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Abstract

We propose a novel method for neurodevelopmental brain mapping that displays how an 

individual’s values for a quantity of interest compare with age-specific norms. By estimating 

smoothly age-varying distributions at a set of brain regions of interest, we derive age-dependent 

region-wise quantile ranks for a given individual, which can be presented in the form of a brain 

map. Such quantile rank maps could potentially be used for clinical screening. Bootstrap-based 

confidence intervals are proposed for the quantile rank estimates. We also propose a recalibrated 

Kolmogorov-Smirnov test for detecting group differences in the age-varying distribution. This test 

is shown to be more robust to model misspecification than a linear regression-based test. The 

proposed methods are applied to brain imaging data from the Nathan Kline Institute Rockland 

Sample and from the Autism Brain Imaging Data Exchange (ABIDE) sample.
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Introduction

Neuroimaging studies have yielded valuable insights about developmental abnormalities 

associated with psychiatric disorders. For example, the influential study of Shaw et al. 

(2007) found that the attainment of peak cortical thickness is delayed in children with 

attention-deficit/hyperactivity disorder (ADHD), particularly in prefrontal regions 

implicated in control of cognitive processes. Findings of this sort are often framed in terms 

of developmental “trajectories,” defined as the mean of a quantity of interest as a function of 

age.

Recently, however, there has been increasing interest in methodology that can go beyond 

population means, and provide information about individuals. One general approach along 

these lines seeks to derive an imaging-based index of brain maturation that can serve to 

“predict” an individual’s age. By applying support vector algorithms to resting state 

functional MRI data, Dosenbach et al. (2010) achieved accurate classification of age group 

(child vs. adult) as well as accurate prediction of age values. Brown et al. (2012) used 

multimodal anatomical MRI data to derive an index of development that they found to be 

highly correlated with age. Franke et al. (2012) developed a BrainAGE measure based on 

relevance vector regression applied to structural MRI data, and found this measure to be 

significantly lower than chronological age in a group of preterm-born adolescents. In a 

similar vein (but without using brain imaging data), Gur et al. (2014) plotted estimated 

neurocognitive age against chronological age in individuals endorsing psychotic symptoms; 

such “neurocognitive growth charting” revealed a developmental lag in these individuals.

While studies such as these have produced notable successes, any attempt to distill whole-

brain data into a scalar measure of maturity necessarily sacrifices a great deal of information 

about an individual brain’s particular features. Here we pursue an alternative approach based 

on estimating the age-specific distribution of any structural or functional quantity of interest 

in the brain. This can be viewed as a brain mapping counterpart to growth charts in the 

traditional sense: i.e., the graphs of age-specific percentiles for height and weight that are 

routinely used by pediatricians to chart children’s development. Having estimated such 

distributions for each of a set of brain regions, we can, for a given individual, produce a 

personalized brain map that shows how his/her measure of interest for each region compare 

with age-specific norms. Maps of this kind are what we call quantile rank maps.

In related previous work, Reiss and Huang (2012) studied the development of functional 

connectivity by means of nonparametric quantile regression (Koenker et al., 1994), which 

estimates a prespecified quantile (e.g., the 90th percentile) as a smooth function of age. 

Here, by contrast, we wish to map where a given individual’s brain measures lie relative to 

age-specific distributions. For that purpose, rather than prespecifying one or more quantiles 

of interest as in (nonparametric) quantile regression, we need to be able to input the 
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individual’s measures at each region and output the age-specific quantile ranks for each. 

Thus we need a method that estimates the entire distribution, at a given age. An early 

method of this kind is the LMS method of Cole and Green (1992). Here, we pursue the 

generalized additive models for location, scale and shape approach (GAMLSS; Rigby and 

Stasinopoulos, 2005), a more recent computational framework that encompasses a wide 

class of models including LMS.

