq. 

(19), we use the maximum kurtosis sampled over all directions perpendicular to v(1) for 

estimating the axonal water fraction, rather than K⊥.

Example 3: gray matter

For gray matter, we model the intra-neurite space (i.e., both axons and dendrites) with 

isotropically oriented thin cylinders (see Fig. 1, third panel). We thus have

(30)

with ui(θ, ϕ) being a component of the direction vector

(31)

Here (θ, ϕ) are spherical coordinates and (x̂, ŷ, ẑ) represent Cartesian unit vectors. In 

contrast to the previous two examples, the intrinsic intra-neurite diffusivity D* is taken as a 

given. This is because, as previously noted, KANDO only supports a single model 

parameter for isotropic geometries and because f0 cannot be determined directly from the 

measured kurtosis tensor as there is no direction perpendicular to all of the neurites. In Eq. 

(30), the discrete index n has been replaced with the continuous variables (θ, ϕ) in order to 

allow for a continuous angular distribution of orientations. Thus the intra-neurite space 

formally consists of an infinite number of Gaussian compartments.

For the neurite water fraction in a specified direction, we choose

(32)

so that all directions have equal weight as appropriate for an isotropic tissue. For the slack 

compartment, Eq. (6) then yields

(33)

and Eq. (7) yields

(34)
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where δij is the Kronecker delta. In deriving Eqs. (33) and (34), the sums over the index n 

have been replaced with an angular integration over the spherical coordinates (θ, ϕ).

By combining with Eqs. (33) and (34) with Eq. (8), we then obtain

(35)

The KANDO optimization for this case will thus be the minimization of a rational function 

in the single parameter a1. To guarantee a physical solution, we must impose the constraints

(36)

and

(37)

where λ3 is the smallest eigenvalue of D.

Methods

Subjects

For demonstrating KANDO, two healthy volunteers (male, 26 and 52 years old) were 

recruited. These subjects were scanned with informed consent approved by the Institutional 

Review Board of the Medical University of South Carolina.

Magnetic resonance imaging

Both volunteers were scanned on a 3T Siemens TIM Trio MRI scanner (Siemens 

Healthcare, Erlangen, Germany) with a 32-channel transmit/receive head coil. Two sets of 

dMRI experiments were performed with 64 diffusion encoding directions using a vendor-

supplied, single-shot, twice-refocused, spin-echo echo planar imaging sequence. Axial 

diffusion-weighted images (DWIs) were acquired with 3 b-values (0, 1000 and 2000 s/mm2) 

and number of excitations (NEX) = 1 (NEX = 10 for b = 0). Other imaging parameters were: 

slice thickness = 2.7 mm (0 mm gap), number of slices = 40, repetition time/echo time = 

5500/102 ms, field-of-view = 222 × 222 mm2, acquisition matrix = 82 × 82, image 

resolution = 2.7 × 2.7 mm2, bandwidth/pixel = 1355 Hz, parallel imaging acceleration factor 

= 2 (phase encoding), and acquisition time ≈ 14 minutes. This corresponds to a standard 

DKI protocol (Jensen and Helpern, 2010).

Data processing

Diffusion and diffusional kurtosis tensors were calculated for each subject with the in-house 

software Diffusional Kurtosis Estimator (Tabesh, 2012; Tabesh et al., 2011) on a voxel-by-
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voxel basis by using the full set DWIs. Parametric maps for D̄, axial diffusivity λ||, radial 

diffusivity λ⊥, fractional anisotropy (FA), and MK were subsequently obtained from these 

tensors.

All KANDO optimizations were performed on a voxel-by-voxel basis using MATLAB 

(Mathworks, Natick, MA, USA) for each of the three examples described above. In order to 

ensure that a global optimum was found, an exhaustive search strategy over the physically 

viable parameter space (as defined by the constraints) was employed for minimization of the 

cost function C. For Examples 1 and 3, C was evaluated for 1000 parameter space points/

voxel, while for Example 2, 10,000 points/voxel were used. To process the full dataset for 

one subject (i.e., 82×82×40 voxels) required about 500 s for Example 1, 7700 s for Example 

2, and 400 s for Example 3, using a quad core, 2.2 GHz computer with 16 GB RAM. 

Example 2 was more computationally intensive due to the greater number of free 

parameters.

For Example 2, the kurtosis dODFs were evaluated with a radial weighting factor of 4 

(Jensen et al., 2014a). In voxels for which the dODF detected two or more fiber directions, 

the two directions corresponding to the largest dODF maxima were selected. In voxels for 

which the dODF detected a single direction, f2 was set to zero, and to estimate f0, K⊥ in Eq. 

(22) was replaced with the maximum kurtosis optimized over directions perpendicular to 

v(1). For both Examples 1 and 2, the additional constraint of Eq. (16) was imposed with 

 in order to reduce outliers due to noise, imaging artifacts, and partial 

volume effects. For Example 3, the intrinsic intra-neurite diffusivity was set to D*=1.0 

μm2/ms, as this was considered to be a plausible value based on prior work (Fieremans et al., 

2011).

