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Abstract 

A fundamental issue in visual cognition is whether high-level visual areas code objects in 

a part-based or a view-based (holistic) format. By examining the viewpoint invariance 

of object recognition, previous behavioral and neuroimaging studies have yielded 

ambiguous results, supporting both types of representational formats. A critical factor 

distinguishing the two formats could be the availability of attentional resources, as a 

number of studies have found greater viewpoint invariance for attended compared to 

unattended objects. It has therefore been suggested that attention is necessary to enable 

part-based representations, whereas holistic representations are automatically activated 

irrespective of attention. In this functional magnetic resonance imaging study we used a 

multivariate approach to probe the format of object representations in human lateral 

occipital complex (LOC) and its dependence on attention. We presented human 

participants with intact and half-split versions of objects that were either attended or 

unattended. Cross-classifying between intact and split objects, we found that the object-

related information coded in activation patterns of intact objects is fully preserved in the 

patterns of split objects and vice versa. Importantly, the generalization between intact and 

split objects did not depend on attention. Our findings demonstrate that LOC codes objects in 

a non-holistic format, both in the presence and absence of attention. 

Keywords: object recognition, attention, lateral occipital complex, multivariate pattern 

analysis, fMRI 
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1. Introduction 

A hallmark of human object perception is the recognition of objects despite variations in their 

exact appearance. Accordingly, object representations in high-level visual brain areas have to 

be able to generalize across changes in size, position or orientation (Eger et al., 2008; Grill-

Spector et al., 1999). Yet, the specific representational code realizing such invariant 

representations is still largely unknown. One central question is whether an object is coded as 

a collection of parts (Hummel and Biederman, 1992; Marr and Nishihara, 1978) or in a view-

based format (Edelman and Bülthoff, 1992; Poggio and Edelman, 1990; Tarr and Pinker, 

1989).  

Part-based models propose that objects are encoded in terms of their constituent parts, the 

representations of which are independent of each other and dynamically bound together. 

Neurons that are tuned to a particular object part could therefore respond to the object part 

appearing in different configurations or views, allowing for robust object recognition across 

various manipulations, such as translation across the visual field, size changes and left-right 

reflection (Hummel and Biederman, 1992; Hummel, 2001). By contrast, view-based models 

propose that objects are recognized by matching the incoming sensory information to stored 

views (Edelman and Bülthoff, 1992; Poggio and Edelman, 1990; Tarr and Pinker, 1989). 

View-based representations are holistic, as the parts of an object are not represented 

independent of each other and have fixed relative positions (static binding). Under a view-

based scheme neurons respond most strongly if objects are presented in learned views or 

configurations. Nevertheless, recognition of objects in varying orientations is thought 

possible by storing many views of an object (Bülthoff and Edelman, 1992; Olshausen et al., 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

4 

 

1993; Poggio and Edelman, 1990; Tarr and Gauthier, 1998; Tarr, 1995; Ullman, 1998), 

interpolating across these views (Logothetis et al., 1994; Poggio and Edelman, 1990; Ullman, 

1989) or by a distributed neural representation across view-tuned neurons (Perrett et al., 

1998). 

Behavioral evidence on the format of object representations is equivocal, supporting 

both view-based (Edelman and Bülthoff, 1992; Murray, 1999; Tarr and Pinker, 1989) and 

part-based representations (Biederman and Cooper, 1991; Biederman and Gerhardstein, 

1993). Neuroimaging research, too, has sought to establish which format of representation 

underlies object recognition. Studies using functional magnetic resonance imaging (fMRI) 

show that blood oxygen level-dependent (BOLD) signals in various ventral visual stream 

regions, such as in lateral occipital and inferior temporal cortices, tend to decrease when an 

object is shown repeatedly and found that this repetition suppression (Grill-Spector et al., 

2006) is greatest when the repeated view of an object is identical to the original orientation, 

but decreases with the amount of view change (Andresen et al., 2009; Ewbank et al., 2005; 

Gauthier et al., 2002). However, in support for part-based representations, other fMRI studies 

have shown that the ventral stream is largely insensitive to the deletion of local image 

features or changes in image format (grayscale image vs. line drawing), as long as the 

individual object parts are present (Hayworth and Biederman, 2006; Kourtzi and Kanwisher, 

2000). 

