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Abstract

Advances in diffusion-weighted magnetic resonance imaging (DW-MRI) have led to many 

alternative diffusion sampling strategies and analysis methodologies. A common objective among 

methods is estimation of white matter fiber orientations within each voxel, as doing so permits in-

vivo fiber-tracking and the ability to study brain connectivity and networks.

Knowledge of how DW-MRI sampling schemes affect fiber estimation accuracy, and 

consequently tractography and the ability to recover complex white-matter pathways, as well as 

differences between results due to choice of analysis method and which method(s) perform 

optimally for specific data sets, all remain important problems, especially as tractography-based 

studies become common.

In this work we begin to address these concerns by developing sets of simulated diffusion-

weighted brain images which we then use to quantitatively evaluate the performance of six DW-

MRI analysis methods in terms of estimated fiber orientation accuracy, false-positive (spurious) 

and false-negative (missing) fiber rates, and fiber-tracking. The analysis methods studied are: 1) a 

two-compartment “ball and stick” model (BSM) (Behrens et al., 2003); 2) a non-negativity 

constrained spherical deconvolution (CSD) approach (Tournier et al., 2007); 3) analytical q-ball 

imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging with Funk-Radon and Cosine 

Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball imaging within constant solid angle 

(CSA) (Aganj et al., 2010); and 6) a generalized Fourier transform approach known as generalized 

q-sampling imaging (GQI) (Yeh et al., 2010). We investigate these methods using 20, 30, 40, 60, 
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90 and 120 evenly distributed q-space samples of a single shell, and focus on a signal-to-noise 

ratio (SNR = 18) and diffusion-weighting (b = 1000 s/mm2) common to clinical studies.

We found the BSM and CSD methods consistently yielded the least fiber orientation error and 

simultaneously greatest detection rate of fibers. Fiber detection rate was found to be the most 

distinguishing characteristic between the methods, and a significant factor for complete recovery 

of tractography through complex white-matter pathways. For example, while all methods 

recovered similar tractography of prominent white matter pathways of limited fiber crossing, CSD 

(which had the highest fiber detection rate, especially for voxels containing three fibers) recovered 

the greatest number of fibers and largest fraction of correct tractography for a complex three-fiber 

crossing region.

The synthetic data sets, ground-truth, and tools for quantitative evaluation are publically available 

on the NITRC website as the project “Simulated DW-MRI Brain Data Sets for Quantitative 

Evaluation of Estimated Fiber Orientations” at http://www.nitrc.org/projects/sim_dwi_brain
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1. Introduction

Diffusion-weighted MRI (DW-MRI) (Beaulieu, 2002; LeBihan et al., 1986) is a unique 

imaging modality in which the diffusion of water molecules is used as a non-invasive probe 

of tissue microstructure. In this work we are particularly interested in the utility of DW-MRI 

to infer the orientation of coherently oriented bundles of axons in the brain's white-matter. 

By application of fiber-tracking algorithms (Mori and van Zijl, 2002) the orientation 

information can be used to generate so-called tractograms, which are depictions of estimated 

white-matter connections between populations of neurons in gray-matter (Conturo et al., 

1999; Mori et al., 1999).

In recent years tractography has found extensive application. A not exhaustive list includes 

neuroanatomical studies and atlases (e.g. Catani and Thiebaut de Schotten, 2008), 

neurosurgical planning (e.g. Golby et al., 2011) and post-surgery evaluation, and many 

aspects of assessment and study of neurological diseases such as multiple sclerosis (e.g. 

Mesaros et al., 2012), Alzheimer's disease (e.g. Morikawa et al., 2010) and schizophrenia 

(e.g. Voineskos et al., 2010). Tractography has also been instrumental in neurobehavioral 

modeling, where, for example, it contributed to an improved model of the limbic system 

(Catani et al., 2013). More recently tractography has been used to identify auditory 

pathways between the auditory thalamus/brainstem and different areas of auditory analysis 

in the cortex (Javad et al., 2014). Such non-invasive assessment of white-matter morphology 

could improve the prognosis of recovery of useful hearing following cochlear implantation, 

as the latter is influenced by the integrity of subcortical pathways (Vlastarakos et al., 2010). 

Last, white-matter tractography permits in-vivo graph theoretical analysis of structural brain 
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networks (Bullmore and Sporns, 2009), and as such fulfills a fundamental role in mapping 

the human connectome (Toga el al., 2012).

An important step towards further clinical application of tractography is a broader 

understanding of how the data acquisition, analysis method and fiber-tracking algorithm, 

each affect track reconstruction. Also, it is beneficial to know which analysis method yields 

the most complete and accurate tractography when applied to DW data acquired with a 

particular set of parameters. While tractography is strongly dependent on the fiber-tracking 

algorithm itself, results are fundamentally determined by the DW-MRI analysis methods’ 

ability to resolve crossing fibers and provide accurate estimates of their orientations. 

Development of appropriate synthetic DW-MRI data sets, with ground-truth and quantitative 

metrics for evaluating the fiber estimation performance of multi-fiber analysis methods, and 

an examination of how results impact tractography, is the focus of this paper.

Background

The most common approach to DW-MRI analysis is Diffusion Tensor Imaging (DTI) 

(Basser et al., 1994a, 1994b; Basser and Pierpaoli, 1996), which models the diffusion of 

water molecules by a single rank-2 tensor (a 3×3 symmetric matrix). The method is popular 

because considerable quantitative information, such as fractional anisotropy (FA), mean 

diffusivity (MD) and white-matter fiber orientation, can be obtained robustly from relatively 

small data sets (Jones, 2004). However, DTI is limited to modeling a single-fiber orientation 

per voxel and is therefore incapable of resolving complex intra-voxel geometry such as 

crossing-fibers (Alexander et al., 2002; Frank, 2001; Tuch et al., 2002), which are thought to 

occur in at least one-third of voxels in white-matter (Behrens et al., 2007). To overcome this 

problem, many alternative multi-fiber analysis methods have been proposed.

The alternatives include high-angular resolution diffusion imaging (HARDI) methods, such 

as a family of q-ball imaging (Canales-Rodríguez et al., 2009; Descoteaux et al., 2007; Hess 

et al., 2006; Michailovich and Rathi, 2010; Tuch, 2004) and many other variants of the 

methods listed here, and spherical deconvolution approaches (Dell'Acqua et al., 2010; 

Tournier et al., 2004, 2007), which sample single or multiple shells in q-space, and methods 

based on Cartesian sampling schemes of q-space, such as diffusion spectrum imaging (DSI) 

(Tuch et al., 2003; Wedeen et al., 2005, 2008), DSI with partial sampling schemes (Kuo et 

al., 2013; Yeh et al., 2008), and related variant (Canales-Rodríguez et al., 2010). This list is 

not exhaustive and a great many other model and non-model based methods exist; see 

(Assemlal et al., 2011; Haldar and Leahy, 2013) for a more comprehensive list and 

theoretical differences.

As multi-fiber analysis is a relatively young field, much of the initial work has focused on 

development of new methods, which are often presented with simulation studies for 

comparison against a few alternatives, however differences in signal models, simulation 

parameters and/or evaluation metrics usually prevent a broader comparison of similar work. 

Combined with variations in data sets (e.g. number and magnitude of diffusion-weighting 

directions, or SNR), often it remains unclear whether new methods are improvements over 

existing approaches, and if so, under what conditions.
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Towards quantitative evaluation

Many diffusion phantoms have been developed for validation of DW-MRI analysis 

methods, such as biological phantoms constructed from rat spinal cord (Campbell et al., 

2005), spherical (Moussavi-Biugui et al., 2010) or straight (Pullens et al., 2010) crossings of 

polyester fibers, and planar phantoms of various materials including water-filled plastic 

capillaries (Tournier et al., 2008), permeable Rayon fibers (Perrin et al., 2005), solid acrylic 

fibers (Poupon et al., 2008), or polyethylene fibers (Farrher et al., 2012), and many more. 

