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Abstract

Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance 

imaging data are commonly employed to study neuropsychiatric conditions by using pattern 

classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) 

with multiple hidden layers has shown its ability to systematically extract lower-to-higher level 

information of image and speech data from lower-to-higher hidden layers, markedly enhancing 

classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-

state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and 

identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-

higher level features learned via the DNN would significantly enhance the classification accuracy, 

and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each 

hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked 

autoencoder based pre-training to further improve the classification performance. Classification 

accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) 

the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise 

displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC 

patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was 

achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization 

and pre-training, which was substantially lower than the error rate from the SVM (22.3%). 

Moreover, the trained DNN weights (i.e., the learned features) were found to represent the 
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hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of 

nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, 

which was quantified by using kurtosis/modularity measures and features from the higher hidden 

layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and 

reported findings attained by using the DNN classifier and whole-brain FC data suggest that such 

approaches show improved ability to learn hidden patterns in brain imaging data, which may be 

useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying 

associated aberrant FC patterns.
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Introduction

Resting-state functional MRI (rsfMRI) without a task paradigm has been successfully 

employed to exploit neuronal underpinnings implicated in neuropsychiatric disorders 

(Anand et al., 2005; Castellanos et al., 2008; Li et al., 2002), including schizophrenia (SZ) 

(Greicius, 2008; Jafri et al., 2008; Liang et al., 2006; Liu et al., 2008; Mingoia et al., 2012; 

Yu et al., 2012; Zhou et al., 2007). For example, Liu and colleagues (2008) presented 

evidence of significantly altered functional connectivity (FC) pairs (i.e., locally connected 

networks), or disrupted “small-world FC networks,” in the prefrontal, parietal, and temporal 

areas of the brain in patients with SZ. In that study, the hypothesis on dysfunctional network 

integration in SZ was supported by the lower strength of the FC in the pairs of nodes and 

decreased synchronization of functionally connected brain regions as well as the longer 

absolute path to reach global functional networks (Bullmore et al., 1997; Bullmore et al., 

1998; Calhoun et al., 2009; Friston and Frith, 1995; Liu et al., 2008). In addition, Liang et al. 

(2006) reported that aberrant SZ-associated FC patterns were widely distributed throughout 

the entire brain (i.e., the FC levels of approximately 89% of the observed pairs of nodes 

were decreased), as opposed to showing a restricted pattern within only a few specific brain 

regions.

Machine-learning algorithms have been successfully deployed in the automated 

classification of altered FC patterns related to SZ (Arbabshirani et al., 2013; Du et al., 2012; 

Shen et al., 2010; Tang et al., 2012; Watanabe et al., 2014). In this regard, Du and 

colleagues (2012) developed a method combining kernel principal component analysis 

(PCA) and group independent component analysis (ICA) aimed at the computer-aided 

diagnosis of SZ, achieving 98% accuracy by using fMRI data acquired from an auditory 

oddball task paradigm. In addition, Shen et al. (2010) introduced an unsupervised learning-

based classifier to discriminate SZ patients from HC subjects by applying a combination of 

nonlinear dimensionality reduction and self-organized clustering algorithms to rsfMRI data. 

The results of this analysis demonstrated the highest discriminating power for FC patterns 

between the cerebellum and the frontal cortex, with a classification accuracy of 92.3%. In 

addition, the altered resting-state functional network connectivity (FNC) among auditory, 
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frontal-parietal, default-mode, visual, and motor networks were gainfully adopted for 

classification of SZ patients and 96% accuracy was achieved using k-nearest neighbors 

classifier (Arbabshirani et al., 2013). A recent schizophrenia classification challenge 

demonstrated clearly, across a broad range of classification approaches, the value of rsfMRI 

data in capturing useful information about this disease (Silva et al., 2014).

Of late, a strategy applying sparsity constraint to spatial patterns has favorably been 

deployed in various scenarios of fMRI data analysis directed toward extracting information 

from whole-brain FC patterns (Grosenick et al., 2013; Kim et al., 2012; Lee et al., 2008b; 

Watanabe et al., 2014). This explicit control of sparsity to analyze fMRI data also includes 

certain widely used ICA algorithms, such as the popular default algorithms of Infomax and 

FastICA, which jointly maximize sparsity and independence (Calhoun et al., 2013). This 

sparsity control has also been beneficial for brain decoding via fMRI data classification (Ng 

and Abugharbieh, 2011). The sparsity constraint strategy is particularly well-suited to fMRI 

data given the inherent high dimensionality and intra-subject variability. Moreover, sparsity 

constraint using total variation penalization (Michel et al., 2012) or anatomically-informed 

spatiotemporally smooth sparse constraint (Ng et al., 2012) for decoding of fMRI data can 

explicitly model intra/inter-subject variability, thus resulting in superior performance 

compared with the least absolute shrinkage and selection operator (LASSO)-based classifier 

(Michel et al., 2012; Ng and Abugharbieh, 2011; Ng et al., 2012).