Importantly, the representational format might be dependent on the absence or 

presence of attention. Attended visual objects exhibit robust repetition-priming effects even 

when their mirror-reflected (Stankiewicz et al., 1998) or half-split (Thoma and Henson, 2011; 

Thoma et al., 2004) versions are presented as prime stimuli, suggesting a part-based 
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representation. However, when the same prime objects are unattended, visual priming is still 

found for objects presented in the same view, but completely abolished after view changes 

(see Thoma and Davidoff, 2007, for a brief review). Hummel (2001) therefore proposed a 

hybrid model, in which part-based representations are established with attention, 

whereas view-based representations are automatically activated irrespective of 

attention. 

Inspired by these previous studies and theoretical considerations, the present 

functional magnetic resonance imaging (fMRI) study examined the representational format of 

objects in high-level visual cortex and its dependence on attention.  Objects were presented in 

either an intact or a split configuration (Fig. 1B) and were either attended or unattended. The 

half-split manipulation, while preserving the constituent object parts, distorted the holistic 

image in a way that cannot be recovered by the aligning processes of view-based models 

(Hayward et al., 2010; Thoma et al., 2004). To prevent verbalization of the attended object 

as a confounding factor we used a non-semantic attention task, in which participants 

detected brightness changes on either the object (attended condition) or a 

contralaterally presented noise stimulus (unattended condition). We reasoned that only if 

objects are coded as part-based, non-holistic representations, should activation patterns of 

split objects be informative about those of intact objects. Moreover, if attention was necessary 

for part-based representations, this configural invariance of object representations should 

only be observed for attended, but not for unattended objects. 

To this end, we used a novel multivariate approach, in which we trained a 

support vector machine classifier to discriminate between activation patterns of intact 
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objects and tested its predictive capacity for activation patterns of split objects and vice 

versa. The rationale was that successful generalization between activation patterns of 

intact and split objects is indicative of a non-holistic format of object representations. 

Our multivariate approach represents a critical advance compared with previous 

repetition suppression studies, because of mounting evidence that high-level visual areas 

code objects in a distributed fashion across multiple neuronal populations (Haxby et al., 

2001; Rice et al., 2014). Importantly, different configurations of an object might activate 

identical neuronal populations and the difference between configurations only emerges 

at the pattern level as a distinct weighting of each population. Multivariate methods are 

able to pick up on these object- or view-specific multivoxel fingerprints, whereas 

repetition suppression—as a univariate technique—misses out on such pattern-related 

information. We focused our analyses on the LOC, given a large body of evidence 

supporting its pivotal role in object processing (Grill-Spector et al., 1998; Malach et al., 

1995) and object recognition (Grill-Spector et al., 2000). 
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2. Materials and methods 

2.1. Participants 

Eighteen healthy participants (11 female, mean age ± SEM, 23.4 ± 0.8 years) participated in 

the experiment for payment after giving written informed consent. The study was conducted 

according to the declaration of Helsinki, and approved by the local ethics committee. 

2.2. Experimental design 

The experimental design comprised the factors configuration (intact, split) and 

attention (attended, unattended) as factors of interest as well as object (camera, 

watering can, chair) and side of presentation (left, right) as factors of no interest. Within 

each of 8 experimental runs, an object appeared in 4 trials in each attention conditions 

(in 2 trials per side of presentation). The order of presentation was randomized across the 

48 trials of each run.  

2.3. Experimental procedures 

A trial (Fig. 1A) started with a blank fixation screen for 3300ms ± 2000ms, after which one 

half of a central black fixation diamond turned red, indicating the side to which attention 

should be directed. After a fixed interval (250ms), four repetitions of the stimulus-response 

phase appeared. Each stimulus-response phase lasted 1500ms and comprised the presentation 

of the stimulus screen (500ms), a pattern mask (133ms) and the default screen (867ms). An 

intact or split object appeared on one side of the fixation cross (offset 3.84 degrees of visual 

angle) and a noise stimulus at the same offset on the other side of the stimulus screen. Intact 

and split objects as well as the noise stimuli subtended 3.81 by 3.81 degrees of visual angle. A 
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brightness change occurred 283ms after stimulus onset simultaneously on both the object and 

the noise stimulus, such that they became independently and randomly either r darker or 

lighter. Participants were instructed to press a button on the response box when the stimulus 

on the cued side became darker. The cued stimulus could either be an intact or split image 

version of an object (attended condition) or the noise stimulus (unattended condition). 

