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Abstract

The brain's sensitivity to unexpected gains or losses plays an important role in our ability to learn 

new behaviors (Rescorla and Wagner, 1972; Sutton and Barto, 1990). Recent work suggests that 

gains and losses are ubiquitously encoded throughout the human brain (Vickery et al., 2011), 

however, the extent to which reward expectation modulates these valence representations is not 

known. To address this question we analyzed recordings from 4,306 intracranially implanted 

electrodes in 39 neurosurgical patients as they performed a two-alternative probability learning 

task. Using high-frequency activity (HFA, 70-200 Hz) as an indicator of local firing rates, we 

found that expectation modulated reward-related neural activity in widespread brain regions, 

including regions that receive sparse inputs from midbrain dopaminergic neurons. The strength of 

unexpected gain signals predicted subjects’ abilities to encode stimulus-reward associations. Thus, 

neural signals that are functionally related to learning are widely distributed throughout the human 

brain.
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2 Introduction

Theories of reinforcement learning postulate that greater learning occurs following 

unexpected outcomes than following expected outcomes (Rescorla and Wagner, 1972; 

Pearce and Hall, 1980; Sutton and Barto, 1990). How the brain represents these unexpected 

gains and losses has been the focus of considerable research. For example, functional 

neuroimaging studies have identified a specialized group of brain regions that encode 

reward prediction errors (Berns et al., 2001; McClure et al., 2003; Pessiglione et al., 2006; 

Montague et al., 2006; Rutledge et al., 2010; Bartra et al., 2013). Several of these regions 

(e.g., ventral striatum, medial prefrontal cortex) receive prominent inputs from midbrain 
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dopaminergic (DA) neurons, a neural population known to be functionally important for 

reinforcement learning in animals (Schultz et al., 1997; Reynolds et al., 2001) and humans 

(Zaghloul et al., 2009; Ramayya et al., 2014a).

Recent evidence raises the possibility that the neural processes that support reinforcement 

learning may extend beyond regions that are heavily innervated by dopamine neurons. 

Vickery et al. (2011) used multi-voxel pattern analysis to decode outcome valence from 

activity in almost every cortical and subcortical region in the human brain. However, 

because this study did not assess reward expectation, the extent to which these widespread 

valence signals are modulated by reward expectation, and reflect reward prediction errors 

that are functionally important for learning is not known. If reinforcement learning is a 

widespread brain process, one would predict that valence representations throughout the 

brain would be modulated by reward expectation.

To test this hypothesis, we obtained intracranial electroencephalography (iEEG) recordings 

from the cortex and medial temporal lobe (MTL) of 39 patients with drug-refractory 

epilepsy as they performed a two-alternative probability learning task. We studied changes 

in high-frequency activity (HFA; 70-200 Hz) at individual electrodes, an established 

indicator of local spiking activity (Manning et al., 2009; Ray and Maunsell, 2011) that can 

be used to study heterogeneous patterns of activity within a region (Bouchard et al., 2013a). 

We identified putative valence signals that demonstrated differential-HFA following 

positive and negative outcomes and we then assessed their relation to trial-by-trial estimates 

of reward expectation. In this way, we sought to characterize the anatomical distribution of 

expectation-modulated valence signals and assess their functional relevance for learning.

3 Materials and Methods

3.1 Subjects

Patients with drug-refractory epilepsy underwent a surgical procedure in which grid, strip, 

and depth electrodes were implanted in order to localize epileptogenic regions. Clinical 

circumstances alone determined number of implanted electrodes and their placement. Data 

were collected from Thomas Jefferson University Hospital (TJUH) and the Hospital of 

University of Pennsylvania (HUP) in collaboration with the neurology and neurosurgery 

departments at each institution. Our research protocol was approved by the Institutional 

Review Board at each hospital and informed consent was obtained from the participants. In 

total, we recorded neural activity from 39 subjects (12 female, seven left-handed, mean age 

37 years).

3.2 Reinforcement learning task

Subjects performed a two-alternative probability learning task, which has been previously 

used to study reinforcement learning and value-based decision making (Figure 1; (Frank et 

al., 2004, 2007; Zaghloul et al., 2012)). During the task, subjects selected between pairs of 

Japanese characters (“items”) and received positive or negative feedback following each 

choice. Subjects were informed that one item in each pair carried a higher probability of 

positive feedback than the other item pair, and that their goal was to select items that 
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maximized their probability of obtaining positive feedback. On a given trial, the items were 

simultaneously displayed on the screen; one on the left side and one on the right side. They 

were presented on a dark grey background in white font. The items remained on the screen 

until subjects responded by pressing the left or right “SHIFT” button on a keyboard (to 

select the item on the left or right side of the screen, respectively). Once a response was 

registered by the computer, the selected item was highlighted in blue, and feedback was 

provided immediately. In the event of positive feedback, we presented a green screen and 

the sound of a cash register. In the event of negative feedback, we presented a red screen and 

the sound of an error tone. The colored screen was presented for two seconds. There was a 

0-400 ms jitter between successive trials. Items were randomly arranged on the left or right 

side of the screen from trial to trial.

