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Abstract

Background—X-ray Computed Tomography (CT) imaging of the brain is commonly used in 

diagnostic settings. Although CT scans are primarily used in clinical practice, they are 

increasingly used in research. A fundamental processing step in brain imaging research is brain 

extraction – the process of separating the brain tissue from all other tissues. Methods for brain 

extraction have either been 1) validated but not fully automated, or 2) fully automated and 

informally proposed, but never formally validated.

Aim—To systematically analyze and validate the performance of FSL's brain extraction tool 

(BET) on head CT images of patients with intracranial hemorrhage. This was done by comparing 

the manual gold standard with the results of several versions of automatic brain extraction and by 

estimating the reliability of automated segmentation of longitudinal scans. The effects of the 

choice of BET parameters and data smoothing is studied and reported.

Methods—All images were thresholded using a 0 – 100 Hounsfield units (HU) range. In one 

variant of the pipeline, data were smoothed using a 3-dimensional Gaussian kernel (σ = 1mm3) 

and re-thresholded to 0 – 100 HU; in the other, data were not smoothed. BET was applied using 1 

of 3 fractional intensity (FI) thresholds: 0.01, 0.1, or 0.35 and any holes in the brain mask were 

filled.

For validation against a manual segmentation, 36 images from patients with intracranial 

hemorrhage were selected from 19 different centers from the MISTIE (Minimally Invasive 

Surgery plus recombinant-tissue plasminogen activator for Intracerebral Evacuation) stroke trial. 

Intracranial masks of the brain were manually created by one expert CT reader. The resulting brain 

tissue masks were quantitatively compared to the manual segmentations using sensitivity, 

© 2015 Published by Elsevier Inc.
*Principal Corresponding Author jmusche1@jhu.edu (John Muschelli).
nullman1@jhmi.edu (Natalie L. Ullman), wmould1@jhmi.edu (W. Andrew Mould), PVespa@mednet.ucla.edu (Paul Vespa), 
dhanley@jhmi.edu (Daniel F. Hanley), ccrainic@jhsph.edu (Ciprian M. Crainiceanu)

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2016 July 01.

Published in final edited form as:
Neuroimage. 2015 July 1; 114: 379–385. doi:10.1016/j.neuroimage.2015.03.074.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specificity, accuracy, and the Dice Similarity Index (DSI). Brain extraction performance across 

smoothing and FI thresholds was compared using the Wilcoxon signed-rank test. The intracranial 

volume (ICV) of each scan was estimated by multiplying the number of voxels in the brain mask 

by the dimensions of each voxel for that scan. From this, we calculated the ICV ratio comparing 

manual and automated segmentation: .

To estimate the performance in a large number of scans, brain masks were generated from the 6 

BET pipelines for 1095 longitudinal scans from 129 patients. Failure rates were estimated from 

visual inspection. ICV of each scan was estimated and and an intraclass correlation (ICC) was 

estimated using a one-way ANOVA.

Results—Smoothing images improves brain extraction results using BET for all measures except 

specificity (all p < 0.01, uncorrected), irrespective of the FI threshold. Using an FI of 0.01 or 0.1 

performed better than 0.35. Thus, all reported results refer only to smoothed data using an FI of 

0.01 or 0.1. Using an FI of 0.01 had a higher median sensitivity (0.9901) than an FI of 0.1 (0.9884, 

median difference: 0.0014, p < 0.001), accuracy (0.9971 vs. 0.9971; median difference: 0.0001, p 

< 0.001), and DSI (0.9895 vs. 0.9894; median difference: 0.0004, p < 0.001) and lower specificity 

(0.9981 vs. 0.9982; median difference: −0.0001, p < 0.001). These measures are all very high 

indicating that a range of FI values may produce visually indistinguishable brain extractions. 

Using smoothed data and an FI of 0.01, the mean (SD) ICV ratio was 1.002 (0.008); the mean 

being close to 1 indicates the ICV estimates are similar for automated and manual segmentation.