Responses were counted as valid within a time window of 1000ms after stimulus offset. In 

each repetition of the stimulus-response phase, the same object was shown at the same 

position. The noise stimulus, while also presented at the same position, was randomly 

generated for each repetition. 

<Fig. 1 approximately here> 

To independently identify object-responsive regions of lateral occipital complex (LOC) 

in each participant (Malach et al., 1995), we conducted a localizer run with 5 blocks of intact 

objects, 5 blocks of split objects and 10 blocks of grid-scrambled versions of the objects in 

randomized order. Blocks lasted for 15.8s during which 20 images were presented for 600ms 

each, followed by 200ms blank screen. Pairs of identical objects were shown left and right of 

fixation, equaling the configuration of the main experiment in eccentricity and size. 

Participants performed a one-back task, in which they had to indicate via button press 

whenever the same stimulus display appeared twice in a row 

2.4. Stimuli 

Stimuli were generated with Psychophysics Toolbox 3 (Brainard, 1997; Pelli, 1997) and 

projected with a Sanyo  LCD projector at 60 Hz. The stimulus set consisted of three grayscale 

objects (camera, watering can, chair) based on realistic three-dimensional models presented 
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either intact or half-split (Fig. 1B). The objects were selected for representing non-

overlapping man-made categories to increase the discriminability of evoked neuronal 

activation patterns. Split versions were generated by relocating the two halves of an original 

image to the opposite side of the canvas. The noise stimuli matched the objects in terms of 

spatial extent and complexity to ensure that there would be no performance difference. They 

were randomly generated for each trial by sampling a 9 by 9 random binary matrix, scaling 

the matrix to 216 by 216 pixels, applying a low-pass filter with a cut-off frequency of 

0.02/pixel and cropping pixels outside a circle of 216 pixels diameter. This procedure resulted 

in circular grayscale stimuli with randomly distributed smooth patches. Both the objects and 

the noise stimuli were scaled to grayscale RGB values between 50 and 205. To generate 

brightness changes, the underlying RGB histograms were shifted up or down by 50 (the 

image background remained constant with an RGB value of 200). The pattern masks were 

generated for each trial by sampling an 18 by 18 random binary matrix and scaling the matrix 

to 216 by 216 pixels. 

2.5. Eyetracking 

Eyetracking data were successfully collected in 16 of 18 subjects using an infrared video 

eyetracking system (iView XTM  MRI 50Hz, SensoMotoric Instruments, Teltow, Germany). 

As a measure of fixation reliability, we computed the percentage of recorded eye gaze 

positions within a 1.93° visual angle circle around the center of the fixation cross. This radius 

corresponded to the eccentricity of the inner edges of the two stimulus-containing boxes (see 

Fig. 1A). 
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2.6. FMRI data acquisition and preprocessing 

FMRI data were acquired on a 3-Tesla Siemens Trio (Erlangen, Germany) scanner using a 

gradient echo planar imaging (EPI) sequence and a 12-channel head-coil. We recorded 8 

experimental runs of 214 whole-brain volumes each (TR = 2s, echo time (TE) 25 ms, flip 

angle 78°, 33 slices, 3mm isotropic resolution, interslice gap 0.75mm). The LOC localizer 

comprised 242 volumes. In addition, a high-resolution T1-weighted image was acquired (TR 

= 1.9s, echo time (TE) 2.51 ms, flip angle 9°, 192 slices, resolution 1mm isotropic). 

Preprocessing was performed using SPM8 (Wellcome Department of Imaging Neuroscience, 

Institute of Neurology, London) and included realignment and smoothing with an 8mm 

Gaussian kernel. All main analyses were performed in native subject space. 