During a session, subjects were presented with up to three novel item pairs, each carrying a 

distinct relative reward rate (80/20, 70/30, or 60/40). This feature of the task allows for the 

study of value-based decision making in a subsequent stage of the experiment that is not 

considered in this study (Frank et al., 2007; Zaghloul et al., 2012). Distinct item pairs were 

presented in a randomly interleaved manner. Reward rates associated with each item were 

determined randomly prior to each session and fixed throughout the experiment. Each 

session began with the exclusive presentation of a single item pair (random selection of a 

relative reward rate). If participants met a minimum performance criteria on the given item 

pair over a block of 10 trials (i.e., accuracy ≥ 60% for 80/20 or 70/30 pairs, or ≥ 50% for the 

60/40 pair), a second item pair was introduced and randomly interleaved along with the first 

item pair. A third item pair was only introduced in subjects that met the performance criteria 

on the two item pairs already introduced. Participants performed a total of 107 sessions 

(each subject performed an average of 2.82 sessions), with an average of 130 trials per 

session.

3.3 iEEG recordings

Subdural (grids and strips) and depth electrodes were spaced 10 mm and 8 mm apart, 

respectively. iEEG was recorded using a Nihon-Kohden (TJUH) or Nicolet (HUP) EEG 

system. Based on the amplifier and the discretion of the clinical team, signals were sampled 

at either 512, 1024, or 2000 Hz. Signals were converted to a bipolar montage by taking the 

difference of signals between each pair of immediately adjacent electrodes on grid, strip, or 

depth electrodes. The resulting bipolar signals were treated as new virtual electrodes 

(henceforth referred to as “electrodes” throughout the text), originating from the midpoint 

between each electrode pair (Burke et al., 2013). Analog pulses synchronized the 

electrophysiological recordings with behavioral events.

3.4 Extracting high-frequency activity from iEEG recordings

We convolved segments of iEEG recordings of iEEG (1000 ms before feedback onset to 

2000 ms after onset, plus a 1000 ms flanking buffer) with 30 complex valued Morlet 

wavelets (wave number 7) with center frequencies logarithmically spaced from 70 to 200 Hz 

(Addison, 2002). We first squared and then log-transformed the wavelet convolutions, 

resulting in a continuous representation of log-power surrounding each feedback 

presentation. We averaged these log-power traces in 200 ms epochs with 190 ms overlap 
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surrounding feedback presentation (-1000-2000 ms), yielding 281 total time intervals 

surrounding feedback presentation. To identify high-frequency activity (HFA), we averaged 

power across all frequencies (ranging from 70 to 200 Hz). We z-transformed HFA power 

values within each session by the mean and standard deviation of task-related HFA recorded 

from that session (0-500 ms post-stimulus, -750-0 ms pre-choice, and 0-2000 ms post-

feedback). Henceforth we will refer to z-transformed HFA values as HFA.

3.5 Assessing HFA differences between positive and negative outcomes

For each electrode, we identified temporally-contiguous HFA differences between positive 

and negative feedback by performing a cluster-based permutation procedure that accounts 

for multiple comparisons (Maris and Oostenveld, 2007). As suggested by Maris and 

Oostenveld (2007), we began by performing an unpaired t-test at each time interval 

comparing HFA distributions associated with all positive and negative feedback trials 

performed by the subject. Using an uncorrected p = 0.05 as a threshold, we identified the 

largest cluster of temporally adjacent windows that showed positive t-statistics (greater HFA 

following positive compared to negative outcomes), and the largest cluster of temporally 

adjacent windows that showed negative t-statistics (greater HFA following negative 

compared to positive outcomes). By taking the sum within each of these clusters, we 

computed a positive and negative “cluster statistic”, respectively. To assess the statistical 

significance of each cluster statistic, we generated a null distribution of cluster statistics 

based on 1000 iterations of shu ed data (on each iteration, positive and negative feedback 

labels were randomly assigned to HFA traces recorded during the session). Based on where 

each cluster-statistic fell on the null distribution, we generated a one-tailed p–value for each 

effect. We considered an effect to be significant if it was associated with a one-tailed p-

value < 0.025, thus, the false-positive rate of identifying either a positive or negative cluster 

at a given electrode was set at 5%.

3.6 Assessing the frequency of a particular effect across subjects

To assess whether a particular effect was more frequently observed by chance across 

subjects, we performed the following procedure (“counts t-test”). In each subject, we 

counted the number of significant electrodes that we observed (“true counts”), and generated 

a binomial distribution of counts values expected by chance (“null counts distribution”), 

based on the number of available electrodes in that subject and the false-positive rate 

associated with the test. We obtained a z-scored counts value in each subject by comparing 

the true counts value to the null counts distribution. We then assessed whether distribution 

of z-scores across subjects deviated from zero via a one-sample paired t-test; positive t-

statistics suggest that the effect was more frequently observed than chance, and negative t-

statistics suggest that the effect was less frequently observed by chance. When comparing 

the frequencies of two-effects across subjects (e.g., reward and penalty effects), we 

performed a paired counts t-test in the following manner. Within each subject, we obtained 

z-scored counts values for reward and penalty effects based on the null counts distribution as 

described earlier, and compared the distributions of reward- and penalty-related z-values 

across subjects (via paired-t-test). Positive z-values indicate that reward effects occurred 

more frequently than penalty effects, whereas negative values indicate that penalty effects 
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occurred more frequently than reward effects. We corrected for multiple comparisons using 

a false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995).

3.7 Electrode Localization

Surface electrodes (strips and depths) were manually identified on subject's post-operative 

CT scans and transformed to a common cortical surface representation to allow for 

comparisons across subjects. We employed FreeSurfer (Dale et al., 1999) to generate a 

cortical surface representation that was representative of our patient population, which 

includes individuals undergoing intracranial EEG monitoring for drug-refractory epilepsy. 

We did this by generating cortical surface reconstructions for a large group of patients who 

volunteered to participate in our research studies. We included patients for whom a pre-

operative MRI was available from which a cortical surface could be modeled (n = 62). 