In pediatrics, height and weight growth charts are used to efficiently classify individual 

children’s trajectories of physical growth as typical or atypical. In a similar way, brain 

imaging-derived measurements can provide important information about brain development, 

maturation and aging. Structural MRI-derived measurements, such as cortical thickness or 

volume, can show how neuroanatomy changes over time; functional MRI-derived 

measurements, such as functional connectivity between regions of interest (ROIs), can 

indicate how brain networks evolve. Age-specific quantile ranks of these measurements are 

informative and intuitive, and may ultimately be applied in clinical practice for screening of 

neuropsychiatric disorders.

In the nearer term, maps of age-specific quantile ranks offer a new, and sometimes more 

sensitive, way to adjust for age in group comparisons of brain measures. We propose a novel 

recalibrated version of the Kolmogrov-Smirnov test for that purpose, and show that it can 

detect group differences that are missed by conventional tests.

Longitudinal data are considered the gold standard for modeling growth and other changes 

in the brain (e.g. Gogtay et al., 2004; Thompson et al., 2011), and indeed are indispensible 

for inferring individual trajectories, as opposed to age-varying population norms (cf. Reiss et 

al., 2015). Nevertheless, for modeling “trajectories” in the latter sense, cross-sectional data 

can be informative and, due to their greater availability, have been and will continue to be 

widely used. This paper focuses on the cross-sectional case, but in the Discussion we briefly 

consider extensions to longitudinal data.

Methods

Modeling an age-varying distribution

In what follows we use Y to denote the positive response of interest, conceived as a random 

variable; y will denote particular realized values of Y. Let (ti, yi), i = 1, …, n, be the age and 

response for subject i. Following the GAMLSS framework of Rigby and Stasinopoulos 

(2005), we assume that the distribution of Y depends on parameters

(1)

such that for k = 1, …, p, θk(t) can be modeled (possibly after being transformed by a “link” 

function; see “Fitting the model” below) as a smooth function of age t. The first two 

parameters θ1 and θ2 are the location (e.g., mean or median) and scale parameters, while the 

remaining parameters are shape parameters (e.g., skewness or kurtosis). In practice, one or 

two shape parameters are often adequate.
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GAMLSS is a framework for modeling a rich family of distributions, which may depend 

nonlinearly on covariates such as age. Whereas most statistical models focus on one aspect 

of the outcome distribution (usually its mean, or a specific quantile as in quantile 

regression), GAMLSS aims at modeling the entire distribution, which is advantageous for 

detecting an individual’s deviation from normal development.

Here we focus on a well-known special case of GAMLSS, the LMS model (Cole and Green, 

1992), which assumes that given t, Y follows a Box-Cox-transformed normal distribution; 

that is, we posit functions [θ1(t), θ2(t), θ3(t)] = [μ(t), σ(t), ν(t)] such that the transformed 

response

(2)

is assumed to be standard normal. Here μ(t) is the median of Y for age t. For σ(t) = 1, the 

right side of (2) is the result of applying the transformation of Box and Cox (1964), a 

standard tool for attaining approximate normality, to Y/μ(t) with parameter ν(t). The scale 

parameter σ(t) can be interpreted as the approximate coefficient of variation of Y (Cole and 

Green, 1992). Below, zi denotes the ith transformed response, i.e., (2) with Y = yi.

The key idea captured by the LMS model, and one that is often supported by developmental 

data in neuroscience and beyond, is that just as the median response μ varies with age, so do 

the amount of variation, determined by σ, and the shape of the distribution, represented by ν.