In the 1095 longitudinal scans, this pipeline had a low failure rate (5.2%) and the ICC estimate 

was high (0.929, 95% CI: 0.91, 0.945) for successfully extracted brains.

Conclusion—BET performs well at brain extraction on thresholded, 1mm3 smoothed CT images 

with an FI of 0.01 or 0.1. Smoothing before applying BET is an important step not previously 

discussed in the literature. Analysis code is provided.
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1. Introduction

X-ray computed tomography (CT) scanning of the brain is widely available and is a 

commonly used diagnostic tool in clinical settings [1, 2, 3]. Though analysis of CT images is 

typically done by qualitative visual inspection, detailed quantification of information using 

neuroimaging tools is of interest. The reason for this interest is that qualitative inspection of 

CT scans provides limited quantifiable information that can be used in research. A 

fundamental processing step for producing quantifiable and reproducible information about 

the brain is to extract the brain from the CT image. This process is called brain extraction or 

skull stripping. This step is necessary because CT images contain non-brain human tissues 

and non-human elements (e.g. pillow, medical devices) that are not pertinent to brain 

research. We propose a validated automated solution to brain extraction in head CT scans 

using established neuroimaging software.
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In magnetic resonance imaging (MRI), brain extraction has been extensively studied and 

investigated (see Wang et al. [4] for an overview of methods). While an extensive literature 

accompanied by software exist for brain MRI scans, the same is not true for brain CT scans. 

Smith [5] introduced and validated the Brain Extraction Tool (BET), a function of the FSL 

[6] neuroimaging software (v5.0.4), to automatically extract the brain from MRI scans. Here 

we propose to adapt BET and validate its brain extraction performance for CT scans.

BET adaptations for this purpose have been presented before in Solomon et al. [7]. Although 

the method is similar to that outlined below, using thresholding and then applying BET, the 

authors did not publish the specific details of the method nor any code to evaluate it. To 

replicate the method from Solomon et al. [7], Rorden et al. [8] thresholded voxels to be 

under 100 Hounsfield units, manually adjusted the image intensity to enhance the soft tissue 

in the brain, and then BET was applied with a fractional intensity of 0.35. Therefore, brain 

extraction methods from Rorden et al. [8] and Solomon et al. [7] strongly parallels the 

proposed method described below, but neither studies presented a formal validation against 

a set of manually segmented brain images.

Mandell et al. [9] has recently proposed a brain extraction method for CT scans and has 

done a validation against manual segmentation. This method was also performed on a set of 

brains with disease [10, 11]. This method is not fully automated, however. Mandell et al. [9] 

has formally validated a brain extraction method against manually segmented images, but 

the method requires user interaction.

Thus, the goals of our study are to propose an automated method that has been formally 

validated against a set of manually segmented images and estimate brain extraction 

performance of this method in a large number of CT scans.

2. Methods

2.1. Participants and CT data

We used CT images from patients enrolled in the MISTIE (Minimally Invasive Surgery plus 

recombinant-tissue plasminogen activator for Intracerebral Evacuation) and ICES 

(Intraoperative CT-Guided Endoscopic Surgery) stroke trials [12]. Inclusion criteria into the 

study included: 18 to 80 years of age, spontaneous supratentorial intracerebral hemorrhage 

above 20 milliliters (mL) in size (for full criteria, see Mould et al. [13]). The population 

analyzed here had a mean (SD) age was 60.6 (11.6) years, was 66.9% male, and was 55.6% 

Caucasian, 30.1% African American, 9.8% Hispanic, and 4.5% Asian or Pacific islander. 

CT data were collected as part of the Johns Hopkins Medicine IRB-approved MISTIE 

research studies with written consent from participants.

2.2. Imaging Data

2.2.1. Validation of Automated Head Segmentation—For the validation of 

automated segmentation against gold standard manual segmentation, we analyzed 36 scans, 

corresponding to 36 unique patients. The study protocol was executed with minor, but 

important, differences across the 19 sites. Scans were acquired using Siemens (N = 14), GE 

(N = 11), Philips (N = 10), and Toshiba (N = 1) scanners. Gantry tilt was observed in 21 
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scans. Slice thickness of the image varied within the scan for 7 scans. For example, a scan 

may have 10 millimeter (mm) slices at the top and bottom of the brain and 5mm slices in the 

middle of the brain. Therefore, the scans analyzed had different voxel (volume element) 

dimensions and image resolution prior to registration to the template. These conditions 

represent how scans are presented for evaluation in many diagnostic cases.

