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Abstract

We propose an echo planar imaging (EPI) distortion correction method (DR-BUDDI), specialized 

for diffusion MRI, which uses data acquired twice with reversed phase encoding directions, often 

referred to as blip-up blip-down acquisitions. DR-BUDDI can incorporate information from an 

undistorted structural MRI and also use diffusion-weighted images (DWI) to guide the 

registration, improving the quality of the registration in the presence of large deformations and in 

white matter regions. DR-BUDDI does not require the transformations for correcting blip-up and 

blip-down images to be the exact inverse of each other. Imposing the theoretical “blip-up blip-

down distortion symmetry” may not be appropriate in the presence of common clinical scanning 

artifacts such as motion, ghosting, Gibbs ringing, vibrations, and low signal-to-noise. The 

performance of DR-BUDDI is evaluated with several data sets and compared to other existing 

blip-up blip-down correction approaches. The proposed method is robust and generally 

outperforms existing approaches. The inclusion of the DWIs in the correction process proves to be 

very important to obtain a reliable correction of distortions in the brain stem. Methods that do not 

use DWIs may produce a visually appealing correction of the non-diffusion weighted b = 0 s/mm2 

images, but the directionally encoded color maps computed from the tensor reveal an abnormal 

anatomy of the white matter pathways.
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1. Introduction

In the past couple of decades, Diffusion Tensor Imaging (DTI) (Basser et al., 1994; Pierpaoli 

et al., 1996) and high angular resolution diffusion imaging (HARDi) (Wedeen et al., 2000; 

Tuch, 2002, 2004; Tuch et al., 1999; Frank, 2002; Jansons and Alexander, 2003) have been 

extensively used to investigate the architecture of the human brain. Diffusion-weighted 

images (DWIs) required for these MRI techniques are generally acquired with echo planar 

imaging (EPI) (Turner and Le Bihan, 1990). EPI has the advantage of being a very efficient 

acquisition modality, with excellent signal-to-noise per time. However, a well-known 

problem in EPI is the presence of geometric distortions along the phase-encode direction 

caused by B0 field inhomogeneities (Jezzard and Balaban, 1995) and concomitant fields (Du 

et al., 2002). In addition, local compression due to these distortions cause “signal pile-ups” 

whereas expansions cause a decrease in signal intensities. These EPI distortions are different 

from eddy current distortions, which are caused by the rapid switching of the diffusion 

sensitizing gradients. While eddy current distortions affect the diffusion-weighted images 

significantly more than the images acquired without diffusion sensitization (so called b = 0 

s/mm2 images), all images are affected by EPI distortions in the same manner. Negative 

effects of EPI distortions in diffusion MRI have been reported (Wu et al., 2008; Irfanoglu et 

al., 2012). Although most diffusion MRI processing pipelines include correction strategies 

for eddy current distortions, correction of EPI distortion is still rarely performed.

Correction of EPI distortions generally requires the acquisition of additional data. Jezzard 

and Balaban (1995) proposed to map the static magnetic field (or B0) and use this 

information to perform the EPI correction. Numerous other methods based on B0 mapping 

have been proposed (Reber et al., 1998; Lee et al., 2004; Pintjens et al., 2008; Techavipoo et 

al., 2009). Correction methods that do not require B0 field maps but other data types, such as 

dedicated T1 or T2 weighted structural targets, have also been proposed (Kybic et al., 2000; 

Wu et al., 2008; Tao et al., 2009; Irfanoglu et al., 2011). In their work, Wu et al. (2008) 

showed that their registration-based correction method performs similarly to B0 mapping 

methods.

Even though both B0 mapping and image registration based correction methods have been 

shown to improve geometric distortions (Wu et al., 2008; Irfanoglu et al., 2012), they are 

inadequate in the presence of extreme signal pile-up. Essentially, in regions of the distorted 

image with signal pile-ups, the resulting voxel signal is a superposition of signals from 

several voxels in the undistorted image, and the question of how to redistribute this signal 

back to its corresponding locations is an under-determined (one-to-many) problem and 

cannot be solved with typical EPI plus B0 maps or EPI plus structural information settings.

One solution to the signal pile-up problem involves the acquisition of the same image twice 

with reversed phase-encoding gradients, as initially proposed by Chang and Fitzpatrick 
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(1992) for images suffering from field inhomogeneities due to imperfections in the magnet 

system or magnetization of the object being imaged. This method is referred to as “blip-up 

blip-down” in this work. The distortion field in the two images is reversed: the signal “pile-

up” regions in one image correspond to regions of signal “dilution” and vice-versa. This 

provides the necessary information for the originally under-determined system to 

redistribute the signals to their correct locations. In their work adapting this method to EPI, 

Bowtell et al. (1994) and Morgan et al. (2004) proposed using the “cumulative line-integral” 

method, which states that the cumulative signal along a phase-encoding line between 

corresponding points in the up and down images should be equal and that these points 

should be equidistant to the true anatomical location. They also showed the improvements 

obtained with their method on diffusion data, specifically apparent diffusion coefficient 

maps obtained from three diffusion-weighted images (Morgan et al., 2000). Other groups 

have reported improvements with similar blip-up blip-down strategies for fMRI and DTI 

data (Voss et al., 2005a,b; Embleton et al., 2010). These methods suffer from numerical 

instabilities and because of their 1D nature (phase-encoding lines), the computed 

displacement fields were non-smooth. In their work, Andersson et al. (2003) proposed a 

different strategy, which aimed to estimate the B0 map from the two images acquired with 

reversed phase encoding, using an image restoration approach. This methodology, which 

was later released as part of the FSL package (Smith et al., 2004) under the name TOPUP, 

operates on 3D space instead of the initial method’s 1D and can redistribute the signal with a 

least-squares based method once the B0 map is estimated. TOPUP has since become a 

popular blip-up blip-down correction methodology and has been the tool of choice for the 

Connectome project (Sotiropoulos et al., 2013).

A few years ago, Holland et al. (2010) proposed a simple and efficient nonlinear, non-

parametric image registration based EPI distortion correction scheme, EPIC, based on 

hierarchical smoothing of distorted images. This method has been experimentally 

implemented in a Siemens scanner (Benner et al., 2011) and its robustness tested under 

different conditions (Shin et al., 2011). In addition to diffusion MRI, it also has been applied 

to perfusion MRI (Vardal et al., 2013). Other forms of registration-based correction 

algorithms, such as Demons registration and variational optimization based methods have 

also been proposed in the blip-up blip-down context (Lyksborg et al., 2012; Olesch et al., 

2010), and special deformation field regularizers to better physically model the displacement 

field have been employed (Ruthotto et al., 2012).

Blip-up blip-down protocols have also been used for purposes other than EPI distortion 

correction, such as eddy current correction for DWIs (Bodammer et al., 2004), vibration 

artifact correction (Mohammadi et al., 2012), correction of distortions due to metallic 

objects (Skare and Andersson, 2005) and N/2 ghosting (Xiang and Ye, 2007). There have 

also been significant developments on the acquisition front (Bhushan et al., 2013; Gallichan 

et al., 2010; Chang et al., 2013).

The aforementioned blip-up blip-down distortion correction methods significantly improve 

correction quality for EPI distortions, compared with field-mapping and registration 

techniques. However, there are instances in which they still perform sub-optimally. While 

experimenting with existing tools on highly distorted diffusion MRI data, we experienced 
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less than satisfactory outcomes, possibly due to the limitations of the underlying physical 

model, i.e., the “blip-up blip-down distortion symmetry”, which assumes a constant B0 field 

regardless of subject motion, magnetic field drift from heating, and identical shimming 

between acquisitions. Furthermore, the presence of imaging artifacts, such as Gibbs ringing 

around signal pile-ups, N/2 ghosts, hitting the noise floor in expanded regions, and signal 

drop-outs, change the mass and the distribution of the cumulative signals. Finally, in the 

case of diffusion data, the deformation field to be used for correction is typically calculated 

using blip-up and blip-down b = 0 s/mm2 images. This deformation field may inadequately 

describe the distortion in regions with uniform T2 and proton density contrast. In this work, 

we propose a novel correction framework based on Diffeomorphic Registration for Blip-Up 

blip-Down Diffusion Imaging (DR-BUDDI). We will first build the mathematical 

framework of the proposed method and depict our entire processing pipeline, which is now 

part of the publicly available TORTOISE diffusion MRI processing package (Pierpaoli et al., 

2010). We will then report DR-BUDDI’s performance relative to existing strategies and 

subsequently raise several questions that can potentially affect any blip-up blip-down 

correction approach and analyze their effects.

