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The aimof this study is to perform a thorough comparison of quantitative susceptibilitymapping (QSM) techniques
and their dependence on the assumptions made. The compared methodologies were: two iterative single orienta-
tion methodologies minimizing the l2, l1TV norm of the prior knowledge of the edges of the object, one over-
determinedmultiple orientationmethod (COSMOS) and a newly proposedmodulated closed-form solution (MCF).
The performance of these methods was compared using a numerical phantom and in-vivo high resolution
(0.65 mm isotropic) brain data acquired at 7 T using a new coil combination method. For all QSM methods, the
relevant regularization and prior-knowledge parameters were systematically changed in order to evaluate the
optimal reconstruction in the presence and absence of a ground truth. Additionally, the QSM contrast was com-
pared to conventional gradient recalled echo (GRE) magnitude and R2* maps obtained from the same dataset.
The QSM reconstruction results of the single orientation methods show comparable performance. The MCF
method has the highest correlation (corrMCF = 0.95, r2MCF = 0.97) with the state of the art method (COSMOS)
with additional advantage of extreme fast computation time. The L-curve method gave the visually most satis-
factory balance between reduction of streaking artifacts and over-regularization with the latter being
overemphasized when the using the COSMOS susceptibility maps as ground-truth. R2* and susceptibility
maps, when calculated from the same datasets, although based on distinct features of the data, have a compara-
ble ability to distinguish deep gray matter structures.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Phase imaging has shownover the last decade to offer a good contrast,
both between and within brain tissues in respect to the conventional
magnitude signal (Duyn et al., 2007; Rauscher et al., 2005) as well as
veins and iron rich regions (Haacke et al., 2004). The effect observed in
the phase is known to be non-local, it reflects the magnetic field induced
by the tissues' magnetic susceptibility (Marques and Bowtell, 2005),
which scales linearly with the increase of the fields strength (making it
suitable at high field strengths).

Several studies have been performed on the origin of the susceptibility
contrast with the main modulators being iron and myelin. Iron contrib-
utes to tissue contrast especially in the deep graymatter (globus pallidus,
putamenand caudate)whichhas histologically derivedhigh iron concen-
tration showing good correlation with phase and susceptibility contrast
nne, Switzerland. Fax: +41 21
(Bilgic et al., 2012; Schweser et al., 2011; Wharton and Bowtell, 2010).
The other proposed contributor to the phase contrast, particularly be-
tween white and gray matter, is myelin where pathological demyelin-
ation has shown a decreased phase contrast between gray and white
matter (C. Liu et al., 2011; Lodygensky et al., 2012) and good correlation
was found betweenmyelination andphase contrast during development.
(Lodygensky et al., 2012).

In addition to the non-local effects associatedwithmagnetic suscep-
tibility, the chemical shift ofwater affected bymacromolecules has been
proposed to influence the measured phase (Luo et al., 2010; Shmueli
et al., 2011; Zhong et al., 2008). More recently it was proposed (He
and Yablonskiy, 2009) and demonstrated (Luo et al., 2013; Wharton
and Bowtell, 2013; Yablonskiy et al., 2012) that the microstructural
compartmentalization in the organization of lipids on the cellular and
subcellular level (e.g. lipids, proteins) has a dominant effect on the
contrast observed between white and gray matter in phase imaging.

Nevertheless, despite the last two effects being ignored when doing
quantitative susceptibility mapping (QSM), this technique has demon-
strated remarkable robustness in the ability to map iron deposition in
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deep gray matter structures (Langkammer et al., 2012; Schweser et al.,
2011; Wharton and Bowtell, 2013). However, this problem is known
to be ill-posed, and many methodologies have been suggested in
order to better condition this problem. To make the problem over-
determined, field maps of the object have to be measured with the
object positioned in different orientations in respect to the magnetic
field (Liu et al., 2009). This method is not practical for clinical studies,
due to the increased measurement time and not applicable to subjects
with reduced mobility. For these reasons many methods have been
proposed using single orientation field maps together with additional
regularization which can be broadly fitted in two classes: (i) correction
of the k-space regions responsible by the artifact; (ii) prior-knowledge
based on assumptions of smoothness and boundaries of the resulting
QSM in the real space.

In the first class can be found direct methods that modify the kernel
in a certain region which are responsible for the ill-conditioned nature
of QSM (Schäfer et al., 2009; Schweser et al., 2013; Shmueli et al.,
2009; Wharton and Bowtell, 2010), and the iterative methods that
only use prior knowledge or sparsity constraints (l1 or TV norm) to
reconstruct the ill-conditioned points while trusting the remaining
k-space with (Schweser et al., 2012) or without different weighting in
the transition regions (Wu et al., 2012). Alternatively, in the second
approach (ii), the whole k-space is affected by the introduced prior
knowledge. The susceptibility calculation can be done by minimizing
the l2 norm in real space field generated by the susceptibility map
and the measured field maps together with additional regularization
based on prior knowledge with either the l2 norm (de Rochefort et al.,
2010) (see l2 regularized single-orientation method) or the l1 norm
(Kressler et al., 2010; T. Liu et al., 2011) (see l1 total variation denoising
method). The prior information is extracted from the phase and magni-
tude maps assuming them to have similar edges of the underlying brain
structure or simply assuming that natural images are sparse in some
basis set. Recently, it was noted that this could be performed as a direct
inversion when assuming smoothness of the susceptibility map (Bilgic
et al., 2013) (see Modulated closed form solution).

The aim of the present studywas to perform a thorough comparison
of some of thesemethods (de Rochefort et al., 2010; Liu et al., 2009; T. Liu
et al., 2011) and a newly proposed methodology dubbed modulated
closed form (MCF) both in simulations and in in-vivo data. Particularly
we accurately evaluate the impact of the prior information and of the reg-
ularization parameters and how their optimality can be evaluated in the
absence of ground truth. Additionally, the susceptibility resultswere com-
pared to R2⁎ contrast in both the contrast between gray andwhitematter,
deep gray matter and ability to detect multiple sclerosis lesions.