2.3. Manual and Automated Brain Extraction

Brain tissue was manually segmented as a binary mask from DICOM (Digital Imaging and 

Communications in Medicine) images using the OsiriX imaging software (OsiriX v.4.1, 

Pixmeo; Geneva, Switzerland) by one expert reader (reader 1: NU). CT brain images and the 

binary brain tissue mask obtained using manual segmentation were exported from OsiriX to 

DICOM format.

2.4. Image Processing

The image processing pipeline is provided in Figure 1. Images with gantry tilt were 

corrected using a customized MATLAB (The Mathworks, Natick, Massachusetts, USA) 

user-written script (http://bit.ly/1ltIM8c). Although gantry tilt correction is not inherently 

necessary for brain extraction, it is required for rigid co-registration of scans within a 

patient, which is a common processing step in longitudinal analysis of images post brain 

extraction.

Images were converted to the Neuroimaging Informatics Technology Initiative (NIfTI) data 

format using dcm2nii (2009 version, provided with MRIcro [14]). Images were constrained 

to values between −1024 and 3071 HU to remove potential image rescaling errors and 

artifacts. No interpolation was done for images with a variable slice thickness. Thickness 

was determined from the first converted slice and the NIfTI format assumes homogeneous 

thickness throughout the image. This loss of information, if not properly accounted for, 

affects volume estimation, which relies on accurate pixel dimensions in millimeters. 

Variable slice thickness should have no affect on the other estimates of performance 

described below as they are calculated at a voxel level and do not rely on pixel resolution. 

Although the NIfTI images store the data with only one pixel dimension for the height of the 

voxel, we use the ImagePositionPatient DICOM field to determine the accurate height of 

each voxel to calculate an accurate volume.

Each image was thresholded using the brain tissue range (0 – 100 HU); voxels outside this 

range were set to 0 HU. In one variant of the pipeline, data were smoothed using a 3-

dimensional (3D) Gaussian kernel (σ = 1mm3) and re-thresholded to 0−100 HU; in the 

other, data were not smoothed. BET was then applied, varying the fractional intensity (FI) 

parameter to determine its influence on performance: we used values of 0.35 (as used in 

Rorden et al. [8]), 0.1, and 0.01.

The FI parameter varies between 0 and 1 and determines the location of the edge of the 

segmented brain image; smaller values correspond to larger brain masks. Smith [5] describes 

that the FI parameter determines a local threshold tl by the following equation:
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where Imax is a local maximum intensity along a line from an outer surface vertex pointing 

inward to the image center and t2 is the 2nd percentile of the image distribution. As a result 

of thresholding in our pipeline, t2 equals 0 HU and Imax must lie between 0 and 100 HU. 

Therefore, after thresholding,

With an Imax of 100 HU, using an FI lower than 0.01 results in t1 less than 1 HU, but greater 

than 0 HU. As CT data is stored as integers, no intensities lie between 0 and 1, so a t1 

between 0 or 1 HU should provide similar local thresholds. Therefore, we chose 0.01 as a 

lower limit for testing FI.

After BET was applied, we created a brain mask taking values > 0 HU and filled the holes in 

the mask (using fslmaths -fillh).

2.5. Measuring and Testing Brain Extraction Performance

We compared the masks obtained using the various choices of parameters to the manually 

segmented images. Four common measurements of performance were calculated for each 

image: sensitivity, specificity, accuracy, and the Dice Similarity Index (DSI) [15]. For each 

measure, higher values indicate better agreement with the manual segmentation. See Inline 

Supplementary Methods 1 for the calculation of each measure.

We calculated the paired difference of each measure using different pipelines (e.g. 0.01 vs. 