Fitting the model

The median μ(t), log scale parameter log[σ(t)], and transformation parameter ν(t) are all 

assumed to be smooth functions of age t. (Taking the log of σ(t) ensures a positive estimate 

of σ(t); this is an example of what we referred to, just below equation (1), as transformation 

by a link function.) These three functions can then be estimated by penalized B-splines 

(Green and Silverman, 1994; Eilers and Marx, 1996). Let b(t) = [b1(t), …, bK(t)]T denote a 

set of B-spline basis functions defined throughout the age range of interest. We assume that 

the three functions lie in the span of this basis, i.e.,

(3)

where βμ, βσ, βν ∈ ℝK are vectors of spline coefficients. These coefficients are chosen to 

maximize the penalized log-likelihood

(4)

where  is the normal log-likelihood that results from inserting (3) into 

(2), and the three subtracted terms are so-called roughness penalties applied to the fitted 

curves. Such penalization, the degree of which is controlled by the non-negative tuning 

parameters λμ, λσ, and λν, avoids the overly wiggly estimates of the trajectories μ(t), σ(t) and 
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ν(t) (overfitting) that would ensue if we simply maximized the log likelihood . 

Roughness penalties have been applied previously to neuroimaging data to estimate 

trajectories of brain change (e.g., Fjell et al., 2010; Alexander-Bloch et al., 2014; 

Satterthwaite et al., 2014).

Criterion (4) can be maximized with the gamlss package for R (R Core Team, 2014), which 

proceeds by a two-step approach (Appendix C of Rigby and Stasinopoulos, 2005; see also 

Rigby and Stasinopoulos, 2014, section 4):

1. The first and second derivatives of the penalized log-likelihood l[p] (4) with respect 

to the spline coefficients  are computed. These are denoted by h 

= ∂l[p]/∂β and H = ∂2l[p]/∂β∂βT.

2. The penalized log-likelihood is maximized by a Newton-Raphson algorithm in 

which, at the rth step, a new estimate β(r+1) is obtained by solving H(r)(β(r+1) − β(r)) 

= h(r). This is iterated until convergence.

To choose the tuning parameters λμ, λσ, and λν, which control the smoothness of the three 

functions, we used the local maximum likelihood approach implemented in gamlss (Rigby 

and Stasinopoulos, 2005, 2014).

Estimation of person-specific quantile ranks

Using “hats” to denote the parameter function estimates obtained as above, it follows from 

(2) that the estimated age-specific cumulative distribution function is

(5)

where Φ is the standard normal cumulative distribution function. Equivalently, for any τ ∈ 

(0, 1), the τ quantile (the 100τ percentile) of the response for a given age t is

(6)

where zτ is the τ quantile of the standard normal distribution.

With these formulas in hand we can assign individual quantile ranks. Given an individual of 

age t with response y, his/her estimated age-specific quantile rank is given by (5) as τ̂ = 

F̂t(y), or equivalently, the unique value τ̂ ∈ (0, 1) such that qτ̂ (t) = y.

Confidence intervals (CIs) for an individual’s quantile rank can be derived by a bootstrap 

procedure. For b = 1, …,B, we

1. draw a bootstrap sample (a sample of n drawn with replacement from the n 

observations); and
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2. fit the LMS model to this sample, resulting in an estimated cumulative distribution 

function .

For a given subject with data (t, y), this procedure yields bootstrap quantile rank estimates

If we denote the sorted bootstrap estimates by , then a 100(1 − α)% CI is 

given by . The quantile rank estimate together with its 95% CI can 

serve to quantify the evidence that an individual’s response is an extreme value in the 

population.

Recalibrated Kolmogorov-Smirnov test for group differences

Now suppose we have two samples of images, one from a control group and one from a 

group with a disorder, and wish to construct a brain map showing regions for which the age-

specific distributions differ between the groups. For instance, our Autism Brain Imaging 

Data Exchange (ABIDE) data set consists of subjects with autism spectrum disorder (ASD) 

and controls, and we are interested in mapping between-group differences in functional 

connectivity (see the “Autism Brain Imaging Data Exchange data” section below). Group 

differences can be assessed by a Wald test or other test of equal location, or by a covariate-

adjusted group effect in a regression model as in Di Martino et al. (2014). However, we 

would like to pursue a testing approach that is sensitive to arbitrary differences in age-

specific distributions. Moreover, from a clinical standpoint, we might wish for a test that 

does not treat the typical and atypical groups symmetrically, but rather asks how those with 

a disorder tend to deviate from typical development.