Theory

Themagnetic susceptibility, χ, describes the reaction of amaterial to
the presence of an external magnetic field. Themagnetic field perturba-
tion δB generated by a distribution of small magnetic susceptibility
under a constant external magnetic field aligned to the z-direction, B0,
is given by a convolution of χ with the projection of the dipole field
along the z-direction, D (Marques and Bowtell, 2005; Salomir et al.,
2003). In the Fourier domain this can be simplified into a simple local
expression:

δB kð Þ ¼ D kð Þ � χ kð Þ ð1Þ

Where k are the k-space coordinates and themagnetic dipole kernel
can be written in k-space as

D kð Þ ¼ −kx sin θ−ky cos θ sinφ−kz cos θ cosφ
∥k∥ þ 1=3 ð2Þ

Where θ describes the angle of rotation around the x-axis and φ the
angle of rotation around the y-axis. These angles characterize the
orientation of the externally applied magnetic field, B0, in respect to
the z-direction of the object.

Thedipole kernel in k-space has zero elements located in two conical
surfaces. These surfaces lie at themagic angle direction in respect to the
main magnetic field orientation. This means that the same field pertur-
bation can be generated by a large number of different susceptibility
distributions. As a consequence the direct inversion of Eq. (1) is an ill
posed problem and noise in the measured field, δB(r), gets significantly
amplified in k-space regions close to the two surfaces, leading to streak-
ing artifacts in the reconstructed susceptibility maps.

In the following subsections a detailed description of the methods
evaluated to overcome the ill posed nature of QSM will be given.

Multiple orientation method— COSMOS

Calculation Of Susceptibility through Multiple Orientation Sampling
(COSMOS) takes advantage from the observation that the zero surface
of the dipole kernel rotates with the magnetic field orientation B0 (Liu
et al., 2009; Marques and Bowtell, 2005). Hence the straightforward
methodology to overcome the ill posed nature of QSM implies themea-
surement of the field perturbation with the object oriented in various
directions in respect to B0 (Liu et al., 2009; Marques and Bowtell,
2005). The χmap can then be calculated iteratively using a least squares
conjugate gradient algorithm that minimizes,

minχ

XN
i¼1

∥M FHDi kð ÞFχ rð Þ−δBi rð Þ
� �

∥22 ð3Þ

where Di and δBi(r) denote the dipole kernel and field perturbation for a
specific object position, i indexes the multiple object orientations, F
represents the Fourier Transform. M is a spatial mask that represents
the regions inside the brain and is further modulated by a weighting
term that guarantees that the noise throughout the field is equalized.

l2 regularized single-orientation method

In the casewhere it is only possible tomeasure thefield perturbation
with the object positioned along one single orientation, extra informa-
tion has to be introduced in the process of calculating the χ map. It is
fair to assume that (i) the χ maps vary smoothly within anatomical
boundaries/different tissue regions and (ii) that the artifacts, which
are caused by the missing information around the magic angles, have
structured sharp edges which cannot be found in the corresponding
magnitude image. Consequently, regularization based on the l2 norm
of the gradient has been widely promoted to tackle this problem (de
Rochefort et al., 2010). As both the magnitude and the phase image
images (Schweser et al., 2012) are expected to have similar edges as
the underlying susceptibility distribution, they can be used as additional
information to avoid the smoothing of the χ distribution close to tissue
boundaries.

The regularized single-orientation (RSO) method incorporates prior
knowledge of the expected edges by solving the followingminimization
problem using a least-squares conjugate gradient algorithm

minχ∥M FHD kð ÞFχ rð Þ−δB0 rð Þ
� �

∥22 þ β∥MM∇∇χ rð Þ∥22 ð4Þ

where the first termminimizes the distance between the estimated and
measured field and the second term is the regularization prior tuned by
a parameter β. The regularization term is a pixel by pixel multiplication
of gradient of the susceptibility by a mask, M∇, containing prior infor-
mation regarding the regions where the gradients along a Cartesian
direction are expected (M∇ = 0) or not (M∇ = 1). Both the regulariza-
tion parameter and the gradient mask definition have a strong impact
on the calculated χ map, the calculation of the latter will be discussed
in the methods sections.
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l1 total variation denoising method

Alternatively, because the χmaps, as many other natural images, to
have well defined sharp contours surrounding areas of constant signal,
total variation priors l1 methods have been proposed in literature
(Bilgic et al., 2012; Kressler et al., 2010). l1 norm minimization boosts
sparse solutions with a small number of non-zero elements and repre-
sents a useful convex relaxation of the l0 norm, which simply counts
the number of signal coefficients (Lustig et al., 2007; Puy et al., 2012).
To facilitate the convergence, similarly to what has been suggested in
the previous section for the l2method, a prior informationmask including
the edge information, can also be applied (Liu et al., 2012; T. Liu et al.,
2011). The susceptibility map is reconstructed from the field map by
solving a so-called total variation denoising, TVDN (Beck and Teboulle,
2009), problem consisting of minimizing the TV norm of χ (the l1 norm
of the gradient) which is subject to the same data constraint as for the
l2 regularization:

minχ∥MM∇∇χ rð Þ∥1 s:t: ∥M FHDi kð ÞFχ rð Þ−δBi rð Þ
� �

∥22b ε ð5Þ

In this constrained minimization, it is assumed that the data consis-
tency term follows a χ2 distribution. The value of the bound ε is thus
driven by the noise statistics and should be simply set to a high percentile,
of about 99%, of this distribution.

Modulated closed form solution

The closed-form (CF) solution described in (Bilgic et al., 2013) relies
on the Tikhonov problemminχ‖(FHD(k)Fχ(r) − δB0(r))‖22 + β‖∇χ(r)‖22,
which can be evaluated in closed form as χ(r) = (FHD2(k)F +
β∇H∇)−1FHD(k)FδB0(r). The gradient operator along a direction i
can be described as ∂i = FHEiF, where F is Fourier Transform, Ei is
given by Ei ¼ 1−e−2π jki=Ni , and ki is the k-space coordinate along i direc-
tion. Using the k-space representation of the gradient operator the closed

form can be analytically formulated asχ kð Þ ¼ D kð Þ
D kð Þ2þ λ2∑n¼3

i¼1 E2i

δB kð Þ. This

method is extremely fast but, when compared to the previously de-
scribed iterative methods, the application of the gradient regularization
in the whole image (and k-space), gives rise to smoother χ maps. To
overcome these limitations, a weighting in the k-space of the regulariza-
tion termwas introduced to ensure that the regularization is only applied
on the ill-conditioned k-space points, where the dipole kernel is smaller
than a given threshold, nth. The final expression of the modulated
closed-form (MCF) solution can be written as