These phantoms have generally consisted of simple geometry (e.g. a single crossing-fiber 

region) for basic DW-MRI validation purposes, and as such have not been used for detailed 

characterization and comparison of analysis methods.

The “Fiber Cup” phantom (Fillard et al., 2011; Poupon et al., 2010) and contest (MICCAI 

2009 conference, http://www.lnao.fr/spip.php?rubrique79) was purposely developed to 

address the lack of a publicly available diffusion-weighted data set including tractography 

ground-truth and evaluation tools to aid comparison of analysis methods. The Fiber Cup is a 

planar phantom with fiber configurations modeled from a coronal cross-section of the brain. 

Overall it consists of seven fiber branches having three fiber crossings, one merging/

diverging region, and one fiber splitting region. As Fiber Cup data is publicly available it 

has been frequently used for both qualitative and quantitative evaluation of DW-MRI 

analysis methods and tractography. In addition, an online tool “Tractometer” (Côté et al., 

2013; http://tractometer.org) is available for connectivity-based evaluation of reconstructed 

Fiber Cup tracks, permitting extensive comparison of data analysis methods and 

tractography algorithms.

Fiber Cup is geared towards tractography evaluation however, and as such is not suited to 

detailed characterization of fiber estimation performance – the phantom has few crossing 

angles, and without a ground-truth of orientations it is impossible to quantify the accuracy of 

estimated fibers. Furthermore, one cannot distinguish between estimated fibers that are 

representative of the ground-truth, or are artifacts of the analysis method. A more recent 

“HARDI reconstruction challenge” (ISBI 2012 conference, http://hardi.epfl.ch/static/events/

2012_ISBI; Daducci et al., 2013) attends to these issues by use of simulated DW phantoms 

which offer considerable versatility (e.g. choice of signal model, diffusion sampling 

schemes, signal to noise ratio, and known fiber ground-truth) over physical phantoms, albeit 

over-simplifying the real diffusion process and MR signal. In comparison to Fiber Cup, the 

HARDI challenge focuses exclusively on intra-voxel multi-fiber estimation.

New DW-MRI data sets and quantitative tools

The contributions of this work are two-fold. First is the development of synthetic brain-like 

diffusion-weighted data sets based on a ground-truth of fiber orientations estimated from in-

vivo data, in conjunction with quantitative measures associated with fiber detection accuracy 

(false-positives, false-negatives, and individual fiber orientation error) and tractography. 

Second is application of synthetic data resembling a typical clinical acquisition to compare 

six well-known DW-MRI analysis methods.
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Developing the ground-truth from in-vivo data has the advantage of preserving realistic 

crossing-fiber configurations, and ability to observe the implications of fiber estimation 

accuracy on tractography, which is of crucial importance to brain network and human 

connectome studies (Bastiani et al., 2012; Cheng et al., 2012; Gigandet et al., 2013). 

Furthermore, both Fiber Cup and HARDI reconstruction challenge data sets contain large 

fiber tracks (at least 3 voxels in width) with adjacent slices having identical structure. This 

means each voxel is surrounded by a neighborhood of similar or identical voxels which is 

unrealistic of real white-matter configurations and could bias analysis methods that make 

use of neighborhood information. We avoid this problem and preserve realistic 

neighborhood information by deriving the ground-truth from in-vivo data.

While several aspects of our work are similar to those of the HARDI reconstruction 

challenge (Daducci et al., 2013), such as the choice of fiber estimation metrics, there are 

important differences between the simulation models and the overall goals. Specifically, we 

include a free diffusion compartment in the signal model to accommodate sources of 

isotropic diffusion, as well as T2-weighting MR signal decay, which both impact fiber 

estimation accuracy, even in the simple case of single fiber estimation. Overall, our goal is 

to determine which analysis method is optimal for clinically acquired data, whereas in 

(Daducci et al., 2013) each method is evaluated with a custom (optimal) data set, meaning 

the outcomes reflect the best possible result for each analysis method.

A previous simulation study (Ramirez-Manzanares et al., 2011) evaluated several HARDI-

based methods using model and non-model based techniques for synthesizing clinical-like 

DW-MRI data at different SNR, however the compartment sizes for individual fibers were 

fixed to few discrete values and did not accommodate free diffusion, fiber crossing angles 

were limited to ≥ 30° for voxels with 2 fibers and fixed to 90° for voxels with 3 fibers, and 

no T2-weighting of the MR signal was present. By developing our simulation from in-vivo 

data we were able to avoid such constraints, leading to more comprehensive evaluation.

After generating the synthetic data we compare the following six multiple-fiber diffusion 

analysis methods: 1) a two-compartment “ball and stick” model (BSM) (Behrens et al., 

2003); 2) a non-negativity constrained spherical deconvolution (CSD) approach (Tournier et 

al., 2007); 3) analytical q-ball imaging (QBI) (Descoteaux et al., 2007); 4) q-ball imaging 

with Funk-Radon and Cosine Transform (FRACT) (Haldar and Leahy, 2013); 5) q-ball 

imaging within constant solid angle (CSA) (Aganj et al., 2010); and 6) a generalized Fourier 

transform approach known as generalized q-sampling imaging (GQI) (Yeh et al., 2010). To 

investigate the effect of diffusion sampling each method is evaluated using 20, 30, 40, 60, 90 

and 120 evenly distributed q-space samples of a single shell, at an SNR = 18 and diffusion-

weighting (1000 s/mm2) common to clinical studies.

2. Material and Methods

In this section we establish the ground-truth, define the data synthesis model, and present the 

quantitative metrics for comparison of results.
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2.1 Establishment of simulation ground-truth

A 28-year-old right-handed male volunteer without any history of neurological disease was 

scanned on a GE 3T HDxt scanner (General Electric, Milwaukee, WI, USA), equipped with 

an 8-channel head coil. The subject signed an informed consent form for which the imaging 

protocol was approved by the Institutional Review Board of the University of Southern 

California.

A DW data set was acquired by a twice-refocused pulsed-gradient spin-echo (PGSE) 

sequence with TE/TR = 83.4 ms/16100 ms, acquisition matrix = 128×128, ASSET 

acceleration factor of 2, voxel size = 2.4×2.4×2.4 mm, 60 contiguous slices, 150 diffusion 

gradient directions with diffusion-weighting b = 1000 s/mm2, and 10 non-diffusion weighted 

volumes. The acquisition took approximately 43 minutes.

Without eddy-current or motion correction1 the diffusion data set was processed by the 

probabilistic multi-fiber “ball and stick” method implemented in the program ‘bedpostx’, a 

part of the diffusion toolbox in the FMRIB Software Library (FSL v5.0.2.2; http://

www.fmrib.ox.ac.uk/fsl; Behrens et al., 2003; Smith et al., 2004). Up to three fibers were 

estimated per voxel. To reduce the possibility of false minor fibers resulting from data over-

fitting, a threshold of 0.1 was applied to second and third fiber volume fractions. Images of 

number of fibers/voxel were inspected to ensure known crossing regions (as explored later 

in Sect. 3.5) retained 2 or 3 fibers after thresholding.