2.7. Region of interest procedures 

Our main region of interest (ROI) was LOC. To anatomically constrain LOC, which stretches 

from lateral occipital cortex to posterior fusiform gyrus (Grill-Spector et al., 1999), we 

generated a bilateral composite mask of the inferior occipital cortex, middle occipital cortex 

and the posterior half of the fusiform gyrus (derived from the AAL Atlas, Tzourio-Mazoyer et 

al., 2002). The LOC ROI was defined as the intersection of the anatomical mask and the 

functional localizer based on the group-level T-contrast intact + split > scrambled at a 

significance level of p<0.05 (family-wise error (FWE) corrected at the whole-brain level). 

Additionally we created separate ROIs for two subregions of LOC, lateral occipital cortex 

(LO; corresponding to the inferior and middle occipital anatomical masks) and posterior 

fusiform gyrus (pFus; posterior fusiform gyrus mask), based on previous reports regarding a 

possible functional dissociation between the two (Cichy et al., 2013; Grill-Spector et al., 
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2001). The V1 ROI was defined as the intersection of Brodmann Area 17 (derived from the 

SPM Anatomy toolbox; Eickhoff et al., 2005) and the functional localizer based on the group-

level T-contrast intact + split + scrambled > implicit baseline  at a significance level of 

pFWE<0.05. The V1 ROI was based on a mask for Brodmann Area 17 derived from the SPM 

Anatomy toolbox (Eickhoff et al., 2005). All ROIs were reverse-normalized to native subject 

space. 

2.8. FMRI data analysis 

2.8.1. First-level general linear models (GLMs) 

For each participant we estimated a GLM with separate experimental regressors for the 

factors configuration (split, intact), attention (attended, unattended), object (camera, watering 

can, chair) and side of presentation (left, right). Onsets of the experimental regressors were 

set to the beginning of the stimulus-response phase, and they were modeled as stick functions 

and convolved with a canonical hemodynamic response function. Further, six motion 

parameters from the realignment preprocessing step were included as regressors-of-no-

interest. 

The GLM for the functional localizer comprised regressors for intact objects, split 

objects and scrambled objects and six motion parameters. The experimental regressors were 

modeled as boxcar functions with durations equal to the block lengths (15.8s) and convolved 

with a canonical hemodynamic response function. 

2.8.2. Multivariate analyses 

The estimated beta images of the GLM provided the basis for support vector machine (SVM) 
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classification. SVM classification was performed using The Decoding Toolbox (Görgen et al., 

2012) with a linear C-SVM and a fixed cost parameter (c=1). 

We first performed a searchlight analysis (Kriegeskorte et al., 2006), in which a 

sphere with a radius of 4 voxels was centered at each voxel of the brain and decoding was 

based on the voxels within each sphere. A leave-one-run-out cross-validation procedure was 

used, such that in each fold the classifier was trained on the beta maps of seven runs and 

tested on the left out eighth run. The resulting decoding accuracies were assigned to the 

center voxel. We performed decoding separately between the three pairs of objects (camera-

can, camera-chair, can-chair) in each of the four experimental conditions (intact attended, 

intact unattended, split attended, split unattended) and both sides of presentation (left, right). 

After averaging across object pairs and sides, we obtained information maps for each subject 

and experimental condition, which were subsequently normalized to a common template for 

group-level statistical inference. 

 The main analyses were based on ROI decoding (Haynes and Rees, 2005; Kamitani 

and Tong, 2005), in which the voxels of a given ROI in native space were used for 

classification. ROI decoding followed the same cross-validation procedure as detailed for the 

searchlight analysis. In addition, we used a nested feature selection procedure in order to 

select the most stimulus-responsive voxels. Thus, for each of the seven runs within a fold 

of the cross-validation procedure, voxels were ranked according to the magnitude (beta 

value) of the stimulus-related responses in the respective six other runs. Stimulus-

related responses were derived from the T-contrast all conditions > implicit baseline. 

We refer to decoding analyses in which training and testing was performed within the 
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same configuration (e.g. training on intact objects, testing on intact objects) as within-

configuration decoding. In the cross-configuration analysis we trained the classifier to 

discriminate between intact object categories and tested on split object categories and vice 

versa, and then averaged across train-test directions. In the cross-attention analysis the 

classifier was trained to discriminate between attended object categories and tested on 

unattended object categories and vice versa. We performed cross-attention classification both 

under the within- and the cross-configuration decoding scheme as described above. 