Region-of-interest analysis

Three multi-slice region-of-interests (ROIs) were identified to represent presumptive white 

matter with unidirectional axonal fiber bundles (ROI 1), white matter (ROI 2), and gray 

matter (ROI 3). ROI 1 was defined by D̄<1.5 μm2/ms, FA> 0.15, MK≥1.0 and λ|| ≥ 3λ⊥; 

ROI 2 was defined by D̄<1.5 μm2/ms, FA> 0.15 and MK≥1.0; ROI 3 was defined by D̄<1.5 

μm2/ms, FA≤ 0.15 and MK<1.0. Note that ROI 1 is a subset of ROI 2. ROI 1 was used for 

the analysis of Example 1, ROIs 1 and 2 were used for the analysis of Example 2, and ROI 3 

was used for the analysis of Example 3. The restriction D̄<1.5 μm2/ms was imposed to 

exclude voxels containing substantial amounts of cerebral spinal fluid (CSF). All of the 

ROIs included voxels from 26 slices, for each subject, that covered the majority of the 

cerebrum.

In order to obtain mean values for the model parameters, the voxels from the two subjects 

were pooled and voxelwise averages were computed. ROI 1 included a total of 1064 + 1412 

= 2476 voxels from the two subjects, while ROI 2 had 13,156 + 12,178 = 25,334 voxels and 

ROI 3 had 14,176 + 13,307 = 27,483 voxels. For ROI 1, the kurtosis dODFs detected three 

or more fiber directions in 2.0% of the voxels, while for ROI 2, 3.4% of the voxels had three 

or more directions. Thus, most of the voxels considered were consistent with the 
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assumptions of Example 2. The standard deviations for the full set of voxels corresponding 

to a given ROI were used to indicate the uncertainties in the mean values.

Numerical simulations

When the assumptions of a KANDO model differ from the true tissue properties, errors in 

the KANDO estimates for the model parameters can be expected. One such potential source 

of error is CSF contamination. To illustrate the potential effects of this, numerical 

simulations were performed for test models wherein CSF partial water fractions, fCSF, were 

added with values ranging from 0 to 0.3. The diffusion for the CSF component was assumed 

to be isotropic with a diffusivity of 3.0 μm2/ms. Three test models were constructed to be 

consistent with the assumptions of Examples 1, 2, and 3, except for the added CSF, and the 

model parameters were then estimated using the KANDO method. In this way, the errors in 

the KANDO parameters caused by the CSF were determined.

For all three test models, D* was set to 1.0 μm2/ms. For the Example 1 test model, the three 

eigenvalues for D(0) were chosen to be 2.0 μm2/ms, 0.8 μm2/ms, and 0.8 μm2/ms, while the 

water fraction for the slack compartment was set to 0.5 (when fCSF = 0). These values are 

similar to the results obtained by Fieremans and coworkers (Fieremans et al., 2011). For the 

Example 2 test model, the eigenvalues for D(0) were chosen to be 1.4 μm2/ms, 1.4 μm2/ms, 

and 0.8 μm2/ms, and the water fraction for the slack compartment was again set to 0.5. Two 

cases for Example 2 were considered, one in which v(1) and v(2) had a relative angle of 90° 

(Case A) and one in which v(1) and v(2) had a relative angle of 75° (Case B). In applying 

KANDO, these vectors were estimated from the kurtosis dODF, which can potentially yield 

directions that differ somewhat from those specified (Jensen et al., 2014a). For Example 3, 

all three test model eigenvalues for D(0) were set to 1.2 μm2/ms, so that the slack 

compartment was isotropic. Two cases were analyzed for Example 3, one with the true slack 

compartment water fraction set to 0.5 (Case A) and one with the slack compartment water 

fraction set to 2/3 (Case B).

For Example 3, as second set of simulations were performed in order to investigate the 

effect of a difference between the true and assumed values for intrinsic intra-neurite 

diffusivity D*. For the test model, we set  and considered values for  ranging 

from 0 to 2 μm2/ms. In applying KANDO, the assumed value for D* was 1 μm2/ms, so that 

errors in the KANDO parameter estimates could be expected whenever . As for the 

first set of simulations, the test model eigenvalues for D(0) were assumed to be 1.2 μm2/ms. 

Both Case A, with the slack compartment water fraction set to 0.5, and Case B, with the 

slack compartment water fraction set to 2/3, were analyzed. No CSF contamination was 

included for this second set of simulations.