Along with subjects who participated in the current study, this group included subjects who 

participated in previous studies conducted by our group (e.g., (Burke et al., 2013)). We 

aggregated these surfaces to generate an average cortical surface representation, which was 

co-registered to the MNI152 brain (Fischl et al., 1999). Each point on this surface 

representation was automatically assigned an anatomical label based on a manually-labeled 

anatomical atlas (Desikan et al., 2006). To map electrode coordinates from the CT scan onto 

the cortical surface, we registered each post-operative CT scan to the average cortical 

surface using a rigid-body 6 degrees-of-freedom a ne transformation algorithm, and 

manually adjusted each transform such that electrodes were positioned as close to the 

cortical surface as possible. Finally, electrodes were “snapped” to the cortical surface by 

moving each electrode to the nearest point on the gyral surface (mean deviation of all 

electrodes was 2.16 mm; 95% of electrodes were moved less than 5.53 mm). We assigned 

an anatomical label to each bipolar pair of electrodes based on the location on the cortical 

surface that was closest to the midpoint between the two electrodes. Depth electrodes were 

manually localized by a neuroradiologist using a post-operative MRI scan. To visualize 

these depth electrodes in a common anatomical space, we transformed them to MNI-

coordinates using the same CT-to-average surface transformation described above. 

However, we did not snap depth electrodes to the cortical surface. Depth electrodes were 

visualized on a MNI-brain slice generated using the WFU pick atlas toolbox (Maldjian et al., 

2003). We categorized bipolar electrodes into several regions of interest (ROIs) based on 

their associated anatomical labels (Table 1). We defined ROIs in order to segregate regions 

that might be expected to demonstrate distinct functional patterns based on prior fMRI 

studies of reinforcement learning (Vickery et al., 2011; Kahnt et al., 2011; Bartra et al., 

2013), while ensuring an adequate number of electrodes within each region for across-

subject group analyses.

3.8 Estimating reward expectation

To obtain trial-by-trial estimates of reward expectation, we fit a standard reinforcement 

learning model to subjects behavioral data (Sutton and Barto, 1990). Because our goal was 

to model choice behavior during learning, we only considered behavioral data from item 

pairs where subjects demonstrated evidence of learning (we required > 70% accuracy on the 

last 10 trials and > 50% accuracy overall). The Q-model maintains independent estimates of 

reward expectation (Q) values for each option i at each time t (Sutton and Barto, 1990). The 
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model generates a choice on each trial by comparing the Q values of available options on 

that trial according to:

(1)

where β is a parameter that controls the level of noise in the decision process (Daw et al., 

2006)). When β = 0 the model deterministically chooses the highest value option; when β = 

∞ the model will randomly choose among the set of possible options. Once an item is 

selected by the model, feedback is received, and Q values are updated using the following 

learning rule: Qi(t + 1) = Qi(t) + α[R(t) − Qi(t)], where R(t) = 1 for correct feedback, R(t) = 0 

for incorrect feedback, and α is the learning rate parameter that adjusts the manner in which 

previous reinforcements influence current Q values (0 ≥ α ≤ 1). Large values heavily weight 

recent outcomes when estimating Q, whereas small α values incorporate reinforcements 

from many previous trials. We identified the best-fitting parameters for each subject by 

performing a grid-search through the two dimensional parameter space (α, learning rate, and 

β, noise in the choice policy, 0.01 to 1, with a step size of 0.1) and selected the set of 

parameters that minimized the mean squared error between the model's predictions of 

subjects’ choices (i*), and subjects’ actual choices. To quantify the model's goodness-of-fit, 

we compared each subject's mean squared error value to a null distribution of mean squared 

errors generated for that subject's data based on a random guessing model (P = 0.5 for all 

choices, 10000 iterations). Based on this comparison, we obtained a p-value describing the 

false-positive rate associated with the observed mean squared error for that subject. In all 

subjects, the best-fitting parameters provided a better prediction of subjects choice behavior 

than the random guessing model (FDR-corrected p's < 0.001). We describe mean best-fitting 

parameters, goodness-of-fit data in Table 3.

3.9 Data Sharing

The behavioral and neural data used in this study are freely available online at (http://

memory.psych.upenn.edu/Electrophysiological Data).

4 Results

39 subjects selected between pairs of Japanese characters (“items”) and received positive or 

negative feedback following each choice (Figure 1a). Subjects were informed that one item 

in each pair carried a higher reward probability than the other, and that their goal was to 

maximize their probability of obtaining positive feedback. During each session, subjects 

were presented with multiple item pairs in an interleaved manner, with each item pair 

carrying distinct relative reward rates (see Materials and Methods). To assess whether 

subjects demonstrated learning during the task, we tested the null hypothesis that subjects 

did not demonstrate a tendency towards selecting the high probability item. We found that 

subjects demonstrated a tendency towards choosing the high-probability item both during 

the first 10 trials (t(38) = 4.84, p < 0.001) and during the last 10 trials of an item pair (t(38) = 

7.24, p < 0.001). Furthermore, we found that subjects were more likely to select the high 

probability item during the last 10 item pair presentations as compared to the first 10 item 
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pair presentations (t(38) = 5.11, p < 0.001; Figure 1b), suggesting that subjects demonstrated 

learning during the task.