0.1, smoothed data). We tested whether these differences were statistically different from 

zero using the Wilcoxon signed-rank test.

From each scan, we also calculated the intracranial volume (ICV), defined as all voxels 

inside the skull, by multiplying the number of voxels in the resulting mask by the 

dimensions of each voxel. We calculated the ICV ratio comparing manual and automated 

segmentation: . A ratio of 1 indicates the same volume; greater than 1 indicates 

over-estimation of ICV; less than 1 indicates underestimation of ICV. As adjustment for 

ICV has been shown to reduce inter-subject variation in volumetric studies [16], we wish to 

estimate ICV accurately.

2.6. Consistency of Manual Brain Extraction

As manual segmentation can have intra-reader variability, another reader (reader 2: AM) 

manually segmented brain tissue on the 36 scans. We additionally estimated all four 

performance measurements, using the manual segmentation from reader 2 as the gold 

standard. We also estimated the ICV from the segmentation from reader 2. We calculated 

the ICV ratio  and the correlation of ICV estimates across readers.
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2.7. Failure Rate and Intraclass Correlation Estimate

Although comparison of automated methods to a manual gold standard is ideal, manual 

segmentation requires a significant amount of time. Therefore, for a large number of scans, 

this procedure is impractical. As multiple CT scans are obtained from patients in the 

MISTIE trial, we can estimate the reliability of our proposed brain extraction pipelines 

without manual segmentation by comparing intracranial volumes of the same patient on 

subsequent scans. Moreover, we can estimate failure rate of each pipeline.

For these tasks, we collected 1160 scans. Of these scans, we excluded 27 scans due to 

craniotomy and 38 due to the gantry tilt correction forcing areas of the brain outside the field 

of view. We executed the previous brain extraction pipelines on the remaining 1095 scans. 

Of these scans, we visually assessed the quality of brain extraction: any scan excluding a 

significant portion of the brain or having holes due to mask self-intersection were classified 

as a failure. These scans represent 129 patients from 26 sites, with a mean (SD) of 8.5 (2.8) 

scans per patient. Scans were acquired using Siemens (N = 492), GE (N = 298), Philips (N = 

207), Toshiba (N = 66), Neurologica (N = 30), and Picker (N = 2) scanners. We estimated 

the failure rate for each processing pipeline and used a Fisher's exact test to test whether 

failure rates differed across scanners.

For each scan, we calculated the ICV. Using only the scans with successful brain extraction, 

we estimated the intraclass correlation (ICC) and its confidence interval (CI) of ICV using a 

one-way ANOVA, where a patients was treated as a group, for unbalanced repeated 

measures [17, 18, 19, 20] using the ICC package [21] in R (http://cran.r-project.org/).

3. Results

3.1. Manual and Automated Brain Extraction

The following estimates use the manual segmentation from reader 1 as the gold standard. 

Figure 2A illustrates the performance of each variation of the BET pipeline in Figure 1. The 

pipelines using smoothing (top panel) perform better than the unsmoothed pipelines (bottom 

panel) on all measures except specificity (all p < 0.01, uncorrected for multiplicity). BET 

also performed poorly on some scans without smoothing.

Figure 2B displays the performance for brain extraction for the pipelines using smoothed 

images. Because the performance for all metrics was high when using smoothed images, it 

was necessary to change the y-axis from [0, 1] to [0.95, 1]. Using an FI of 0.01 or 0.1 

performed better than 0.35; thus, we will focus and compare results for these values of FI 

only for the case when BET was applied to smoothed images. Using an FI of 0.01 had a 

higher median sensitivity (0.9901) than an FI of 0.1 (0.9884, median difference: 0.0014, p < 

0.001), accuracy (0.9971 vs. 0.9971; median difference: 0.0001, p < 0.001), and DSI (0.9895 

vs. 0.9894; median difference: 0.0004, p < 0.001) and lower specificity (0.9981 vs. 0.9982; 

median difference: −0.0001, p < 0.001). Overall, regardless of p-values, these measures are 

all very high, indicating that multiple choices of parameters work well for brain extraction 

after CT image processing. Moreover, a Bonferroni correction for multiple comparisons 

yields the same conclusions.
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The mean (SD) ICV ratio was 1.002 (0.0079) using an FI of 0.01 and 1 (0.0081) using an FI 

of 0.1. Both mean ratios are close to 1 with a small variance, indicating the ICV estimates 

are similar for automated and manual segmentation.