Our synthetic DW data sets are derived from the fiber volume fractions (f1,f2,f3) and 

orientations (v1,v2,v3) estimated for each voxel and output by ‘bedpostx’. Because of 

differences between the “ball and stick” model and our data synthesis equation, Eq. (1), the 

isotropic compartment fraction (f0) was not used. Instead, the fiber fractions were 

normalized ( ) and f0 was iteratively determined per voxel: beginning with f0 = 0, 

f0 was gradually increased until the generalized fractional anisotropy (GFA) (Tuch, 2004) of 

the synthetic data reduced to within 0.00005 of the GFA of the corresponding in-vivo data.

Anatomical T1-weighted SPGR images (TE/TR = 2.856 ms/7 ms) were acquired with a 

voxel size of 1×1×1 mm. The anatomical volume was registered to the mean non-diffusion 

weighted volume and subsequently segmented into white-matter (WM), gray-matter (GM) 

and cerebrospinal fluid (CSF) using default options in SPM (SPM v8; http://

www.fil.ion.ucl.ac.uk/spm; Friston et al., 1995). The high-resolution tissue probability maps 

were then down-sampled by linear interpolation to the resolution of the DW data, and each 

voxel was classified as WM, GM, or CSF according to its most probable tissue type.

2.2 Diffusion-weighted data synthesis

Diffusion-weighted data were synthesized according to a multi-tensor model (Alexander et 

al., 2001; Tuch et al., 2002) accommodating three crossing fibers per voxel in addition to a 

free-diffusion compartment. For any given voxel the signal model is:

1The diffusion-weighted data was inspected for eddy-current and motion related artifacts, and only minor artifacts were found. Even 
so, we evaluated eddy-current correction but the post-processing caused smoothing of the data which we considered detrimental to 
resolving crossing-fibers.
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(1)

where S0 simulates T2-weighting, f0 and D0 are the volume fraction and diffusivity, 

respectively, of the isotropic free-diffusion compartment, fk and Dk are the volume fraction 

and diffusion tensor, respectively, of the kth fiber in the voxel, b is the diffusion-weighting, 

and gj is a unit vector representing the jth gradient direction. Altogether the volume fractions 

satisfy .

Each fiber's diffusion tensor, Dk , was computed by rotating a default single tensor, Dx . 

That is Dk = Rx(vk)DxRx(vk)T , where v is a vector defining the desired fiber orientation, 

Rx(v) is the rotation matrix that aligns the vector x =[100]T oriented along the x-axis to v , 

and Dx is the single-fiber tensor model with diffusivities in orthogonal directions given by 

λ1,2,3. (Tuch, 2004)

(2)

(3)

Complex Gaussian noise was added to the synthesized signal, S, to achieve a Rician 

distribution of noisy magnitude diffusion data (Gudbjartsson and Patz, 1995):

(4)

where n1 and n2 are independent and identically distributed Gaussian random variables with 

zero mean and standard deviation σn = μs0/SNR , in which μs0 is the mean signal from a 

homogeneous white-matter region of the S0 non-diffusion weighted image, and SNR is the 

desired signal-to-noise ratio of the magnitude image, E.

2.3 Quantitative metrics

Analyzed synthetic DW data sets were evaluated against the ground-truth in terms of fiber 

orientation error, rate of spurious fibers (false-positives), rate of missing true fibers (false-

negatives), and fraction of similar (overlapping) and dissimilar (non-overlapping) voxelized 

tractography. The fiber orientation and false rate metrics are consistent with those used in 

similar work (Daducci et al., 2013).

2.3.1 Individual fiber orientation error—The fiber orientation error is the angular 

separation between pairs of estimated and actual fiber orientations, and lies in the range 0–

90°. In this study, we report individual fiber orientation errors for the unique pairing of 

estimated and actual fiber orientations that yields the minimum total orientation error. Each 
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estimated fiber orientation is paired with only one actual fiber orientation from the ground-

truth.

2.3.2 False-positive and false-negative rate—The number of incorrect fibers (either 

false-positives or false-negatives) was computed as the signed difference between the 

number of estimated and actual fibers (from the ground-truth) on a voxel-by-voxel basis. In 

this way, +1 indicates a single spurious fiber, whereas -2 indicates two missing fibers. The 

total number of false-positives and false-negatives was computed separately and expressed 

as a percentage of the actual number of fibers present; positive false rates (> 0%) indicate 

false-positives (spurious fibers) while negative false rates (< 0%) represent false-negatives 

(missing fibers).

2.3.3 Fraction of similar and dissimilar voxelized tractography—We examine the 

effect of fiber orientation errors on tractography and the estimation of white-matter 

pathways by computing the fraction of overlapping and non-overlapping track paths with 

respect to a ground-truth tractography derived from the invivo data. The overlapping and 

non-overlapping fractions were calculated from the union and set-difference, respectively, of 

discrete voxelized equivalents of the tractography. Isolated spurious tracks unlikely to 

represent white-matter pathways were eliminated by applying a threshold to the number of 

track points per voxel.

3. Results and Discussion

In this section we define parameters used for the data synthesis and analysis, provide a brief 

qualitative comparison of results obtained from processing in-vivo and corresponding 

synthetic data as an example of the data being generated and processed in this study, and 

finally present a detailed discussion of the quantitative findings of our study.

3.1 Data synthesis

Diffusion-weighted human brain-like data sets were synthesized according to Eq. (1), in 

which the fiber orientations and associated volume fractions were obtained as described in 

Sect. 2.1. Approximately 250 voxels classified as WM and possessing FA values within 

[0.85, 0.95] were selected to determine the diffusivities {λ1,λ2,λ3} = {1.70,0.17,0.17} × 

0.001mm2/s for the default single-fiber tensor Dx . The free diffusion parameter D0 was 

computed for each tissue classification (WM, GM and CSF) separately by averaging 

diffusivities over similarly classified voxels, giving 

.

To investigate the effect of angular sampling on fiber estimation and tractography, we 

evaluated six sets of sampling patterns consisting of different number of gradient directions, 

namely N = 20, 30, 40, 60, 90 and 120 directions, as shown in Fig. 1. Single-shell 

acquisitions having 60 or more angular samples are typically considered to be HARDI, 

while fewer numbers of samples are more common of clinical acquisitions. The spatial 

distributions of gradient directions were based on minimization of electrostatic energy of 

antipodal pairs of charged particles on the sphere, as computed by Cook et al. (Cook et al., 
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2007). These gradient directions are publically available in Camino, an open-source 

diffusion MRI toolkit (Cook et al., 2006; http://cmic.cs.ucl.ac.uk/camino).

For each sampling pattern, four DW data sets were generated with diffusion-weighting b = 

1000 s/mm2 and independent noise realization following Eq. (4), to yield SNR = 18 in the 

magnitude data. The SNR was chosen to match that of the invivo data set, which was 

estimated from the mean and standard deviation of voxels in regions of white-matter of one 

acquired non-DW volume. One noisy non-DW volume was simulated for every 10 DW 

volumes.

3.2 Data analysis

To ensure the 6 multiple-fiber analysis methods were evaluated fairly the parameters of each 

method were individually optimized for each of the diffusion sampling patterns, with the 

following objective in mind: maximize the detection of true fibers (to permit accurate 

assessment of the error associated with estimating multiple fibers per voxel), with limited 

number of false-positives (which otherwise increase spurious and false tractography). We 

are able to adjust parameters towards achieving this objective because the fiber ground-truth 

is known. Formally, the following constraints were imposed:

i) The false-positive rate for single-fiber voxels should not exceed 10%, and be 

approximately equal among analysis methods and constant over all sets of 

diffusion-weighting directions, and

ii) The false-positive rate for two-fiber voxels should not exceed 5%, averaged over 

all two-fiber crossing angles.

Following is a brief description of the software tools used for the data analysis. The final set 

of parameters used for analysis is listed in Table 1.