χ kð Þ ¼ D kð Þ
D kð Þ2 þ λ2Λ kð Þ2

Xn¼3
i¼1

E2i
δB kð Þ; ð6Þ

where D(k) is the k-space representation of the dipole kernel, λ is a reg-
ularization parameter, and Λ (k) is a weighting matrix defined as

cos

π
2
D kð Þ
nth

0
B@

1
CA; D kð Þ b nth

0; D kð Þ N nth

8>>><
>>>:

ð7Þ

Methods

Numerical simulation phantom

A 3-dimensional numerical simulation phantom consisting of
64 × 16 × 64 pixels containing 7 cylinders with different magnetic
susceptibilities (between 2 and 14 a.u.) was used to evaluate the recon-
struction performance of the different quantitative susceptibility
mappingmethods. The fieldmapwas calculated by using Eq. (1) assum-
ing a magnetic field aligned along the z-direction. Zero mean Gaussian
noise was added to the numerical phantom (that was used as our
magnitude image), and to the field map. The ratio between the power
of the images and that of noise was set to 60 (high enough to consider
that Gaussian noise could be added directly to the field map). For the
numerical simulations a metric that was initially suggested in (de
Rochefort et al., 2010) was used to create a continuous gradient mask
(if abs(∇Magn) b nthσMagn, M∇ = 1, else M∇ = nthσMagn/∇MagnM) and
a binary mask (if (abs(∇Magn) b nthσMagn,M∇ = 1, else M∇ = 0).

In vivo data

Data acquisition
Three healthy volunteers (2males and 1 female, mean age of 30± 6

years) and one multiple sclerosis patient were scanned according to a
protocol approved by the local ethics committee.

Scans were performed on a 7 T MR scanner (Siemens, Erlangen,
Germany) using a 32 channel receive coil (Nova Medical). The protocol
consisted of a standard T1-wMP2RAGE contrast (Marques et al., 2010)
and T2*-w imaging using 3D gradient echo multi echo sequence. The 5
acquired echoeswere equally spaced and acquiredwith the samepolarity
gradients, the rewinding waveform was kept equal to the readout gradi-
ent wave form to ensure flow compensation between successive echoes.
The following parameters: TR/TE1/TE5 = 42/4.97/37.77 ms; band-
width (BW) = 260 Hz/Px; FA = 10°, FOV = 256 × 192 × 137 mm,
spatial image resolution 660 μm × 660 μm × 660 μm; iPAT = 2 × 2;
Tacq= 11min. This protocolwas performed only once for theMSpatient
while for the healthy volunteers the 3D-GRE sequence was repeated 4
times with different head positions: normal; head tilted around medio-
lateral axis(left–right axis, pitch) in head-to-neck direction (up to 14°)
position; tilted around anterior–posterior (nose–neck axis, roll) in
head-to-left-shoulder direction (up to 25°) and head-to-right-shoulder
direction (up to 25°). The exact head rotations were determined by co-
registering all volumes to the first head position FSL-FLIRT (www.fmrib.
ox.ac.uk). For the co-registration protocol to copewith the large head ro-
tations that resulted in large variations of the image intensity, a bias field
correction was applied to all magnitude images using FSL-FAST. Subse-
quently, a first co-registration was conducted prior to brain extraction
in order to achieve a rough alignment of the structural images. Brain ex-
traction was then performed to the co-registered head positions. On the
resulting brain extracted images an additional FSL-FLIRT co-registration
was calculated to get amore accurate registration. Themovement matri-
ces of the first and second stage co-registration were combined and the
resulting movement matrix was applied to the original head positions
to minimize the effect of double smoothing from FSL-FLIRT.

Data processing

Coil combination. All data processing was performed in MATLAB
(version 2010b, The MathWorks, Natick, MA, USA) on a workstation
(2× Intel Xeon X5650) with 96 GB RAM. The multi-channel GRE data
from the different coils was combined using a pixel by pixel SVD factor-
ization of the channel vs. echo time matrix similarly to what has been
proposed for spectroscopy (Bydder et al., 2008). The first singular
value of the diagonal matrix is the maximum signal that can be coher-
ently constructed from the 32 channels and the 5 echoes acquired, the
corresponding eigenvectors are the 32 complex coil sensitivity estima-
tions that produce the desired image and the complex signal evolution
along the 5 echoes (see Appendix formore details). Because the analysis
is done on a pixel by pixel basis, the phase is somewhat arbitrary but the
phase differences between successive echoes are not. This methodology
gives the optimum SNR both for the magnitude and phase evolution as
the coil sensitivities are constructed using the whole dataset and not
only the first echo.

http://www.fmrib.ox.ac.uk
http://www.fmrib.ox.ac.uk
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Field and R2⁎map calculation. The GRE phase differences between succes-
sive echoes were then unwrapped with a 3D phase unwrapping algo-
rithm (Abdul-Rahman et al., 2007) in order to put the least demand in
terms of number of wraps the algorithm had to cope with (also, by
using phase differences between successive echoes, the data is devoid
of phase singularities). Four field maps were computed by integrating
the phase differences from the first to echo n (n = 2:5) and the final
field map was calculated using the phase differences between each
phase image and that of TE1, weighted as in (Gruetter, 1993) using a
pixel by pixel R2⁎ estimation. Because the magnitude images for each
echo were computed by complex coil combination followed by taking
the absolute part of the complex signal (Imec), and not by simple sum
of squares of the separate coils, the magnitude evolution is not biased
by Rician noise to the same extent (see Appendix for a discussion).
Hence, the R2⁎ maps can be robustly calculated by integration of the
magnitude decay:

R�
2 ¼

XN−1
ec¼1

abs Imecð Þþabs Imecþ1ð Þð Þ.
2

abs Im1ð Þ−abs ImNð Þ ð8Þ

Background field removal. The measured field, δB, inside the brain con-
sists of the sumof internal variations, δBin, themeanbrain susceptibility,
Bmean, and variations induced by external sources, δBout, such as air
tissue interfaces and imperfect shimming. This background field
(δBout) was removed from the calculated field map using the recently
proposed Efficient and Automated Harmonic Field Pre-Filtering (De
Rochefort et al., 2013). As it is known that the Laplacians (Δ) of δBout
and Bmean are equal to 0, δBin was calculated by solving the following
minimization problem

minδBinkWΔ ΔδB−ΔδBinð Þk ð9Þ

with WΔ being a shrunk brain mask modulated by the SNR of the mea-
sured field map. This methodology has the advantage of reducing the
erosion around the brain introduced by methods such as SHARP
(Schweser et al., 2011) and is less prone to introducing artifacts due to
phase errors in regions of low SNR.