Our proposed testing approach is based on the Kolmogorov-Smirnov (K-S) test. We first 

apply the LMS model to the data from the typical controls to derive an estimated distribution 

for typical subjects, then obtain the quantile ranks for the atypical subjects with respect to 

this distribution. If the two groups do not differ on the given measure, then the estimated 

quantile ranks of atypical subjects should approximately follow a uniform distribution. If we 

ignore the error in this approximation, then testing the group difference is equivalent to 

testing the distribution deviation from the uniform distribution, which can be done via the K-

S test statistic

(7)

where Fn(·) is the empirical distribution of the estimated quantile ranks for the atypical 

group. Critical values of this distribution are computed numerically in standard software 

such as R (R Core Team, 2014).

However, in our simulation studies, we found that naïve application of the K-S test led to 

anti-conservative results—specifically, a type I error rate of about 0.13 at nominal level 
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0.05. Intuitively, this occurs because the use of estimated, rather than true, quantile ranks to 

form the empirical distribution Fn tends to inflate the supremum in (7).

For applications such as our brain mapping examples, in which a large number of tests are 

performed, a resampling device can be used to recalibrate the null distribution of the K-S 

statistic:1

1. From among the various measures (e.g., the brain regions for which the two groups 

are compared), select those M (say, 100) which have the least significant K-S 

statistics. (The non-significance means these measures are very similarly 

distributed in the two groups, so they reflect how the procedure behaves when the 

null hypothesis is true—i.e., the null distribution that we aim to simulate.)

2. For m = 1, …,M, take P (say 100 again) random permutations of the group labels, 

and for each, redo the entire procedure of fitting the LMS model to the mth 

measure for the typical group and computing the K-S statistic for the atypical 

group.

3. The empirical distribution of the resulting MP K-S statistics serves as our 

recalibrated null distribution for the K-S test. Thus, for instance, if the observed K-

S statistic exceeds the 95th percentile of this distribution, we reject the null 

hypothesis at the .05 level.

For the ABIDE data, of the 6216 edges (connections between ROI pairs) of interest, we 

selected the M = 100 edges for which the ordinary K-S test p-value was 0.944 or greater, and 

ran P = 100 permutations for each. Computing the 10000 K-S test statistics took 

approximately 3.5 hours using a Dell laptop Latitude E6230 with Intel Core i7-3540M 

processor and 8GB Memory.

Simulation study

We conducted a simulation study to examine the performance of the recalibrated K-S test 

and compare it with the linear model-based test. The simulated outcomes were designed to 

mimic the intrinsic functional connectivity (iFC) values in the ABIDE sample analyzed 

below, consisting of 391 typically developing controls and 344 individuals with ASD (see 

the “Autism Brain Imaging Data Exchange data” section and Supplementary Appendix A).

As described in Supplementary Appendix B, two parameters were varied in the simulations. 

First, simulated control and ASD groups were generated assuming either linear or nonlinear 

quantile curves, similar to those estimated for the edges shown in the top row of Figure 1. 

Second, the ASD group’s values were perturbed by random deviations generated from one 

of two distibutions:

1. a Cauchy distribution with location 0 and scale δ, where δ=0, 0.04, 0.06, 0.08, 0.1, 

0.12, 0.15, 0.2; or

1Note that this procedure is unrelated to the “calibrated K-S test” of Eiger et al. (2013).
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2. δ times a log-standard-normal distribution, where δ = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 

0.06, 0.07.

These two distributions were chosen to mimic two plausible forms of departure from 

normality. The Cauchy distribution is symmetric about zero but with heavier tails than the 

normal distribution; thus scenario 1 entails a group difference that the Wald test would tend 

not to detect. (Examples of group differences that are more evident in the tails than in the 

mean will be seen below in our ABIDE data analyses.) The log-normal distributions in 

scenario 2 are skewed with positive means. Thus the atypical group’s mean is shifted to the 

right under the alternative hypothesis, so the Wald test is expected to work well. The type I 

error rate (probability of rejection when δ = 0) was estimated based on 5000 replicates, 

while power was estimated using 1000 replicates for each positive value of δ.