The above results indicate that using smoothed data and an FI of 0.01 or 0.1 had high 

performance when compared to the manual segmentation of reader 1. The results were 

similar using the scan-wise union of the segmentation from reader 1 and reader 2. Using the 

manual segmentation from reader 2 or the scan-wise intersection of the segmentation from 

reader 1 and reader 2, the median values using and 0.1 had higher marginally performance 

than using 0.01 for DSI, accuracy, and specificity, but lower performance for sensitivity. See 

Inline Supplementary Figure 1 for the distribution of performance metrics for each 

segmentation.

Regardless of which manual segmentation was used, estimates of performance for each scan 

using smoothed data and an FI of 0.01 or 0.1 remained above 0.95. Thus, these pipelines 

perform well, yet one FI may not perform universally better than the other.

3.2. Consistency of Manual Brain Extraction

When comparing manual segmentations, we used the manual segmentation from reader 1 as 

the gold standard and the segmentation from reader 2 as the test segmentation similar to the 

automated segmentation above. The mean (SD) was 0.989 (0.0030) for DSI, 0.997 (0.0010) 

for accuracy, 0.982 (0.0060) for sensitivity, and 0.999 (0.0003) for specificity.

The estimated mean (SD) ratio of the ICV was 0.988 (0.0068). The correlation (95% 

confidence interval) of ICV was 0.998 (0.997, 0.999). See Inline Supplementary Figure 2 for 

the comparison of ICV estimates from reader 1 and reader 2.

Overall, we observe high agreement of segmentation between raters and the estimates of 

performance in automated segmentation to be similar to multiple reader segmentation. 

Differences between manual segmentation occurred on the boundary between bone and non-

bone areas towards the surface of the cortex and inferior regions of the brain, where one may 

or may not classify areas as spinal cord and not part of the brain stem. Thus, the difference 

observed in the performance of FI of 0.01 compared to 0.1 when using a reader 2 as the gold 

standard are likely due to these areas.

3.3. Failure Rate and Intraclass Correlation Estimate

Although Figure 2 indicates that using FI of 0.01 or 0.1 provides adequate brain extraction 

results for the cases analyzed, they perform relatively well regardless whether or not the data 

are smoothed. Figure 3 displays an example where using unsmoothed data performs poorly 

for these FIs, demonstrating why smoothing may be necessary for some scans. This is a 

high-resolution scan, with voxel size 0.49mm×0.49mm×1, which may result in more noise 

in the image that may affect the performance of BET. Moreover, in Table 1, the estimated 

failure rates were lower using the smoothed data compared to the unsmoothed data. We 

observe the lowest failure rate in the pipelines using smoothed data and an FI of 0.01 or 0.1. 

Though this represents a large number of scans, failure rates may also be affected by patient-

level characteristics, including the center where the patient was scanned.
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As multiple scanners were used, we wanted to determine if the failure rate was different 

across scanners. In Table 2, we present the failure rate for each scanner, using smoothed 

data and an FI of 0.01. The failure rates for all scanner types other than Neurologica were 

below 6%. Although we see a failure rate above 16% in the Neurologica scanners, only 30 

scans were acquired using this type of scanner. Moreover, a Fisher's exact test did not find a 

difference in the failure rates across scanner type (p = 0.110).

The ICC estimate was high using the successfully brain extracted scans from the smoothed 

data with an FI of 0.01 (ICC: 0.929, 95% CI: 0.91, 0.945) and 0.1 (ICC: 0.928, 95% CI: 

0.909, 0.944). In Figure 4, we illustrate the ICV estimates, using an FI of 0.01 and smoothed 

data, for successful brain extraction in scans 10 or fewer days post baseline scan (gray lines). 