Gradient mask calculation. The results obtained with the simulations
suggested there was no added value from introducing the continuous
gradient mask, therefore with the in vivo data only the binary mask
was used. The in vivo gradient mask integrated information from the
R2⁎ and δBin as suggested in recent studies (Schweser et al., 2012).
Because the two data sets have different noise characteristics, the im-
ages were first wavelet denoised and the gradients of each image were
calculated. Thefinalmaskwasdefined as (if (abs ∇R�

2

� �
bPabs ∇R�

2ð Þ;nth AND
abs ∇δBinð ÞbPabs ∇δBinð Þ;nthÞ; M∇ ¼ 1; else M∇ ¼ 0),where Pnth represents
the gradient corresponding to a percentile nth. Although the two meth-
odologies are not equivalent, they both reflect a variation of the number
of points used to define themask, so there should be a simplemonotonic
relationship between the two.

Susceptibility mapping and evaluation. Four different reconstruction
algorithms were evaluated both for the numerical simulations and the
in vivo data: l2 minimization (Section l2 regularized single-orientation
method), l1 TV minimization (Section l1 total variation denoising
method) and modulated closed-form solution (Section Modulated
closed form solution). The COSMOS method (Section Multiple
orientation method — COSMOS) was used to calculate the in vivo
ground truth susceptibility map.

For all methods their the reconstruction parameters were varied
systematically over a wide range (β for the l2, ε for l1 TV minimization,
and λ for closed-form solution) as well as themasking defining param-
eter, nth. The reconstruction performance of the methods in respect to
the ground truthwas computed as ‖χrecon− χGroundTruth‖2/‖χGroundTruth‖2.
The heuristic L-curve method (Hansen, 2000) was also evaluated
as a possible mean to estimate the optimal reconstruction. This
method consisted in the assessment of the data consistency term,
‖M(FHD(k)Fχ(r) − δB0(r))‖22, as a function of the regularization
term of each method while varying values of the respective regulariza-
tion parameters. The optimal reconstruction was considered as the pa-
rameter set of largest curvature on the L-curve (maximum of second
derivative) as done by (Bilgic et al., 2012).

To evaluate the impact of the regularization used on the various single
orientation methods on the measured susceptibility, regions of interest
were defined using fslview (www.fmrib.ox.ac.uk) on the following
brain regions: GP— globus pallidus; SN— susbtantia nigra; C— caudate;
RN — red nucleus; P — putamen; FM — forceps major; IFOF — inferior
fronto-occipital fasciculus. Various regions of interest with changing
susceptibility values were defined and masking of these regions was
manually performed. The mean value is derived from first averaging
voxels for each ROI within individual subjects and then averaging over
three subjects. The errorwas calculated as themean value over the differ-
ent subjects of the standard deviation in each ROI.

Results

Numerical simulation phantom

To determine the influence of different parameters on the recon-
struction quality of the susceptibility maps we compared the perfor-
mance of the different algorithms on the simulated data set. When
using a continuous prior for the l2 algorithm, the range of the regulariza-
tion parameter β was restricted to values in the range of one order of
magnitude (Fig. 1a). When using a binary mask prior for the l2 algo-
rithm, the range of acceptable regularization increased by a factor ~10,
(Fig. 1b). Generally, the reconstruction quality of the susceptibility
maps was higher using the binary mask as the prior information and
the optimum β value increases with the reduction of the threshold.

These observations were similar when using the l1 denoising algo-
rithm similar for the continuous and binary mask reconstructions
(Figs. 1c and d), however, an increased independence on the parameter
ε was noted, provided the optimal threshold was achieved (marginally
higher than for the l2 method) and lower deviation from the ground
truth was observed. This reconstruction quality was for both, l1 TV and
l2, algorithms less parameter dependent when using the binary mask,
hence only this mask was used in the in vivo applications.

When setting the prior information to a high threshold (regulariza-
tionwas applied virtually on all pixels) lead only to a blurred reconstruc-
tion of the susceptibility in areas where the edges were not identified if
the regularization parameter was not “correctly” defined (compare 1f
and g for l2 method and 1i and 1j for l1 method). When using a low
threshold lead to noise propagation in the reconstructed susceptibility
maps (see Figs. 1h and k), implying that a priori information is required
to ensure a good reconstruction quality aswell as independence of the re-
construction from regularization parameter.

Themodulated closed formmethodhas reconstruction errors smaller
than those obtained bothwith similar direct methods proposed by other
groups (Bilgic et al., 2013; Schweser et al., 2013). Not surprisingly, the
optimum results (and independence on the regularization parameters)
are found when the regularization is limited to a region tightly posi-
tioned around the magic angle cones (nthr = 0.1–0.2) as done in other
k-space modulated iterative methods (Schweser et al., 2012; Wu et al.,
2012).

In vivo data

Qualitative comparison of multiple orientation susceptibility and R2⁎ maps
Following the evaluation of the algorithms on simulated data, we