A final set of simulations were performed for Example 3 in order to illustrate the difference 

between parameter estimates obtained with KANDO and those derived from a direct fit to 

the dMRI signal. The same two cases were examined, as for the simulation described above 

with a range of  values. The exact signal S(b), for b-values of 0, 1000, and 2000 s/mm2, 

was calculated from
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(38)

where D̄
e is the mean extra-neurite diffusivity (set, as above, to 1.2 μm2/ms) and the term 

with the error function gives the signal for the neurite compartment in the thin cylinder limit 

(Yablonskiy and Sukstankii, 2010). Note that this signal is isotropic so that just a single 

diffusion direction need be considered. The DKI estimates for the total diffusivity and 

kurtosis are given by

(39)

and

(40)

where b1 =1000 s/mm2 and b2= 2000 s/mm2 (Jensen and Helpern, 2010). These estimates 

based on Eqs. (39) and (40) were used in order to simulate a real experimental procedure. 

Since they only approximate the true total diffusivity and kurtosis, some inaccuracy in the 

model parameter estimates may be attributable to errors in DDKI and KDKI. However, this 

error could, in principle, be made arbitrarily small by adjusting the choice of b-values 

(Jensen and Helpern, 2010). The KANDO analysis for Cases A and B was performed 

exactly as for the simulations described in the previous paragraph, with D*=1 μm2/ms, 

except that the prior calculations used exact rather than approximate values for the total 

diffusivity and kurtosis. The parameters estimates for a direct fit to the signal were obtained 

by minimizing

(41)

where

(42)

The model signal Smod(b) differs from the exact signal of Eq. (38) in that the intrinsic intra-

neurite diffusivity has an assumed value of D*=1 μm2/ms, while for the exact signal, the 

intra-neurite diffusivity ranges from  to 2 μm2/ms. The minimization of Csignal has 

two free parameters, f0 and D̄
e, and was performed by an exhaustive search of parameter 

space. The number of free parameters is greater for the direct signal model fit than for the 

KANDO analysis because of the introduction of the slack compartment for KANDO.
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Results

Human data

Table 1 shows the mean values, with standard deviations, over the three ROIs of selected 

model parameters computed for Examples 1, 2, and 3 based on the human DKI data. In 

Example 1, results for both the Kmax and K⊥,max options for calculating f1 are given (see Eq. 

(11)). Also shown are results for ROI 1 obtained with the Fieremans model (Fieremans et 

al., 2011). For all the models, the neurite water fraction is given by 1− f0. For Examples 1 

and 2, as well as for the Fieremans model, the neurite water fraction is the same as the 

axonal water fraction, as there are no dendrites in white matter. For Example 1 and the 

Fieremans model, we also have f1 =1− f0. The axonal water fraction for Example 1 with the 

Kmax option is identical to the axonal water fraction for the Fieremans model. The extra-

neurite mean diffusivities are calculated from D̄
e =Tr(D(0))/3. For ROI 1, the extra-neurite 

axial diffusivity, De,||, is equal to the largest eigenvalue of D(0), while the extra-neurite radial 

diffusivity, De,⊥, is the average of the two smaller eigenvalues of D(0). For ROI 2, De,⊥ 

corresponds to the smallest eigenvalue of D(0), so that it indicates the diffusivity in a 

direction that is approximately perpendicular to any fiber crossings. Representative 

parametric maps for a single axial slice are displayed in Fig. 2.

The voxelwise average over ROI 1 of the ratio for f1 as obtained with Eq. (11) using Kmax to 

f1 as obtained with Eq. (11) using K⊥,max is 1.007 ± 0.011, indicating that there is little 

difference for these two approaches in voxels with unidirectional axonal bundles. The 

corresponding voxelwise averages for D*, D̄
e, De,||, and De,⊥, as obtained using the Example 

1 model, are 1.007 ± 0.013, 1.004 ± 0.008, 1.002 ± 0.004, and 1.007 ± 0.015 respectively. 

This close agreement suggests that the condition of Eq. (A21) is indeed satisfied for most 

voxels within ROI 1.

Although the f1 value obtained using Kmax in Eq. (11) is identical to the f1 value for the 

Fieremans model, the D*, D̄
e, De,||, and De,⊥ values for Example 1, using the Kmax option, 

do differ somewhat from the predictions of the Fieremans model. The voxelwise averages 

over ROI 1 of the D*, D̄
e, De,||, and De,⊥ ratios for these two models are 0.864 ± 0.115, 

1.040 ± 0.037, 0.993 ± 0.054, and 1.113 ± 0.066. Thus the Fieremans model predicts higher 

D* and De,|| values and lower D̄
e and De,⊥ values, as is also shown by Table 1.

Numerical simulations

The effects of CSF contamination on the estimated neurite water fraction (1− f0), the 

intrinsic intra-neurite diffusivity (D*), and the mean extra-neurite diffusivity (D̄
e =MDe) are 

shown in Fig. 3. All of these parameters are altered by the presence of CSF, with the 

exception of D* for Example 3 which is constant by fiat. For the data plotted, the maximum 

absolute error for 1− f0 is 0.136 while the maximum relative error is 39%, the maximum 

absolute error for D* is 0.221 μm2/ms while the maximum relative error is 22%, and the 

maximum absolute error for D̄
e is 1.388 μm2/ms while the maximum relative error is 116%. 