Simulation results are summarized in the middle and bottom panels of Figure 1, for the 

Cauchy and log-normal distributions respectively. Both tests maintain the nominal level of 

0.05. Power curves for the Cauchy deviations show that the model-based Wald test cannot 

capture the between-group difference, as expected; the recalibrated K-S test is much more 

successful. With the log-normal deviations, the model-based Wald test can detect the group 

difference about as well as the recalibrated K-S test. Here the shape of the quantile curves 

also affects the results. When the quantile curves are nonlinear (lower left), the recalibrated 

K-S test may be slightly more powerful than the linear model-based Wald test; when they 

are linear (lower right), the linear model is adequate and the Wald test based on it appears 

slightly more powerful. In summary, compared with the Wald test, the recalibrated K-S test 

appears to be considerably more powerful when the deviations entail no location shift, and 

to have comparable power when there is such a shift.

Real-data results

Nathan Kline Institute Rockland pilot sample

The enhanced Nathan Kline Institute Rockland Sample (NKI-RS) is a large community-

ascertained lifespan sample of individuals who provided neuroimaging, genetic, and other 

variables (Nooner et al., 2012). The study aims to identify abnormalities in developmental 

and aging processes associated with the risk of neuropsychiatric disorders. The pilot sample 

considered here includes both structural MRI and resting-state fMRI scans for 150 subjects, 

age 7–85, of whom 63 (42%) are female.

The raw images were preprocessed with FreeSurfer 5.1 (http://surfer.-nmr.mgh.harvard.edu) 

to obtain the ROI-level data (Destrieux et al., 2010; Yang et al., 2014). Tissue segmentation, 

co-registration of MRI and fMRI volumes, intensity normalization within and between 

scans, and bias field correction were applied. The 74 anatomical cortical ROIs listed in 

Destrieux et al. (2010) were delineated in each hemisphere: 21 frontal lobe ROIs, 8 insular, 

8 limbic, 11 temporal, 11 parietal, and 15 occipital. One of the frontal ROIs in each 

hemisphere was a mixture of grey matter and cerebrospinal fluid (CSF) and was therefore 

excluded, leaving a total of 146 cortical ROIs in our analysis.

For each ROI, several representative statistics were computed, including mean cortical 

thickness and fractional amplitude of low-frequency fluctuations (fALFF; Zou et al., 2008). 
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Cortical thickness is measured as the distance between the gray/white and pial surfaces 

throughout the cerebral cortex (Fischl and Dale, 2000). Thinning of the cortex has been 

found in neuropsychiatric disorders such as ADHD (Shaw et al., 2006; Proal et al., 2011) 

and Alzheimer’s disease (Dickerson et al., 2009). fALFF quantifies the amplitude of low 

frequency oscillations, a fundamental feature of the resting brain; it is defined as the power 

within the low-frequency range (0.01–0.1 Hz) divided by the total power in the detectable 

frequency range. Reduction in fALFF has been found in disorders such as ASD, 

schizophrenia and amnestic mild cognitive impairment (Hoptman et al., 2010; Han et al., 

2011; Di Martino et al., 2014).

Cortical thickness and fALFF for a randomly selected subject (age 53), along with the 

corresponding quantile rank maps, are displayed in Figure 2, which was created using 

BrainNetViewer (http://www.nitrc.org/projects/bnv/) and the MNI152 standard brain. This 

individual’s quantile ranks, for cortical thickness and fALFF, are seen to vary dramatically 

among different ROIs, with similar patterns in the left and right hemispheres. Due to the 

disparities across regions, a relatively low raw value need not correspond a low quantile 

rank: for example, the subject shown here has low cortical thickness in the anterior cingulate 

compared to other ROIs, but a rather high quantile rank. In this sense, quantile rank maps 

can be more informative than the raw value maps.