2. Materials and Methods

The distinct properties of the DR-BUDDI correction framework are as follows:

• The deformation model (Section 2.1.1): In our experiments with existing 

registration-based blip-up blip-down correction methods, we observed that with 

very large distortions, the performance of the correction algorithm decreases 

significantly. Therefore, we aimed to use a deformation model capable of dealing 

with large deformations. A suitable deformation model for our framework is the 

symmetric, diffeomorphic, and time-varying velocity-based model proposed by 

Avants et al. (2008).

• Two deformations (Section 2.1.1): One of the main assumptions of blip-up blip-

down corrections is that the B0 field is constant between the acquisitions, hence the 

distortions are exactly the opposite of each other, disregarding possible 

inconsistencies introduced, for example, by subject motion or magnetic field drift. 

Therefore in our framework, instead of one deformation field (and its inverse), we 

use two codependent fields that are nearly the inverse of each other but allow 

flexibility to compensate for any changes in the B0 field.

• Structural image information (Section 2.1.2): In the presence of very large 

distortions or other imaging artifacts, including additional a priori information from 

an undistorted target would be helpful. Therefore, we further constrain the 

deformation fields to pass through a distortion-free structural T2W image at the 

midtime point to improve registration accuracy.

• Diffusion image information (Section 2.2.3): To achieve a robust registration in 

regions that appear homogeneous in the b = 0 s/mm2 images we hypothesized that 

adding information from the diffusion-weighted images would be beneficial. 

Therefore, the proposed method also employs pairs of blip-up blip-down diffusion-

weighted images in addition to the b = 0 s/mm2 images.
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• Anisotropic deformation regularization (Section 2.2.4): Deformation regularization 

is a crucial component of each diffeomorphic registration algorithm. However, the 

scale of regularization kernels can also have an impact on registration quality. A 

new form of deformation regularization is employed to prevent bleeding of small 

structures into others. Instead of using traditional Gaussian or B-splines kernels, 

this method employs a partial differential equations (PDE) based regularization that 

results in locally anisotropic smoothing of the deformation fields.

2.1. Mathematical Framework for the Similarity Metrics

In this section, we will describe the mathematical foundations of DR-BUDDI.

2.1.1. Deformation Model – Metric 1 (ξ1)—Typically, a registration-based blip-up blip-

down correction algorithm uses one deformation field and its inverse to maximize the 

similarity between the Jacobian manipulated transformed images. The similarity metric ξ is 

defined as:

(1)

where Iup and Idown are the blip-up and blip-down (b = 0 s/mm2) images, ϕ is the forward 

deformation field,  is the Jacobian determinant of the deformation field, Ω is the 

image domain, and CC is the cross-correlation metric.

To achieve the goals described in Section 2, rather than a basic registration algorithm with 

one deformation, we propose using a large deformation diffeomorphic model with two 

deformations. Avants et al. (2008) proposed a non-linear, symmetric, time-varying velocity 

field based registration algorithm, namely SyN, which quickly became very popular in the 

image registration community thanks to the ANTS package (Avants et al., 2011). The 

fundamental idea behind SyN is that instead of registering the moving image to the fixed 

image, it registers both the fixed and the moving image to a middle image. It achieves this 

by first parameterizing the registration space with time [as initially proposed by Christensen 

et al. (1996)], with the fixed image representing the image at time point t = 0 and the moving 

image, the image at time t = 1. SyN then aims to maximize the similarity of the fixed image 

at time point t = 0.5 with the moving image at time point t = 0.5, with two deformation fields 

guiding each respective part. These deformation fields are guaranteed to be of approximately 

the same norm due to constant parameterization of time and gradient step length. The reader 

is referred to (Avants et al., 2008) for further details. The application of this strategy to the 

blip-up blip-down correction problem is particularly appealing because the undistorted EPI 

image we aim to compute can be considered as the middle image in the SyN formulation.

The first step is to define the blip up and down problem in the framework of the SyN 

formulation. If we consider the blip-up image as the image at t = 0 and the blip-down image 

as the image at t = 1, the middle image at t = 0.5 should ideally be the image free of 

distortions. Let ϕ1(x, t) be the time-varying displacement field that maps the fixed image to 

the moving image and ϕ2(x, t) be the field that maps the moving image to the fixed image. 

The middle images may be defined as:  and . 
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Then the original SyN formulation from Avants et al. (2008) can be defined without the 

regularization term as:

(2)

The derivations for the displacements computed using this metric can be found in Appendix 

A.1. This metric has desirable features; however, it needs to be adapted to the context of EPI 

distortion correction with blip-up blip-down images. First, there is an infinite number of 

middle images that are guaranteed to be of equal displacement from both original images, 

forming a hyper-plane where our desired undistorted image sis just a point. For our 

purposes, we need the registration to converge to that point. Additionally, this metric does 

not take into account signal compression and expansion that occur in EPI distortions. We 

address these issues as described in the following sections:

2.1.2. Constraining Registration with an Undistorted Structural Image – Metric 
2 (ξ2)—The inability to guarantee that the middle images are distortion-free could be 

overcome if the time-dependent evolution of the registration were guided by the correct 

anatomy at the middle time point t = 0.5. Additionally, this guidance could also serve 

regularization purposes in the presence of undesired artifacts. For these reasons, we propose 

introducing an undistorted T2W structural image  to the original SyN formulation of 

Equation 2. The metric ξ2 can be written as:

(3)

This metric encourages similarity between the structural and middle images. Note that this 

method is different from registering the blip-up and down images to the structural image 

because the displacement fields ϕ1 and ϕ2 are of the same norm and can be interrelated as 

further described in Section 2.2. Therefore, this formulation enforces the blip-up image to go 

through the structural image at t = 0.5 while being registered to the blip-down image 

(similarly for the down image), and thus the middle images are guaranteed to be distortion-

free. However, this metric still does not include knowledge about signal pile-ups and 

expansions. The derivation of displacements originating from this metric can be found in 

Appendix A.2.

2.1.3. Incorporating Signal Expansion and Compression Information Using the 
Structural Image – Metric 3 (ξ3)—As described by Bowtell et al. (1994), once a perfect 

correspondence is established between the blip-up and down images, the final distortion-

corrected and signal-redistributed image  can be computed as the geometric average:

(4)

This image itself could be used within the optimization to maximize the similarity between 

the final reconstructed image and the structural image:
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(5)

The displacement directions derived from Metric 3 can be found in Appendix A.3. Metric 3 

relates the distortion corrected EPI image with properly redistributed signal, , to the 

structural image, hence overcoming the weaknesses of Metric 2. It should be noted that, with 

Metric 3, proper signal redistribution is obtained only for the combined image  without 

the need to produce geometrically corrected individual images Iup and Idown. Desired results 

in terms of both geometrical correction of individual images and signal redistribution can be 

achieved when ξ2 and ξ3 are used together.