Theories of reinforcement learning posit that individuals alter decisions based on learning 

signals which integrate information about outcome valence and reward expectation 

(Rescorla and Wagner, 1972; Sutton and Barto, 1990). To characterize the neural 

representations of these learning signals, we first identified neural populations that 

demonstrated distinct activity following positive and negative outcomes. We refer to these 

signals as “putative valence” signals because in addition to valence, positive and negative 

feedback conditions also differ in low-level sensory features. We obtained intracranial 

electroencephalograpy (iEEG) recordings from 4,306 surface and depth electrodes located 

throughout the cortex and MTL (Figure 1c). We focused our analyses on high-frequency 

activity (HFA; 70-200 Hz), an iEEG feature that has been correlated with local neural firing 

rates (Manning et al., 2009; Ray and Maunsell, 2011), and thereby provides a spatio-

temporally precise measure of local neuronal activity (Buzsaki et al., 2012; Burke et al., 

2014). Rather than averaging activity within regions of interest, we studied HFA changes at 

individual electrodes in order to extract information from regions that may demonstrate 

heterogeneous representations of outcome valence and reward expectation (Bouchard et al., 

2013b).

We identified electrodes that showed significant HFA differences between positive and 

negative feedback (cluster-based permutation procedure; Materials and Methods). We found 

that 2,121 electrodes (49.3%) demonstrated HFA differences between positive and negative 

outcomes; 860 electrodes (19.9%) showed positive effects (relatively greater HFA following 

positive feedback, “reward electrodes”) and 1,012 electrodes (23.5%) showed negative 

effects (relatively greater HFA following negative feedback, “penalty electrodes,” Figure 

2a). We also observed a small subset of electrodes (n = 249, 5.78%) that demonstrated both 

positive and negative effects during distinct time intervals. To assess whether a particular 

effect was more frequently observed across subjects than expected by chance, we performed 

an across-subject t-test on z-transformed counts values (“counts t-test,” Materials and 

Methods). Across subjects, we observed reward and penalty electrodes at above-chance 

frequencies (t(38) > 8.94, p < 0.001, each effect was associated with a false-positive rate of 

5%). We focus the remainder of our analyses on electrodes that exclusively showed a 

positive or a negative effect (henceforth, “putative valence-encoding electrodes”).

To study the anatomical distribution of putative valence signals, we registered electrodes 

from each subject to a common anatomical space (Materials and Methods). In several 

regions of interest (ROI; Table 1), we assessed whether putative valence-encoding 

electrodes were more frequently observed than chance (Figure 2). We only considered ROIs 

where we recorded neural data from at least five subjects. In 13 of the 21 ROIs that met this 

criteria (including lateral temporo-parieto-prefrontal regions, anterior medial prefrontal 

cortex, and the fusiform gyrus), we found that subjects showed both reward and penalty 

electrodes more frequently than expected by chance (counts t-test, FDR-corrected p's< 0.05; 

see Table 2 for statistics). In four regions (left and right orbitofrontal cortex, left MTL, and 

left parietal lobe), we observed reward electrodes more frequently than expected by chance. 

In two regions (right occipital and left ventrolateral prefrontal cortex), we only observed 
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penalty electrodes more frequently than expected by chance. Overall, we frequently 

observed putative valence-encoding electrodes in 19 of the 21 ROIs that we studied, 

suggesting that valence representations are widely distributed throughout the cortex and 

MTL.

If these putative valence-encoding signals represented learning signals, then one would 

expect their activity to modulate by subjects’ reward expectation during the task. To assess 

whether this was the case, we studied the relation between reward expectation and mean 

HFA during time intervals that we observed significant valence-related differences in 

activity (identified using our cluster-based permutation procedure, Materials and Methods). 

Because our goal was to study neural processes related to learning, we only considered 

neural and behavioral data from item pairs in which subjects demonstrated evidence of 

learning (> 70% accuracy on last 10 trials, and > 50% accuracy overall). 1,315 valence-

encoding electrodes (from 26 subjects) were recorded during trials which met this criteria. 

We did not exclude any periods of time (e.g., early vs. late trials) by applying this learning 

criterion; rather, we excluded individual stimulus pairs that particular patients were unable 

to learn. We obtained qualitatively similar results when replicating the analyses described 

below without applying any learning criteria.

Given the heterogeneity in the neural data observed in our previous analysis, we sought to 

identify the subset of valence-encoding electrodes that were modulated by reward 

expectation. To obtain trial-by-trial estimates of reward expectation, we fit a standard-

reinforcement learning model to each subject's behavioral data (Sutton and Barto, 1990; 

Materials and Methods; Table 3). Because distinct item pairs were presented in an 

interleaved manner, reward expectation estimates were dissociated from time during the task 

(Figure 3a). For each valence encoding electrode, we studied the relation between HFA and 

reward expectation, separately following positive and negative feedback, using the 

following regression model. Y = β0 + βQQ + βtT, where Y is a vector containing HFA values, 

Q is a vector containing expectation values. T tracked number of times a given item pair had 

been previously presented in order to account for any novelty-related changes in HFA. We 

considered an electrode to show an expectation-related effect if there was a significant βQ 

coefficient (t-statistic, p < 0.05) associated with HFA following positive or negative 

feedback. This linear model, that was applied to each electrode's neural data, assumes the 

following: 1) HFA (Y) demonstrates a linear with each independent variable (Q and T), 2) 

each trial provides an independent observation of behavioral and neural data, 3) 

homoscedastic error distributions associated with each independent variable, and 4) 

normality of the error distribution.