Figure 3 displays the quantile rank estimates for cortical thickness and fALFF, together with 

95% CIs based on 500 bootstrap samples, for two ROIs in nine subjects. More specifically, 

we divided the age range into nine equal intervals, and chose the individuals with the 

minimal quantile rank in the 1st, 4th and 7th intervals; median quantile rank in the 2nd, 5th 

and 8th intervals; and maximal quantile ranks in the 3rd, 6th and 9th intervals. ROI 35 is the 

left middle occipital gyrus (in the visual area), and ROI 71 is the left polar plane of the 

superior temporal gyrus (in the auditory area; see the top panels of Figure 3). The left and 

right bottom panels of Figure 3 display results for cortical thickness and fALFF respectively. 

The CIs for the nine selected subjects (second and fourth columns of Figure 3) suggest that 

the extreme quantile ranks are generally estimated more precisely than those in the middle 

of the distribution. The CIs in the last three age intervals are relatively wide due to the low 

number of participants over 60. The estimated 5%, 25%, 50%, 75%, and 95% quantile 

curves for cortical thickness and fALFF in these two ROIs are shown in the first and third 

columns of Figure 3.

Autism Brain Imaging Data Exchange data

Autism spectrum disorders pose many challenges for psychiatry and neuroscience due to 

their lifelong nature, complexity and substantial heterogeneity. The ABIDE database (Di 

Martino et al., 2014) was aggregated to advance research on the neurophysiological 

mechanisms underlying ASD. Our analysis included 735 subjects from the ABIDE sample, 

with age range 6–40: 344 with ASD and 391 typically developing controls. For each 

subject’s data, the first four time points of the resting-status fMRI time series were removed 

to minimize possible T1 stabilization effects. Then the following preprocessing steps were 

applied: slice timing correction, motion realignment, intensity normalization, nuisance 

signal correction, temporal filtering, registration to the Montreal Neurological Institute 
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template, and spatial filtering. Intrinsic functional connectivity (iFC) was computed as the 

Fisher-transformed pairwise correlations among the BOLD time series for the 112 ROIs 

defined by the Harvard-Oxford Atlas (Kennedy et al., 1998), a whole-brain structural 

parcellation comprising 48 cortical and 8 subcortical regions in each hemisphere.

In the top left panels of Figure 4, we show the 112 × 112 iFC matrices for the 2 ASD 

subjects from the New York University site with the highest Autism Diagnostic Observation 

Schedule (ADOS) scores, a standard measure of autism severity (Lord et al., 2000). For 

comparison, the right panels of Figure 4 show the functional connectivity maps of age-

matched controls (i.e., the control subjects from NYU who were closest in age to each of 

these 2 ASD subjects). Although the heterogeneities among the subjects are large, Figure 4 

suggests that these ASD subjects have lower functional connectivity overall than the age-

matched typical controls. In the bottom panels of Figure 4, we show the quantile rank 

“maps” (connectivity matrices) of the 4 subjects.

To investigate functional connectivity anomalies in the ASD group, we applied our proposed 

testing approach:

1. After applying the exponential transformation to render the connectivity scores 

nonnegative, we fitted the LMS model (2) to the controls to obtain the age-specific 

distributions of the typical population at each of the 6216 edges.

2. We estimated the age-specific quantile ranks for all the ASD individuals at all 

edges.

3. We compared the distribution of the estimated quantile ranks of the ASD 

individuals to the Uniform(0, 1) distribution, which they are expected to follow if 

the two groups do not differ in functional connectivity.