The sparsity constraint strategy was recently put into play with rsfMRI data acquired from 

SZ patients and other neuropsychiatric patients, facilitating the identification of aberrant FC-

based attributes, the extraction of distinct and sparse SZ-associated FC networks, and the 

subsequent application of these attributes and networks to automated classification and 

diagnosis (Cao et al., 2014; Watanabe et al., 2014). For instance, Watanabe et al. (2014) 

discovered clinically informative feature sets by using the same data set employed in the 

current study (see Methods section) via a sparsity constraint with a fused LASSO scheme 

for the conventional support vector machine (SVM) classifier. Altered FC patterns were 

prominent in the fronto-parietal networks, the default-mode networks (DMNs), and the 

cerebellar areas, and the corresponding accuracy was 71.9% (Watanabe et al., 2014).

A deep neural network (DNN) with multiple hidden layers has achieved unprecedented 

classification performance relative to the SVM and other conventional models (e.g., the 

hidden Markov model) in various data sets such as image and speech data (Graves et al., 

2013; Krizhevsky et al., 2012). This technical breakthrough was accomplished by 

overcoming the limitations of traditional multilayer neural networks that are based on 

standard back-propagation algorithms and prone to over-fitting to the training data 

(Schmidhuber, 2014). More specifically, the distinct characteristics of DNN training 

encompass (1) unsupervised layer-wise pre-training followed by fine-tuning (Bengio et al., 

2007), and (2) stochastic corruption of the input pattern or weight parameters via random 

zeroing, for example, a denoising autoencoder (Hinton et al., 2012; Vincent et al., 2010). 

Despite accumulating evidence showing the superiority of the DNN, previous applications 

of DNN to neuroimaging data are limited to only a few studies (Brosch and Tam, 2013; 

Hjelm et al., 2014; Plis et al., 2014; Suk et al., 2013). Among the limited attempts to apply 

the DNN to neuroimaging data, the restricted Boltzmann machine as a building block for the 
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DNN network model has demonstrated its improved capacity to extract spatial and temporal 

information of fMRI data compared with conventional matrix factorization schemes, such as 

ICA and PCA algorithms (Hjelm et al., 2014). In addition, Suk et al. (2013) investigated the 

DNN training strategy by employing a stacked autoencoder (SAE) to discriminate 

Alzheimer’s disease patients from mild cognitive impairment patients. This was done by 

using volumetric information derived from structural MRI data combined with cerebral 

glucose metabolism data obtained by positron emission tomography. More recently, Plis et 

al. (2014) provided a validation study of DNN applied to several types of neuroimaging 

data, providing evidence that DNN can learn important features such as disease severity 

(Plis et al., 2014).

Whole-brain FC patterns from fMRI data have not yet been utilized as input patterns to 

demonstrate the efficacy of the DNN for classification of SZ or other neuropsychiatric 

disorders. Therefore, the objective of the present investigation was to enhance the 

classification accuracy of SZ patients vs. HC subjects by using the DNN classifier and 

whole-brain FC patterns estimated from rsfMRI data. The DNN has been applied to various 

data sets, such as image and speech data as well as neuroimaging data, with less than 1,000 

input dimensions (i.e., number of nodes in the input layer) (Graves et al., 2013; Krizhevsky 

et al., 2012). Compared with these data sets, a dimension of the whole-brain FC patterns can 

easily reach approximately 5,000 when the whole brain is divided into 100 sub-regions. This 

high dimensionality would be confounded by a lack of straightforward interpretations of 

whole-brain FC patterns compared with those of speech, image data, and other 

neuroimaging modalities such as raw fMRI volumes and structural MRI data. Thus, training 

the DNN using complex and high-dimensional whole-brain FC patterns is inherently 

challenging. To this end, we evaluated our supposition that classification accuracy can be 

enhanced by (1) deploying sparsity control of DNN weight parameters and (2) 

systematically initializing the weight parameters via a pre-training scheme.