Because of the previous neural descriptions of learning-related feedback signals (Bayer and 

Glimcher, 2007; Bromberg-Martin et al., 2010), we did not have any a priori hypotheses 

regarding the specific relation between HFA and reward expectation. We refer to electrodes 

that demonstrated any expectation-related modulation of post-reward or post-penalty HFA 

as “putative learning electrodes”. We identified 433 putative learning electrodes (32.9% of 

valence-encoding electrodes); a more frequent occurrence than expected by chance (counts 

t-test, t(25) = 6.10, p < 0.001; false-positive rate = 10%). Two example putative learning 

electrodes are shown in Figure 3b.
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To characterize the anatomical distribution of putative learning electrodes, we studied the 

proportion of valence-encoding electrodes that were modulated by reward expectation in 

several ROIs (Figure 4a). We only included regions in which we identified valence-

encoding electrodes from at least five subjects (after filtering data based on our learning 

criteria). We found that putative learning electrodes were more frequently observed than 

expected by chance in several ROIs (Table 4, counts t-test, FDR-corrected p < 0.05). In 

addition to prefrontal regions, where they have previously been described, we also 

frequently observed putative learning electrodes in occipital, temporal and parietal regions, 

where they have rarely been described. We observed a trend towards observing these signals 

more frequently in the right hemisphere than in the left hemisphere (t(17) = −1.89, p = 

0.076). Thus, putative learning electrodes were widely distributed throughout the human 

brain and showed a trend towards greater prominence in the right hemisphere.

Having characterized the anatomical properties of putative learning electrodes, we sought to 

study their functional properties. Particularly, we wanted to study the manner in which HFA 

at valence-encoding electrodes was modulated by reward expectation, in order to shed light 

on the manner in which these neural signals integrate information about valence and reward 

expectation. Because previous monkey single-unit studies have shown that cortical neurons 

frequently encode unexpected outcomes with increases in firing rate (Asaad and Eskandar, 

2011), one might expect to frequently observe post-reward HFA and post-penalty HFA to 

demonstrate opposing relations with reward expectation. Post-reward HFA should 

demonstrate a negative relation with reward expectation, indicating that HFA is greater 

when reward expectation is low (unexpected rewards), compared to when reward 

expectation is high (expected rewards). In contrast, post-penalty HFA should show a 

positive relation with reward expectation, indicating that HFA is greater when reward 

expectation is high (unexpected penalties), compared to when it is low (expected penalties). 

Consistent with this view, we found that post-reward HFA more frequently showed a 

negative relation with reward expectation (n = 222, 16.8%) than a positive relation with 

reward expectation (n = 59, 4.49%, counts t-test, t(25) = 3.12, p = 0.004), whereas post-

penalty HFA more frequently showed a positive relation with reward expectation (n = 130, 

9.89%t, t(25) = 2.35, p = 0.027, Figure 4b). Thus, the most common patterns of expectation-

related modulations in HFA were consistent with representations of unexpected rewards and 

penalties (“UR” and “UP,” respectively). We observed minimal overlap between these 

groups of electrodes as only 1.7% of valence-encoding electrodes demonstrated both 

patterns of activity. We observed UR electrodes more frequently than expected by chance in 

several right hemisphere ROIs (occipital, fusiform, temporal, and ventrolateral prefrontal; 

FDR-corrected p < 0.05), and a trend towards this effect in the left temporal and right 

sensorimotor ROIs (uncorrected p < 0.05). We observed trends towards observing UP 

electrodes more frequently than expected by chance in the right temporal, parietal, and 

sensorimotor ROIs (uncorrected p < 0.05).

If UR and UP electrodes reflect neural signals that guide learning, one might expect to 

observe a correlation between the the strength of expectation-related changes in these 

electrodes and subjects’ learning during the task. To measure the strength of these signals in 

each subject, we averaged the t-statistics associated with post-reward βQ among all UR 

Ramayya et al. Page 9

Neuroimage. Author manuscript; available in PMC 2016 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



electrodes and the post-penalty βQ among all UP electrodes in that subject, respectively. To 

index learning during the task, we computed the mean tendency that each subject showed 

towards choosing the high-probability item during the last 10 trials of each item pair 

(“accuracy”). Across subjects, we observed a significant correlation between accuracy and 

the strength of UR representations (r = 0.65, p < 0.001, Figure 4c), but did not observe such 

a correlation with UP representations (p > 0.5). These results suggest that the strength of UR 

neural signals was correlated with subjects’ learning during the task, suggesting that these 

electrodes reflect neural processes that are functionally relevant for learning.

5 Discussion

By measuring intracranially-recorded high-frequency activity (HFA) as neurosurgical 

patients performed a two-alternative probability learning task we found significant number 

of electrode sites for which HFA distinguished between rewards and penalties. The broad 

anatomical distribution of valence-encoding electrodes is consistent with the findings of a 

recent fMRI study that used multi-voxel pattern analysis to decode outcome valence from 

almost all human brain regions (Vickery et al., 2011). In most brain regions sampled, we 

observed strongly heterogeneous responses, with a mixture of recording sites exhibiting 

relative HFA increases following rewards and other recording sites exhibiting relative HFA 

increases following penalties. Because HFA is thought to reflect the summed activity of a 

large population of local neurons (Nir et al., 2007; Ray et al., 2008; Miller, 2010; Burke et 

al., 2015), our results suggest that neuronal populations in most human brain regions encode 

outcome valence in a heterogeneous manner (i.e., some neurons show relative increases 

following rewards, whereas others show relative increases following penalties). Such 

heterogeneous encoding patterns have been demonstrated in cortical regions by several 

monkey single-unit studies during reinforcement learning (Matsumoto et al., 2007; Asaad 

and Eskandar, 2011), and have been suggested as a reason why univariate functional 

neuroimaging studies may not be able to detect many cognitive signals when averaging 

activity within brain regions (Wallis and Kennerley, 2011). Such heterogeneous neural 

patterns may also explain recording sites that demonstrated relative reward- and penalty-

related increases in HFA during distinct time intervals (Figure 2).