When the naïve K-S test was applied in step 3, 870 edges remained significant in the sense 

that the false discovery rate (FDR; Benjamini and Hochberg, 1995) was below .05. But with 

the proposed recalibrated K-S test, the number of significant edges (after FDR correction) 

dropped to 113. In Figure 5 these edges are displayed using the BrainNet Viewer MATLAB 

tool (Xia et al., 2013). Of these 113 edges, 33 are within the left hemisphere, 22 are within 

the right hemisphere, and 58 are interhemispheric. Based on the overall means for the two 

groups, we found hypoconnectivity in the ASD group (ASD<TC, light green and purple 

lines) for 88 edges, and hyperconnectivity (ASD>TC, blue lines) for 25 edges. Most of the 

latter edges involve the thalamus, in line with the subcortical-to-cortical hyperconnectivity 

found by Di Martino et al. (2014) in the ASD group. Fifty-four of the 112 ROIs are involved 

in the 113 edges. Under the scheme of Mesulam (1998), 6 of these ROIs are in the primary 

sensory-motor area, 23 in the unimodal association area, 10 in the heteromodal association 

area, 9 in the paralimbic area, 1 in the limbic area, and 5 in the subcortical area.

For comparison, we fitted linear models regressing iFC on age and diagnosis group, and 

tested the effect of diagnosis in these models. The lower panel of Figure 5 shows the 19 

edges that were detected by our proposed approach, but not by the linear model-based test. 

Of the 19 edges, 7 are within the left hemisphere, 1 is within the right hemisphere, and 11 

are interhemispheric. Many of these edges connect the temporal lobe to other regions. These 
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results could perhaps shed light on the temporal-lobe abnormalities that have been linked to 

social cognition deficits in ASD (Zilbovicius et al., 2006).

As we would expect from the optimal power properties of the Wald test for normal linear 

models (Shao, 2003), this test also detects 109 edges not detected by the proposed test; in 

general most of these edges seem to have fairly linear growth patterns. Our recalibrated K-S 

test, then, is recommended to supplement, rather than to supplant, the more straightforward 

Wald test.

The top panel of Figure 6 shows histograms of the ASD subjects’ quantile ranks at these 19 

edges. Each bar represents the number of ASD individuals who fall within a decile of the 

control distribution for their age. The ASD subjects are seen to have a preponderance of low 

quantile ranks at these edges. In the lower right panel of Figure 6 we display, for the first of 

these 19 edges, and quantile curves estimated for the control subjects. The group difference, 

which was missed by the linear model, is quite evident from the high proportion of red dots 

(representing ASD individuals) located near the lower quantile curves.

Discussion

Age-specific quantiles of weight and height of children are widely used in pediatrics, and 

can provide very important information regarding children’s developmental performance. 

Brain imaging-derived measurements have the potential to play an analogous role with 

respect to brain maturation and aging. Specifically, structural MRI-derived measurements, 

such as cortical thickness and volume, can show how the brain anatomy changes over time; 

functional MRI-derived measurements, such as functional connectivity between ROIs, can 

indicate how brain networks evolve over time. The age-specific quantiles of those 

measurements for subjects are informative and intuitive, and in the future they may perhaps 

be applied clinically to screen for risk of neuropsychiatric disorders (see Insel, 2014).

We have introduced quantile rank maps for measures defined on ROIs (or connections of 

interest). Extension to voxel-level data is straightforward but computationally intensive. To 

reduce the computational burden, a two-step approach may be used. In the first step, we can 

apply restricted likelihood ratio test (RLRT) to partition voxels into two parts according to 

whether the mean functions significantly change over time (Reiss et al., 2014). In the second 

step, we can fit the LMS model to the significant voxels, then obtain the time-varying 

distributions. For nonsignificant voxels, it may suffice to estimate a simple (non-age-

varying) distribution. This two-step approach will reduce the number of LMS fits, thereby 

saving considerable computing time.

We have developed a recalibrated K-S test to detect group differences based on quantiles. 

