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Abstract

Functional connectivity analysis of the human brain is an active area in fMRI research. It focuses 

on identifying meaningful brain networks that have coherent activity either during a task or in the 

resting state. These networks are generally identified either as collections of voxels whose time 

series correlate strongly with a pre-selected region or voxel, or using data-driven methodologies 

such as independent component analysis (ICA) that compute sets of maximally spatially 

independent voxel weightings (component spatial maps (SMs)), each associated with a single time 

course (TC). Studies have shown that regardless of the way these networks are defined, the 

activity coherence among them has a dynamic nature which is hard to estimate with global 

coherence analysis such as correlation or mutual information. Sliding window analyses in which 

functional network connectivity (FNC) is estimated separately at each time window is one of the 

more widely employed approaches to studying the dynamic nature of functional network 

connectivity (dFNC). Observed FNC patterns are summarized and replaced with a smaller set of 

prototype connectivity patterns (“states” or “components”), and then a dynamical analysis is 

applied to the resulting sequences of prototype states.

In this work we are looking for a small set of connectivity patterns whose weighted contributions 

to the dynamically changing dFNCs are independent of each other in time. We discuss our 

motivation for this work and how it differs from existing approaches. Also, in a group analysis 

based on gender we show that males significantly differ from females by occupying significantly 

more combinations of these connectivity patterns over the course of the scan.
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1 Introduction

1.1 Functional connectivity and dynamic functional connectivity

The functional magnetic resonance imaging (fMRI) research community is often focused on 

identification of functionally meaningful networks that exhibit coherent activity over time. 

In seed based approaches these networks are typically defined as a collection of voxels 

whose fMRI time series correlate strongly with the time series of a seed voxel or seed region 

(Bressler and Menon, 2010; Bullmore and Sporns, 2009). The identified networks with these 

approaches are generally referred to as functional connectivity (FC). In contrast to this, 

independent component analysis (ICA) as a data-driven approach identifies maximally 

spatially independent configurations of voxel weightings (referred to as ICA components). 

Each component is characterized by a single time course (called the mixing coefficients) 

(Beckmann et al., 2005; Calhoun et al., 2001b; Damoiseaux et al., 2006).

Networks (Erhardt et al., 2011a) obtained in these ways have been shown to track closely 

with previously identified functional domains. In the case of ICA, it is also common to 

evaluate temporal coherence among network time courses, typically measured by correlation 

or mutual information, as evidence of functional connectivity among the networks, called 

functional network connectivity (FNC) (Allen et al., 2011; Jafri et al., 2008).

A key feature of most connectivity analyses (FC or FNC) is that the temporal coherence is 

evaluated globally, as a property characterizing network pairs over the entire duration of a 

study. More recent work has indicated however that these patterns of connectivity are highly 

dynamic (Calhoun et al., 2014; Hutchison et al., 2013) with key features obscured by 

averaging over whole experiments. To date, investigations of so-called dynamic FNC 

(dFNC) have largely been based on computing correlations over sliding windows through 

the original time courses (Allen et al., 2012; Kiviniemi et al., 2011; Rashid et al., 2014; 

Sakoğlu, 2010) though other approaches have also been tried (Chang and Glover, 2010).

1.2 Functional network connectivity and dynamic functional network connectivity for 
explaining differences between different demographics groups

Significant evidence (Fox and Greicius, 2010; Jafri et al., 2008; Kilpatrick et al., 2006; 

Lynall et al., 2010; Rashid et al., 2014) for differences in connectivity between different 

groups of subjects such as male/female (Kilpatrick et al., 2006) or schizophrenia/healthy 

controls (Jafri et al., 2008; Lynall et al., 2010) has emerged from both static and dynamic 

connectivity analyses. Schizophrenia patients, for example, have been found in static FNC to 

have stronger connectivity between certain resting state networks than healthy controls 