Ball and Stick Model (BSM)—Using identical method as per analysis of the in-vivo data 

(Sect. 2.1), the FSL program ‘bedpostx’ was used for the “ball and stick” model, with 

default parameters for estimating up to 3 fibers per voxel.

Constrained Spherical Deconvolution (CSD)—The software package MRtrix 

(MRtrix v0.2.11; http://www.brain.org.au/software; Tournier et al., 2012) was used for 

nonnegativity constrained normal and super-resolved spherical deconvolution approaches. 

The order of the spherical harmonics for estimation of the single-fiber response function 

(‘estimate_response’ command) and spherical deconvolution (‘csdeconv’ command) steps 

were specified. In our analysis, super-resolved CSD was used for all but one of the diffusion 

gradient sampling patterns (N = 120), for which better results were obtained for our 

synthetic data using normal CSD.

Q-Ball Imaging (QBI)—We implemented analytical QBI reconstruction in MATLAB 

according to the symmetric and real-valued spherical harmonics framework proposed by 

(Descoteaux et al., 2007). This approach makes use of the Funk-Hecke theorem to 

analytically evaluate the Funk-Radon Transform (FRT) of QBI, in conjunction with 

Laplace-Beltrami regularization to improve robustness to noise.
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Funk-Radon and Cosine Transform (FRACT)—FRACT is an alternative to the FRT 

used in QBI, and was readily implemented by modifying our QBI implementation; the 

eigenvalues used in computing the FRT were exchanged with values derived from the kernel 

function of FRACT. See (Haldar and Leahy, 2013) for details of the FRACT kernel and its 

associated spherical harmonics eigenvalues.

Constant Solid Angle QBI (CSA)—A MATLAB implementation of the CSA method 

was provided by Aganj for this work, and is fully described in (Aganj et al., 2010). We 

found it necessary to use a spherical harmonics order of 4 for all numbers of gradient 

directions to avoid noisy orientation distribution functions resulting in a high rate of false-

positive fibers.

Generalized q-sampling Imaging (GQI)—We implemented GQI reconstruction in 

MATLAB as described by (Yeh et al., 2010). The optimal mean diffusion length ratio, σ, 

was experimentally determined; we found that values greater than those (σ = 1.0–1.3) 

recommended by Yeh et al. for b-values of 3000–4000 s/mm2 achieved best results for our 

low b-value synthetic data (b = 1000 s/mm2).

Estimated fiber orientations were obtained differently depending on the analysis method. 

For BSM, fiber orientations were output directly by the program ‘bedpostx’. For CSD, the 

MRtrix command ‘find_SH_peaks’ was used to determine the orientations of up to three 

largest peaks of the FOD, which were in turn taken as fiber orientations. For the remaining 

methods a similar peak finding task was accomplished with an in-house MATLAB code by 

reconstructing the ODF (for QBI, FRACT or CSA) or SDF (for GQI) on a tessellated sphere 

having 2562 radial projections. In these cases estimated fiber orientations include an 

additional error of up to ~2.7°, as fibers are constrained to the orientations of these 

projections.

All peak detection approaches required the use of a threshold (minimum value of local 

maxima) to eliminate minor peaks resulting from noise, which would otherwise lead to 

false-positive fibers. Table 2 summarizes the threshold values used.

3.3 Comparison of in-vivo and synthetic data

A brief qualitative comparison of GFA, color FA, and tractography obtained from analysis 

of the in-vivo data and an example set of synthetic noisy data (SNR = 18) is shown in Fig. 2, 

which also illustrates the ‘whole-brain’ extent of our synthetic data.

In Fig. 2 the GFA images are almost identical since GFA of the in-vivo data was 

approximated in computing f0 for the synthetic data model as described in Sect. 2.1. The 

color FA image from the synthetic data is marginally brighter (higher FA) compared to that 

of the in-vivo data, particularly in regions bordering ventricles (see circles). Minor 

differences can be seen in tractography of the left cingulum as a result of small differences 

in estimated fiber orientations. Overall, the close correspondence of synthetic data results to 

those of in-vivo data allows us to gain confidence in our simulation framework.

Wilkins et al. Page 10

Neuroimage. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4 Fiber orientation estimation

In the plots of Figs. 3 to 6 each data point is the mean value of the quantity indicated, 

wherein the average is taken over all (four) independent noise realizations and all similar 

voxels as categorized by the ground-truth. Only voxels satisfying the following criteria in 

the ground-truth were included in results: 1) voxel must be classified as WM, 2) individual 

fibers must have a volume fraction of at least 15%, and 3) the free-diffusion compartment 

size is no more than 30%. The purpose of the criteria is to filter-out voxels in which 

estimated fiber orientations are governed by noise, leading to random magnitude of fiber 

orientation error. False-positive/-negative rates are given in terms of the percentage of 

individual fibers in the ground-truth satisfying the criteria.

One fiber/voxel—Fig. 3 presents the results of fiber estimation error and false-positive 

rate for voxels containing a single fiber. For clarity, error bars are not shown; the reader is 

referred to the online supplementary material for this information.

Fig. 3(a) shows that even in the simplest case of single fiber estimation, an increase in the 

number of DW directions helps reduce fiber orientation error, although beyond N = 60 there 

is minimal improvement. The BSM method had the least fiber orientation error, as would be 

expected because its model most closely matches that used for data synthesis, Eq. (1). The 

CSD method also performed very well, and this can be attributed to accurate estimation of 

the single-fiber response function over a large number of voxels having synthetic data 

modeled by identical fibers with diffusion tensor given by Eq. (3).

Fig. 3(b) shows approximately constant false-positive rate for all methods over the range of 

DW directions, and values are < 10% (in accordance with out constraints for parameter 

adjustment in Sect. 3.2). There are no false-negatives because at least one fiber orientation 

must be present.

Two fibers/voxel—For voxels with two-fibers, fiber estimation results are grouped 

according to the crossing angle (0–90°) of the two fibers in the ground truth; 9 bins of width 

10° are used. Fiber orientation error and false-negative rate is shown in Fig. 4 (grouped by 

number of diffusion-weighing directions) and Fig. 5 (grouped by analysis method). For 

clarity, the false-positive rate (which never exceeds a few percent for any data point) is not 

shown; the reader is referred to the online supplementary data for this information.

In Figs. 4 and 5 the left column of graphs illustrates individual fiber orientation error and the 

right column the corresponding false-negative rate, i.e. missing true fibers. For crossing 

angles approaching zero the false rate is often approximately −50%, indicating only half the 

fibers present were detected. This is as expected, as two increasingly parallel fibers 

eventually become indistinguishable from a single fiber.

Fig. 4 directly compares the diffusion analysis methods. As N increases there is greater 

differentiation between the methods in terms of both orientation error and false rate. As for 

voxels with single fibers, BSM and CSD perform similarly to each other, and almost always 

yield the least orientation error and false rate closest to zero. Once again, this is expected as 

both methods are positively biased due to the simulation model.
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For N = 20 and 30, CSD outperforms BSM in terms of false rate for crossing angles > 45°. 

This was found (results not shown) to be attributed to the higher-order spherical harmonics 

of super-resolved CSD, that leads to improved angular resolution and consequently fiber 

orientation estimation, especially for low N (Tournier et al., 2007).

We found QBI typically had the largest orientation errors and greatest false-negative rate for 

all N. From Fig. 4(g)-(l), we see that the false rate of QBI is −50% (for all N) until the 70–

80° bin, indicating that two fibers cannot be resolved below crossing angle of approximately 

75°. This is consistent with the results of (Descoteaux et al., 2007), in which a crossing 

angle of 74° or 75° (depending on order of the spherical harmonics, L) was identified as the 

critical angle below which only a single maxima on the ODF starts to be detected instead of 

two. Several ODF sharpening techniques have been developed (Descoteaux et al., 2009, Yeh 

et al., 2011) to enhance maxima of the fiber orientations on the ODF, although they are not 

explored in this work.