Theories of reinforcement learning posit that individuals learn by encoding reward 

prediction errors that result in greater learning following unexpected outcomes than 

following expected outcomes (Bush and Mosteller, 1951; Rescorla and Wagner, 1972; 

Sutton and Barto, 1990). To assess whether these broadly distributed valence signals were 

related to reinforcement learning, we assessed the degree to which they were modulated by 

reward expectation. At each valence-encoding electrode, we correlated HFA during the time 

interval that HFA distinguished between rewards and penalties to trial-by-trial estimates of 

reward expectation (by applying a regression framework that controlled for variation in time 

on task and stimulus novelty). To obtain reliable trial-by-trial estimates of reward 

expectation, we only included behavioral and neural data from stimulus pairs that subjects 

demonstrated evidence of learning for this analysis. We wanted to test the hypothesis that 

electrodes that encoded both outcome valence and reward expectation (putative learning 

electrodes) were widely distributed throughout the brain.
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We found that reward expectation reliably modulated valence signals in several regions of 

interest, including those in prefrontal, sensori-motor, parietal, temporal, and occipital 

cortices (Table 4). Whereas functional neuroimaging studies have primarily identified neural 

populations that encode putative learning signals in brain regions that receive prominent 

inputs from dopaminergic neurons (e.g., ventral striatum, medial prefrontal and orbitofrontal 

cortex; Berns et al., 2001; McClure et al., 2003; Pessiglione et al., 2006; Rutledge et al., 

2010), we observed putative learning signals both in regions that receive prominent DA 

inputs (e.g., lateral prefrontal regions, and trends towards significance in medial and 

orbitofrontal cortices), and those that receive only sparse inputs from midbrain DA neurons 

(e.g., parietal, temporal, and occipital regions; Haber and Knutson, 2009). We did not 

observe a significant frequency of putative learning electrodes in the medial temporal lobe 

(recently linked to reinforcement learning, Foerde and Shohamy, 2011), however this may 

be due to reduced power due to relatively low electrode counts. These results provide 

electrophysiological support for the emerging view that reinforcement learning is driven by 

widespread learning signals throughout the human brain.

Our results also shed light on the manner in which learning signals are encoded in the 

human brain. At electrode sites that encoded learning signals, we found that post-reward 

HFA typically showed a negative relation with reward expectation (indicating greater HFA 

following unexpected compared to expected rewards), whereas post-penalty HFA typically 

showed a positive relation with reward expectation (indicating greater HFA following 

unexpected penalties to expected penalties). These results suggest that neural populations in 

the human brain typically encode unexpected outcomes with increases in firing rate, an 

encoding scheme that has been commonly demonstrated in cortical neural populations by 

monkey single-unit studies (Matsumoto et al., 2007; Asaad and Eskandar, 2011; Wallis and 

Kennerley, 2011). Because we typically observed representations of unexpected rewards and 

penalties on distinct electrodes, our results suggest that the human brain may adopt a 

distributed and opponent-encoding scheme to represent unexpected outcomes—some neural 

populations encode unexpected rewards with increases in firing rate, whereas other 

populations encode unexpected penalties with increases in firing rate. Such an encoding 

scheme might be expected if unexpected rewards and penalty representations arise from 

distinct neural systems (Daw et al., 2002). In contrast to cortical neural populations, neural 

populations in deep brain structures such as the midbrain dopaminergic nuclei have been 

shown to demonstrate more homogenous representations of unexpected outcomes (Schultz 

et al., 1997; Bayer and Glimcher, 2005; Bromberg-Martin et al., 2010; Glimcher, 2011; 

although, see Matsumoto and Hikosaka, 2009). Human electrophysiology studies in deeper 

brain structures have largely been consistent with these studies (Zaghloul et al., 2009; Patel 

et al., 2012; Lega et al., 2011; Ramayya et al., 2014b).

If electrodes encoding unexpected rewards and penalties reflect neural processes that are 

functionally related to learning, one might expect to observe a relation between the strength 

of these neural signals and subjects’ behavioral performance during the task. To determine 

whether this is the case, we assessed whether there was a correlation between subjects’ 

frequency of selecting the high reward probability item during the last 10 presentations of an 

item pair (“accuracy;” a measure of how well they encoded stimulus-reward associations), 

and the strength of unexpected reward and penalty signals, respectively. We found that the 
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strength of unexpected reward representations was positively correlated with subjects’ 

accuracy during the task. One interpretation of this result is that subjects who performed 

better during the task were better able to neurally represent unexpected rewards and 

penalties. Alternatively, it may be the case that we were better able to measure unexpected 

reward signals in subjects who performed well. In either case, this result provides evidence 

that widespread unexpected reward signals are functionally related to reinforcement 

learning. We did not observe a significant correlation between behavioral performance and 

the strength of unexpected penalty representations, however, this may reflect inadequate 

power as we observed fewer unexpected penalty than unexpected reward representations 

across the dataset.

Limitations

First, a subset of identified valence-encoding signals may reflect perceptual differences 

between reward and penalty feedback conditions (e.g., green vs. red screen, and cash-

register vs. error tone). However, the widespread nature of these signals and their relation 

with reward expectation argues against this view (for a control analysis, see Supplementary 

Material). Second, our analysis framework identifies putative learning signals by assessing 

the relation between valence-encoding neural signals and reward expectation. We are unable 

to assess whether these neural signals specifically represent reward prediction errors 

(Glimcher, 2011) because it is difficult to rule out the contribution of neural populations that 

encode other cognitive signals that may mimic reward prediction errors (e.g., salience; 

Pearce and Hall, 1980). Future studies may mitigate this issue by experimentally 

manipulating reward magnitude in addition to reward probability so as to apply more 

rigorous tests of specific reinforcement learning signals (e.g., reward prediction errors vs. 

salience; Rutledge et al., 2010).