(more specifically, connectivity between relatively less connected networks increases in the 

patients) (Jafri et al., 2008). More recently, a dynamic analysis (Sakoğlu, 2010) of task-

modulated FNC evaluated on sliding timecourse windows concluded that task-modulation of 

motor–frontal, RLFP–medial temporal and posterior default mode (pDM)–parietal 

connections were significantly greater in schizophrenia patients, while task modulation of 

orbitofrontal–pDM and medial temporal–frontal connections were significantly greater in 

healthy controls. A recent study by (Rashid et al., 2014) observed that schizophrenia and 

bipolar patients make fewer transition to certain states and they spend less time in highly 
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intercorrelated states which could only be observed in a brain dynamics study. In another 

recent study (Damaraju et al., 2014) it has been shown that dwell times of dynamic 

connectivity states are significantly different in schizophrenia patients vs. healthy controls.

1.3 Contribution

Sliding-window analyses generally seek to characterize each subject’s connectivity patterns 

at each time window in terms of a limited collection of prototype patterns. This can either 

involve matching each time-windowed connectivity to one element in a finite set of 

connectivity patterns obtained by clustering (Allen et al., 2012; Majeed et al., 2011), or as 

proposed by (Leonardi et al., 2013) connectivity patterns can be decomposed into a linear 

combination of mutually orthogonal PCA components. Both approaches have limitations: 

Clustering techniques cannot be easily adjusted to recognize observations that are linear 

combinations of certain basic patterns. On the other hand, mutual spatial orthogonal 

components estimated by PCA cannot be interpreted independently, and by design, 

successive PCA components, explain smaller and smaller proportions of the variance in the 

data. Furthermore, the spatial orthogonality assumption of PCA is independent of temporal 

behavior of connectivity patterns.

In this paper we introduce the concept of mutually temporally independent dynamic 

connectivity patterns. While in conventional clustering approaches one and only one 

connectivity pattern (cluster centroid) is occupied at a time and in PCA-based approaches, 

components do not have a clear temporal dynamic interpretability, in this paper, we look for 

patterns of connectivity with mutually independent temporal behavior. The temporal 

behavior of these patterns is defined as a weighted contribution to the observed dFNC at 

each time point.

2 Materials and Methods

The closest work to the present study is (Allen et al., 2012) and our pipeline is similar up to 

the computation of sliding-window dFNCs. However, as mentioned in 1.3, we are seeking 

correlation patterns that make maximally temporally independent additive weighted 

contributions to observed dFNCs rather than a set of summary patterns reflecting cluster 

means within the observed data. To support comparisons with earlier work, we used the 

same data and followed relevant stages of the preprocessing pipeline from (Allen et al., 

2012). In Figure 1 we present the overall procedure for computing temporally independent 

connectivity patterns.

Data consisted of 405 healthy participants (200 females) collected from a 3T Siemens TIM 

Trio at the Mind Research Network (TR=2s, TE=29ms, flip angle = 75 degrees, voxel size = 

3.75 × 3.75 × 4.55 mm) and were preprocessed through a standard SPM pipeline including 

timing and motion correction, spatial normalization, and mild spatial smoothing. See (Allen 

et al., 2012; Allen et al., 2011) for more details on data collection and preprocessing. Data 

was originally anonymized, and included a narrow range of ages (mean age: 21.0 and range: 

12–35).
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2.1 Group Spatial ICA

Following (Calhoun and Adali, 2012; Calhoun et al., 2001a) group spatial ICA (GICA) was 

used to find functional networks of the input data. GICA is implemented in several stages: 

First, a subject-level principal component analysis (PCA) reduces the subject data temporal 

dimension to 120 principal components (PCs). This is followed by a group-level PCA on 

concatenated subject principal components, from which 100 PCs are retained. A set of 

maximally spatially independent group-level spatial maps (SMs) are obtained from this 

reduced group-level data using an Infomax-based algorithm. To find the most stable SMs, 

Infomax was repeated ten times and clustered via ICASSO (Himberg and Hyvarinen, 2003). 

The aggregate spatial maps that emerge from this process are the modes of component 

clusters.

After removing components corresponding to movement, imaging artifacts or components 

that were contaminated with white matter, fifty components were left to study.