Thus of these parameters, the mean extra-neurite diffusivity is the most sensitive to CSF 

partial volume effects.
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In Fig. 4, 1− f0, D*, and D̄
e are plotted as functions of  for Example 3. For 

, the KANDO estimates equal the true values. For the range 

, the maximum absolute error for 1− f0 is 0.143 while the maximum 

relative error is 29%, the maximum absolute error for D* is 0.5 μm2/ms while the maximum 

relative error is 50%, and the maximum absolute error for D̄
e is 0.215 μm2/ms while the 

maximum relative error is 18%. Not surprisingly, of the three estimated parameters, D* has 

the largest relative error.

A comparison of 1− f0 and D̄
e estimates for Example 3 as obtained with KANDO and with a 

direct fit to the signal model of Eq. (42) are shown in Fig. 5. The signal model estimates 

agree with the true values when , but the KANDO estimates have small errors due 

to the use of the approximations of Eqs. (38) and (39) for the total diffusivity and kurtosis. 

When , the estimates from both methods typically depart from the ideal values. 

The dependence of these errors on  is qualitatively similar for KANDO and the signal 

model fits, but is not identical due to the distinct mathematical formulations of the two 

approaches.

Discussion

The biophysical interpretation of dMRI data from brain is a challenging inverse problem that 

has been the subject of numerous studies and has employed a variety of tissue models 

(Novikov and Kiselev, 2010; Panagiotaki et al., 2012; Yablonskiiy and Sukstanskii, 2010). 

In this work, the special case of interpreting the information provided by just the kurtosis 

and diffusion tensors has been considered, which is specifically relevant for DKI. In order to 

further this goal, we have proposed the KANDO method. KANDO is a general 

computational framework that can accommodate non-exchanging, multiple Gaussian 

compartment models, as long as the number of model parameters does not exceed the 

number of independent parameters for the kurtosis tensor (which is 15 unless reduced by 

symmetry). KANDO is similar to conventional approaches that utilize tissue models in order 

to derive microstructural information directly from the dMRI signal (Assaf et al., 2004; 

Ferizi et al., 2013; Jespersen et al., 2007; Panagiotaki et al., 2009; Panagiotaki et al., 2012; 

Wang et al., 2011; White et al., 2013; Zhang et al., 2012). However, by applying modeling 

to the kurtosis tensor, rather than to the signal, KANDO facilitates the biophysical 

interpretation of this quantity, which may help to better understand the changes in kurtosis 

metrics that have been associated with neuropathology (Hori et al., 2012; Steven et al., 

2014).

KANDO is an example of a modular approach to the modeling of dMRI data in that the 

acquisition of the signal and the tissue modeling are decoupled. The signal is used just to 

estimate the kurtosis and diffusion tensors, which are well-defined physical quantities with 

no explicit connection to tissue microstructure. KANDO modeling then only uses these two 

tensors and does not directly involve imaging parameters, such as the diffusion gradient 

directions and b-values. Therefore results obtained with KANDO may depend less on the 

details of the imaging protocol and are potentially more reproducible between studies. Since 

the accuracy of the tensor measurements can be influenced by the choice of imaging 
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parameters (Jensen and Helpern, 2010), there is still an indirect effect of the details of the 

imaging protocol on KANDO parameter estimates, but this can, in principle, be made 

arbitrarily small. This modular approach also supports the independent optimization of data 

acquisition and tissue modeling. Such a modular approach to the modeling is commonly 

employed for white matter fiber tractography, where the diffusion tensor or the dODF is the 

physical quantity directly estimated from the dMRI signal (Lazar, 2010). However, modular 

approaches have been less frequently applied in the context of multiple Gaussian 

compartment modeling of the microscopic diffusion organization in neural tissue. Note that 

KANDO’s modular structure means that the components of measured diffusion and kurtosis 

tensors are distinguished from the model parameters and regarded as inputs for KANDO 

rather than adjustable parameters. By design, the number of model parameters for KANDO 

equals the number of adjustable parameters determined by minimizing the cost function of 

Eq. (9).

By only utilizing the kurtosis and diffusion tensors some of the information contained in the 

dMRI signal is in effect discarded from the analysis. However, the kurtosis and diffusion 

tensors contain the majority of the information obtainable with small diffusion weightings 

(Jensen and Helpern, 2010), and so this loss is likely to be minor when low b-value dMRI 

methods, such as DKI, are employed. In addition, by basing the modeling solely on these 

two tensors, KANDO can benefit from the advanced post-processing methods already 

available for DKI (André et al., 2014; Ghosh et al., 2014; Glenn et al., 2014; Kuder et al., 

2012; Tabesh et al., 2011; Masutani and Aoki, 2014; Poot et al., 2010; Tax et al., 2014; 

Veraart et al., 2013; Veraart et al., 2011).