Conclusions

Neural processes that encode both outcome valence and reward expectation were widely 

distributed throughout the human brain, and commonly observed in regions that receive 

sparse inputs from midbrain dopaminergic neurons (e.g., temporal, parietal, occipital). These 

neural processes typically showed increased activity following unexpected outcomes, as 

compared with expected outcomes, an encoding scheme which is consistent with previous 

findings from monkey single-unit studies (Asaad and Eskandar, 2011). The strength of 

neural processes that encoded unexpected rewards was correlated with behavioral 

performance during the task, suggesting a functional relevance for reinforcement learning. 

Our findings lend further support to the emerging view of reinforcement learning as a highly 

distributed brain function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We analyzed intracranial high frequency activity during reinforcement learning

• Expectation modulated reward-related neural activity in widespread brain 

regions

• These included regions that receive sparse inputs from midbrain dopamine 

neurons

• The strength of unexpected gain signals predicted subjects’ learning during the 

task

• Neural signals related to learning are widely distributed throughout the human 

brain.
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Figure 1. Reinforcement learning task, and subjects’ behavior, and electrode locations
a. Subjects selected between pairs of Japanese characters on a computer screen and 

probabilistically received positive or negative audio-visual feedback following each choice. 

b. Average tendency towards selecting the high-probability item during the first and last 10 

trials of each item pair. Error bars represent s.e.m across subjects. c. iEEG electrodes from 

each subject were localized to a common anatomical space (see Materials and Methods). 

We show strip and grid electrodes on the cortical surface, and depth electrodes targeting the 
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medial temporal lobe on the axial slice. On rare occasions, depth electrodes were placed in 

the frontal and parietal lobes to supplement surface recordings (not shown).
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Figure 2. Anatomical distribution of positive and negative outcome signals
a. Fraction of reward (orange) and penalty (blue) electrodes among all recorded electrodes 

b. Fraction of positive and negative electrodes in each ROI. See Table 2 for statistics.
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Figure 3. Relating neural activity to reward expectation
a. Behavioral data from one example session. On the top of the figure, dots indicate when 

the subject chose the high-probability item. Color of the dots indicate the item pair that was 

presented (blue -80/20, green - 70/30, red - 60/40). Asterisks indicates when positive 

feedback was provided following each choice. Bottom of the figure, dots indicate when the 

subject chose the low-probability item (same color scheme as a), whereas asterisks indicate 

when negative feedback was provided following each choice. Grey line indicates model-

predictions of subjects’ choices. b. Two example valence-encoding electrodes recorded from 

this subject that showed expectation-related changes in activity. Mean HFA response 

following positive (orange) and negative (blue) outcomes. Width indicates s.e.m. across 

trials. Shaded box indicates the time during which we observed significant valence-related 

HFA differences based on our cluster-based permutation procedure. During this time 

interval, we studied post-reward and post-penalty changes in HFA during terciles of reward 

expectation using a regression framework (see main text).
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Figure 4. Expectancy-related changes in activity among valence-encoding electrodes
a. Anatomical distribution of expectation-modulated valence electrodes. In several ROIs, we 

show the fraction of valence-encoding electrodes that were modulated by reward 

expectation. We only included regions from which we observed valence-encoding electrodes 

from at least five subjects. b. Patterns of HFA relations with reward expectation. Post-

reward HFA most frequently showed a negative relation with reward expectation (“UR 

electrodes”), whereas post-penalty HFA most frequently showed a positive relation with 

reward expectation (“UP electrodes”). Dashed horizontal line indicates the false-positive 

rate. See main text for statistics. c. Correlating the signal strength of UR electrodes with 

subjects’ behavioral performance (accuracy during last 10 trials of an item pair). Black line 

indicates regression line and dashed grey lines indicate 95% confidence intervals associated 

with the regression line. See main text for statistics.
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Table 1

Regions of Interest

Region of Interest Desikan-Killiany Atlas labels

orbitofrontal cortex (OFC) medialorbitofrontal, lateralorbitofrontal

dorsolateral prefrontal cortex (dlPFC) rostralmiddlefrontal, caudalmiddlefrontal

ventrolateral prefrontal cortex (vlPFC) parstriangularis, parsopercularis, parsorbitalis

anterior medial frontal superiorfrontal, rostralanteriorcingulate, caudalanteriorcingulate

posterior medial frontal paracentral, posteriorcingulate, isthmuscingulate

sensorimotor precentral, postcentral

parietal superiorparietal, supra-marginal, inferiorparietal

temporal banksts, transversetemporal, banksts, middletemporal, inferiortemporal, superiortemporal

fusiform fusiform

occipital cuneus, lateraloccipital, lingual, pericalcarine

medial temporal lobe (MTL) entorhinal, parahippocampal; depth electrodes labeled as hippocampal, enterorhinal, perirhinal, or 
parahippocampal by neuroradiologist

Anatomical labels used to define regions of interest
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Table 2