2.1.4. Incorporating Signal Compression in the Absence of a Structural Image 
– Metric 4 (ξ4)—The typical approach to include signal compression and expansion 

information in a registration framework is to modulate the transformed images’ signals with 

the Jacobian determinants of corresponding deformation fields (Tao et al., 2009; Holland et 

al., 2010). For completeness, we also include a metric incorporating this approach in the 

standard SyN formulation. Because our model does not assume absence of motion between 

the blip-up and down images, the phase-encode direction of the middle images does not 

have to coincide with an image axis, hence our deformation Jacobians are full 3 × 3 matrices 

instead of a single scalar. Thus, the middle images are defined as:

(6)

(7)

and our similarity metric employs these modulated images as:

(8)

This metric, although showing an improved handling of piled-up and expanded regions, also 

has drawbacks. Because this metric relies on the second order spatial derivatives of the 

deformation field, it is very sensitive to noise and artifacts, such as Gibbs ringing, and the 

deformation field has to be strongly regularized. Additionally, as stated in Andersson et al. 

(2003), computing the correct signal using blip-up and down images is almost always more 

robust than manipulating single images with Jacobians. Finally, some of the challenges 

involved with ξ1 still apply; the middle images are not guaranteed to be distortion-free 

images, and further guidance for the velocity fields is required, especially under non-ideal 

conditions.

In our software package TORTOISE, we give users the option to use any combination of the 

proposed metrics. ξ2 and ξ3 require an anatomical structural image, and ξ1 and ξ4 can be 

used if one is not available.
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2.2. Constraints and Other Properties of the Registration

2.2.1. Phase-Encoding Direction—EPI distortions result in displacements along the 

phase-encoding direction . However, the gradient formulations in the Appendix produce 

free-form deformations, which need to be further constrained along  to properly model 

the physical problem. Let  and  be the rotational components of the rigid (affine or 

quadratic) registration that map the blip-up and down images to the structural image, 

respectively. Assuming original phase encoding along the y-axis for simplicity of 

illustration, the new phase-encoding direction can be written as:

Therefore, for all metrics, the gradient vectors should be projected onto the new phase-

encoding direction, so that for example for the up data:

2.2.2. Enforcing Deformation Equality—Theoretically, a deformation field ϕ and its 

inverse ϕ−1 would map the blip-up and blip-down image respectively onto the undistorted 

image. In Section 2.1, we intentionally modeled these two deformations separately as ϕ1 and 

ϕ2. Nevertheless, it is still desirable to have control over the degree of similarity imposed on 

the two deformations. For this reason, we introduce another term to our metrics to softly 

constrain the (inverse) similarity between the two fields:

(9)

where ‖.‖ is the L2 norm. Then the displacements can be rewritten as:

(10)

The formulation is similar for ϕ2 and the derivations can be found in Appendix A.4. The 

parameter β is a continuous user-defined parameter that forces ϕ1 and  to be identical 

when set to one, and leave them independent when set to zero.

2.2.3. Incorporating Diffusion-Weighted Imaging Information—Traditionally, blip-

up blip-down corrections have been performed on b = 0 s/mm2 images. b = 0 s/mm2 images 

are  and proton density weighted. This weighting results in good discrimination between 

white matter, gray matter and cerebrospinal fluid (CSF), but does not allow the depiction of 

various pathways within white matter regions as they have homogeneous signal intensity. 

Therefore, the cost function of the registration within these regions is very flat in the b = 0 

s/mm2 images. Using only b = 0 s/mm2 images to estimate the deformation field for 
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correction may produce highly inaccurate results within white matter. Therefore, we 

investigated the advantage of adding DWIs to be used in a multi-channel registration 

framework. DWIs intrinsically contain diffusion anisotropy information; this information 

enables a better depiction of individual pathways in white matter regions. In such a multi-

channel registration setting, each channel provides a displacement field; these fields are 

subsequently combined into a single field with different possible weightings. For example, 

Metric 2 becomes:

(11)

There are several choices for the DWI weight factors αi:

• Manual weighting: Weights for each channel are entered manually as parameters to 

the correction. This approach provides the possibility of weighting artifactual 

images less than other channels.

• Equal weighting: Weights are automatically computed to be equal for each channel.

• Signal-based weighting: Weights are computed voxelwise relative to the signal 

level in the corresponding DWI, with less weighting for low signals to avoid 

having the registration driven by low signal-to-noise ratio features.

• Median weighting: Instead of a weighted average of the deformation fields from 

each DWI channel, this approach chooses the median displacement for each voxel 

and provides robustness against artifactual results.

The number of diffusion-weighted images N to be used is a user-defined parameter. Our 

default setting employs six DWIs, the minimum number to cover all directional contrast, 

similar to the requirements in diffusion tensor computations. Registration time increases 

linearly with the number of DWIs.

Another issue is the use of acquired images versus synthesized images. In DR-BUDDI, users 

may use the real DWIs or perform a quick tensor fitting for both the blip-up and down DWI 

data sets, then estimate the b = 0 s/mm2 image and synthesize the DWIs from the initial 

diffusion tensors. If the use of acquired DWIs is selected, all the b = 0 s/mm2 images are first 

quadratically registered to the first one and averaged, then the first N DWIs are selected 

from the dataset. If the synthetic option is preferred, the b = 0 s/mm2 image is estimated 

from tensor fitting and N DWIs are synthesized based on a gradient scheme originating from 

the electro-static repulsion method (Jones et al., 1999).

2.2.4. Deformation Regularization—Traditionally, regularization of displacement fields 

has been achieved by convolution with Gaussian or B-splines kernels. In this work, we 

preferred to use an anisotropic filter to avoid blending neighboring regions such as the brain 

stem and the surrounding cerebrospinal fluid. For this purpose, the vector-valued image 

regularization framework proposed by Tschumperlé and Deriche (2005) is employed. For 

the details of the implementation of this filter within DR-BUDDI, refer to Appendix A.5.
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2.2.5. Quadratic Registration-Based Initialization for Concomitant Fields—EPI 

distortions consist of susceptibility distortions and concomitant field distortions (Du et al., 

2002). The latter is a global distortion that can be corrected with transformations similar to 

those used for eddy-current distortions that affect the diffusion-weighted images. Therefore, 

while performing the initial registration of the blip-up and down images to the structural 

image, we employ the quadratic transformation originally proposed by Rohde et al. (2004) 

to correct for eddy-current distortions. This approach provides a better initialization for the 

diffeomorphic registration and, therefore, a faster and more robust correction. The effect of 

this initialization is depicted in Figure 1.

2.3. Integration of DR-BUDDI in a Comprehensive DWI Preprocessing Framework

We integrated the proposed blip-up blip-down correction algorithm into the TORTOISE 

diffusion image processing software package (Pierpaoli et al., 2010). An illustration of the 

complete pipeline is depicted in Figure 2. Processing starts with independent motion and 

eddy current distortion corrections for both the blip-up and down data sets in the DIFFPREP 

tool of TORTOISE. After this step, all DWI volumes in both data sets are aligned to their 

corresponding b = 0 s/mm2 images and the B-matrices for all volumes are properly 

reoriented (Rohde et al., 2004). DIFFPREP also outputs two transformation files, one for 

each data set, describing the entire motion and eddy current distortions for all volumes. 

These transformation files are fed into the DR-BUDDI tool. The b = 0 s/mm2 images for 

both blip-up and down data are then quadratically registered to the structural image within 

DR-BUDDI to correct for concomitant field distortions and align both images to the 

structural image’s space, where blip-up blip-down correction is then performed using both 

the b = 0 and diffusion-weighted images. The resulting deformation fields are subsequently 

combined with each DWI’s motion and eddy current transformations to generate the overall 

displacement fields, which are used along with the original DWIs to generate the corrected 

blip-up and down diffusion data sets with one interpolation step. Lastly, these two data sets 

are combined using geometric averaging to generate the final corrected data set. Because of 

the B-matrix rotation process during motion correction in DIFFPREP, the two B-matrices of 

the corrected blip-up and down data sets will most likely not be identical. As a heuristic 

solution, the arithmetic average of these two B-matrices is output as the B-matrix of the final 

corrected data, which are ready for tensor operations in DIFFCALC. The TORTOISE 

package can be downloaded from: http://www.tortoisedti.org.