Subject specific spatial maps and time courses were estimated using the GICA1 (Allen et al., 

2011; Erhardt et al., 2011b) algorithm. Some additional postprocessing of time courses were 

also performed, including detrending, multiple regression of the size realignment parameters 

and their temporal derivatives and outlier removal.

2.2 Dynamic FNC estimation

A set of 116 dFNCs was computed for each subject on successive sliding windows (length = 

32, step size = 1 TR = 2 seconds), tapered by convolving with a Gaussian of sigma 1 TR. 

Time courses are cropped with the size of our window radius (16) at each end. Functional 

network connectivity in a given window is estimated by calculating a C × C correlation 

matrix (where C = # of components). Window length in sliding-window analyses must be 

chosen carefully. Short windows can lead to poor correlation estimates, while long windows 

can blur out the temporal resolution necessary to study dynamics. Through experimentation 

we found that a window of length 32 provided a good tradeoff between temporal resolution 

and reliability of FNC estimation and regardless small changes in the window size did not 

dramatically impact the results. We further refined the covariance matrix estimates at each 

time window by applying a sparsity constraint with a regularizing parameter (λ), optimized 

for each subject, to the precision matrix (the inverse of the correlation matrix) (Friedman et 

al., 2008).

2.3 Estimation of temporally independent patterns of connectivity

The approach presented in (Allen et al., 2012) was focused on identifying recurring 

connectivity patterns in subject dFNCs, for which clustering algorithms would be an obvious 

choice (i.e. K-means clustering). However, these patterns need not be temporally 

independent, and the centroids produced by clustering simultaneously observed dFNCs 

diminish the odds that these centroids represent patterns that tend to occur. In this study, 

however, we want to identify co-occurring patterns of functional network connectivity 

whose relative contributions change independently of one and other in time. To achieve this 

goal we concatenate dFNC matrices along the time dimension and use temporal ICA (tICA) 
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to decompose the concatenated structure into a fixed number of maximally mutually 

temporally independent connectivity patterns.

Let Yp×k be our data matrix, k be the number of time points and p be the  of entries in 

the upper triangular part of correlation matrix. First, Yp×k is reduced to Xl×k using the PCA 

reducing matrix (Fp×l)−1 where l is the number of connectivity patterns we are looking for:

Equation 1

Then, by using the Infomax algorithm for ICA estimation, we find l independent time 

courses that best describe X through a linear decomposition as follows:

Equation 2

where A is the mixing matrix and the columns of S represent independent time courses. We 

are interested in independent time courses Sl×k and spatial patterns (Fp×l × Al×l) associated 

with those time courses.

2.4 Group Analysis

The multi-subject version of this analysis is performed by concatenating subject data 

matrices (Yp×k) along the temporal dimension.

In the group analysis, number of rows (p) in Yp×k, stays the same but its columns now 

consist of concatenated FNC data of all subjects so k is increased by factor of number of 

subjects. The decomposition procedure is the same as in the single subject case. Yp×k is 

decomposed into Fp×l × Al×l × Sl×k, where the Fp×l × Al×l part of the decomposition 

corresponds to the group spatial maps (connectivity patterns Wp×l in Figure 1) and is shared 

among subjects while individual subject timecourses appear as non-overlapping segments in 

Sl×k.

This approach to group dynamic connectivity analysis is consistent with the main 

assumption of brain dynamics studies suggesting that while network correlations are 

changing dynamically, the most significant time-varying features can be summarized in a 

finite set of correlation patterns that are identified by algorithms such as clustering, PCA, 

ICA and etc.

3 Results

Figure 2, top row, shows k-means centroids as recurring patterns of connectivity. As 

expected, it is consistent with the results presented in (Allen et al., 2012). The middle row 

shows temporally independent connectivity patterns calculated by tICA. As mentioned in 

2.4, these patterns are shared among subjects so we call them group connectivity patterns or 

states (and mixing coefficients in ICA terminology). The third row shows point-wise means 

of subject time courses for corresponding connectivity patterns in row 2 with black thick 

line. These are plotted with 95% confidence interval of the estimated mean at each time 

point in red shading along with point-wise standard deviation among subjects in gray 
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shading. We can see the confidence intervals of almost all of the time courses are too large 

to conclude anything about the temporal trend of the subject specific time courses and point-

wise means. This seems reasonable since we already expect the time courses to be highly 

variable across subjects and not synchronize with one another as this is data collected at rest.