Our results show that FRACT substantially improves upon the FRT used in QBI, which in 

part is due to FRACTs suppression of the isotropic component of the ODF, allowing 

anisotropic components to be more easily detected. Compared to the FRT of QBI, FRACT 

generally decreased the orientation error and lowered the critical angle for detection of two 

fibers to 55°. Furthermore, FRACT significantly increased the detection rate of two fibers; 

for example the false-negative rate dropped from −45% for QBI in the 70–80° crossing 

angle bin (N = 60) to −20% for FRACT.

Overall, we found the most defining characteristic between the methods to be the false-

negative rate. Even when there is little difference in orientation error separating the methods, 

there can be a substantial difference in false-negative rate. For example, at N = 60 and 

considering the 70–80° bin, the difference in orientation error between the best and worst 

method is approximately 3°, whereas the corresponding difference in false-negative rate is 

45%.

Fig. 5 groups the results by analysis method and in each case a clear trend of reduced 

orientation error and improved fiber detection is seen with increasing N. Also revealed is the 

unique manner in which orientation error and false rate changes with N; for some methods a 

limited range of fiber crossing angles benefits from increased N, whereas other methods 

show improvement over a wide range of crossing angles. It is clear that some methods 

benefit from increased N more than others.

The reader is referred to the online supplementary material for inclusion of error bars and 

false-positive rate.

Three fibers/voxel—In the case of three fibers per voxel, wherein each of the fibers are 

oriented independently of each other and effectively randomly, a single crossing angle is 

insufficient to describe the relative fiber orientations. However, as the true fiber orientations 

are known from the ground truth, we are still able to calculate the orientation error of 

individual estimated fibers and detect false-negatives.
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Fig. 6 presents the results of fiber estimation error, and false-negative rate, for voxels 

containing three fibers.

Fig. 6(a) shows that N is a significant factor in reducing orientation error in the case of three 

fibers per voxel. Unlike the result of Fig. 3(a), there is more notable reduction in orientation 

error for N > 60 in this case. For N ≥ 60, there is little difference (≈1°) in orientation error 

between the methods.

Fig. 6(b) reveals substantial differences in detection rate of fibers between the methods, and 

we expect this to have significant impact on tractography through regions of crossing fibers. 

With the exception of GQI, all methods indicate improved detection rate of fibers with 

increasing N, although some methods show more substantial gains than others.

There are no false-positives in three fiber voxels because at most 3 fiber orientations were 

estimated by each analysis method.

The online supplementary material includes error bars for each of the methods.

3.5 Tractography and white-matter pathway differences

Whole-brain streamline tractography was performed using an in-house C program. The fiber 

tracking algorithm used is similar to the Euler integration scheme by Basser et al. (Basser et 

al., 2000), but modified to accommodate multiple fiber orientations per voxel. Track 

propagation used a fixed step size (0.2 mm) and at each step the propagation direction was 

calculated by tri-linear interpolation of fiber orientations from the eight voxels surrounding 

the current position. For each surrounding voxel, only the fiber orientation with smallest 

deflection angle (with respect to the current propagation direction) was used for 

interpolation. As track seeding and filtering would impact tractography results, we used a 

single consistent set of seed points and filtering criteria for processing all data sets. 

Tractography seed points (5 seeds/voxel) were distributed in all voxels classified as WM in 

the ground-truth, with identical seeds used in fiber tracking of all data sets. From the seed 

points, track propagation continued throughout a track mask consisting of all voxels 

classified as WM, and any other voxel having partial volume WM > 2% and CSF < 40% 

(based on the ground-truth tissue segmentation; see Sect. 2.1). Additional track termination 

criteria included: maximum change in track propagation direction between steps = 45°, and 

maximum track curvature = 90° over 10 mm.

Prominent white-matter pathways—Tractography of the in-vivo data was used to 

identify four prominent white-matter pathways for comparison: the left cingulum (C), left 

inferior longitudinal fasciculus (LF), right inferior fronto-occipital fasciculus (FOF), and 

right corticospinal track (CST), as shown in Fig. 7. The pathways were identified following 

procedures described by (Catani and Thiebaut de Schotten, 2008).

Before quantitative comparison we converted the continuous fiber paths (Fig. 7) to discrete 

voxelized regions (Fig. 8) by transforming fractional track coordinates to integer voxel 

space.
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Tractography from each simulated data set was filtered with the same regions-of-interest 

used in obtaining the ground-truth pathways, and then voxelized. Voxelized results from 

each of the independent noise trials were then averaged.

For each of the four pathways we calculated the percent voxelized region found overlapping 

and non-overlapping its corresponding ground-truth. Example tractography and 

corresponding voxelized regions for each multi-fiber analysis method are shown in Fig. 9.

Fig. 9 shows all methods are capable of recovering these prominent white-matter pathways 

with only minor differences between results. This is unsurprising as the chosen track paths 

have relatively high fractional anisotropy throughout (mean FA of the in-vivo data for the 

regions in Fig. 8 is {FAC,FALF,FAFOF,FACST} = {0.42,0.46,0.51,0.55}) and as such a single 

fiber is likely to be the most appropriate model to the data. For single-fiber voxels, results 

from Fig. 3 indicate only a small difference in orientation error (≈1.7° at N = 60 between 

the best and worst methods), and no missing fibers (false-negatives) for any method, and so 

comparable tractography is expected.

The average percent overlap and non-overlap of voxelized regions relative to the ground-

truth is given in Tables 3–6.

Tables 3–6 show a general increase in fraction of recovered white-matter pathways with 

higher number of diffusion-weighting directions, for all analysis methods. This trend is 

generally not monotonic with N, and is in part due to the uncertain way in which changes in 

fiber orientation affect propagation of track paths over long distances. Overall we find that 

reduced fiber orientation error leads to quantitative improvement in estimation of white-

matter pathways, even in the case of simple prominent white-matter pathways as shown 

here. Consistent with our findings of fiber orientation error, either BSM or CSD estimated 

fibers yielded the largest overlapping fraction of each pathway with respect to the ground-

truth.

A trend in percent non-overlapping white-matter is less clear. Increasing N would assume to 

reduce the volume of non-overlapping incidental regions, and this can be observed in Tables 

3–6 in some cases (~25%). However, in a similar number of cases the percent non-

overlapping pathways increased, and the remaining cases (~50%) had no clear increase or 

decrease in non-overlapping region with greater N. This variability may be attributed to our 

ground-truth pathways which were established from the in-vivo data. While we necessarily 

interpret our ground-truth as definitive for the purpose of comparison, it is itself an 

approximation of reality with unknown accuracy. If our ground-truth regions were subsets of 

their respective actual pathways, the non-overlapping volumes could represent additional 

valid contributions to the estimated white-matter pathways. Alternatively, the non-

overlapping volume may encompass a neighboring anatomically different white-matter 

pathway which is undesirable. Because of the ambiguity it is not possible to conclusively 

interpret the non-overlapping volume.

As reported in Tables 3–6 the percent non-overlapping region can be comparable to, even 

greater than, the percent overlapping region. This finding highlights a caveat for 

tractography-based region analyses: if the non-overlapping fraction is significant, it could 
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lead to diminished or inflated measures of significant difference (e.g. t-scores) between 

groups.