2.4. Experimental Setup

2.4.1. MRI Data—Several types of data were used for the experiments of this work. The 

first two sets of data were collected with parameters representative of clinical scanning at 

1.5T and 3T to test the performance of the algorithm under typical distortion levels. The first 

set of data (Test Set 1) was collected on a 1.5 Tesla scanner (GE Medical Systems) equipped 

with an 8-channel receive coil and consisted of five young subjects (2 males; mean age = 36, 

age range 24–48 years). DWIs were acquired with a single-shot spin-echo EPI sequence 

(FOV = 24 × 24 cm, slice thickness = 2.5 mm, matrix size = 96 × 96, 60 slices). No parallel 

imaging was used in this case. Each diffusion experiment consisted of two image volumes 

with b = 0 s/mm2 and 12 volumes with b = 1100 s/mm2. For each subject, the protocol was 

repeated, acquiring both phase-encoding directions, Anterior-Posterior (AP) and Right-Left 
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(RL), with both blip-up and blip-down, yielding four data sets per subject: APup, APdw, 

RLup, RLdw. An undistorted T2W scan was also acquired with a fast spin-echo sequence 

(FOV = 24 cm, TR = 9000 ms, TE = 81.5 ms, matrix size = 256 × 256, slice thickness= 2.5 

mm, 60 slices).

The second set of data (Test Set 2) was collected again on a population of five subjects (4 

females, 1 male; age range 21–30 years) on a 3T Siemens Skyra scanner, to assess the 

correction performance on data acquired with parallel imaging at high field. DWIs were 

acquired with a 32 channel coil (FOV = 22 × 22 cm, slice thickness = 2 mm, matrix size = 

110 × 110, 80 slices) and the GRAPPA factor was set to 2. Diffusion experiments consisted 

of five b = 0 s/mm2 and 30 volumes with b = 1100 s/mm2 (TE/TR = 91/12400 ms) with no 

repetition. Diffusion data for all four phase-encoding directions along with a T2W image 

were collected similarly to the previously described test set.

The third set of data (Test Set 3) was collected on a single subject with the aim of testing the 

algorithm on a high-quality, good spatial resolution and large number of gradients data set 

with large EPI distortions. Data from the same healthy female subject were collected on two 

3 Tesla scanners, GE 750 and Siemens Skyra, with a 32-channel receive coil. DWIs were 

acquired with a single-shot spin-echo EPI sequence (FOV = 256 × 256 mm, slice thickness = 

2 mm, matrix size= 128 × 128, 82 axial slices). No parallel imaging was used. Each 

diffusion experiment consisted of five image volumes with b = 0 s/mm2 and 30 volumes 

with b = 1100 s/mm2, yielding 10 b = 0 s/mm2 images and 60 DWIs. Similar to the 

procedure with previous data sets, the diffusion experiment was repeated to acquire APup, 

APdw, RLup, RLdw data sets, along with a high quality T2 weighted scan. The scans in the 

Skyra scanner were repeated, introducing mild subject motion.

The fourth set of data (Test Set 4) was selected because it had severe flow artifacts in b = 0 

images, enabling us to test the robustness of the algorithm with respect to this type of 

artifact. One healthy subject was scanned with a Philips Achieva 3T scanner at 2 × 2 × 2 

mm, FOV = 22 cm, matrix size= 128 × 128, 90 slices, TR = 11.5 s, TE = 92 ms. The 

diffusion experiment consisted of six b = 0 s/mm2 images, 6 b = 50 s/mm2 images, 6 b = 350 

s/mm2 images, 6 b = 600 s/mm2 images, 6 b = 80 s/mm2 images and 36 b = 1100 s/mm2 

images.

The last set of data (Test Set 5) was collected from an exvivo mouse on a Bruker 7T vertical 

scanner. The images were acquired with both a conventional (CPMG) spin-echo (SE) 

sequence and EPI. The DWIs acquired with the spin-echo sequence are not affected by EPI 

distortions and can be considered as undistorted ground truth images. Data from both 

sequences were acquired at 0.1 mm isotropic resolution, 160 × 120 matrix size and 100 

slices. Similar to the previous datasets, EPI data were collected using all four phase 

encoding directions and consisted of 32 DWIs and 6 b = 0 s/mm2 volumes. Due to the longer 

acquisition time, the spin-echo sequence consisted of 10 DWIs with 2 b = 0 s/mm2 volumes.

2.4.2. Registration Quality Assessment—The proposed EPI distortion correction 

method was compared with two other blip-up blip-down methods: TOPUP from the FSL 

package (Andersson et al., 2003) and EPIC (Holland et al., 2010). For each method, the 
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similarity of the corrected b = 0 s/mm2 images to the structural image was visually inspected 

and voxelwise local correlation maps of the signal intensities were also generated. Visual 

inspection was also performed on the DEC maps (Pajevic and Pierpaoli, 1999).

We tested quantitatively the performance of the various methods using the approach 

proposed by Wu et al. (2008). The APup–APdw data sets were used to generate the corrected 

data set APcorr, and similarly the RLup–RLdw data sets were used to generate RLcorr. 

Theoretically, a perfect correction should produce morphologically identical APcorr and 

RLcorr images, and maps of tensor quantities generated from these two data sets should be 

super-imposable. Therefore, correction performances were assessed by analyzing the 

voxelwise standard deviation (SD) maps of tensor-derived quantities such as fractional 

anisotropy (FA) and Trace (TR) computed from the two corrected datasets.

For a population analysis of SD maps, all diffusion tensors from both APcorr and RLcorr 

images for all subjects were first registered nonlinearly using DTITK (Zhang et al., 2006) to 

obtain the transformations that would morph each tensor to the average morphology of the 

population, and the resulting RLcorr deformations were applied to the SD maps to compute a 

population average SD map for the quantity of interest (TR or FA).

For the first two test sets, the Wilcoxon signed-rank test was used to determine whether one 

of the methods had statistically significantly (5% confidence level) lower SD values in a 

given voxel. For each method, the number of voxels where that method was statistically the 

best was counted, and this total was ranked against other methods’ totals. Additionally, 

whole brain median SD values were computed for each individual and for each method, for 

both FA and TR, and reported. A paired t-test was performed on the median values to 

determine significant differences. For Test Set 3, with only one subject, the difference image 

was displayed for visual inspection.

2.4.3. Additional Experiments—One of the goals of this work is to answer several 

previously uninvestigated questions pertaining to blip-up blip-down acquisitions and 

corrections. In this Section, we will describe these questions and our analysis methodologies 

to investigate them.

• Blip-up blip-down symmetry: To test the potential advantages of using two 

deformation fields rather than one and its inverse in presence of motion, two data 

sets were selected from Test Set 3: one with minimal motion between the b = 0 

images of the blip-up and down data sets and one with relatively large motion. This 

test was performed by setting β to 1 in Equation 10 both forcing inverse equality of 

deformations.

• Effects of correction on directional information: To check the effects of using 

DWIs during correction, we used the GE data from Test Set 3 and compared the 

DEC maps produced after DR-BUDDI correction.

• Flow artifacts in b = 0: Flow artifacts are more prominent in the b = 0 s/mm2 

images than DWIs and using only b = 0 images might not produce the desired 

results. To assess the effects of flow artifacts, we used Test Set 4 and performed the 
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correction twice with DR-BUDDI, once with only the b = 0 images and once with 

DWIs weighted significantly more and compared their performances.

• Scanner manufacturer differences: EPI distortions may be a source of low 

reproducibility for data acquired on scanners from different manufacturers in multi-

center studies. We tested the ability of DR-BUDDI processing with default 

parameters to increase reproducibility of DTI metrics on data acquired for Test Set 

3. Single subject SD maps for FA and trace were computed with and without 

correction.

• Gibbs ringing: Gibbs ringing is common on b = 0 s/mm2 images propagating from 

regions with extreme signal pile-up. To assess the effects of Gibbs ringing artifacts 

on DR-BUDDI correction, a data set from Test Set 3 with particularly evident 

signal pile-ups was selected. We tested two different DR-BUDDI settings: 1) the 

default, and 2) deformation regularization and DWI usage turned off.