evaluated their performance on 3D-GRE data obtained as described in

http://www.fmrib.ox.ac.uk


Fig. 1. First, second and third rows show the reconstruction error for l2 norm (a, b), l1 TV norm (c, d) andmodulated closed form and closed form solution (c) of the numerical simulated data
(zero being the lowest reconstruction error). The reconstruction errormapshave as x-axis their dependence on the regularization parameters:β for l2 norm (a, b), ε for l1 TV norm (c, d) and
λ for modulated closed form (e). The reconstruction error maps have as y-axis their dependence on the threshold value nth: for prior information using the continuous mask (a, c), the
binarymask (b, d) and the k-spacemodulationmask (e). Thewhite squares are pointing the parameter-set out for the reconstructed susceptibilitymaps using the binarymask calculated
with; l2 norm (f–h), l1 TV norm (i–k) minimization and modulated closed form (l–n) for different thresholds having; many points excluded (h, k, n), little points excluded (g, j, m) and
almost no points excluded (f, i, l) (low, high and very high threshold).
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methods. The magnitude data obtained was computed after estimating
the coil sensitivities that explain themaximumpower of the signal over
all echo times. As expected, the magnitude signal has high intensity
variations associated with the use of the surface coil reception (the
transmit coil effect is less clear). This methodology allows the calcula-
tion of very robust R2⁎ maps over the whole brain which show both
good vein delineation and deep gray matter contrast (thanks to the
string magnetic susceptibility of de-oxygenated blood and iron) but
also contrast between different white matter bundles (optic radian
and the internal capsule among others are very clearly distinguishable)
and gray white matter contrast (increase contrast is perceived on the
frontal white matter in respect to the occipital and parietal). The back-
ground field removal quality from the complex data can be seen from
the absence of large fields close to the boundaries together with the
Laplacian of δBout having no visible brain structure information. Note
that this method allows most of the brain to be kept after background
removal (including cortical regions parallel to the brain surface). The
resulting high spatial resolution susceptibility maps obtained with
COSMOS show the expected features described in other reports at 7 T
(Deistung et al., 2013). In addition to deep gray matter regions, and
the thalamic nuclei, white matter and significant variations of the con-
trast in different cortical regions were noted: e.g. the rim of increased
para-magnetism of the frontal cortex noticeable at its white matter
surface; increased para-magnetism of the occipital cortex in respect to
the frontal cortex was evident from increased contrast. The latter is in
agreement with previous reports increased transverse relaxation rates
(decreased T2) in the occipital contrast in respect to both white matter
and frontal cortex (Zhou et al., 2001).

Single orientation susceptibility mapping methods
To evaluate the reconstruction quality of the single orientation

methods for a given regularization and threshold the power of the
difference to the susceptibility maps was calculated with the COSMOS
method, which was considered as the reference method, similarly to
what was done for the numerical simulations. When using the l2
norm algorithm the optimum β value increased with the reduction of
the non-zero points (points where the regularization is effectively ap-
plied) present in the binary mask similar the numerical simulations.
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The reconstruction quality using the l1 algorithm shows good recon-
struction using an optimal regularization parameter, although “better”
results seem to be achieved using a binary mask with a high percentage
of non-zero points unlike in numerical simulations. When usingmodu-
lated closed formmethod optimal results were achieved when regular-
izing a relatively high region around the magic angle (nthr = 0.3), as
judged from the used weighting matrix in (Fig. 3 for e) broad and
g) tight region around themagic angle). To verify the quality of the sug-
gested optimal parameter set, susceptibility reconstructions for differ-
ent parameter sets were compared (Fig. 4). After this initial evaluation
all the remaining calculations of susceptibility maps shown throughout
this manuscript were based on the following choice of parameters: the
gradient weighting mask was defined with a nth = 50%; the modified
closed form solution was obtained with nth = 0.2. Therefore, the modi-
fied closed form solution was selected due to its ability to provide
results that are largely independent from the regularization parameter.

Fig. 4 shows a small section of a coronal slice where the striking
artifacts from the ill conditioned nature of susceptibility mapping origi-
nating from a large vein are clearly visible. The original phase measure-
ment in those voxels is expected to have the largest errors, either due
the low SNR of those voxels or due to incomplete flow compensation
(only first order flow compensation was used). The impact of the regu-
larization parameters for the different single orientation magnetic
susceptibility methodologies can be observed both in the reduction of
the striking artifacts and the intensity and separation between the dif-
ferent deep graymatter structures (and their intensities). When largely
under-regularized solution was used, all methods exhibited large
Fig. 2. First, second, third and fourth rows show: magnitude, R2
⁎, field and susceptibility ma

cortex (a–d); basal ganglia (e–h); substantia nigra (i–l).
striking artifacts with the largest, unsurprisingly, being those associated
with the CF and MCF methodology (left column of Fig. 4). Iterative
methods are intrinsically regularized by the limited number of itera-
tions. The QSM maps that suffers the most from over-regularization
method are the l2 based methodology (l2 norm and CF) in which the
values of all brain structures had reduced intensity due to the smooth-
ness constraint as shown on the right column of Fig. 4. The l1 based
method suffered less in the over-regularized regime in terms of in-
tensity attenuation, with the over-regularization manifesting itself
in the piece-wise smoothness of different white matter regions
(right column of Fig. 4). The MCF method had the lowest impact of
the over-regularization, although most striking artifacts have clearly
disappeared. This was attributed to the use of a mask with a k-space
smoothness term applied (nth= 0.2)means that large sections of the
k-space suffer no regularization, in contrast to the CF method where
the whole k-space is regularized. Surprisingly, many of these over-
regularized features can still be observed for regularization parameters
that corresponded to a minimum deviation from the solution using the
over-determined COSMOS method (solutions corresponding to colder
colors in Figs. 2a–c). Using the heuristic L-curve point (represented
in Figs. 2a–c by the black line) indicated solutions with reduced strik-
ing features where the intensity of the all deep gray matter structures
was better preserved. For example, in the MCF image with the L-curve
derived regularization (Fig. 4j) it can be seen that the red nucleus has
a sharper edge on its vertical orientation than on the oblique ones
while in the CF solution (Fig. 4n) the all the boundaries appear
smoother.
p reconstructed with the COSMOS method. Different rows show axial slices covering