KANDO is closely related to the previously proposed method of Fieremans and coworkers 

(Fieremans et al., 2011) that utilizes DKI to model microstructure in white matter with 

unidirectional axons. Indeed, the results obtained with Example 1 are quite similar to those 

for the Fieremans method (see Table 1). Operationally, the Fieremans approach differs from 

KANDO in that it avoids nonlinear optimization by instead solving a set of algebraic 

equations, which leads to a simple and efficient numerical method. However, this algebraic 

technique is not readily generalizable to more complex cytoarchitectures, as found in white 

matter with fiber crossings and in gray matter, which is a primary motivation for developing 

KANDO. It should also be mentioned that in applying the Fieremans method, one typically 

obtains two formal mathematical solutions (one with D* < λ1 and one with D* > λ1), with an 

independent argument being invoked to select one as the most likely to be physically 

relevant. With KANDO, such ancillary considerations are entirely avoided. The correctness 

of the chosen solution for Fieremans approach is supported by the close agreement between 

the Fieremans and KANDO results of Example 1.

In order to illustrate KANDO, we have given results for three simple models. Example 1 is 

essentially a reformulation of the Fieremans white matter model in terms of KANDO and is 

only suitable for white matter regions, such as the corpus callosum, for which the axons are 

largely unidirectional. Example 2 is a more general model that allows for fiber crossings and 

is potentially applicable throughout much of the white matter. Example 3 assumes the intra-

neurite space is isotropic, as appropriate for many gray matter regions. The nonlinear 

optimization calculations for Examples 1 and 3 involve only a single free parameter, while 
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the optimization for Example 2 involves two free parameters. Because of this small number 

of variables, the numerical minimization of the cost function can be easily accomplished 

with an exhaustive search of parameter space that mitigates potential issues with local 

minima. However, an exhaustive search might not be feasible for more complex models that 

require additional free parameters. In such cases, alternative optimization procedures may be 

needed.

For the white matter models of Examples 1 and 2, the small number of free parameters is 

partly due to the application of Eqs. (11) and (19) that give the axonal water fraction in 

terms of the kurtosis. As discussed in the Appendix, these formulae are a consequence of the 

thin cylinder approximation for axons, so that intra-voxel diffusivity perpendicular to the 

cylinder axis is taken to be zero. For voxels regarded as having a single fiber direction, there 

is a question as to whether it is best to use the maximum of the kurtosis over all directions or 

over just directions perpendicular to the cylinder axis, as discussed in the Appendix. For the 

algebraic approach of Fieremans, one may show that choosing the global maximum option 

is logically consistent with the aforementioned selection of one of two formal mathematical 

solutions. The same reasoning does not necessarily apply to the KANDO examples 

considered here, as the ancillary assumptions included with the Fieremans approach are 

absent from KANDO. For this reason, we have also considered the use of the kurtosis 

optimized over perpendicular directions. As demonstrated in the Appendix, the conditions 

for the validity of this alternative are less demanding than for the global option. One may 

hence suppose the perpendicular option to be the more robust choice for the KANDO white 

matter models of Examples 1 and 2. Nonetheless, our Example 1 results for human brain 

show that there is little actual difference in the estimated axonal water fractions (see Table 1 

and Fig. 2).

For the gray matter model of Example 3, it is not possible to predict the neurite water 

fraction directly from the kurtosis, as there is no direction that is orthogonal to all the 

neurites. Therefore, the neurite water fraction is treated as a free parameter that is 

determined from minimization of the cost function C. This is the only free parameter for 

Example 3, and in contrast to Examples 1 and 2, the intrinsic intra-neurite diffusivity D* is 

regarded as a given input. Fixing the intrinsic intra-neurite diffusivity is necessary, because 

for isotropic geometries the information content of the kurtosis tensor drops from 15 

independent parameters to just a single parameter (as the kurtosis is the same in all 

directions). For the results presented in this work, we set D* = 1.0 μm2/ms. However, future 

work may suggest alternative values. For example, one might set the gray matter D* equal to 

the value found with KANDO modeling in adjacent white matter regions, for which D* need 

not be set a priori. Ex vivo experiments suggest that D* may be similar for white and gray 

matter (Jespersen et al., 2007). However, for brain with focal gray matter pathology, the 

need specify a value for D* may preclude the use of models such as that of Example 3.

For Examples 1 and 2, it is probably well justified to regard water within myelinated axons 

to be part of the water pool captured by the parameter 1− f0, as water exchange times for 

myelinated axons are likely to be long in comparison with typical dMRI diffusion times 

(Nilsson et al., 2013). However, some white matter axons are not myelinated, and it is less 

clear to what degree their water will contribute to 1− f0. For gray matter, the situation is 
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even more nebulous as little is known about water exchange times for dendrites and gray 

matter axons, which are mostly unmyelinated. Thus the neurite water fraction calculated 

with KANDO should be interpreted as an effective water fraction representing water that 

remains inside the neurites during the diffusion time interval of the dMRI experiment. 