2.4.4. Implementation and Settings—For the experiments in this paper, the default 

settings were used for the proposed and compared methods while testing the performance of 

DR-BUDDI with respect to the existing algorithms (Section 3.1). DR-BUDDI’s default 

settings can be found in Appendix A.6. For the additional experiments, DR-BUDDI 

parameters were altered or optimized but the outcomes were not compared to those of the 

other methods.

For each data set, the corresponding structural image was transformed into anterior 

commissure posterior commissure orientation and DR-BUDDI corrections were performed 

in this space. The DWIs were upsampled by a factor of 2. The experiments were run on a 

dual Intel Xeon system, utilizing DR-BUDDI’s fully parallelized architecture. A typical 

correction employing two metrics and seven pairs of images, on 1mm isotropic data after 

upsampling, took 45 minutes.

3. Results

3.1. Comparative Assesment of Correction Performance

Figure 3 displays the original distorted and the corresponding corrected b = 0 s/mm2 images 

from the three algorithms tested using a single subject from Test Set 1. Data acquired with 

all four phase-encoding directions are presented along with the corresponding structural T2W 

image; images in the top row are encoded with RL and in the bottom row with AP.

The corrected b = 0 images clearly show that all algorithms significantly decreased EPI 

distortions. DR-BUDDI correction produced sharp images with clearly visible tissue 

interfaces, where TOPUP produced images that were more blurred. At this slice level, signal 

pile-ups and expansions were very pronounced. DR-BUDDI was still able to correctly 

reconstruct the olfactory bulbs with anatomically plausible white matter bundles, even for 

the RL encoded data (arrow). TOPUP and EPIC could only partially achieve this for AP 

data, while for RL data, it appears that the corrected image was not consistent with the 

anatomy of this region. The inferior temporal lobes for both RL and AP corrected data were 

again anatomically more accurate with DR-BUDDI. Additionally, both TOPUP and EPIC 
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introduced small artifactual bands in AP corrected data in the temporal lobe near the petrous 

sinus (arrows in AP panel).

Figure 4 displays spatially normalized population maps of both the mean and SD maps for 

FA computed from the APcorr and RLcorr data. The mean FA maps, including those 

computed from the uncorrected data, appear morphologically similar but with different 

degrees of blurring. The SD maps reveal clear differences. The uncorrected EPI distortions 

resulted in very high SD values in the genu and splenium of the corpus callosum (CC) and 

internal capsule. The SD map of DR-BUDDI shows almost no structures, except for a small 

band in the genu of the CC, while those of TOPUP and EPIC show high values at the 

periphery of the genu of the CC and cortical regions. The EPIC SD map also shows high 

values in the splenium of the CC.

Figure 5 displays the same analysis as Figure 4 but for Test Set 2. SD maps computed from 

uncorrected data show large values indicating a significant amount of misalignment in 

several regions. Test Set 2 , however, has less amount of distortions than Test Set 1. 

Consequently, all three algorithms produced better quality corrections for this set. The 

regions showing high values in TOPUP’s and EPIC’s SD maps are the same as those found 

in Figure 4, but the magnitude of the effect is much lower. As for Test Set 1, DR-BUDDI 

showed good overall performance.

Figure 6 presents the same analysis as Figure 5 but at a different slice level. At this level, 

differences among methods can be observed in the orbitofrontal cortex on the average FA 

maps, where the white matter fiber bundles appear more accurately depicted after correction 

with DR-BUDDI (large arrows). The other methods also show larger SD values in this 

region. Additionally, differences among methods can also be observed in the cerebral 

peduncles (small arrows).

Table 1 and Table 2 present the results of the performance comparison across methods for 

Test Set 1 and 2, respectively. In this analysis, lower SD values indicate better performance, 

i.e., better agreement for tensor quantities computed from RLcorr and APcorr data. Results 

are reported for the whole brain median SD value analysis and the voxelwise Wilcoxon 

signed-rank test. In general DR-BUDDI outperformed the other two methods, except for 

three instances in which the median SD value of FA was not the lowest. The paired t-test 

analysis results were consistent with this scenario. For both test sets DR-BUDDI was 

significantly better than the other two methods for TR (all p-values less than 0.018), but for 

FA, statistical significance was only achieved with respect to EPIC with a p-value of 0.038 

and a p-value of 0.0477 for the two test sets respectively. In the comparison with TOPUP, 

the p-values were 0.4 and 0.057.

Figure 7 displays the original distorted images and outputs from the three correction 

algorithms from Test Set 3. As previously stated, parallel imaging was intentionally not 

used, hence the distortions in this test set are severe and more challenging than for typical 

data. Corrections were less accurate for all methods. Even though the results were 

acceptable for the RL data when the EPIC method was used, the algorithm failed to correct 

the distortions for the AP data due to the large motion between the blip-up and down 
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acquisitions. DR-BUDDI again produced anatomically faithful images that appear sharper 

than those obtained with the other methods.

Figure 8 displays images again from Test Set 3 at the level of the brain stem. At this 

challenging level, DR-BUDDI was not able to correctly reconstruct the CSF surrounding the 

white matter within the brain stem with the AP data, whereas TOPUP could. However, with 

TOPUP, CSF also bled into the white matter and artifacts were introduced in background 

regions, though, the artifacts did not affect the brain tissue. EPIC failed again with the AP 

data. No algorithm was able to correctly reconstruct the temporal lobes with RL data, though 

the agreement of AP and RL corrected data was better with DR-BUDDI.

The local cross-correlation maps created with a window size of 5, are displayed in Figure 9. 

They indicate the dissimilarities between the corrected AP images and the structural image. 

These maps provide an additional way of assessing correction quality. Overall DR-BUDDI 

showed a higher correlation with the undistorted T2WI than did TOPUP and EPIC. 

Differences are more pronounced in frontal and occipital areas, posterior portions of the 

cerebellum, and central white matter.

Figure 10 displays the distorted b = 0 s/mm2 images from the RL encoded acqusition of Test 

Set 5, the DR-BUDDI corrected output and the distortion-free spin-echo CPMG data. This 

data set had distortions around the frontal and right-left regions (red arrows) and around an 

air bubble (yellow arrow). Figure 11, top row, displays the DEC maps for both the AP and 

RL EPI data corrected with DR-BUDDI and also the undistorted CPMG data. The DEC 

maps for the three sets are identical at visual inspection. The difference images of FA 

computed from the corrected EPI data and the undistorted spin-echo data (Figure 11 (d)–(f)) 

confirm that the corrected images are structurally very well-aligned to their undistorted 

counterpart. Only a few small structures around the corpus callosum and the cerebellar 

regions are present and the entire images, for both cases, are otherwise homogeneous. The 

air bubble affected the AP data slightly more but still only caused subtle deviations from the 

ground truth CPMG data.

3.2. Results from Additional Experiments

3.2.1. Testing the Blip-up Blip-down Symmetry Principle—Figure 12 (a–b) 

displays the distorted images from two blip-up blip-down acquisitions (Test Set 3) with 

significant motion in one of the acquisitions. The same slice is visualized without any rigid 

registration. The AP data showed large misalignment between the blip-up and down images. 

The computed deformation fields are displayed in (c–d). The second and the fourth fields are 

the inverse fields; therefore should theoretically be identical to the first and third fields, 

respectively. These deformation fields were obtained after quadratically registering each 

image to the corresponding structural image and only represent the distortions due to 

susceptibility. The fields for the AP data are significantly different from each other, whereas 

the fields for the RL data, where motion was negligible, were very similar.

We can hypothesize that the differences between R – ϕ1 and  might be because of 

imperfect registration, gradient heating, or magnetic field drift. However, such issues can 
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not explain the large difference between A – ϕ1 and . The images corrected with 

these deformation fields are in (e) and (g) respectively. The frontal region in these images 

was nicely corrected. A correction strategy that only used a single deformation field, P – ϕ2 

and its inverse , produced the image displayed in (f) with artifacts indicated by the 

arrows.