Fig. 3. First, second, third column show the mean reconstruction error of all in-vivo data (zero being the lowest reconstruction error) dependence on regularization parameters β for l2
norm (a), ε for l1 TV norm (b) minimization with binary prior and λ for modulated closed form solution (c). The white squares, circles, triangle and star are pointing the parameter-set
out for the reconstructed susceptibility maps used in Fig. 4 as examples of under regularization, optimal regularization based on L-curve heuristic, optimal regularization based on power
of difference to the ground truth (reconstruction with COSMOSmethod) and over regularized reconstruction respectively. An example of the; binary priorM∇ along the left-right direction
where 90 and 40% of the pixels are non-zero is shown on panels (d) and (f), and weighting mask Λ(k) in the k-space for thresholds 0.2 and 0.6 is shown on panels (e) and (g) respectively.
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Fig. 5 shows the impact of different prior information mask, M∇, for
l2 norm and l1 TV norm minimization and weighting mask, Λ(k), for
modulated closed form solution. Applying M∇, with a small number of
non-zero points (40%) on the single orientation methods (l2 norm and
l1 TV norm), leads to a regularization performed only on a limited num-
ber of pixels causing noise amplification (red arrows in Fig. 5). When
the percentage of non-zero points is high (70%), the regularization is
performed everywhere, only excluding points with the strongest edge
information, causing a blurred susceptibility map (Figs. 5c, f). In the
case of the MCF method, a very tight weighting mask ((nth = 0.1)),
only a small number part of ill-conditioned points close to the magic
angle cones were included in the regularization, causing noise related
amplification artifacts (blue arrows in Fig. 5g). Green arrows point out
the border between the substantia nigra and the red nucleus and the
lamina pallidi, which can be easily distinguished using an optimal
cone around the magic angle (nth = 0.2), but not when applying the
regularization on almost the whole k-space as done by the regular
closed form solution (Figs. 5h, i).

High quality whole brain images could be obtained with the three
single orientation methods using a regularization parameter obtained
from the L curve analysis, although the best separation between the
red nucleus and substantia nigra on the coronal slices was obtained
with the COSMOS method (see Fig. 6). The COSMOS reconstruction
also showed previously reported (Deistung et al., 2013) differentiable
gray white matter contrast throughout the brain with a thin paramag-
netic layer being observed in the frontal cortex in the GM–WMinterface
Fig. 4. First, second, third and fourth columns show the reconstructed susceptibilitymaps in case
(b, f, j, n), optimal regularization based on the power of difference to the COSMOS method
reconstructed with: l2 norm (a–d); l1 TV norm minimization (e–h), modulated closed-fo
(highlightedwith a yellow arrow). This layer is not so clearly observable
on any of the single orientation methods χ maps. The red arrows show
regions where the iterative single orientation methods (l2 norm and l1
TV norm minimization) have noise amplification problems associated
with regions where, due to the high gradients observed on the field
map and R2*maps, the gradientweighting terms,M∇, hadmany contig-
uous points equal to zero, and hence no regularization was effectively
applied. In this case the degree of prior knowledge of the susceptibility
information effectively deteriorates the images reconstruction of these
methods. The blue arrows highlight the white matter (optic radiation
bundle) contrast observed throughout all the χmapping methodologies.
The green arrow shows the strong contrast and geometrical delineation
of the cerebellum dentate nucleus that appears with lower intensity on
the l1 TV norm minimization χ map but is otherwise successfully
reconstructed.

Quantitative comparison of susceptibility and R2⁎ mapping
To compare the performance of the different χ reconstruction

methods and R2⁎ maps the correlation was evaluated in ROI in deep GM
and WM. All single orientation methods (l2 norm (red circle), l1 TV
norm (green triangle) and MCF method (black square)) showed a linear
correlation of the ROI with respect to the multiple-angle COSMOSmeth-
od (see Fig. 7a) (corrl1 = 0.94, r2l1 = 0.94, corrl2 = 0.93, r2l2 = 0.96,
corrMCF = 0.95, r2MCF = 0.97). The regions with the highest standard
deviation (substantia nigra and globus pallidus) show also the highest
difference within the single orientation methods. When performing the
of an under-regularization (a, e, i, m), optimal regularization based on L-curve heuristic
(c, g, k, o) and over regularization (d, h, l, p). Different rows show susceptibility maps
rm solution (i–l) and closed-form solution (m–p).



Fig. 5. First, second and third columns show the reconstructed susceptibility maps with optimal regularization based on L-curve heuristic in the case of different prior information mask
M∇ (a–f) for l2 norm and l1 TV norm minimization and weighting mask Λ(k) for modulated closed form solution (g–i). The M∇ was varied from low to high percentage of non-
zero points; 40% (a, d), 50% (b, e) and 70% (c, f) and Λ(k) from tight to broad region around the magic angle with nth; 0.1 (g), 0.2 (h), 0.6 (i). Different rows show susceptibility
maps reconstructed with: l2 norm (a–c); l1 TV norm minimization (d–f) and modulated closed-form solution (g–i).
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same analysis as done in Fig. 7a using the single orientation methods of
the remaining head positions, the substantia nigra had a tendency to be
underestimated, yet the underestimation was always smaller than the
variability observed in the ROI of the different subjects. Although a corre-
lation could be found between R2⁎ and χ values for the deep gray matter
structures, it should be noted that for some of the deep gray matter
Fig. 6. First, second third and fourth columns show susceptibilitymaps reconstructedwith: COSMO
modulated closed-form solution (d, h, l, p). Reconstructions were obtained with optimal regulariz
coronal slice cutting the substantia nigra and the red nucleus (a–d); axial slice through basal gang
the cerebellum (m–p). Colored arrows highlight: red— regions where prior knowledge introduce
structures with enhanced subcortical contrast; green— structure of the nucleus dentatus.
structure significant R2⁎ variations were observed without a correspond-
ing variations on susceptibility (Fig. 7b). The standard deviation found
within eachdeep graymatter ROI in theR2⁎mapswas of the order ofmag-
nitude of the difference between their mean values while for the suscep-
tibility this ratio was increased. As reported in order studies, the
difference between white matter and deep gray matter was significantly
Smethod (a, e, i,m); l2 normminimization (b, f, j, n); l1 TVnormminimization (c, g, k, o) and
ation parameters as defined by L curve heuristic (see circles on Fig. 3). Different rows show:
lia (e–h); axial slice through substantia nigra (i–l), axial slice through the nucleus dentatus in
d artifacts on iterative methods; blue—white matter contrast; yellow— frontal gray matter



Fig. 7. Shows the correlation between the average susceptibility values calculated with single orientation methods; l2 norm (red circle), l1 TV norm (green triangle) and MCF method
(black square) (a), R2⁎map (b) and the COSMOS method on various manually defined regions of interest (corrl1 = 0.94, r2l1 = 0.94, corrl2 = 0.93, r2l2 = 0.96, corrMCF = 0.95, r2MCF = 0.97,
corrR2⁎ = 304, r2R2⁎ = 0.77). Error bars represent the standard deviations of the mean value in each ROI over the different subjects. The labels represent: RN—red nucleus, SN—substantia
nigra, GP—globus pallidus, P—putamen, C—caudate, FM—forceps major, IFOF—inferior fronto-occipital fasciculus.
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increased for the susceptibility (Deistung et al., 2013) which is to be ex-
pected given that the individual contributions of iron and myelin both
tend to increase relaxation, whereas for susceptibility they have opposite
behavior.