For statistical inference we performed two-sided t-tests and repeated-measures 

ANOVAs. Two-tailed t-tests for decoding accuracies were tested against the null hypothesis 

of a chance level decoding performance of 50%. 
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3. Results 

3.1. Behavioral results and fixation control 

Participants detected and reported brightness changes of the objects and the noise stimuli 

highly accurately (performance > 98%), indicating that they focused their attention on the 

correct stimulus in each condition. On average, 98.3±0.8% of recorded eye gaze positions 

were within the fixation area, demonstrating that the participants maintained fixation 

throughout the experiment. 

3.2. Decoding of objects 

Initially, we performed a searchlight analysis to identify brain areas that processed 

information about object categories (Fig. 2). We found above-chance classification for split 

and intact object in both the attended and the unattended condition in areas overlapping with 

the three a priori defined ROIs (LO, pFus,V1; peaks in the three ROIs were significant for all 

conditions at p<0.01, FWE-corrected for small volumes). We did not observe significant 

above-chance decoding beyond the predefined ROIs. We therefore performed all subsequent 

analyses in those ROIs. Further, since we did not find any differences between pFus and LO 

in any of the following analyses, we present the results for a composite mask of pFus and LO 

(LOC ROI). 

<Fig. 2 approximately here> 

ROI decoding accuracies were significantly above chance in all conditions in LOC 

and V1 (Table 1). Repeated-measures ANOVA (rmANOVA) with the factors attention and 

configuration showed a main effect of attention in LOC, (F(1,17)=39.4, p<0. 001), but not in 
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V1 (F(1,17)=2.0, p=0.17). The strong main effect of attention demonstrates the effectiveness 

of the attentional manipulation. No other main effects or interactions were significant in 

either ROI (all p>0.1). 

<Table 1 approximately here> 

3.3. Generalization between intact and split object representations 

The critical test for distinguishing formats of object representations in LOC was whether the 

classifier generalized between intact and split objects. For this we conducted a cross-

configuration analysis, training the classifier on intact objects and testing on split objects, and 

vice versa. In LOC, cross-configuration decoding of objects was significant in both the 

attended (67.3% accuracy, t(17)=8.9, p<0.001) and unattended condition (55.5% accuracy, 

t(17)=3.7, p=0.002; see Fig. 3A). This generalization clearly suggests a non-holistic format of 

object representations in LOC.  

To assess how cross-configuration decoding compared with within-configuration 

decoding, we conducted an rmANOVA with factors decoding scheme and attention. There 

was a main effect of attention (F(1,17) = 43.1, p<0.001), but neither a main effect of decoding 

scheme (F(1,17) = 0.01, p=0.91) nor an attention-by-decoding scheme interaction 

(F(1,17)=0.1, p=0.70). Thus the classifier could equally well predict intact and split objects, 

irrespective of whether it was trained on intact or split objects (configural invariance). 

In V1, by contrast, we found a main effect of decoding scheme (F(1,17)=71.8, 

p<0.001), such that within-configuration decoding was superior to cross-configuration 

decoding. There was neither a main effect of attention (F(1,17) = 0.33, p=0.57) nor an 
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attention-by-decoding scheme interaction (F(1,17) = 3.6, p=0.08). An rmANOVA with the 

additional factor region revealed a region-by-decoding scheme interaction (F(1, 17) = 32.0, 

p<0.001), showing that the observed configural invariance was present in LOC, but not V1 

(Fig 3A). The post-hoc probability to detect a main effect of decoding scheme in LOC of the 

same effect size as in V1 was 0.978. 

<Fig. 3 approximately here> 

 To test whether the generalization between intact and split objects in LOC would also 

hold if they were presented in different hemifields, we repeated the above analyses in a cross-

hemifield decoding scheme. The classifier was trained on stimuli in one hemifield and tested 

on stimuli in the other hemifield, both under a within- and cross-configuration scheme. As 

shown in Supplementary Fig. S1A <Insert Supplementary Figure S1 here>, cross-

configuration decoding was significant for attended objects (54.8% accuracy, t(17)=5.1, 

p<0.001) and at the same level as within-configuration decoding (54.6% accuracy, t(17)=5.6, 

p<0.001). The analysis demonstrates that the finding of complete cross-configuration 

generalization persists for high-level neuronal populations with receptive fields 

encompassing an area of at least 5.7 degree visual angle left and right of fixation (11.4 degree 

in total). Due to insufficient power, no statement can be made about unattended objects 

(Supplementary Figure S1B). 