We defined a sparsity level of DNN weights as the ratio between a number of non-zero 

values of DNN weights and a total number of DNN weights (i.e., non-zero ratio). Then, to 

explicitly control the sparsity of the DNN weights, we developed an adaptive scheme to 

control the non-zero ratios of the weights between two connected layers to target levels. We 

then hypothesized that the DNN using the proposed scheme would improve the 

classification accuracy of SZ patients and HC subjects relative to the DNN without the 

proposed scheme as well as conventional approaches such as the SVM classifier. This is 

because hierarchical feature representations (i.e., a transition from lower-to-higher level 

information) of whole-brain FC patterns derived from rsfMRI data can be obtained from 

DNN weights with sparsity control and pre-training. Such hierarchical feature 

representations would not be similarly available from the DNN without the weight sparsity 

control and pre-training. In addition to evaluation of the classification performance, we 

assessed the validity of the learned lower-to-higher level features of the DNN classifier by 

using kurtosis and graph-theoretical modularity measures, as well as spatial correlation 

coefficients (CCs) between the learned features and the input FC patterns.
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Materials and Methods

Overview

Figure 1 presents an overall flow diagram of the analysis. First, the raw fMRI data were 

preprocessed, and the whole-brain FC patterns were calculated by using Pearson’s CCs (Fig. 

1a). Second, the FC patterns were used as input patterns to a DNN classifier, and the DNN 

classifier was trained and parameters were optimized by using training and validation data 

from subjects split from the cross validation (CV) framework during the training phase (Fig. 

1b). Finally, a classification of SZ patient or HC subject was performed for each individual 

in the test data during the test phase (Fig. 1b). In addition, the weights of the DNN classifier 

were interpreted via qualitative visual inspection and quantitative evaluation.

Data description

The rsfMRI data from SZ patients and HC subjects were obtained from the Neuroimaging 

Informatics Tools and Resources Clearinghouse (NITRC) website, contributed by the 

Centers of Biomedical Research Excellence (COBRE; fcon_1000.projects.nitrc.org/indi/

retro/cobre.html) and also available on the collaborative informatics and neuroimaging suite 

(COINS) data exchange (coins.mrn.org/dx) (Calhoun et al., 2011; Scott et al., 2011). A 

diagnosis of SZ was made by using the Structured Clinical Interview for DSM Disorders 

(SCID; Diagnostic and Statistical Manual of Mental Disorders, DSM-IV) (First et al., 2012). 

Exclusion criteria comprised any history of neurological disorders, a history of mental 

retardation, a history of severe head trauma with a > 5 min loss of consciousness, and/or a 

history of substance abuse/dependence within the last 12 months. All participants completed 

a battery of neuropsychological tests, including the Wechsler Test of Adult Reading and the 

Wechsler Abbreviated Scale of Intelligence (Venegas and Clark, 2011; Wechsler, 1999). 

The SZ patients were also rated according to the Positive and Negative Syndrome Scale 

(PANSS) as a severity measure of their SZ symptoms (Kay et al., 1987). The SZ patients 

(n=72; with the exception of one subject) were all receiving various antipsychotic 

medications at the time of the study, corresponding to both traditional agents (e.g., 

haloperidol and perphenazine) and newly developed agents (e.g., olanzapine and 

risperidone).

A 3-Tesla Siemens Tim Trio scanner with a 12-channel head coil, and a single-shot full k-

space echo-planar imaging (EPI) system and ramp sampling correction using the inter-

commissural line as a reference were employed to acquire rsfMRI data while their eyes 

open, where time-of-echo (TE) = 29 ms, time-of-repetition (TR) = 2000 ms, voxel size = 3 × 

3 × 4 mm3, in-plane voxel = 64 × 64, 33 slices, and number of volumes = 150. The first five 

volumes were removed to allow equilibration of the T1-related signal. The remaining EPI 

volumes were preprocessed using statistical parametric mapping (SPM) software (SPM8; 

www.fil.ion.ucl.ac.uk/spm) in the order of slice-timing correction, realignment, and spatial 

normalization to the Montreal Neurological Institute (MNI) template with 3 mm isotropic 

voxel size, followed by spatial smoothing using an 8 mm isotropic full-width at half-

maximum Gaussian kernel. The automated anatomical labeling (AAL) template (Tzourio-

Mazoyer et al., 2002) available in the MNI space was re-sliced from a 2 mm to 3 mm 

isotropic voxel size using SPM8. Thus, each of the 116 AAL regions was readily available 
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in each voxel of the normalized EPI volumes. Additionally, abrupt movements were 

minimized by utilizing the ArtRepair software toolbox (Raiko et al., 2012) which 

implements a “volume scrubbing” (Power et al., 2012). Thus, potential adverse effects of 

head-motion artifacts were minimized during the classification test, as well as during the 

qualitative/quantitative evaluation of the learned features.