Indeed, our measured values for 1− f0 are significantly smaller than neurite volume fractions 

for gray matter determined from histology (Chklovskii et al., 2002). This could be due to a 

discrepancy between our choice for D* and the true intra-neurite diffusivity, to water 

exchange between the intra- and extra-neurite spaces, or to a combination of these two 

possibilities. This illustrates the caution needed when interpreting parameter estimates 

obtained with KANDO, as with most other dMRI modeling methods.

Particular care should also be exercised when interpreting estimates of D* for Examples 1 

and 2, as these may be affected by differences between the assumed and true axonal 

geometries. For instance, applying the model of Example 1 to a fiber bundle with significant 

curvature may yield systematically low values for D*, as axonal curvature can restrict the 

intra-neurite diffusion in the direction of the principal diffusion tensor eigenvector.

Another assumption of the examples considered here is that the extra-neurite space can be 

treated as a single Gaussian compartment. This presupposes that the diffusion restrictions 

due to glial cell membranes are not sufficient to generate a substantial intrinsic kurtosis. 

Again there is limited hard evidence to support this, although astrocytes are known to 

express aquaporin 4, which may significantly increase their plasma membrane permeability 

(Badaut et al., 2011; Solenov et al., 2004).

The three specific models discussed in this paper were chosen primarily as simple 

illustrations of KANDO. The KANDO framework can also be applied to many other similar 

models, including a large fraction of those considered in prior studies. The main difference 

is that, with KANDO, the only experimental inputs are the kurtosis and diffusion tensors, 

while most prior applications of multiple Gaussian compartment models have used fits to the 

full dMRI signal to determine the free parameters, as illustrated by the results of Fig. 5. 

Further comparisons of KANDO with conventional approaches based on the dMRI signal, 

for equivalent tissue models, would be an interesting topic of investigation.

A crucial issue for KANDO, as well as other dMRI modeling approaches, is independent 

validation of the model predictions. One method is to compare estimated compartmental 

water fractions with histologically determined volume fractions. For instance, the axonal 

water fractions obtained with Examples 1 and 2 should be approximately related to the 

axonal volume fraction by

(43)

where Vaxon is the axonal volume fraction and Vmyelin is the myelin volume fraction. The 

denominator in Eq. (43) is needed to take into account the fact that myelin water usually 

contributes little to the dMRI signal due to the short T2 of myelin (Stanisz et al, 1999). 

Stereological studies have estimated the myelinated axonal volume fraction in (human) 
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white matter to be 0.33 ± 0.02 (Tang et al., 1997) and the myelin volume fraction in (rat) 

white matter to be 0.22 ± 0.02 (Yang et al., 2008). Applying these numbers to Eq. (43) 

yields faxon = 0.42 ± 0.03, which is indeed similar to the result of faxon =1− f0 = 0.405 ± 

0.066 obtained here with KANDO for Example 2 and RO1 2 (see Table 1). Nevertheless, a 

direct comparison of KANDO estimates to histological results for the same brain tissue 

would be more compelling.

Aside from the compartment water fractions, the parameters estimated with KANDO all 

pertain to the microscopic organization of the diffusion environment, as encompassed by the 

compartmental diffusion tensors and associated quantities. Since these cannot be validated 

directly with histology, alternative techniques are required. One method is to utilize 

numerical simulations to test the accuracy KANDO models, as illustrated by the results of 

Figs. 3 and 4. These calculations suggest, for example, that the effects of CSF partial 

voluming on KANDO parameter estimates are most pronounced for the extra-neurite 

diffusivity. Similar numerical methods have frequently been applied to the study of other 

dMRI tissue models (Fieremans et al., 2010; Jespersen et al., 2007; Novikov and Kiselev, 

2010; Yablonskiy and Sukstanskii, 2010). Another approach is to experimentally test the 

model predictions for the dMRI signal behavior at higher b-values (typically b ≥ 3000 

s/mm2) than those used for obtaining the kurtosis and diffusion tensors (Fieremans et al., 

2011). However, if standard single pulsed dMRI is employed, disparate tissue models can 

yield similar or, in principle, even identical dMRI signals for the full range of b-values. As a 

consequence, consistency between a model’s predictions and high b-value data alone may 

not always provide a satisfactory level of verification. For additional validation of KANDO, 

double pulsed dMRI could be employed (Jensen et al., 2014b; Lawrenz and Finsterbusch, 

2013; Shemesh et al., 2010). Double pulsed dMRI yields independent diffusion information 

not obtainable with single pulsed dMRI and is particularly sensitive to microscopic 

anisotropy, as can result from fiber crossings.