3.4. Generalization between attended and unattended object representations 

Our finding that representations of both attended and unattended objects in LOC were 

insensitive to the split procedure does not preclude the possibility that LOC relies on different 

neural representations for attended and unattended objects. We therefore trained a classifier in 
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a cross-attention/within-configuration analysis on attended objects and tested on unattended 

objects (and vice versa). The classifier was able to cross-classify activation patterns of 

attended and unattended objects (57.1% accuracy, t(17)=5.9, p<0.001) in LOC (Fig. 3B), 

strongly suggesting that attended and unattended objects share a common representational 

basis. Furthermore, cross-attention decoding was successful even under a cross-configuration 

decoding scheme (57.1% accuracy, t(17)=6.7, p<0.001; Fig. 3B), demonstrating that the 

information shared between attended and unattended object representations in LOC is coded 

non-retinotopically.  

Cross-attention/within-configuration decoding was also successful in V1 (57.2% 

accuracy, t(17)=13.2, p<0.001; Fig. 3B), while cross-attention/cross-configuration decoding 

was not (48.8% accuracy, t(17)=-1.0, p=0.36). This difference was significant (t(17)=7.2, 

p<0.001). Across regions (V1, LOC) there was a region-by-decoding scheme interaction 

(F(1,17) = 31.9, p<0.001), consistent with the presence of configural invariance at the level of 

LOC, but not at the level of V1, found in the within-attention analysis. 
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4. Discussion 

We investigated the representational format of objects in LOC and its relation to attention. 

We found that activation patterns of intact and split objects shared information that allowed 

mutual prediction of the presented object (cross-configuration decoding). Remarkably, cross-

configuration decoding was at the same level as within-configuration classification, that is, 

intact objects representations were predicted by activation patterns of split objects just as well 

as by activation patterns of intact objects and vice versa. Crucially, cross-configuration 

decoding did not depend on attention. This pattern of results strongly suggests that the 

representational code of objects in LOC is based on a non-holistic format irrespective of 

attention. 

Previous studies showed that BOLD activity in the LOC is barely affected when 

objects are—as in our study—coarsely scrambled (half-split and two-fold splits: Lerner 

et al., 2001; 8-fold: Grill-Spector et al., 1998), whereas finer scrambling leads to a strong 

reduction (Grill-Spector et al., 1998; Lerner et al., 2001). However, whether the activation 

elicited by coarsely scrambled objects still contains meaningful object-related information 

remained unclear. We extended those findings by showing that the information coded in 

activation patterns of intact objects is preserved in the patterns of split objects. Our results in 

combination with the above reports therefore support a model in which LOC codes objects as 

part-based representations. 

A part-based coding scheme is in line with behavioral priming studies reporting 

mirror (Biederman and Cooper, 1991), rotational (Biederman and Gerhardstein, 1993) and 

configural (Thoma et al., 2004) invariance of object representations. Part-based models, 
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which posit independent encoding of object parts, correctly predict priming effects for the 

range of manipulations above, because the constituent object parts are preserved between 

prime and probe displays. A number of previous studies have probed the viewpoint 

dependence of object representations at the neural level by examining repetition suppression 

(RS). Some of those studies found evidence for viewpoint-invariant representations in high-

level visual cortex (Eger et al., 2004; James et al., 2002; Kourtzi et al., 2003), others found 

tolerance only in the left hemisphere (Vuilleumier et al., 2002) or not at all (Grill-Spector et 

al., 1999). While the present study cannot reconcile those reports, it introduces a new, 

multivariate perspective to the longstanding question of view dependence. Our cross-

classification approach is sensitive to object-related information coded at the level of 

multivoxel activation patterns, which could not be assessed by previous imaging studies 

using univariate fMRI data analysis.  At the level of multivoxel activation patterns we found a 

striking invariance of object representations with respect to the relative dislocation of object 

parts in LOC, indicative of a part-based code with all its theoretical advantages regarding 

robust and flexible coding of objects under various viewing conditions (Hummel and 

Biederman, 1992). 