Three-fiber white-matter crossing region—We examined tractography through a 

complex crossing-fiber region consisting of intersecting mediolaterally directed transcallosal 

fibers, vertically oriented corticospinal fibers, and anterior-posterior association fibers 

comprising part of the superior longitudinal fasciculus, as revealed by (Wedeen et al., 2008) 

using DSI. The tractography ground-truth of these pathways was recovered from the in-vivo 

data, as shown in Fig. 10.

While our in-vivo data was acquired with relatively low diffusion-weighting, which 

inherently limits the accuracy and ability to resolve individual fibers in complex crossing 

regions (Cho et al., 2008; Tournier et al., 2004, 2008; Tuch et al., 2004), Fig. 10 shows three 

unique fiber branches intersecting and successfully traversing a crossing-region, though not 

as comprehensively as in (Wedeen et al., 2008). In our result several corticospinal fibers can 

be seen terminating incorrectly in the vicinity of the crossing-region as a result of abrupt 

changes in estimated fiber orientations. While such shortcomings would likely have been 

lessened had a higher b-value (e.g. b = 1500-2000 s/mm2) been used for the in-vivo 

acquisition, Fig. 10 reassures that the fiber orientation ground-truth established in this work 

is sufficiently accurate to permit reproduction of tracks in pathways of complex fiber 

crossings, and is therefore suitable as a basis for comparison of multi-fiber per voxel 

analysis methods.

Fig. 11 illustrates the methods’ varying ability to recover each of the pathways, and their 

relative success of traversing the crossing region. In BSM and CSD there are a large number 

of tracks in each pathway and therefore evidently more voxels in the crossing region contain 

three fibers allowing the individual tracks to continue uninterrupted. The FRACT, CSA and 

GQI methods recover tracks in all three pathways, though crossing areas consist mostly of 

pairs of tracks and the fiber bundles themselves appear mostly adjacent to each other with 

few intersections. The QBI result illustrates the outcome for which a large percentage of 

false-negatives (missing true fiber orientations) lead to parallel fiber bundles unable to cross 

each other. Overall, the number of fibers propagating through the three-fiber crossing region 

correlates strongly with the false-negative rates reported in Fig. 6(b).

Quantitative results of the percent overlap and non-overlap of voxelized equivalents of the 

callosal, corticospinal and association fiber bundles relative to the ground-truth is presented 

in Tables 7–9, respectively.

Tables 7–9 yield similar conclusions as to the effect of the number of diffusion-weighting 

directions on the overlapping and non-overlapping fraction of recovered pathways as was 

observed in Tables 3–6. It is unexpected that results in Tables 6 and 8, both regarding the 

corticospinal track, show BSM to have a decreasing trend in overlapping region as N 

increases. These pair of results is opposite of other methods’ and we are unable to 

rationalize this result.
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Overall the three-fiber crossing emphasizes the importance of accurate estimation of all 

present fiber orientations present in order to recover track paths through complex fiber 

crossing regions.

4. Conclusion

Diffusion-weighted MRI uniquely has the potential to reveal the human brain's white-matter 

connectivity in-vivo, and as such it is being enthusiastically applied to a broad range of 

problems in neuroscience and clinical research. As the field has matured, advances in 

diffusion signal modeling and analysis has led to many alternative diffusion sampling 

strategies and analysis methodologies. For the researcher, it can be difficult to choose the 

optimal method for analyzing their data from the alternatives available.

In this work we conducted a simulation study to evaluate six multiple-fiber diffusion MRI 

analysis methods at a diffusion-weighting and SNR common to clinical settings. We focused 

on issues relevant to white-matter tractography and quantitatively compared the methods in 

terms of estimated fiber orientation error, false-positive and false-negative fibers, and 

percent recovery of select white-matter pathways. A range of diffusion-weighting directions, 

N, were investigated to analyze the effect of angular sampling. To ensure findings were as 

relevant as possible to practical application, we developed the simulation from an in-vivo 

data set.

Of the methods studied, and within the scope of clinically acquired diffusion data (b ≈ 1000 

s/mm2 and SNR ≈ 18), we found the two-compartment “ball and stick” model (BSM) and 

non-negativity constrained super-resolved spherical deconvolution (CSD) methods yielded 

the most accurate fiber orientation estimation, and greatest detection rate of fibers, for all N. 

Additionally we observed that even small improvements in fiber estimation, in terms of both 

reduced orientation error and greater detection rate, engendered more complete recovery of 

white-matter pathways via tractography. While all methods were able to recover prominent 

white-matter pathways consisting of generally high FA and therefore minimal crossing of 

fibers, a complex three-fiber crossing region revealed significant differences. For the 

particular region studied we found fiber orientations estimated by CSD led to a substantially 

greater number of tracks able to traverse the crossing region than the alternative approaches. 

This outcome can be attributed to the much higher detection rate of fibers achieved by CSD, 

particularly for voxels containing three fibers.

We wish to emphasize that our investigation focused on DW data typical of clinical neuro-

radiological settings, for which diffusion-weighting b ≈ 1000 s/mm2 and SNR ≈ 18 are 

common. The relatively low b-value is not equally suited to all the analysis methods we 

studied, and as such the results presented will invariably be lower than could be obtained 

with individually optimal data acquisition. At high b values (b ≳ 1500 s/mm2) the relative 

fiber estimation performance of the methods studied may be notably different.

We acknowledge the BSM and CSD methods are favorably biased in comparison to the 

remaining approaches due to the data synthesis model, which is based on rotating a single 

fiber represented by a tensor. Also, the BSM and CSD methods used their own algorithms to 

Wilkins et al. Page 16

Neuroimage. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimate fiber orientations, which are different to the discrete peak-finding technique we 

implemented for QBI, FRACT, CSA and GQI. The extent of bias in the BSM and CSD 

results could be evaluated by using more generalized methods for data synthesis; for 

example, a taxonomy of multi-compartment models of white-matter comprising intra- and 

extra-cellular water (Panagiotaki et al., 2012), or Monte-Carlo random-walk simulations 

using three-dimensional mesh substrates to model complex diffusion environments (Hall et 

al., 2009; Panagiotaki et al., 2010).

Another limitation of this work is that we use the same single-fiber tensor model, Dx, 

throughout the brain. In future work it would be desirable to use tract or region specific Dx, 

especially as it would reduce bias to the BSM and CSD methods. We did not try this here, 

however. For tract/region specific Dx to contribute to a more accurate brain-like phantom, its 

variation throughout the brain would have to be accurately established, otherwise it may 

undermine the desired improved quality of the simulation. For example, loss of continuity of 

long fiber tracts when performing tractography may result. In the present case we do not 

believe the raw data (a single acquisition of a single subject) used for developing the 

ground-truth of fiber directions and estimating the single Dx would be sufficient for accurate 

estimation of tract/region specific Dx.

Our results provide important information on the performance of fiber estimation and 

subsequent tractography for a set of well-known diffusion analysis methods and sampling 

patterns. We believe the results to be of particular interest to researchers undertaking 

tractography-based analyses and brain network/connectivity studies. To encourage 

evaluation of more recent DW-MRI analysis methods, and permit exploring specific 

applications in clinical or research settings, we have made the data sets (which include three 

SNR values, 10 noise realizations, and 6 diffusion sampling patterns) and quantitative tools 

developed in this research publicly available via the NITRC project “Simulated DW-MRI 

Brain Data Sets for Quantitative Evaluation of Estimated Fiber Orientations” at http://

www.nitrc.org/projects/sim_dwi_brain. It is our hope these tools are found valuable to the 

community towards development of not just more, but better, DW-MRI analysis methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

■ Development of simulated diffusion-weighted brain images based on in-vivo data.

■ Improvements in fiber estimation engendered more complete white-matter 

pathways.

■ Accurate fiber estimation essential to tractography through complex crossing-

regions.