Conclusion

KANDO is a computational framework for tissue modeling that uses the kurtosis and 

diffusion tensors as inputs. It accommodates non-exchanging, multiple Gaussian 

compartment models and may help to delineate the microscopic diffusion organization of 

neural tissue. KANDO is particularly suitable as an adjunct to DKI and can be applied to 

improve the biophysical interpretability of DKI-derived diffusion metrics. In addition, 

parameters estimated with KANDO may serve as candidate biomarkers for neurological 

disorders in which neural microstructure is altered.
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Appendix

Here we derive general results for the water fraction of a diffusion compartment with a 

vanishing diffusivity for at least one direction. These are applicable to white matter models 

for which the axons idealized as thin cylinders and are assumed to have coplanar 

orientations within each voxel.

Consider a system consisting of two non-exchanging, but not necessarily Gaussian, 

compartments A and B, with diffusivities DA(n) and DB(n) and kurtoses KA(n) and KB(n) for 

the diffusion direction n. Let us also define moments for compartments A and B as

(A.1)

and
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(A.2)

where r is a diffusion displacement vector and the angle brackets 〈…〉A and 〈…〉B represent 

an averaging over the ensemble of water molecules in compartments A and B, respectively. 

The moments for the total system are related to the compartmental moments by

(A.3)

with fA being the water fraction for compartment A and with 〈…〉 representing an averaging 

over the full ensemble of water molecules.

The compartmental diffusivities and kurtoses are defined by these moments according to

(A.4)

(A.5)

(A.6)

and

(A.7)

where t is the diffusion time (Jensen and Helpern, 2010). Similarly, the total diffusivity and 

kurtosis are defined by

(A.8)

and

(A.9)

As a consequence, one may easily verify that

(A.10)
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and that

(A.

11)

If we assume that DA(n) vanishes for a particular diffusion direction n = n′, then Eqs. (A.10) 

and (A.11) in this direction reduce to

(A.12)

and

(A.13)

This in turn implies

(A.14)

For the special case that compartment B is Gaussian, we then have KB(n) = 0 and

(A.15)

By regarding compartment B as the slack compartment for KANDO, Eq. (A.15) forms the 

basis of Eqs. (11) and (19). Note that compartment A is here taken to represent the ensemble 

of all the KANDO compartments with n ≥ 1.

For white matter models that idealize axons as thin cylinders, the n′ direction should be 

chosen so as to be perpendicular to all the axons, as the diffusivity is formally zero in this 

direction due to the thin cylinder approximation. If there are two crossing fiber directions, 

then n′ is the unique direction orthogonal to both of these directions.

When only a single fiber direction is detected, the best choice of n′ is not completely clear-

cut, since there are infinitely many directions orthogonal to the fiber bundle for which Eq. 

(A.15) could, in principle, be applied. To motivate a specific n′ for practical calculations, we 

set KB(n) = 0, as is appropriate for the slack compartment, in which case Eq. (A.11) reduces 

to

(A.16)

By using Eq. (A.10) to eliminate DB(n), one finds
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(A.17)

This is easily rearranged to give

(A.18)

If DA(n) is near zero, then Eq. (A.18) has the linear approximation

(A.19)

Thus in the neighborhood of n = n′, there is a local maximum in the total kurtosis given by

(A.20)

Moreover, this will also be a global maximum provided

(A.21)

for all directions n. If the kurtosis for compartment A is small in comparison to one, as 

would be the case if A consists thin cylinders that are all nearly aligned with each other, then 

the condition of Eq. (A.21) is essentially DA(n) ≤ 2D(n), which may be normally expected to 

hold in white matter, as the intra-axonal diffusivity has usually been estimated as small or 

comparable to the total diffusivity. By inverting Eq. (A.20), one finds

(A.22)

which matches the result of Eq. (1) and has been previously applied by Fieremans and 

coworkers (Fieremans et al., 2011). More conservatively, one could use the maximum 

perpendicular kurtosis, K⊥,max, obtained by only considering directions orthogonal to the 

estimated fiber direction, which leads to the estimate

(A.23)

Applied to KANDO modeling of white matter, Eqs. (A.22) and (A.23) should, in most 

cases, give comparable results. However, Eq. (A.23) may be more foolproof, since the 
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condition of Eq. (A.21) is less likely to be violated due to DA(n) generally being small for all 

orthogonal directions.
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Highlights

• We present a tissue modeling method compatible with diffusional kurtosis 

imaging.

• The method relates the kurtosis tensor to brain microstructure.

• The method accommodates a variety of specific brain tissue models.

• The method is illustrated for human data and with simulations.
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Figure 1. 
Schematic illustrating the fiber orientations utilized for Examples 1, 2 and 3. For Example 1, 

the axonal fibers within a given voxel are taken to be unidirectional. Intersecting fiber 

bundles are allowed in Example 2, with up to two distinct directions as determined from the 

kurtosis dODF. An isotropic distribution of axon and dendrite orientations is assumed for 

Example 3, so that all directions are equally probable.
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Figure 2. 
Standard DKI images and KANDO maps for a single axial slice. The first row shows the 

T2-weighted (b = 0) image together with the mean diffusivity (MD = D̄), FA, and MK maps. 