It should be noted that our finding of cross-configuration generalization is not 

informative about the specific nature or complexity of object parts. For instance, since our 

split manipulation only distorted the overall holistic image but not individual parts, our 

results are open to the possibility that the part representations themselves are view-based. 

However, our finding of relative position invariance of object parts entails important 

constraints on models of object recognition. The ―chorus of fragments‖ model by Edelman 

and Intrator (2000), for instance, poses ―what+where‖ units coding the conjunction of part 
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(fragment) information and retinotopic position, which is at odds with relative position 

invariance of object parts. Our results seem to fit however a ―bag of features‖ (Hayworth et 

al., 2011) model, as for instance proposed by Ullman and colleagues (Epshtein and Ullman, 

2007; Ullman, 2007).  

Our second key finding is that the format of object representations in LOC was 

independent of attention. We could cross-classify between intact and split objects, whether 

they were attended or unattended. This finding was further corroborated by the fact that we 

were able to predict the attended objects based on the activation patterns of unattended 

objects (and vice versa). Thus, not only appears the LOC to adhere to a part-based format 

irrespective of attention, but the underlying neural representations additionally seem to be 

shared between attended and unattended objects. Importantly, we found this cross-attention 

generalization also under a cross-configuration decoding scheme, demonstrating that the 

activation patterns of attended and unattended objects indeed shared non-retinotopic, high-

level information. Taken together, our results do not provide evidence for a critical role 

of attention for part-based representations, as implicated by other empirical findings 

(Stankiewicz et al., 1998; Thoma and Henson, 2011; Thoma et al., 2004) and theoretical 

accounts (Hummel, 2001). The main difference between attended and unattended object 

representations in our study was of quantitative nature—superior decoding accuracy for 

attended objects, likely related to neural gain (see Pratte et al., 2013)—but not qualitative in 

terms of the underlying representational format. Although, given its focus on neural effects, 

our study is not in the position to challenge the findings from these previous behavioral 

priming studies, it has a number of important advantages. First, we ensured the effectiveness 

of our attentional manipulation both at the behavioral—by means of eyetracking—and at the 
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neural level, based on superior decoding accuracies for attended relative to unattended 

objects. Second, we directly probed the representational format in LOC and its dependence 

on attention, whereas behavioral priming studies rely on indirect inference from reaction 

times. And third, we used a task (brightness discrimination) that attenuates the semantic 

aspect of object recognition, which is arguably more pronounced in the object naming tasks 

employed by many priming studies. Semantic top-down feedback from higher areas is a 

potential confounding factor in these studies, since feedback might be responsible for view-

invariant priming, but might itself be dependent on attention. Future studies could 

investigate whether our finding of configurational invariance for both attended and 

unattended object representations is conditional on using a non-semantic object 

perception task, or whether it holds for tasks requiring object identification. 

Our results also differ from a previous neuroimaging study that found evidence 

for a part-based format in LOC only for attended, but not for unattended, objects 

(Thoma and Henson, 2011). The paradigm and the analyses of Thoma and Henson 

deviate in a number of important aspects from those of the present study. The 

presentation times in Thoma and Henson were considerably shorter than in our study 

(135 milliseconds, compared to 2 seconds in our study), which opens the possibility that 

the instantiation of part-based representations requires longer presentations times in 

the absence of attention. This assertion would be consistent the notion that attention 

boosts neuronal processing of stimuli by increasing the signal-to-noise ratio of neuronal 

responses (Bisley, 2011). Another noteworthy difference is the fact that in our study 

objects were repeated multiple times throughout the experiment, whereas each object in 

Thoma and Henson appeared in exactly one trial. Under the assumption of a view-based 
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object format, the multiple repetitions in our study could have therefore led to the 

instantiation of view-based representations of (previously unfamiliar) split objects. 