Subjects (n=147 before screening) were excluded from the study if (1) the average 

displacement due to head motion during fMRI scanning, as estimated from the realignment 

parameters, exceeded 0.45 mm (Power et al., 2012); (2) the diagnostic results from the 

DSM-IV criteria were unrelated to SZ (n=4 subjects, as exemplified by late-onset dementia 

of the Alzheimer’s type as classified by the DSM-IV); and (3) the data acquisition process 

was incomplete (n=1 subject). From the remaining subjects, equal numbers (n=50) of 

individuals were assigned to the SZ and HC groups via a pseudo-randomized pick. Table 1 

summarizes the sociodemographic information, neuropsychological test results, and clinical 

characteristics for each of the two study groups.

FC analysis

The average blood-oxygenation-level-dependent (BOLD) time series (TS) across the voxels 

in each of the 116 regions of the AAL atlas were linearly detrended and bandpass filtered at 

0.004–0.08 Hz. The average TS from each white matter (WM) and cerebrospinal fluid 

(CSF) area was also extracted and used to exclude non-neuronal components in the BOLD 

TS. The WM and CSF areas were defined from the voxels with a probability of > 99th 

percentile in the apriori maps available in the SPM8 software package (Kim et al., 2013; 

Kim and Lee, 2013). In addition, six motion parameters (three rotations and three 

translations) obtained from the realignment step were employed as nuisance variables. These 

non-neuronal confounding factors were regressed out from the average BOLD TS for each 

AAL region via the least-squares error minimization scheme (Chai et al., 2012; Kim et al., 

2015a; Kim et al., 2015b; Song et al., 2011). The Pearson’s CCs were then calculated using 

the resulting BOLD signals from all possible pairs (n=6,670) of the 116 AAL regions, a 

triangular portion of the CC matrix (Fig. 1a). The CCs were Fisher’s r-to-z transformed 

(Rosner, 2010). The z-scored FC levels for each subject were normalized to yield a zero 

mean and unit variance via pseudo z-scoring. The pseudo z-scored FC levels across all 6,670 

pairs (116C2) of the AAL regions were used as input patterns for the DNN classifier.

DNN training with sparsity control of weights

The DNN layers consisted of multiple hidden layers and a softmax layer as an output layer. 

The target values of the two output nodes in the softmax layer were assigned as [1, 0]T and 

[0, 1]T for the input pattern from the HC group and the SZ group, respectively. The cost 

function, J(W) of the DNN for the supervised fine-tuning step was defined using the mean 

squared error (MSE), L1-norm, and L2-norm terms as follows:

(1)
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where y(L),{n}(W) is a vector with elements of the output values at the Lth layer for the 

subject n in the training set, t{n} is the target output values of the subject n (i.e., class 

information; [1 0]T for HC and [0 1]T for SZ), β(J+1,J)(t) and γ(J+1,J) are the L1-norm and L2-

norm regularization parameters, respectively, between the Jth and (J+1)th layer, N is the total 

number of subjects in the training set, and (L+1) is the number of the layers, including the 

input layer (i.e., the 0th layer) and the output layer (i.e., the Lth layer).

A learning algorithm of DNN weights was derived from a stochastic gradient descent 

scheme to this cost function (also termed the fine-tuning step) as follows:

(2)

where ΔMSE W(J+1,J)(t) is the first-order derivative of the cost function with respect to the 

W(J+1,J)(t) weight parameters, or the weights between the Jth and (J+1)th layer, and was 

previously used in a standard back-propagation algorithm (Bishop, 1995); t is the epoch 

number (i.e., one epoch was defined as the DNN weight updates derived from using all of 

the training data); and α(t) is the learning rate at the tth epoch. The learning rate α(t) was 

initially set to 0.002 (i.e., α(0)=0.002) and then gradually reduced after the first 250 epochs 