The black lines represent ICV estimates over time for 10 randomly selected patients. The 

blue line is a local regression (LOESS) [22] line, which represents an estimate of the 

average ICV over time. This LOESS line is relatively flat, indicating that the ICV estimate 

averaged over patients is stable. We also observe that although within-patient variability 

exists for ICV estimates, the variability across patients is greater.

4. Discussion

Quantitative procedures based on data contained in head CT images require brain-only 

images for analysis. We have introduced the first validated, fully automated brain extraction 

pipeline for head CT images based on widely used, existing software. Validation was done 

using gold-standard manual segmentations of brain tissue and multiple measurements of 

intracranial volume per patient. A novel finding is that smoothing the data, as opposed to 

other studies which have smoothed at other points in the process [9], using a conservative 

smoother (1mm3 3D Gaussian kernel) and using an FI of 0.01 or 0.1 provides good brain 

extraction for the sample studied. These choices make a large difference in the performance 

of the algorithms and have not been previously reported in the literature.

Although the sample size was relatively small for the gold standard validation, the CT 

images used are from different people, different centers, and different scanners. We have 

also shown that failure rates are low (5%) using smoothed data and an FI of 0.01 in a large 

number of scans. We are using a population of patients with intracranial hemorrhage and the 

accuracy of BET may be dependent on factors such as hematoma size, which may change 

the distribution of Hounsfield units or compress brain structures. We observed good 

performance of BET in these patients using the parameters described, which may indicate 

even better performance for individuals with no observed pathology. BET also performs 

well in scans from follow-up scans with no hemorrhage included in the longitudinal ICV 

estimates; these scans should be more similar to scans from patients without hemorrhage.

We did not, however, rigorously test this pipeline against a set of different levels of noise (as 

was done using MRI in [9]), convolution filters, scanning artifacts, or scanning parameters. 

As noted in Mandell et al. [9], there is no standard ground truth for CT scans. However, as 

these scans are those presented for evaluation in many diagnostic cases, we believe these do 

represent clinically relevant scans that would be analyzed. As the failure rates are low, we 

believe this method may be adapted for different settings of acquisition for CT.
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A percentage of scans in this study did not have successful brain extraction, however. 

Additional steps may be done to decrease the failure rate of the proposed method: 1) using 

registration to a CT template [8] to remove slices of the neck below the head can achieve 

better brain-center estimation used by BET; 2) performing BET using a higher smoothness 

constraint that may reduce potential holes in the brain mask caused by mask intersection; 

and 3) using a dilation followed by an erosion operation to fill any holes that are caused by 

thresholding but not filled by the hole filling operation above.

One additional concern is how general this method is to other populations as the data is from 

an older adult population, such as the pediatric population [10] analyzed. Gousias et al. [23] 

analyzed 33 2-year-old children who had been born prematurely and found that after 

preprocessing of co-registration and neck removal, and dilation, BET was adequate for brain 

extraction in MR images, and then brain labeling. Moreover, Shi et al. [24] demonstrated 

BET performed well in automated brain extraction for pediatric MR images of neonates ¡ 2 

months (N = 90), 1-2 year infants (N = 141) and 5-18 year old children (N = 60). Although 

CT scans may have differences compared to MRI, we believe this method should be robust 

at least to children, but would like to validate our method on additional populations.

Overall, good performance using CT acquired under different scanners and different 

scanning parameters indicate that the approach described here will likely generalize in 

addition to the fact that CT scan data are expressed in standardized units (Hounsfield units). 

Moreover, the robust success of BET as a method is another indicator that our proposed 

method has a high likelihood of generalizability.

After creating an accurate brain mask, secondary image processing or estimation steps can 

be performed. These include intensity normalization, segmentation, and image registration. 

Moreover, ICV estimates can be used as potential factor for adjustment in analysis [16]. 