■ Of the methods evaluated, non-negativity constrained super-resolved spherical 

deconvolution yielded best results on clinical diffusion-weighted data.
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Fig. 1. 
Diffusion gradient directions as vertices of a tessellated sphere used for data synthesis and 

analysis. In each case, the number of vertices on the sphere is twice the number of diffusion-

weighting directions, N, due to the symmetry of diffusion (a measurement in direction g = [x 

y z]T is equivalent to a measurement in direction –g).
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Fig. 2. 
Example qualitative comparison of results obtained from in-vivo data (row 1) and synthetic 

noisy data (SNR = 18) (row 2); both data sets consisted of 150 DW volumes and 10 non-

DW volumes. The three columns are: generalized FA (left), color FA (middle) and 

tractography of the left cingulum (right). Corresponding images have identical intensity 

scales. Color in the images corresponds to orientation of the principal eigenvector in the 

color FA image, and local orientation of the fiber in the tractography image.
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Fig. 3. 
Single-fiber estimation versus number of diffusion-weighting gradient directions, N. Multi-

fiber analysis method indicated by color according to the legend. Filled markers (circle and 

triangle) are mean values of the quantity indicated. (a) Individual fiber orientation error. (b) 

Corresponding false-positive rate.
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Fig. 4. 
Two fiber estimation versus fiber crossing angle; multi-fiber analysis method indicated by 

color according to the legend. Filled markers (circle and triangle) are mean values of the 

quantity indicated. (a)-(f) Individual fiber orientation error, with increasing N. (g)-(l) 

Corresponding false-negative rate, with increasing N.
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Fig. 5. 
Two fiber estimation versus fiber crossing angle; number of diffusion-weighting gradient 

directions indicated by color according to the legend. Filled markers (circle and triangle) are 

mean values of the quantity indicated. (a)-(f) Individual fiber orientation error, for each 

analysis method. (g)-(l) Corresponding false-negative rate, for each analysis method.
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Fig. 6. 
Three fiber estimation versus number of diffusion-weighting gradient directions, N. Multi-

fiber analysis method indicated by color according to the legend. Filled markers (circle and 

triangle) are mean values of the quantity indicated. (a) Individual fiber orientation error. (b) 

Corresponding false-negative rate.
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Fig. 7. 
Four white-matter pathways identified from the in-vivo data and assumed as the ground-

truth: left cingulum (red), left inferior longitudinal fasciculus (purple), right inferior fronto-

occipital fasciculus (blue), and right corticospinal track (green). A registered T1-weighted 

anatomical image is inserted for reference. Orientations are as indicated.

Wilkins et al. Page 29

Neuroimage. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Voxelized regions of the track paths of Fig. 7. The regions are: left cingulum (red), left 

inferior longitudinal fasciculus (purple), right inferior fronto-occipital fasciculus (blue), and 

right corticospinal track (green). A registered T1-weighted anatomical image is inserted for 

reference. Orientations are as indicated.
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Fig. 9. 
Tractography (columns 1 and 2) and corresponding discrete voxelized regions (columns 3 

and 4) obtained from processing one N = 60 DW data set by each of the six analysis 

methods (individual rows). White-matter pathways are: left cingulum (red), left inferior 

longitudinal fasciculus (purple), right inferior fronto-occipital fasciculus (blue), and right 

corticospinal track (green). A registered T1-weighted anatomical image is inserted for 

reference. Left and right orientation only, as indicated. Comparable tractography between 
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methods is expected as the underlying voxels likely contain single fibers. See additional 

clarification in the text.
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Fig. 10. 
Tractography from the in-vivo data through a complex fiber crossing region; intersection of 

callosal fibers (red), corticospinal fibers (blue) and association fibers (green). Orientation is 

oblique posterior view. Inset: magnified crossing region with reduced diameter fibers for 

clarity. A registered T1-weighted anatomical image is inserted for reference.
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Fig. 11. 
Tractography obtained from processing simulated N = 60 DW direction data by each of the 

six DW-MRI analysis methods showing intersection of callosal fibers (red), corticospinal 

fibers (blue) and association fibers (green). Orientation is oblique posterior view. Inset: 

magnified crossing region with reduced diameter fibers for clarity. A registered T1-weighted 

anatomical image is inserted for reference.
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Table 1

Summary of parameters used for data analysis.

Analysis Method
Diffusion-weighting directions

20 30 40 60 90 120

BSM N=3 N=3 N=3 N=3 N=3 N=3

CSD lmax=6* lmax=8* lmax=8* lmax=10* lmax=12* lmax=12

QBI
l=4 l=6 l=6 l=8 l=10 l=12

λ=0.006 λ=0.006 λ=0.006 λ=0.006 λ=0.006 λ=0.006

FRACT

L=4 L=6 L=6 L=8 L=10 L=12

λ=0.006 λ=0.006 λ=0.006 λ=0.006 λ=0.006 λ=0.006

ξ=0.10ρ ξ=0.40ρ ξ=0.40ρ ξ=0.45ρ ξ=0.45ρ ξ=0.45ρ

CSA
l=4 l=4 l=4 l=4 l=4 l=4

δ1=δ2=0.01 δ1=δ2=0.01 δ1=δ2=0.01 δ1=δ2=0.01 δ1=δ2=0.01 δ1=δ2=0.01

GQI σ=1.66 σ=1.85 σ=1.90 σ=1.95 σ=2.05 σ=2.10

Notation for parameters is summarized here: N = maximum number of fibers; lmax, l, L = maximum degree of the spherical harmonic series; λ = 

weighting of Laplace-Beltrami regularization term; ξ = parameter of FRACT method; δ1, δ2 = thresholding parameters of CSA method; σ = 

diffusion sampling length ratio. Refer to references of each method for notation details. The * indicates super-resolved non-negativity CSD.

Neuroimage. Author manuscript; available in PMC 2016 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wilkins et al. Page 36

Table 2

Thresholds used to eliminate minor peaks as fraction of mean value of the applicable spherical function (FOD, 

ODF or SDF).

Analysis Method
Diffusion-weighting directions

20 30 40 60 90 120

CSD 0.30 0.35 0.30 0.35 0.45 0.40

QBI 0.00 0.00 0.00 0.00 0.00 0.00

FRACT 0.30 0.70 0.70 0.70 0.70 0.70

CSA 2.10 1.90 1.75 1.55 1.45 1.33

GQI 0.92 0.92 0.92 0.92 0.92 0.92
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Table 3

Average percentage of overlapping (v1) and non-overlapping (v2) voxelized tractography, written v1/v2, for the 

left cingulum relative to the ground-truth; greatest overlap for each set of diffusion-weighting directions 

indicated in bold.

Analysis Method
Diffusion-weighting directions, N

20 30 40 60 90 120

BSM 63.5 / 14.2 72.5 / 13.7 69.0 / 11.5 73.0 / 16.8 75.7 / 13.9 75.9 / 14.5

CSD 60.8 / 11.8 64.7 / 14.5 67.9 / 14.3 74.4 / 22.8 74.6 / 19.5 71.1 / 13.2

QBI 58.1 / 10.0 54.6 / 8.9 61.6 / 11.5 63.5 / 12.5 64.4 / 10.4 65.0 / 7.4

FRACT 58.2 / 13.6 59.8 / 12.3 59.9 / 10.0 70.6 / 17.4 68.7 / 13.6 67.6 / 11.4

CSA 51.8 / 11.0 56.6 / 9.6 64.4 / 12.1 69.2 / 11.4 68.6 / 11.1 72.8 / 12.2

GQI 36.2 / 22.4 56.3 / 10.0 63.2 /15.1 62.8 / 18.9 66.8 / 10.9 66.0 / 8.1
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Table 4

Average percentage of overlapping (v1) and non-overlapping (v2) voxelized tractography, written v1/v2, for the 

left inferior longitudinal fasciculus relative to the ground-truth; greatest overlap for each set of diffusion-

weighting directions indicated in bold.