However, the fact that we found perfect generalization between intact and split objects, 

despite the large number of repetitions, argues against a build-up (or prior existence) of 

view-based representations for split objects. On the methodological side, Thoma and 

Henson assessed the effects of RS, whereas we employed a cross-classification approach 

that utilized the full pattern information. Given that unattended objects evoke a weaker 

BOLD response (Murray and Wojciulik, 2004; O’Craven et al., 1999; Serences et al., 

2004), it seems possible that RS was not sensitive enough to detect representational 

commonalities between intact and split unattended objects. Additionally, the analysis of 

repetition suppression effects by Thoma and Henson misses out on information coded at 

the pattern level, which by itself could explain the observed discrepancies for 

unattended objects. 

Finally, an important consideration is that the support vector machine approach in our 

study is largely intransparent with respect to the particular stimulus features underlying 

successful classification. A possible concern could be that between-object decoding might 

have entirely been based on low-level visual features. For instance, the surface of an object 

might have a certain characteristic texture, and further, the same kind of texture might even 

be present at a similar retinotopic location after the splitting procedure—hence explaining the 

observed cross-configuration generalization. However, for several reasons we consider a pure 

low-level account of our results unlikely. First, if retinotopic low-level features were an 

important source of discriminative information between objects, cross-configuration 

decoding should have worked in V1 as well, which it did not. Second, the intact and split 
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versions of our object images had very little low-level commonalities in retinotopic 

coordinates as an image analysis with a biologically plausible model of visual cortex 

confirmed (Supplementary Fig. S2) <Insert Supplementary Figure S2 here>. Third, the 

voxels entering the multivariate analysis were precisely selected for preferring complex 

features over low-level features. And fourth, the results of the cross-hemifield analysis show 

that the cross-configuration generalization holds also for high-level representations with near-

complete location invariance (Supplementary Fig. S1). Therefore, while acknowledging the 

possibility that the classifier could have only picked up on low-level information, we consider 

such an account highly unlikely for the reasons outlined. 

In summary, our study provides novel evidence indicating that neural representations 

of both attended and unattended objects in LOC rely on a non-holistic rather than view-based 

format. Moreover, our data strongly suggest that attended and unattended objects rely on a 

common representational format. 
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Captions 

Fig. 1. Experimental procedures and stimuli.  A. In each trial a cue indicated the side to 

which attention should be directed. Subsequently, four repetitions of the stimulus-response 

phase appeared, during each of which participants had to detect a decrease in brightness of 

either the object (attended condition) or the noise stimulus (unattended condition). B. The 

stimulus set consisted of three objects in an intact and half-split configuration. 

 

Fig. 2. Searchlight analysis results for intact and split objects based on a 

within-configuration/between-object decoding procedure. Whole-brain information maps are 

represented as T-maps indicating the statistical significance of voxel-wise decoding 

accuracies against the chance-level decoding accuracy of 50%. The T-maps are thresholded at 

p<0.005, uncorrected, for illustration. A. Attended objects. B. Unattended objects. 

 

Fig. 3. Within- and cross-configuration decoding in LOC and V1. A. Within-attention 

decoding scheme. B. Cross-attention decoding scheme. Error bars represent SEM. P-values 

are based on two-tailed paired t-tests. Stars represent the significance of decoding accuracies 

based on two-tailed t-tests against the chance-level decoding accuracy of 50%: ** p<0.01 *** 

p<0.001. 

 

Table 1. Basic ROI decoding results in LOC and V1 for intact and split objects and for both 

the attended and unattended condition. 
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Tables 

Table 1 

  accuracy t(17) p 

Intact attended 
LOC 66.9% 9.8 .00000002 

V1 63.3% 8.9 .00000008 

Split attended 
LOC 67.9% 6.8 .000003 

V1 62.4% 8.0 .0000004 

(SVC) 

Intact unattended 
LOC 54.1% 2.2 .043 

V1 59.3% 5.7 .00003 

Split unattended 
LOC 55.9% 3.6 0.002 

V1 61.6% 5.2 0.00007 
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Figure 3 
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Highlights: 



Non-holistic coding of objects in LOC 

Relative position invariance of object parts in LOC 

No evidence for a role of attention in establishing a non-holistic code in LOC 

Common neural basis of attended and unattended objects in LOC 