Multiple sclerosis lesion detection
The ability ofχmaps todetectmultiple sclerosis lesionswas compared

to conventional GRE acquisition contrasts (magnitude, R2⁎, field) and
MP2RAGE T1-weighted images. Fig. 8 shows a dataset from a multiple
sclerosis patient where only one head orientation was acquired, and
hence the COSMOS susceptibility map could not be calculated.

The green arrow points out a well-defined lesion with a positive
contrast (increased paramagnetism) on all χ maps but that on the R2⁎

map it shows a decreased relaxation rate while on the T1-w MP2RAGE
image it appears dark, suggesting a very short longitudinal relaxation
rate. The yellow arrow shows a lesion with a positive contrast on the
Fig. 8. First, second third, fourth, fifth sixth and seventh columns show: T1-weighted, magnitude
minimization, l1 TV normminimization andMCF of a patientwithmultiple sclerosis. Different row
on all maps but the R2⁎, field and susceptibility maps but has no contrast on themagnitudemap. T
T1w and R2⁎map.
magnitude images and susceptibility maps but on the R2⁎ map it
shows bright ring surrounding the lesion and the phase image shows a
dark ring. The blue arrow highlights a lesion which appears diffuse
both on the magnitude and the R2⁎maps (with lower relaxation rate),
but appears better confined andwith a positive contrast on the suscepti-
bility maps and negative contrast on the T1-w images (R1 values similar
to graymatter). The red arrow shows a lesionwithwell-defined positive
contrast susceptibility and fieldmaps but shows no contrast on themag-
nitude map.

Discussion

Comparison of susceptibility and R2⁎ mapping

For the first time, at 7 T, a comparison of the sensitivity of R2⁎ and
χ maps calculated from exact the same data set was performed,
, R2
⁎, field and susceptibilitymap reconstructedwith single orientation algorithms; l2 norm

s show axial slice through different lesions. The arrows define different lesions; red— visible
he green arrow points on well-defined lesionwith a positive contrast on all maps but for the
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where all different orientations were used to create both the R2⁎ and
the susceptibility maps while in previous reports two different se-
quences and repetitions were used to retrieve R2⁎ and susceptibility
maps (Deistung et al., 2013). We conclude that using the proposed
coil combination protocol, the R2⁎maps showed comparable or supe-
rior contrast to that shown by the susceptibility maps between the
different deep gray matter regions. The biggest sensitivity of the sus-
ceptibility maps in respect to the R2⁎maps was found between white
matter fiber bundles and between white and graymatter (even though
recent findings suggest the observed contrast seen in white matter in
phase images is wrongly attributed to the susceptibility (Luo et al.,
2013)).
Single orientation susceptibility mapping methods

We performed first numerical simulations to evaluate the impor-
tance of the amount of prior knowledge. All methods benefited from
having information fromall possible boundaries inwhich case the result
always showed the lowest distance to the ground truth and good results
could bemet for a large range of regularization parameters. It should be
noted that the very piece wise constant nature of the phantom used in
this numerical simulations benefited the performance of the iterative
methods described that promote pice-wise constant or smooth solu-
tions and are able to effectively denoise the reconstructed susceptibility
map. This explains why the optimum modulated closed form solution
had a significantly greater distance to the ground truth. The modified
closed form solution was able to reduce the striking artifacts but the
level of noise introduced in the field maps is maintained in the χ recon-
structions (see Figs. 1l–n).

When comparing the difference between multiple orientation and
single orientation in vivo data, some small anatomical changes in the
subcortical white matter in the frontal lobe (yellow arrow in Fig. 6)
could be attributed both to: (a) the higher SNR associated with the
implicit averaging performed by having 4 datasets contributing to the
COSMOS reconstruction; (b) or increased artifacts of the single orienta-
tion methods; (c) or a forward model inconsistency associate with the
microstructure; (d) inconsistent co-registration in the frontal lobe due
to air tissue related artifacts. The last two are a plausible hypothesis
because the subcortical layer is not clear on any of the individual field
map images, and the fact that it gets reconstructed on the COSMOS,
where the four datasets have to be physically consistentwith one single
susceptibility map (χCOSMOS) makes the methodology more sensitive
both to the co-registration and the accuracy of the forward model. It
was noticeable that the iterative methods exhibited increased noise in
regions rich in both anatomical and phase contrast (see red arrow on
Fig. 6). Because these regions were discarded from the mask, M∇, the
regularization did not affect them and therefore the ill-posed nature of
the problemwas emphasized. The discussed noise regions on the single
orientation susceptibility maps corrupt the comparison to the COSMOS
method. The effect of the noise regions with very high variability and
standard deviation have a bigger effect than the over regularization
artifacts when comparing single orientation methods to the COS-
MOS. Therefore the COSMOS method provided a less than optimal
estimation and tended to favor over-regularized results. In the
in vivo data, a good choice of the regularized information, either
the prior information mask or ill-conditioned k-space region, ren-
dered the susceptibility reconstruction methods highly independent
of the regularization parameter. Under this scenario it was found
that the L-curve heuristic method gave better results. As computing
the l-curve is inherently computationally intensive having a fast
method to perform the inversion can be an important asset. Throughout
this paper the l1 TV norm seemed to give the sharper anatomical
results, yet this was at a cost of very large computation times (1 h per
reconstruction) while the MCF solution could be calculated in a few
seconds.
Multiple sclerosis lesions

It has been shown that tissue damage due to multiple sclerosis leads
to the loss of macromolecules (myelin sheaths of the white matter
axons) and therefore to a R2⁎ hypo-intensities (negative contrast), reduc-
tion of the R2⁎ relaxation rate (Yablonskiy et al., 2012), whichwere clearly
visible (green and blue arrow in Fig. 8). The phase contrast changes are
dependent from the underlying structural change; myelination damage
could lead to hyper-intensities (positive contrast) while axonal damage
could lead to hypo-intensities (negative contrast) (Yablonskiy et al.,
2012), in our study all lesions showed a positive phase and susceptibility
contrast.Moreover, inmultiple sclerosis lesionswhere there are changes/
damage/injury of themyelin sheet, without loss of the tissue, couldmake
them visible in the phase contrast map without being visible neither on
the R2⁎ nor on the magnitude (Yablonskiy et al., 2012). This is the case
of the lesion pointed with the red arrow which has been hypothesized
to correspond mild or early multiple sclerosis lesions.