Another test involved the analysis of one v.s. two deformation models. Figure 13 displays 

the computed deformation fields from Test Set 3, presented in Figure 7. The first two fields 

were generated using a two-deformation model, and the second pair used only a single 

deformation and its inverse. There was minimal motion between the blip-up and down 

images.

In this case, even with the two-deformation model, the displacement fields were almost 

inverses of each other. However, there were differences between ϕ1 and ϕ and ϕ2 and ϕ−1. 

The two deformation model is able to model a larger displacement with ϕ1 in the orbito-

frontal region for the up image, whereas this was not needed for the down image as 

indicated by the similarity of ϕ2 and ϕ−1 in this region. Additionally, the two-deformation 

model was able to capture more local details due to the inherent smoothing with the single-

deformation model.

3.2.2. b = 0 s/mm2 Artifacts—The b = 0 images from Test Set 4, for both the blip-up and 

down data sets, are presented in Figure 14. Inconsistent signal drops originating from flow 

voids ventral to the medulla could affect the quality of the correction. In this case, our 

proposed solution was to manually weight the DWIs more than the b = 0 s/mm2 images as 

signal originating from blood only affects the b = 0 s/mm2 images and is not present in the 

DWIs. Figure 15 presents the Trace images obtained with a correction that equally weighs 

all images and one that weighs DWIs significantly more. The brain stem better matched that 

of the structural image and was less affected by CSF partial voluming when the artifactual 

images were de-emphasized.

3.2.3. Effects of Using DWIs for Correction—Figure 16 displays the effects of using 

DWIs together with the b = 0 image for correction. The pons is homogeneous in the T2W 

image and b = 0 images do not contain enough information for a correct registration of 

pathways. In fact, Figure 16.b shows that the transverse pontine fibers in the ventral aspect 

of the pons appeared broken, when only b = 0 images were used for correction (arrow). 

Including DWIs within DR-BUDDI’s vector-image registration framework solved this issue 

(Figure 16.c). Additionally, the shape of the cortical spinal tracts is also more accurate with 

correction using DWIs.

Figure 17 displays the b = 0 s/mm2 and DEC images from the largely distorted RL data of 

Test Set 3, zoomed in to the brain stem region. Even though CSF bled into white matter 

regions to some degree, the corrections from all methods appear to be acceptable when only 

the b = 0 images are considered. However, one can observe significant differences between 

the methods in the DEC maps. With DR-BUDDI, which also used the DWIs to compute the 

deformation field, the CST (arrows) were clearly distinct and show high anisotropy, whereas 

with TOPUP, the two CST bundles were split into three (arrows) with an artifactual bundle 
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created at the mid-sagittal line. This anatomically correct bundles also have reduced 

anisotropy. With EPIC, the two CST bundles were instead merged into a single one at the 

mid-sagittal line (arrow).

3.2.4. Scanner Differences—With this analysis, our aim was to determine whether DR-

BUDDI can be used to reduce the effect of the variability introduced by different levels of 

EPI distortions from different manufacturer magnets. Therefore, largely distorted data from 

Test Set 3 acquired with identical acquisition parameters on scanners from GE and Siemens 

were used. Distortion levels in the acquired data were significantly different across magnets. 

To determine this difference, the FA (and TR) maps computed from the uncorrected blip-up 

data acquired with the GE scanner were subtracted from the FA (and TR) maps computed 

from the uncorrected data from the Siemens scanner. This process was repeated for the 

uncorrected blip-down data sets and the data corrected with DR-BUDDI. Figure 18 displays 

these subtraction maps. Due to the difference in levels of distortions between these two 

magnets, both the FA and TR subtraction maps show large variations in several regions for 

both the uncorrected up and down data sets. However, DR-BUDDI was able to reduce this 

variability significantly (Figure 18.c).

3.2.5. Gibbs Ringing—Figure 19 displays a b = 0 image with Gibbs ringing artifacts due 

to extreme signal pile-ups around the eye regions (arrows). The deformation field in (b) is 

computed with DR-BUDDI using the image in (a) and its down version for correction, with 

no DWIs and no deformation regularization. As indicated by arrows in (b), the deformation 

field suffered greatly from the presence of such irregular image characteristics, and 

discontinuities or irregularities are visible even in the deformation fields. With the default 

settings (c), DR-BUDDI did not suffer from these issues because of the deformation 

regularizer, and, more importantly, because of its use of DWIs, which do not contain these 

types of artifacts.

4. Discussion

We proposed a novel EPI distortion correction method, DR-BUDDI, for diffusion MRI 

datasets acquired with reversed phase-encoding directions. The proposed method is based on 

symmetric diffeomorphic registration principles and is capable of correcting for large 

deformations. It parameterizes the registration space with time and aims to find a middle 

image that is distortion-free by guiding the registration with additional information and 

constraints. The first piece of additional information is an anatomical, T2W, distortion-free 

structural image, which serves two purposes: 1) to guide the registration through a middle 

time point image that is distortion-free when displacements are large and 2) to regularize the 

registration and make it more robust in the presence of artifacts that may make the images 

inconsistent with the assumption that the transformations for correcting blip-up and blip-

down images should be exactly the inverse of each other. The second piece of additional 

information comes from the use of diffusion-weighted images to help the correction in white 

matter regions that are homogeneous in b = 0 s/mm2 images and also to make the correction 

more robust to the presence of artifacts in the b = s/mm2 image from flow and Gibbs ringing.
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DR-BUDDI outperforms the existing methods in most cases, particularly in the presence of 

motion or other imaging artifacts. It consistently produced sharper images with more distinct 

tissue interfaces and was very effective in preserving the anatomy of white matter pathways 

in regions of large distortions. Our primary criterion for judging the performance of the 

proposed algorithm was to assess the similarity of the corrected Right-Left (RL) phase 

encoded data to its Anterior-Posterior (AP) encoded counterpart with two subject 

populations on 1.5 and 3T scanners. In both cases, DR-BUDDI was generally superior to 

other methods in achieving anatomical similarity between tensor derived maps from 

corrected data acquired with RL and AP phase encoding.

Several common acquisition issues affect the quality of the blip-up blip-down correction 

methods. The first of these issues is motion between the blip-up and down scans. In general, 

the blip-up and down scans should image the same object in the same position, with 

identical orientation of phase encoding. Obviously, subject motion may violate these 

assumptions and may also produce a change in the local B0 field. From our initial 

observations we found that the effects of motion are not negligible with current blip-up blip-

down acquisition schemes of acquiring a full dataset for blip-up, followed by blip-down (not 

interleaved). Simply rigidly aligning images and performing correction as if the phase-

encoding directions of the images were aligned, and as if ∆B0 was identical, led to 

unsatisfactory results. DR-BUDDI accounts for the possibility that the phase-encode 

orientation of the blip-up and down images may be inconsistent, and uses a two-deformation 

field model with a structural target to increase robustness. These strategies helped to 

improve the correction quality in the presence of minor misalignment, but a robust solution 

is still needed in the case of large motion.

Another acquisition related issue is the use of parallel imaging. Due to the reduced degree of 

distortions, correcting the distortions in data acquired with parallel imaging was 

significantly less challenging than without parallel imaging. However, in our experience, 

images acquired with parallel imaging, regardless of the magnet manufacturer, suffer from 

some degree of ghosting. DR-BUDDI opens the possibility of obtaining usable images from 

3T scans acquired without parallel imaging.

Numerous other issues affect correction quality as well. These include flow artifacts, Gibbs 

ringing, ghosting, hitting the noise floor in expanded regions, and gradient non-linearities. 

Even though we did not investigate all these issues, we have shown examples of how DR-

BUDDI can handle Gibbs ringing and flow artifacts. Dealing with these challenges 

necessitates clever deformation regularization strategies or extra sets of images, which do 

not suffer from these issues. Using both structural and diffusion-weighted images within the 

DR-BUDDI framework provides fundamental improvements for the convergence of the 

algorithm to a more stable solution. However, in the presence of such artifacts, the 

parameters, specifically image and metric weights, need to be adjusted accordingly.