The following are key points to keep in mind when interpreting tICA results:

• In the tICA framework, time courses are weights of the linear contribution of 

corresponding states to observed FNCs through time; this weight can be either 

positive or negative. A large negative weight means that the additive inverse (or 

“flipped”) version of corresponding state has positive contribution to the final FNC 

observation. We call the flipped version of a given state its “anti-state”. For 

example, while the set of subject time course values at each time-point exhibit great 

variability (see Figure 2 row 3), it is interesting to observe in the case of the fourth 

connectivity pattern that the point-wise time course means trend linearly from 

negative to positive (Figure 2 row 3 column 4) indicating that it initially contributes 

to sample average FNCs as an ‘anti-state’ and progresses through zero into a pro-

state contribution toward the end of the scan.

• Temporal ICA linearly decomposes dynamically varying FNCs into a finite set, up 

to rescaling, of mutually independent time courses and corresponding connectivity 

patterns (states). Because each state makes a linear contribution to the observed 

component pair correlations, a strong positive/negative correlation from one state, 

or even from a majority of states, does not necessary imply a strong positive/

negative correlation in the final observation. Setting scaling aside, each state 

presents a pattern of relative correlation values across network pairs and the roles 

of these distinct patterns of relative network-pair correlations for different subject 

groups can be estimated from time courses.

To better understand the above points please refer to Figure 3. In this figure we are showing 

two instances of input FNCs at two different time points (Column A) along with their 

corresponding linear decompositions obtained by tICA. Weights of the linear decomposition 

of each FNC are represented by the amount of fading of each component (state or anti-state, 

Figure 3 Column B). We can see state 5 and its anti-state have significant contributions in 

the first and second FNCs, respectively, and although state 4 has an almost equal 

contribution in both decompositions, the connectivity patterns of FNCs look different.

3.1 Temporal ICA for explaining differences between different demographics groups

Similarly to (Rashid et al., 2014), we are also interested in explaining how various properties 

of dFNCs vary between different groups of subjects. We first define an occupancy measure 

appropriate to the expression of time-varying connectivity in terms of simultaneous 

contributions from multiple states or correlation patterns. We will show how such a measure 

can be used to study dynamical properties of these patterns, and as our main conclusion we 

will show that the number of different combinations of simultaneous weights on the five 

estimated tICA correlation patterns differ significantly according to gender.
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For a typical clustering-based dFNC analysis (Allen et al., 2012) in which subjects are 

assigned just one best-fit state per time point from a finite collection of states, a simple 

property to study is the “occupancy frequency”, i.e. the number of time points each subject 

spends in a given state. In the case of temporally independent dFNCs, where subjects are 

characterized not by one state per time point, but rather by a weight for each state at each 

time point, the idea of occupancy is still interesting but must be adapted to the new setting. 

In this case one can consider the case that a certain state is ‘occupied’ at a given time by a 

given subject if its weight exceeds some threshold. Similarly for the anti-state it is occupied 

when the weight (in this case negative) exceeds in magnitude some threshold. We set the 

threshold for positive contribution for a given state at the 75th percentile of all positive 

values for time courses associated to that state (over all subjects, all time points). Positive 

values exceeding this threshold constitute positive occupancy of the state. Note that this 

allows a single subject to occupy more than one state at the same moment in time. Anti-state 

occupancy is treated analogously. In this case the threshold for each state is set to be the 

negative of the 75th percentile of the absolute values of all negative values in time courses 

associated to that state. We also compute an absolute occupancy measure from a 75th 

percentile threshold based on magnitude alone. By thresholding based on these percentile 

values we can easily estimate how often a given state (or its anti-state) makes a usually large 

contribution to subject dFNCs. We call these thresholded time course measures positive, 

negative and absolute occupancy frequencies which would be our new occupancy measures.