Frequency of valence-encoding electrodes

Region of Interest number of electrodes number of subjects frequency of reward 
electrodes; counts t-test 
results

frequency of penalty 
electrodes; counts t-test 
results

L. OFC 48 15 0.33; t(14) = 3.72, p = 0.002 0.08; t(14) = 0.460, p > 0.5

R. OFC 67 16 0.33; t(15) = 3.10, p = 0.007 0.13; t(15) = 1.44, p = 0.17

L. dlPFC 223 21 0.23; t(20) = 5.97, p < 0.001 0.22; t(20) = 4.46, p < 0.001

R. dlPFC 246 19 0.19; t(18) = 3.86, p = 0.001 0.47; t(19) = 5.32, p < 0.001

L. vlPFC 92 18 0.20; t(17) = 2.15, p = 0.046 0.21; t(17) = 3.39, p = 0.003

R. vlPFC 65 16 0.22; t(15) = 2.33, p = 0.034 0.37; t(15) = 3.12, p = 0.007

L. anterior medial 
frontal

138 16 0.30; t(15)2.91, p = 0.010 0.25; t(15) = 3.89, p = 0.001

R. anterior medial 
frontal

149 18 0.22; t(17) = 4.05, p < 0.001 0.33; t(17) = 3.30, p = 0.004

L. posterior medial 
frontal

28 7 0.18; t(6) = 1.60, p = 0.16 0.32; t(6) = 2.19, p = 0.07

L. sensorimotor 277 23 0.15; t(22) = 3.97, p < 0.001 0.32; t(22) = 4.06, p < 0.001

R. sensorimotor 262 20 0.17; t(19) = 2.68, p = 0.015 0.32; t(19) = 3.67, p = 0.002

L. parietal 373 26 0.25; t(25) = 5.53, p < 0.001 0.11; t(25) = 2.14, p = 0.042

R. parietal 267 19 0.24; t(18) = 3.70, p = 0.002 0.19; t(18) = 2.66, p = 0.016

L. temporal 677 28 0.18; t(27) = 5.05, p < 0.001 0.20; t(18) = 2.17, p = 0.052

R. temporal 457 27 0.16; t(26) = 3.72, p = 0.001 0.23; t(26) = 4.54, p < 0.001

L. fusiform 98 23 0.17; t(22) = 3.42, p = 0.002 0.13; t(22) = 4.87, p < 0.001

R. fusiform 97 17 0.18; t(16) = 3.13, p = 0.007 0.28; t(16) = 3.06, p = 0.008

L. occipital 162 20 0.13; t(19) = 2.55, p = 0.020 0.28; t(19) = 3.60, p = 0.002

R. occipital 84 19 0.13; t(18) = 1.19, p = 0.25 0.37; t(18) = 3.26, p = 0.004

L. MTL 100 19 0.32; t(18) = 4.36, p < 0.001 0.05; t(18) = 0.25, p > 0.5

R. MTL 52 12 0.27; t(11) = 2.17, p = 0.052 0.17; t(11) = 1.51, p = 0.157

For each region, we list the number of electrodes (column 1), number of subjects (column 2), frequency of reward electrodes (column 3), and 
frequency of penalty electrodes (column 4). Positive t-statistics indicate frequencies that are greater than expected, whereas negative t-statistics 
indicate a frequencies that are lower than expected. Bold text in columns 3 and 4 indicates regions that showed valence-encoding electrodes more 
frequently than expected by chance (FDR-corrected p < 0.05).
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Table 3

Summary of Q model fits.

α β mean sq. error mean sq. error (null)

0.20 (± 0.04) 0.23 (± 0.04) 0.14 (± 0.01) 0.26 (± 0.01)

Mean (± s.e.m across subjects) shown for best-fitting parameter values and goodness-of-fit measures (see Materials and Methods).
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Table 4

Frequency of expectation-modulated valence-encoding electrodes

Region of Interest number of 
valence-encoding 
electrodes

number of subjects frequency of expectation-modulated electrodes; counts t-test 
results

R. OFC 18 9 0.44;; t(8) = 2.05, p = 0.075

L. dlPFC 47 10 0.26; t(9) = 2.02, p = 0.075

R. dlPFC 126 12 0.44; t(11) = 3.35, p = 0.006

L. vlPFC 17 8 0.35; t(7) = 1.87, p = 0.103

R. vlPFC 28 9 0.57; t(8) = 3.41, p = 0.009

L. anterior medial frontal 53 9 0.17; t(8) = 1.69, p = 0.130

R. anterior medial frontal 65 10 0.29; t(9) = 2.55, p = 0.031

L. sensorimotor 77 11 0.18; t(10) = 3.62, p = 0.005

R. sensorimotor 116 12 0.29; t(11) = 3.22, p = 0.008

L. parietal 91 14 0.24; t(13) = 2.37, p = 0.034

R. parietal 103 12 0.26; t(11) = 3.32, p = 0.007

L. temporal 162 17 0.35; t(16) = 4.83, p < 0.001

R. temporal 132 17 0.44; t(16) = 4.22, p < 0.001

L. fusiform 18 10 0.39; t(9) = 2.50, p = 0.034

R. fusiform 30 10 0.57; t(9) = 2.91, p = 0.017

L. occipital 56 12 0.25; t(11) = 1.40, p = 0.190

R. occipital 40 10 0.45; t(9) = 3.26, p = 0.009

L. MTL 24 5 0.21; t(4) = 1.56, p = 0.157

R. MTL 14 9 0.36; t(8) = 1.57, p = 0.192

For regions in which we observed valence encoding electrodes in at least 5 subjects, we list the number of valence-encoding electrodes (column 1), 
number of subjects in which at least one valence-encoding electrode was observed (column 2), and the frequency that they were modulated by 
reward expectation. Positive t-statistics indicate frequencies that are greater than expected, whereas negative t-statistics indicate a frequencies that 
are lower than expected. Bold text in columns 3 indicates regions that showed valence-encoding electrodes more frequently than expected by 
chance (FDR-corrected p < 0.05).
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