With our numerous experiments testing DR-BUDDI correction, we realized that no set of 

fixed parameters produced optimal results for all types of data. In general, we noticed that 

images with moderate to severe degree of distortions, including most 3T data acquired with 

parallel imaging on magnets by the three major manufacturers, can be very effectively 
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corrected with the default settings. Tweaking of parameters was sometimes necessary for 

atypical data. For example, for data with extremely large EPI distortions, better correction 

performance was achieved by increasing the optimization step-length, the correlation 

window size or the time parameterization. Data with pronounced Gibbs’ ringing artifacts on 

the b = 0 s/mm2 images required further deformation field regularization by increasing the 

regularization operator’s kernel size and increasing the weighting of the DWIs, which do not 

suffer from these artifacts. We experienced few instances in which the initial quadratic or 

affine registration failed, in particular when we used a previously masked structural image. 

The solution in this case was to perform a rigid registration of the b = 0 images to the 

structural image, an option which is available to the user in DR-BUDDI. Additionally, we 

wanted to give users the ability to synthesize DWIs through the diffusion tensor model. In 

our experience, using the individual DWIs worked relatively well, however, it can be very 

time consuming for data sets with a large number of diffusion directions. Using synthetic 

images helps as a dimensionality reduction strategy and it can also be useful in situations 

where a few DWIs are artifactual.

Another important aspect we learned about in this work is how to assess the quality of 

corrections when dealing with diffusion MRI data. Traditionally, the similarity of the 

reconstructed b = 0 images to a distortion-free anatomical image has been the main 

assessment tool. However, we have often seen that even when the corrected b = 0 images 

seem perfectly aligned with the structural image, the directionality, size, and anisotropy of 

white matter bundles from the DWI data might be anatomically inaccurate. The most 

egregious examples were found in the pons, where the left and right motor pathways were 

sometimes fused into a single bundle or split into three bundles after correction. Therefore, 

we believe it is of fundamental importance to asses the quality of a blip-up blip-down 

correction method by checking the directionally encoded color maps and fiber tractography 

results as suggested in Irfanoglu et al. (2012). The Trace or Mean Diffusivity maps are also 

very important to assess the amount of CSF bleeding into parenchymal structures after 

registration.

As stated previously, motion has an effect on the B-matrices. After DR-BUDDI correction, 

we generate a corrected blip-up data set and a corrected blip-down data set, each with its 

own B-matrix, which are later combined with geometric averaging to generate the final 

signal-redistributed data. In the presence of motion, the B-matrices for the two corrected 

data sets can be significantly different, and the combination of these two B-matrices for the 

final data is mathematically not straightforward. In our software package, we simply linearly 

average these two matrices. This approximation is acceptable when motion is small but not 

when it is extreme. As a result of extreme motion, the distortions for the blip-up and down 

images will be significantly different and the corresponding diffusion-weighted volumes 

will have different diffusion contrasts. In this case, these volumes should either be excluded 

from the tensor computations or the two data sets should be concatenated rather than 

averaged geometrically.

The metrics proposed in this work assumed T2 contrast for the structural images because the 

cross-correlation measure used to derive the proposed metrics requires a similar contrast 

between the b = 0 s/mm2 and the structural images. In our experiments, the structural images 
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were fat-suppressed T2W images. Another reason for using fat suppressed T2W images is 

that the strong signal from the soft tissue in the head in T1W images, as well as the non fat-

suppressed T2W images, may cause the algorithm to stretch brain regions into the skull. To 

use T1W images as structural images, a mutual information version of the metrics proposed 

in this work should be implemented.

Another question related to the acquisition is about the choice of phase-encoding directions. 

In our previous work (Irfanoglu et al., 2012), we reported that data acquired with Right–Left 

(or Left–Right) phase encoding are more prone to spurious tract asymmetries between the 

right and left hemispheres and that this encoding option should be avoided if possible. 

However, the EPI distortion correction strategy used in that work was less effective than 

those achievable with blip-up blip down methods. Blip-up blip-down acquisitions and 

corrections show great potential in this area as we have shown in this work with the 

similarity of corrected images with AP and RL phase encoding. With RL phase encoding, the 

number of phase-encoding lines in RL acquisitions can be reduced when a rectangular FOV 

is used; this strategy will reduce echo time, and, consequently, increase SNR and possibly 

reduce total scan time. It may therefore be advantageous to consider using RL phase 

encoding for blip-up blip-down corrections.

In addition to DTI, we have been successfully using the proposed method with HARDI 

multi-shell acquisitions as well. Employing the b = 0 s/mm2 and the low q regime images to 

estimate the deformation fields and using these fields to correct the high q images has 

produced good results for diffusion models that are more complex than the diffusion tensor.

Finally, we would like to discuss the advantages of blip-up blip-down protocols. In general, 

because the modality and the quality of the acquisitions are limited by scan time, especially 

in clinical settings, one might question the marginal advantage of blip-up blip-down 

acquisitions. At this point, we can clearly state that the correction quality achieved with blip-

up blip-down data for both the white matter and cortical gray matter regions is unmatched 

compared with previous correction approaches, such as field mapping or simple elastic 

registration. It is important to consider that even though the two datasets are merged into a 

single one, there is not a loss in terms of scan time because the merging operation also 

increases the SNR of the final images. Therefore, if scan time is an issue for DTI 

acquisitions, then it might be more advantageous to reduce the number of diffusion-

weighted directions and acquire blip-up and down data. Therefore, considering the 

advantages, we expect the diffusion MRI field to move toward protocols with blip-up blip-

down acquisitions for clinical scans in the near future.
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A. Appendix

A.1. Displacements from SyN Metric

For completeness, SyN displacement derivations will be repeated here. See Avants et al. 

(2008) for further details. Following the notations of Avants et al. (2008), let the local cross-

correlation metric be:

(12)

(13)

(14)

with n the local correlation window size, μup the mean signal within this window from , 

and .

The displacements can be computed using Euler-Lagrange equations applied to Equation 12. 

From chain rule:

(15)

(16)

(17)

with

(18)

similarly:
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(19)

A.2. Displacements When a Structural Image is Used

In Metric 3 of Equation 3, because the second term of the summation does not depend on ϕ1, 

its gradient reduces to zero. The gradient of the first term can be computed in the same 

manner as in Appendix A.1 to yield:

(20)

and for the down image:

(21)

A.3. Displacements from Signal Redistribution Metric

By chain rule, the displacements when a structural image and signal-redistributed image are 

used can be found as:

(22)

Similarly to the previous derivations:

(23)

and

(24)

(25)

A.4. Deformation Equality Soft Constraints

Assuming there is no motion between the up and down images and no changes in the B0 

field, we would expect  to be equal to . Then the weighted average for the new 
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displacement, which assumes no motion but changes in the B0 field can be written as (with β 

∈ [0, 1]):

(26)

In the presence of motion, one can not simply average the displacements from the two fields 

because the phase encoding directions are different. Therefore, one needs to rotate the 

displacement vector of the “other” field onto the current one. This can be done by using the 

rotation matrices that mapped both the up and down images onto the structural image. 