Since our data consists exclusively of healthy individuals, we are primarily interested here in 

studying the relationship between gender and our occupancy measure. First, for each state, 

we regress out the contribution of age to each of our three occupancy measures. Then we 

perform a 2 sample t-test between occupancy frequencies (positive, negative and absolute) 

of males and females (Figure 4).

As mentioned in 1.3, one of the key benefits of our approach is that a subject can occupy 

more than one state at the same time, and this aspect of the occupancy behavior is worth 

investigating. Occupancy measure, as described above, has an integration over time and thus 

do not have time as one of the dimensions. However if we include co-occurrence of states 

into the occupancy measure we would have an implicit notion of time as well. The above 

analysis has not taken this fact into account. We have 5 states, each of which can, at a given 

moment in time, be either positively occupied (above-threshold positive time course value), 

negatively occupied (below threshold negative time course value) or none-occupied. This 

gives 35 possible co-occupancy patterns for the five states. We will call these co-occupancy 

patterns “combo-states” and will represent them as a base 3 number, where positive 

occupancy is represented with a ‘1’, negative occupancy with a ‘2’ and non-occupancy with 

a ‘0’ For example 0state52state40state30state21state1, or simply 02001, implies that at a given 

time, state 1 is positively occupied and state 4 is negatively occupied (anti-state 4 is 

occupied) while states 2,3 and 5 have time course values that do not exceed either the 

positive or negative occupancy thresholds.

Our analysis shows that out of 35 = 243 possible combo-states, only 22 of these appear more 

than 1% of the time. Among the 22 combo-states that occur more than 1% of the time, none 

involve co-occupancy of more than two states.
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Figure 5 summarizes the analysis. The bar chart shows relative frequency of each combo-

state occurrence. Each bar is labeled by coded and visual presentation of the associated 

combo-state at the bottom and at the top is labeled by the gender that on average occupies 

that combo-state more along with the FDR-adjusted of the p-values for comparison. On the 

top right corner of the figure, each slice of the pie chart shows overall occurrence frequency 

of the associated combo-state. We can see that although we are only showing 22 out of 243 

possible combos-states they constitute about two-thirds of the overall occurrences of all 

combo-states. Similar to individual state analysis we do not see significant gender difference 

based on occupancy frequency of combo states. However, lower p-values for some combo-

states such as ‘00001’, ‘02200’, ‘00102’ and ‘110010’ can be explained by having a more 

specific measure as a result of including co-occurrences of individual states.

4 Discussion

Our results indicate that while neither individual state1 nor combo-state occupancy 

frequencies do not exhibit significant gender effects (Figure 4 and Figure 5), there are 

isolated individual occupancy frequencies2 and isolated co-occupancy frequencies (Figure 

5) between certain pairs of states that have relatively lower p-values. This suggests that 

accounting for the simultaneous contributions of multiple correlation patterns to dynamical 

estimates of functional connectivity can increase sensitivity of the analysis to group effects. 

Our further investigations indicated, interestingly, that counting the number of distinct 

combo-states subjects pass through reveals a significant difference between men and 

women. After regressing out age, we found that males experience a significantly (p-value = 

0.01, 2-sample, T-test) greater number of distinct combo-states than do females.

On the other hand, when we perform the analogous analysis based on individual states, i.e. 

counting the number of individual states (states and anti-states) that males and females go 

through during scan, males pick more states on average than females, but not at a significant 

level (p-value = 0.09, T-test).

Before concluding this discussion, it is worth mentioning that although we are looking for 

connectivity patterns that occur independent of each other, we are maximizing independence 

of these changes at the group level (minimizing mutual information between concatenated 

time courses in subjects and time). Our analysis of co-occurrence of states implicitly reveals 

that there is residual dependence at the subject level which is informative and statistically 

interesting. Subject-level deviation from the main assumption of group level analysis is a 

standard feature of many fMRI studies e.g. in spatial (Calhoun and Adali, 2012) or temporal 

group ICA (Seifritz et al., 2002), (Smith et al., 2012).