Additionally, extraction of structures within the brain, such the cerebrospinal fluid (CSF), 

which can be estimated from the method described in Volkau et al. [25], may have fewer 

errors if performed on the segmented image as the process is not computed over voxels 

outside of the brain. We believe that successful brain extraction is fundamental for 

calculating quantitative measures on the brain and performing necessary secondary 

operations required for analysis.

The research presented here is fully reproducible and we provide ready-to-use software for 

CT brain extraction. The R function designed to perform brain extraction is located at http://

bit.ly/CTBET_RCODE and example bash script for command-line FSL can be downloaded 

here http://bit.ly/CTBET_BASH. As our software is publicly available and is based on open-

source, free programs (FSL and R), the proposed method is readily available to all users.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- We present a fully automated brain extraction procedure for CT scans adapting the 

BET from FSL

- We investigated the effect smoothing the data before using BET; smoothing 

improves performance

- We varied the fractional intensity using 0.01, 0.1, and 0.35. 0.01 and 0.1 performed 

best

- We validated against a gold standard – accuracy and Dice overlap of automated 

segmentation was high
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Figure 1. Processing Pipeline
Images in DICOM (Digital Imaging and Communications in Medicine) format were gantry 

tilt corrected if necessary and converted to NIfTI (Neuroimaging Informatics Technology 

Initiative) format using dcm2nii. After NIfTI conversion, the data is thresholded to tissue 

ranges of 0 – 100 Hounsfield units (HU). In one variant of the pipeline, the data was 

smoothed using a 3-dimensional Gaussian kernel (σ = 1mm3) and re-thresholded to 0 – 100 

HU; in the other, the data was not smoothed. BET was applied to the image using 3 different 

fractional intensity (FI) values: 0.01, 0.1, and 0.35. The resultant image was masked to 

values greater than 0 HU and FSL was used to fill in any holes. These filled masks were 

used in comparison to the manually segmented image.
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Figure 2. Performance Metric Distribution for Different Pipelines
Panel A displays the boxplots for performance measures when running the pipeline with a 

different fractional intensity (FI), using smoothed data (top) or unsmoothed data (bottom). 

Panel B presents the smoothed data only, rescaled to show discrimination between the 

different FI. Overall, FI of 0.01 and 0.1 perform better than 0.35 in all categories other than 

specificity. Using smoothed data improves performance in all performance metrics, 

markedly when an FI of 0.35 is used. Panel B demonstrates that using an FI of 0.01 on 

smoothed data has high performance on all measures.
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Figure 3. Example Case where Smoothing before BET is Required
For one subject, the CT image is displayed with the brain extracted mask in red after running 

all pipelines. Panels A, B, and C represent applying BET using FI of 0.01, 0.1, and 0.35, 

respectively, to smoothed data. Panels D, E, and F correspond to applying BET using FI 

0.01, 0.1, and 0.35 on unsmoothed data. Smoothing images improves brain extraction with 

BET.
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Figure 4. Intracranial Volume (ICV) Estimates for Scans Less than 10 Days Post-Baseline
These estimates are from the brain extraction pipeline using and FI of 0.01 and smoothed 

data. Each separate line represents an individual patient. The black lines represent ICV 

estimates over time for 10 randomly selected patients. The blue line is a local regression 

(LOESS) scatterplot smoother.
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Table 1

Failure Rates for each Processing Pipeline of Brain Extraction of the 1095 Scans Analyzed.

Failure Scans: N (%)

Fractional Intensity Unsmoothed Smoothed

0.01 161 (14.7%) 57 (5.2%)

0.1 192 (17.5%) 80 (7.3%)

0.35 1068 (97.5%) 154 (14.1%)
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Table 2

Failure Rates for Different Scanner Types using Smoothed Data and an FI of 0.01 Processing Pipeline of 

Brain Extraction of the 1095 Scans Analyzed.

Scanner Type Failure Rate: Fail/N (%)

Siemens 28/492 (5.7%)

GE 15/298 (5.0%)

Philips 7/207 (3.4%)

Toshiba 2/66 (3.0%)

Neurologica 5/30 (16.7%)

Picker 0/2 (0.0%)
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