Analysis Method
Diffusion-weighting directions, N

20 30 40 60 90 120

BSM 68.6 / 65.2 76.9 / 54.7 75.6 / 40.2 78.8 / 47.3 82.0 / 33.9 84.1 / 36.4

CSD 73.0 / 70.8 77.7 / 74.0 76.8 / 56.5 85.3 / 85.5 82.6 / 60.3 87.3 / 82.9

QBI 60.5 / 57.4 63.5 / 62.9 65.0 / 59.7 64.8 / 56.0 64.5 / 63.3 63.9 / 26.1

FRACT 65.9 / 70.5 65.6 / 58.5 75.4 / 66.3 71.0 / 59.6 71.4 / 68.4 73.0 / 70.7

CSA 64.5 / 54.7 65.9 / 49.1 70.8 / 41.8 72.8 / 59.5 71.6 / 49.2 74.6 / 56.4

GQI 58.0 / 48.9 57.9 / 55.9 70.2 / 67.4 66.3 / 69.9 67.6 / 59.8 67.5 / 69.0
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Table 5

Average percentage of overlapping (v1) and non-overlapping (v2) voxelized tractography, written v1/v2, for the 

right inferior fronto-occipital fasciculus relative to the ground-truth; greatest overlap for each set of diffusion-

weighting directions indicated in bold.

Analysis Method
Diffusion-weighting directions, N

20 30 40 60 90 120

BSM 75.0 / 90.1 78.9 / 74.6 78.9 / 56.9 76.6 / 50.4 81.7 / 39.1 79.9 / 38.5

CSD 76.8 / 59.3 76.8 / 63.2 78.8 / 63.4 81.1 / 66.0 84.8 / 83.7 82.1 / 62.9

QBI 69.3 / 86.6 71.1 / 99.0 73.5 / 92.5 73.8 / 87.8 72.9 / 87.7 73.8 / 86.8

FRACT 68.1 / 69.8 70.0 / 70.9 75.1 / 67.8 75.1 / 71.4 72.1 / 61.4 75.7 / 76.8

CSA 68.9 / 51.5 65.0 / 52.1 74.3 / 51.0 70.2 / 53.4 70.8 / 47.8 75.8 / 59.7

GQI 25.4 / 27.9 50.4 / 32.0 79.3 / 74.5 67.7 / 58.7 76.6 / 75.0 71.3 / 55.9
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Table 6

Average percentage of overlapping (v1) and non-overlapping (v2) voxelized tractography, written v1/v2, for the 

right corticospinal track relative to the ground-truth; greatest overlap for each set of diffusion-weighting 

directions indicated in bold.

Analysis Method
Diffusion-weighting directions, N

20 30 40 60 90 120

BSM 62.3 / 46.2 64.4 / 44.9 53.8 / 29.6 62.4 / 30.2 60.9 / 24.6 47.6 / 18.1

CSD 67.8 / 49.6 71.1 / 55.3 72.6 / 58.0 73.8 / 53.2 79.3 / 60.4 79.2 / 59.3

QBI 59.0 / 42.7 59.9 / 41.4 57.3 / 39.9 59.1 / 38.2 60.0 / 42.9 59.3 / 43.4

FRACT 66.3 / 53.2 64.8 / 51.0 66.7 / 57.0 68.5 / 49.1 73.7 / 54.0 71.2 / 49.4

CSA 68.5 / 56.0 67.2 / 44.7 65.0 / 42.8 66.5 / 41.6 71.1 / 48.3 70.8 / 46.9

GQI 49.4 / 51.5 56.8 / 40.8 64.2 / 46.7 60.7 / 41.0 66.8 / 54.1 62.1 / 42.5
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Table 7

Average percentage of overlapping (v1) and non-overlapping (v2) voxelized tractography, written v1/v2, for the 

mediolateral transcallosal fibers relative to the ground-truth; greatest overlap for each set of diffusion-

weighting directions indicated in bold.

Analysis Method
Diffusion-weighting directions, N

20 30 40 60 90 120

BSM 53.5 / 63.3 53.9 / 66.1 59.4 / 70.4 67.3 / 78.3 68.3 / 82.0 66.4 / 60.0

CSD 60.7 / 72.7 68.0 / 82.7 64.0 / 76.3 71.6 / 87.4 67.3 / 82.6 75.3 / 80.0

QBI 47.2 / 57.7 48.8 / 60.2 48.3 / 65.3 52.9 / 63.0 55.0 / 72.2 54.5 / 71.3

FRACT 54.7 / 71.1 60.3 / 76.0 53.7 / 77.3 62.4 / 79.6 63.2 / 79.9 64.9 / 85.3

CSA 51.8 / 56.1 54.4 / 73.3 58.5 / 78.1 65.3 / 84.6 66.9 / 85.9 65.5 / 86.6

GQI 32.9 / 29.7 41.2 / 49.6 47.3 / 63.4 62.3 / 79.2 61.0 / 79.4 62.0 / 78.1
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Table 8

Average percentage of overlapping (v1) and non-overlapping (v2) voxelized tractography, written v1/v2, for the 

vertically oriented corticospinal track fiber relative to the ground-truth; greatest overlap for each set of 

diffusion-weighting directions indicated in bold.

Analysis Method
Diffusion-weighting directions, N

20 30 40 60 90 120

BSM 80.6 / 128.3 80.2 / 113.8 68.0 / 68.7 63.9 / 44.6 64.0 / 41.7 56.6 / 27.8

CSD 82.0 / 122.1 85.0 / 118.6 83.0 / 122.0 82.5 / 107.8 86.3 / 117.3 87.6 / 105.0

QBI 78.0 / 128.3 77.5 / 121.3 78.5 / 125.4 79.2 / 121.8 80.8 / 131.3 82.2 / 135.8

FRACT 83.4 / 139.8 84.0 / 133.2 85.4 / 146.0 84.9 / 129.3 88.0 / 139.2 86.6 / 127.8

CSA 81.3 / 134.2 85.7 / 109.9 82.0 / 107.5 83.5 / 113.4 86.7 / 137.7 86.0 / 129.5

GQI 56.6 / 119.1 75.1 / 124.1 80.8 / 125.6 80.3 / 114.2 85.7 / 143.5 83.0 / 125.3
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Table 9

Average percentage of overlapping (v1) and non-overlapping (v2) voxelized tractography, written v1/v2, for the 

anterior-posterior association fibers relative to the ground-truth; greatest overlap for each set of diffusion-

weighting directions indicated in bold.

Analysis Method
Diffusion-weighting directions, N

20 30 40 60 90 120

BSM 3.8 / 1.3 5.9 / 1.3 13.1 / 2.8 14.9 / 1.8 32.4 / 11.2 41.9 / 8.0

CSD 17.2 / 5.3 35.6 / 15.3 33.3 / 10.9 54.8 / 20.2 62.3 / 31.3 65.9 / 27.5

QBI 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0

FRACT 4.1 / 0.6 9.0 / 5.9 15.6 / 5.8 27.3 / 12.6 25.1 / 9.1 19.8 / 8.7

CSA 0.0 / 0.0 5.8 / 4.4 2.5 / 1.3 19.2 / 6.0 13.4 / 1.4 26.8 / 5.5

GQI 0.0 / 0.0 3.0 / 1.5 4.5 / 1.8 7.6 / 3.1 3.0 / 0.0 24.8 / 9.0
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