Hence, the rotated displacement vector can be written as:

(27)

producing the soft-constrained deformation field equation as:

(28)

A.5. Anisotropic Deformation Regularization

In this section, we will first recap the PDE regularization method for vector images proposed 

by Tschumperlé and Deriche (2005) and then describe how we use it in our framework. Let 

G(σ) be an isotropic Gaussian kernel with standard deviation σ, and let the displacement 

field originating from channel i of  be Di. The traditional approach to regularize the 

deformation fields is with Gaussian convolution as:

where * is the convolution operator, which is identical to:

(29)

where Hi is the local Hessian matrix of the vector component Di, and time parameterization 

t defines the standard deviation σ in the convolution formulation. However, one is not 

restricted to isotropic Gaussian with this PDE-based formulation. If we introduce a 3 × 3 

anisotropic structure diffusion tensor T (not to be confused with diffusion MRI tensor) to 

Equation 29, the new regularization equation becomes:

(30)

which is identical to:
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One can choose any anisotropic diffusion tensor T to filter the image. However, to use a 

locally varying tensor T(x) that depends on local structures of image Di is a common and 

intelligent practice that prevents blurring and intermixing of image structures. Because Di is 

a displacement field and not a typical image in this work, we compute T(x) from the 

structure tensor field of the original images I′i. Let ∇ signify the spatial gradient operator. 

Then the structure tensor M(x) can be written as:

Note again that this structure tensor is based on the gradients of the original diffusion 

weighted and b = 0 images and not the displacement fields. Let u1(x), u2(x), u3(x) be the 

eigenvectors of M(x) and λ1,2,3(x) be the corresponding sorted eigenvalues. Then the 

anisotropic diffusion tensor is computed as [as in (Tschumperlé and Deriche, 2005)]:

(31)

where the functions fi(s) = (1 + s2)−1/i.

This formulation couples the different diffusion-weighted image channels through the 

structure tensor M and prevents the blurring of small structures in the transformed images 

by the deformation field regularizer.

A.6. DR-BUDDI Default Settings

• Gradient descent step-length: 1.5

• Correlation window size: 7

• Initial registration type: Quadratic

• b = 0 s/mm2 image type: From tensor estimation

• DWI type: Synthesized

• # of DWIS: 6

• DWI and b = 0 image weighting: Equal

• Metrics: ξ2 and ξ3

• Metric weighting: Equal

• Restriction: Along the phase-encode direction

• Up and down deformation symmetry: Not enforced
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• Deformation regularization: Anistropic

• # of anisotropic regularization steps: 5
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Highlights

• The proposed EPI distortion correction method, DR-BUDDI, outperforms 

existing ones.

• Blip-up blip-down symmetry principle does not always hold in practice.

• Using a structural image and DWIs significantly improves correction quality.

• Color and anisotropy maps should also be used to assess the quality of 

correction.

• Artifacts from Gibbs ringing and flow voids may significantly affect correction.
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Figure 1. 
The effects of quadratic registration. A b = 0 image was registered to the corresponding (a) 

T2W structural image, (b) with rigid, (c) affine, and (d) quadratic registration. Neither rigid 

nor affine registration was able to provide a good initialization due to the global but 

nonlinear effects of the concomitant fields. Quadratic registration is able to correct for these 

distortions, and the remaining distortions can be solely attributed to local susceptibility 

effects.
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Figure 2. 
The pipeline employed in TORTOISE for blip-up blip-down correction.
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Figure 3. 
Original distorted images and their corrected versions created using three methods from a 

single subject of Test Set 1. The top row represents images with RL phase encoding and the 

bottom row with AP encoding. The structural image is the same for both rows.
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Figure 4. 
Population maps of the average (top row) and standard deviation (bottom row) of FA from 

AP and RL data from Test Set 1 (1.5T). Regions of high SD values indicate imperfect 

distortion corrections by the algorithms. (a) No EPI correction, corrected with (b) DR-

BUDDI, (c) TOPUP, and (d) EPIC. All FA maps, and SD maps are displayed with identical 

brightness/contrast.
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Figure 5. 
Population maps of the average and standard deviation of FA between AP and RL corrected 

images from Test Set 2.

Irfanoglu et al. Page 33

Neuroimage. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. 
Same data set of Figure 5 from Test Set 2 at a different slice level.
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Figure 7. 
Original distorted images and their corrected versions created using three methods with Test 

Set 3. The top row represents images with RL phase encoding and the bottom row with AP 

encoding. The structural image is repeated for convenience. Distortions in this set are very 

large.
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Figure 8. 
Original distorted images and their corrected versions created using three methods with Test 

Set 3 at the brain stem level. The top row represents images with RL phase encoding and the 

bottom row with AP encoding.
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Figure 9. 
Local cross-correlation maps between different corrected images (AP) and the structural 

image. Warmer colors indicate higher local agreement between the corrected and the 

structural images.
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Figure 10. 
The b = 0 images from the mouse dataset (Test Set 5). The images in (a) and (b) are the raw 

images from the RL encoded EPI set, (b) is the output of DR-BUDDI correction and (d) is 

the distortion free spin-echo CPMG image.
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Figure 11. 
Top row: DEC maps computed from data corrected with DR-BUDDI with RL and AP 

encoding in (a) and (b) respectively. The DEC map in (c) is from the CPMG undistorted 

ground truth data. Bottom row: Differences in FA maps between data computed from d) 

CPMG and corrected RL encoded EPI, e) CPMG and corrected AP encoded EPI, f) the two 

corrected EPI data.
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Figure 12. 
Two sets of data with varying amounts of motion.
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Figure 13. 
The outputs of the two-deformation v.s. one deformation model.
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Figure 14. 
b = 0 s/mm2 images with artifacts.
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Figure 15. 
Trace maps computed with equal and DWI-emphasized weighting.
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Figure 16. 
Effects of using DWIs for correction
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Figure 17. 
Pons from the RL Test Set 3 corrected with three methods.
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Figure 18. 
FA (top row) and TR (bottom row) difference maps between data acquired with scanners 

from different vendors.
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Figure 19. 
b = 0 s/mm2 image with Gibbs ringing artifacts due to signal pile-ups and the deformation 

field computed using this image, b) with no DWI or regularization, and c) with DWIs and 

regularization.
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Table 1

Correction performance results across methods for Test Set 1. The whole brain median SD value for FA and 

TR for each individual (along with the corresponding ranks). The voxelwise Wilcoxon signed-rank test results 

are at the bottom of the panel as the number of voxels with the significantly lowest SD for each method. Trace 

SD values are in units of 10−6mm2/s.

DR-BUDDI TOPUP EPIC

Subject FA SD/(method rank)

1 0.136/(1) 0.146/(3) 0.139/(2)

2 0.138/(1) 0.140/(2) 0.145/(3)

3 0.138/(1) 0.141/(3) 0.140/(2)

4 0.143/(2) 0.143/(1) 0.144/(3)

5 0.140/(2) 0.138/(1) 0.147/(3)

# voxels with significantly lowest SD/(rank)

64027/(1) 45387/(2) 32933/(3)

Subject TR SD/(method rank)

1 8.311/(1) 10.18/(3) 9.701/(2)

2 8.394/(1) 9.904/(2) 10.68/(3)

3 7.261/(1) 8.955/(3) 8.905/(2)

4 8.037/(1) 9.223/(2) 9.522/(3)

5 7.463/(1) 8.664/(2) 9.418/(3)

# voxels with significantly lowest SD/(rank)

73916/(1) 53096/(2) 24704/(3)
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Table 2

Correction performance results for Test Set 2 similar to Table 1.

DR-BUDDI TOPUP EPIC

Subject FA SD/(method rank)

1 0.119/(1) 0.136/(3) 0.134/(2)

2 0.131/(2) 0.129/(1) 0.132/(3)

3 0.120/(1) 0.126/(3) 0.123/(2)

4 0.126/(1) 0.134/(2) 0.135/(3)

5 0.124/(1) 0.129/(3) 0.128/(2)

# voxels with significantly lowest SD/(rank)

63787/(1) 25499/(3) 60724/(2)

Subject TR SD/(method rank)

1 7.860/(1) 10.28/(3) 10.25/(2)

2 12.04/(1) 12.05/(2) 12.61/(3)

3 8.344/(1) 10.49/(2) 10.52/(3)

4 9.584/(1) 12.42/(2) 12.77/(3)

5 8.621/(1) 10.62/(2) 10.76/(3)

# voxels with significantly lowest SD/(rank)

59726/(1) 23973/(3) 54989/(2)
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