To better understand this, please refer to Figure 6. In this figure we simulate 5 time courses 

of the same size as our estimated FNC time courses taking values of 0, 1 and 2 with 

1Individual state occupancy is when a certain state is occupied (based on our former definition of occupancy) regardless of other 
states. For example individual occupancy of state 1 is the integral of occupancy over all combo-states of the form [y y y y 1] where y 
∈ |0 1 2|. Individual states correspond to states shown in Figure 4.
2Isolated individual state occupancy is when a certain state is occupied while other states are not. For example isolated individual 
occupancy of state 1 is occupancy of combo-state of the form [0 0 0 0 1]. This definition can be extended to any instances of states co-
occupancies. For example isolated co-occupancy of states 1 and 2 is occupancy of combo-state [0 0 0 1 1].
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respectively equal occurrence probabilities of non-occupied, positively occupied and 

negatively occupied as estimated from original data. All of these time courses are mutually 

independent as their pairwise mutual information is near zero which is shown in upper 

triangular part of the table at the left side. However, when we look at mutual information 

between segments of these time courses we can see that there is considerable dependence, 

among these segments. Histograms of estimated mutual information between segments of 

each time course pairs are shown in lower triangular part of the table and we can clearly 

observe that these histograms are not centered at zero. In our case, these segments 

correspond to subject level time courses and as we have shown earlier the dependency 

between them is informative.

However, one main difference between real and simulated data is that in real data, time 

courses are not truly independent at the group level either (e.g. this aspect has been exploited 

in previous work calculating graph metrics by utilizing the residual mutual information 

among component maps (Ma et al., 2012)). As is evident in Figure 7, mutual information 

values between pairs of full-duration time courses shown in upper triangle part of the figure, 

are not as close to zero as in simulated data.

If temporal independence held at the group level, as it did with our simulated data, then by 

computing the global occurrence count of individual states, we can easily compute the 

occurrence count of combo-states. Under the formal independence assumption, the 

occurrence rate of some combo-state “yyyyy” where y ∈ {0,1,2} is equal to  where 

r(i) is the occupancy rate of each individual state that we initially defined in section 3.1. In 

Figure 8 we are representing actual occurrence rate s of the 22 most commonly occurring 

combo-states with blue bars (same as in figure 5) along with occurrence rates of the same set 

of combo-states under an assumption of true temporal independence between individual 

states which are represented in red bars.

5 Conclusion

We have introduced mutually temporally independent connectivity patterns as a new vehicle 

through which to study human brain dynamics. Temporal ICA of windowed FNCs from 

group spatial ICA data was used to estimate such patterns, and we have explained how it is 

fundamentally different from currently-dominant clustering and PCA decomposition-based 

approaches. We introduce an occupancy measure, analogous to that used in clustering 

methods, adapted to fit to this new framework. By considering our method as a linear 

decomposition, we studied co-occurrence of the estimated connectivity patterns by 

introducing combo-states, and through such analysis interesting group difference based on 

gender was revealed. The difference became significant for the analysis of distinct number 

of combo-states men and women go through during rest. Our objective here was to introduce 

a higher-dimensional characterization of connectivity dynamics and to demonstrate its 

ability to find group differences. The observed gain in statistical power as our analysis 

moves from the individual state level, to combo-states, to collections of combo-states 

suggests that a higher-dimensional representation of whole-brain connectivity provides a 

richer information landscape in which to locate group differences.
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Our proposed method shows some very interesting properties and promising results, but it is 

just one among many different possible ways of looking at connectivity dynamics of the 

brain at rest, and there is no established mechanistic physiological understanding favoring of 

any of these approaches. In terms of the higher-dimensional point of view we are advocating 

here, there are many potential directions to develop: constructing more sophisticated 

measures of dynamical flow through the state space could bring real gains in power and 

interpretability; computing connectivity patterns separately for different groups might reveal 

interesting differences between groups in which sets of network-pair correlations behave 

independently of each other, and different ways of decomposing the data (for instance, 

finding connectivity patterns that are mutually spatially independent rather than mutually 

temporally independent) might be useful for certain types of questions.
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ICA Independent Component Analysis
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Highlights