The second row shows the total neurite water fraction for Examples 1, 2, and 3. The results 

obtained using both Kmax (Ex1a) and K⊥,max (Ex1b) to estimate f1 are given with Example 

1. For these same four cases, the third row shows the intrinsic intra-neurite diffusivity, and 

the fourth row shows the extra-neurite mean diffusivity (MDe = D̄
e). In Example 1, voxels 

included in ROI 1 are displayed in color; in Example 2, voxels included in ROI 2 are 

displayed in color; in Example 3, voxels included in ROI 3 are displayed in color. The maps 

for Ex1a and Ex1b are nearly identical, demonstrating that choice of whether to use Kmax or 

K⊥,max to estimate f1 is of minor practical significance. The intrinsic intra-neurite diffusivity 

in Example 3 is set a priori to a value of D* = 1.0 μm2/ms. The other KANDO maps are 

calculated by minimizing the cost function of Eq. (9). The calibration bars for the 

diffusivities are in units of μm2/ms, while the remaining quantities are dimensionless.
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Figure 3. 
Effect of CSF contamination on KANDO estimates of the total neurite water fraction (1 − 

f0), intrinsic intra-neurite diffusivity (D*), extra-neurite mean diffusivity (MDe = D̄
e), as 

derived from numerical simulations. When CSF volume fraction fCSF vanishes, the plots 

give the true model parameters. As fCSF increases, the KANDO estimates typically differ 

from the true values, except for D* in Example 3, which is assumed to be fixed. For 

Example 2, Case A corresponds to a fiber crossing angle of 90°, while Case B corresponds 

to a crossing angle of 75°. For Example 3, Case A corresponds to f0 = 1/2 when fCSF = 0, 

while Case B corresponds to f0 = 2/3 when fCSF = 0. The behavior of estimated neurite water 

fraction is identical for Example 1 and both cases of Example 2; the behavior of D* is 

identical for both cases of Example 3. The effect of CSF partial voluming is most 

pronounced for MDe.
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Figure 4. 
Effect for Example 3 of a difference between the assumed value of the intrinsic intra-neurite 

diffusivity (D*) and its true value ( ) on KANDO estimates of 1 − f0, D*, and MDe, as 

derived from numerical simulations. The solid circles indicate ideal values for . 

Case A corresponds to f0 = 1/2 when , while Case B corresponds to f0 = 2/3 when 

. The plot of D* vs.  is trivial, as D* is assumed to be fixed for this KANDO 

example.

Hui et al. Page 34

Neuroimage. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Comparison of parameter estimates for Example 3 as obtained for KANDO and for a direct 

fit to the signal model of Eq. (42). In all simulations, the assumed intrinsic intra-neurite 

diffusivity was set to D* = 1 μm2/ms, while the true value varied from 

. Cases A and B are the same as in Fig. 4. The solid circles indicate the 

ideal values. Estimates derived from the direct fit match the exact values for . The 

KANDO predictions, however, have small errors for , as the KANDO analysis 

used approximate values for the total diffusivity and kurtosis obtained from the signal, as 

would be done in a real DKI experiment. (The KANDO predications based on the exact 

diffusivity and kurtosis are given by Fig. 4.) When , the KANDO and signal 

model predictions deviate from the ideal values in distinct but qualitatively similar ways.

Hui et al. Page 35

Neuroimage. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hui et al. Page 36

T
ab

le
 1

E
st

im
at

es
 (

w
ith

 s
ta

nd
ar

d 
de

vi
at

io
ns

) 
fo

r 
se

le
ct

ed
 K

A
N

D
O

 p
ar

am
et

er
s 

ob
ta

in
ed

 f
ro

m
 in

 v
iv

o 
hu

m
an

 D
K

I 
da

ta
.

R
O

I 
1

E
xa

m
pl

e 
1 

w
it

h 
K

m
ax

R
O

I 
1

E
xa

m
pl

e 
1 

w
it

h 
K

⊥
,m

ax

R
O

I 
1

F
ie

re
m

an
s 

m
od

el
R

O
I 

1
E

xa
m

pl
e 

2
R

O
I 

2
E

xa
m

pl
e 

2
R

O
I 

3
E

xa
m

pl
e 

3

f 1
0.

51
5 

(0
.0

79
)

0.
51

2 
(0

.0
79

)
0.

51
5 

(0
.0

79
)

0.
49

2 
(0

.0
85

)
0.

35
7 

(0
.1

01
)

–

1 
−

 f 0
″

″
″

0.
50

1 
(0

.0
77

)
0.

40
5 

(0
.0

66
)

0.
30

2 
(0

.0
68

)

D
*  

[μ
m

2 /
m

s]
1.

02
1 

(0
.2

81
)

1.
01

5 
(0

.2
83

)
1.

17
4 

(0
.2

56
)

1.
03

6 
(0

.3
14

)
0.

63
9 

(0
.2

97
)

1.
0 

(a
ss

um
ed

)

D
ē 
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