Various lesions could be easily detected in the T1-w MP2RAGE data
as reported by others (Kober et al., 2012). All detected lesion were visi-
ble in all the single orientation susceptibility reconstruction methods.
However, some of the lesions are not as clearly defined on the l2 norm
minimization as with the l1 TV norm minimization, which expects to
have an underlying piece wise contrast. The susceptibility reconstruc-
tions with the modulated closed form solution have a lower SNR in re-
spect to the iterative susceptibility reconstruction methods, but their
SNR is comparable to that of the R2⁎ map.

Conclusion

In this article we have implemented a fully flow compensated
protocol for high spatial resolution GRE imaging at 7 T based on a
multi-echo gradient echo sequence. The introduced combination of
the multiple coil data both prevents phase singularities and maximizes
the available SNR of the combination — this is done by implicitly using
all the echo times to compute the receiving coil sensitivities. The pro-
posed method to compute the field map is, from an error propagation
perspective, the one that gives maximum SNR for the given echo
times available (Gruetter, 1993). We have implemented different
state-of-the-art methods to reconstruct susceptibility maps and
performed a systematical analysis and comparison of the effects of the
different regularization parameters and prior knowledge introduced.
From the compared methodologies similar results were obtained with
the highest correlation to the state of art methodology (COSMOS)
being found for the MCF which has the additional advantage of being
of extremely fast computationally.

We conclude that R2⁎ and susceptibility have comparable quality to
distinguish the deep gray matter structures while the susceptibility
maps have a higher sensitivity to myelin related contrast, both in
terms of white matter gray matter structures and early stage multiple
sclerosis lesions.
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Appendix A

Numerical simulationswere performed to evaluate the impact of the
singular value decomposition (SVD) coil combination in the obtained
quantitative maps. An exponential decay with a T2* = 20 ms and
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frequency shift of 0.13 rad/ms was considered as our ground truth
signal. The simulations assumed that nechoes = 5 were acquired using
ncoils = 32 (as in the experimental protocol).

The sensitivities of the 32 coils were created using a random
complex number generator in order to take into account the different
sensitivities of each coil, Ccoil (which in real data depends to a first
order on the distance to the pixel of interest) and also to take into ac-
count the unknown receiving phase. Gaussian distributed complex
noise was added to each channel and echo time. Resulting on

S echo; coilð Þ ¼ Ccoil � e iΔωþ1=T�
2ð Þtecho þ n: ðA1Þ

The noise, n,was introduced so that, in the case where the coil sensi-
tivities were known, the mean SNR after combining the 32 channels
over the 5 echoes was either 100 or 22.

Thematrix S (with ncoils for column and nechoes rows)was factorized
using singular value decomposition and the vectors corresponding to
the first singular value were kept. The left and right eigenvectors corre-
spond to normalized relative coil sensitivities and the normalized time
course. Alternatively, the magnitude time course was calculated by
sum of squares combination (SOS) of the different coils. The field map
calculation was done as described in the methods section (using the
Fig. A1.Whisker plots of the SVD (black) and SOS (dark gray) signal at each echo over the 5000 s
for an SNR of (a) 100 and (b) 22. Histograms (c, d) of themagnitude data residuals (solid black l
SNR of (c) 100 and (d) 22 respectively. Histograms of the error on the frequencymeasurement
(f) 22 respectively.
SNR weighting associated with a given echo time) but, while for the
SVD time course it was computed only once, for the SOS methodology
the fieldmaps were calculated independently for each channel and
these were then combined using the power of each given channel as a
weighting. This process was repeated 5000 times.

Fig. A1 shows on thefirst row that the SVD time course remains closer
to the simulated signal. The reason for this discrepancy is likely due to the
presence of channels that are noise dominated (which is also the case
when using coil arrays with small loops). This deviation is larger for
lower SNRs (see Fig. A1.b) which will contribute to an overestimation
of the relaxation time (especially if doing the fit in the logarithmic
scale). When fitting the simulated signal to the magnitude data as com-
puted by SVD or by the SOS and plotting the residuals obtained over
the 5000 iterations (see Fig. A1.d) it is possible to observe that: the SVD
residuals have a smaller spread than the SOS (although for higher SNR
values N150 they converged); the SVD residuals keep their Gaussian
shape up to much lower SNRs (see Fig. A1.d). With the parameters
used in the simulation the Gaussian shape of the SVD residuals was
kept down to an SNR of 5 although from an SNR b10 deviations from
the expected signal decay could be observed (looking at the magnitude
images in Fig. 1, it can be seen estimated that such low SNR is only
present in regions around veins but not in tissue). When looking at
imulations and their respectivemean curves compared to the simulated signal (light gray)
ine— SVD and solid gray— SOS) after fitting the time courseswith theoretical signal for an
using the SVD (solid black line) and SOS (solid gray line)method for an SNR of (e) 100 and
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the impact of the SVD combination prior to the frequency calculation
(see Figs. A1e and f), it can be seen that such a combination renders
the calculation both more precise and accurate. The negative shift ob-
served in the SOS frequency error at SNR = 22 (see Fig. A1.f) results
from the fact that in noise dominated channels the calculated frequency
shift will be on average the zero. Despite making a weighted combina-
tion of the different channels, the underestimation propagates to the
final SOS field maps.

It should be noted that some vendors already offer solutions with
similar properties for the complex data by using a low resolution coil
sensitivity prior scan. The SVD method has the particularity advantage
of creatingdata driven normalized coil sensitivities that have the feature
of generating the maximum signal as has been demonstrated by other
groups for spectroscopy (Bydder et al., 2008). Such a method could
also find applicability in, for example, DTI where, instead of various
echoes, various contrasts exist with different degrees of SNR. Reducing
the noise propagation in the low SNRmeasurements would allow a bet-
ter accuracy of the measured diffusion parameters.
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