• Introduction of mutually temporally independent connectivity patterns as a new 

framework to study brain dynamics in rest

• Introduction of a new occupancy and co-occurrence measure that fits to this 

framework

• Explaining gender differences based on occupancy and co-occurrence measures 

of such connectivity patterns
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Figure 1. 
Schematic depicting the procedure for finding group temporally independent connectivity 

maps and subject specific time courses: First group spatial ICA (GICA) was used to find 

functional networks of the input data that consists of 50 maximally spatially independent 

group-level spatial maps (SMs). Time courses were estimated using the GICA1. A set of 

116 dFNCs was computed for each subject on successive sliding windows [length = 32, step 

size = 1 TR (2 seconds.)]. FNC in a given window is estimated by calculating C× C 

correlation matrix (where C = # of components). Then dFNC matrices are concatenated 

along the time dimension and temporal ICA (tICA) was used to decompose the concatenated 

structure into a fixed number of maximally mutually temporally independent connectivity 

patterns.
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Figure 2. 
(Top row) K-means centroids, consistent with clustering results of (Allen et al., 2012) on the 

same data; (Middle row) Temporally independent connectivity patterns calculated by tICA 

that are shared among subjects; (Bottom row) Point-wise means of subject time courses for 

corresponding spatial maps. These are plotted with 95% confidence interval of the estimated 

mean at each time point in the red shading. Grey shading shows point-wise standard 

deviation among subjects. We can see the confidence intervals of almost all of the time 

courses are too large to conclude anything about the temporal trend of the subject specific 

time courses and point-wise means.
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Figure 3. 
(Column A) Two instances of actual input FNC selected from the data. These instances are 

in fact estimated correlation matrices of windows time courses at two different time points. 

Linear decompositions of these FNCs, which are estimated by tICA, are shown in Column B 

with the amount of fading representing linear weights of each states and anti-states. Column 

C shows weighted sum of components from each decomposition.
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Figure 4. 
This figure shows the result of studying the relationship between gender and defined 

occupancy measure. First, for each state, we regress out the contribution of age to each of 

our three occupancy measures. Then we perform a 2 sample t-test between occupancy rates 

(positive, negative and absolute) of males and females. For each state we report which 

gender occupies that state more than the other and how significant the difference in 

occupancy measure is between the two (reported by estimated p-value after FDR 

adjustment). We can see, when looking at each state individually, there is no statistically 

significant difference between males and females with respect to their occupancy measures.
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Figure 5. 
Bar chart shows relative occurrence frequency of each combo-state. The bottom label of 

each bar is the coded and visual representation of the associated combo-state and the top is 

labeled by the gender that one average occupies that combo-state more along with the FDR-

adjusted of the p-values for that comparison (dark blue: M>F and dark red: F>M). On the 

top right corner of the figure, each of the pie chart shows overall occurrence frequency of 

the associated combo-state.
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Figure 6. 
Simulation analysis of subject level deviation from group temporal independence 

assumption. (A) 5 time courses of the same size as our estimated FNC time courses taking 

values of 0, 1 and 2 with respectively equal occurrence probabilities of non-occupied, 

positively occupied and negatively occupied as estimated from original data. (B Upper 

triangular part) Calculated mutual information between all pairs of simulated time courses. 

(B Lower triangular part) Mutual information histograms between corresponding segments 

of each pairs of time courses.
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Figure 7. 
(Upper triangular part) Mutual information values between pairs of estimated time courses 

from real data. (Lower triangular part) Histograms of mutual information values of 

corresponding segments of each pair of estimated time course. Here each segment 

corresponds to a subject time course.
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Figure 8. 
Actual observed occurrence frequencies of most occurring combo-states (blue bars) vs. 

occurrence frequencies of those combo-states under true temporal independence assumption.
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