This test can capture group differences in distribution, even if the mean difference is 

negligible. It is more robust to the misspecification of the model than a regression-based 

test. In practice, if the distribution shows considerable nonlinear variation over time, the 

recalibrated K-S test for the group difference may be more powerful than the test based on a 

linear model. The recalibrated K-S test and the bootstrap-based CI are implemented in R 

code available from the authors.
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There are a few limitations in the presented methods. First, we did not take advantage of 

information regarding spatial location of the brain regions. Efficient use of this spatial 

information may lead to more robust results and is worthy of further research. Second, we 

did not borrow information across different imaging modalities, such as structural and 

functional MRIs in the NKI Rockland sample. Appropriately integrating information across 

different modalities might provide extra value compared to modality-specific analyses, and 

is another interesting topic for future work. Third, both examples presented here employ 

cross-sectional data, which are less informative than longitudinal data for studying 

neurodevelopmental processes. For longitudinal neuroimaging data, incorporating subject-

level random effects could yield more accurate estimation of the age-varying distributions, 

and hence of the quantile ranks. In contrast to the nonlinear (Gompertz) mixed-effects model 

applied by Sadeghi et al. (2013) to white matter maturation, a mixed-effects GAMLSS 

would not impose parametric assumptions and, by estimating the entire distribution for each 

age, it would provide an estimated quantile rank for each individual in the sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We present a method for fitting smooth growth curves to a brain measure of 

interest.

• This allows for mapping an individual’s quantile rank at each of a set of regions.

• We propose a new test for group differences based on age-varying distributions.

• Our methods are illustrated with two magnetic resonance imaging data sets.
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Figure 1. 
Top: Twenty randomly selected “nonlinear edges” (blue lines) and twenty “linear edges” 

(purple lines) used for the simulations (see Appendix B). Second row: Proportion of 

rejections (type I error under δ = 0, power for δ > 0) together with the 95% CI, based on 

1000 replicates, for Cauchy-distributed deviations. Last row: Same, for log-normal 

deviations.
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Figure 2. 
Maps of cortical thickness and fALFF for a randomly selected participant in the NKI 

Rockland pilot sample. Raw values of these measures are displayed above for 146 ROIs; 

inserting these values (y) into formula (5) yields the quantile ranks τ̂ = F̂
t(y) that are mapped 

below.
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Figure 3. 
Top: ROI 35 (left middle occipital gyrus of the visual area) is shown in red, and ROI 71 (left 

polar plane of the superior temporal gyrus of the auditory area) is shown in yellow. Bottom 

panels: cortical thickness (left columns); fALFF (right columns). The first and third columns 

display the raw data and estimated 5%, 25%, 50%, 75%, 95% quantile curves together with 

the data used to estimate the distributions. For the nine individuals represented by red dots, 

quantile rank estimates with 95% confidence intervals are shown in the second and fourth 

columns.
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Figure 4. 
Quantile rank maps (matrices) of the 2 ASD subjects with the highest ADOS scores (first 

two columns) and age-matched typical controls (last two columns) from the New York 

University site. Top panels: Fisher-transformed correlation maps. Bottom panels: Quantile 

rank maps.
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Figure 5. 
Top panels: The 113 edges (pairs of ROIs) found to be significantly different between ASD 

subjects and age-matched typical controls. The ASD group evinced hypoconnectivity for 88 

of these edges (ASD<TC, brown lines), and hyperconnectivity for 25 (ASD>TC, purple 

lines). Bottom panels: Of the 88 edges with hypoconnectivity in the ASD group, the 19 

edges shown were detected by the K-S test only, but not by a t-test.
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Figure 6. 
Top panels: Histogram of the quantile ranks of the ASD subjects at the 19 edges declared 

significant by the recalibrated K-S test but not by Wald tests. Each bar displays counts 

within the lower (red), middle (green), and upper (blue) thirds of the age distribution. 

Bottom panels: (Left) Location of the first of the 19 edges: left frontal pole–left superior 

temporal gyrus, anterior division. (Right) Raw data for this edge (with control and ASD 

individuals represented by blue and red dots, respectively), and estimated 5%, 25%, 50%, 

75%, 95% quantile curves for the control group.
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