(Bengio, 2013; Darken and Moody, 1992). Note that β(J+1,J)(t) was adaptively controlled to 

reach a target sparsity level of weights between the Jth and (J+1)th layers, and γ(J+1,J) was 

fixed to 10−5 to prevent over-fitting of weights (Moody et al., 1995). A total of 500 epochs 

were used, and the number of hidden nodes was set to 50 for each of the hidden layers. To 

accelerate the learning procedure, a previous weight update term (or momentum) was added 

to the current weight update term (Bishop, 1995) as follows:

(3)

where t is the epoch number, and the learning rate m of this momentum (a fraction of the 

previous weight update term) was fixed to 0.1. This momentum term of the weight update 

accelerates the gradient descent learning to find an optimal point when the gradient of the 

MSE consistently points to the same direction (Bishop, 1995). The classification results 

using the DNNs with one to five hidden layers were obtained to test whether more hidden 

layers lead to better classification performance or saturate/degrade at a certain number of the 

hidden layers. A semi-batch learning process with a batch size of ten input vectors from ten 

subjects was utilized. The DNN training algorithm implemented in the publicly available 

DNN software toolbox was used with the above parameters in the MATLAB environment 

(github.com/rasmusbergpalm/DeepLearnToolbox).

Proposed scheme for sparsity control of DNN weights

Training of DNN weights is inherently challenging due to multiple hidden layers. This 

complication can be aggravated when whole-brain rsfMRI FC patterns are employed as 

input patterns. To overcome this issue, an approach was undertaken to explicitly control the 

degree of sparsity of the weights, or the weight sparsity, for each of the hidden layers of the 

DNN. The L1-norm regularization parameter β(J+1,J)(t) was then adaptively changed to 
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achieve the target sparsity level in terms of the ratio of non-zero weights (hence, the lower 

the ratio of the non-zero weights, the higher the level of the weight sparsity, and vice versa). 

This approach therefore permits the systematic evaluation of associations between (1) the 

degrees of weight sparsity in each of the hidden layers during the training phase, and (2) the 

consequent classification accuracies during the test phase. In our proposed approach, an L1-

norm regularization parameter, β(J+1,J)(t), was adaptively changed in each epoch, as follows:

(4)

where μ is the learning rate, fixed to a value of 10−5; ρ(J+1, J) is the target non-zero ratio of 

W(J+1, J); and nzr(·) is a function to account for the non-zero ratio of a vector/matrix. 

β(J+1, J)(t) was initially set to 10−3 and was bounded to a minimum value of 0 and maximum 

value of 10−2 during the update. Various target non-zero ratios (ρ(J+1, J) = 0.3, 0.5, 0.7, or 

1.0) were tested for each hidden layer to reflect the potentially different optimal sparsity 

level in each layer. The optimal non-zero ratios for each of the hidden layers were 

determined among all combinatorial sets of non-zero ratios across the hidden layers when 

the validation accuracy was maximal. In addition, the reproducibility of the optimal non-

zero ratios across the permuted CV sets was evaluated using the intra-class correlation 

coefficient (ICC) implemented in the MATLAB code available from MATLAB Central 

(www.mathworks.com/matlabcentral; “ICC.m” by A. Salarian) (Koch, 1982). Classification 

accuracies were evaluated using the test sets for these non-zero ratios. Note that the weights 

between the last hidden layer and the softmax layer were trained by using only L2-norm 

regularization to fully minimize the MSE-based cost function.

Pre-training of DNN weights for initialization

Pre-training of DNN weights as opposed to random initialization has proven its utility to 

circumvent a local minimum and thus enhances the classification performance (Hinton et al., 

2006; Larochelle et al., 2009). Similarly, using whole-brain FC patterns as input sample, we 

evaluated whether the pre-training of DNN weights would also improve the classification 

performance. To this end, an autoencoder (AE) algorithm was applied to minimize the 

reconstruction error of the input sample in the reconstructed input layer (left of Fig. 2), the 

output of the first hidden layer was used as input to the second hidden layer in the SAE 

scheme (right of Fig. 2), and the multilayer networks consisted of SAE pre-trained layers 

(middle of Fig. 2). More specifically, the weights, W(1,0),e, and the bias, b(0),e, for encoding 

the input sample were trained from the AE between the input layer (i.e., layer 0) and the first 

hidden layer (i.e., layer 1) to minimize a cost function defined from a MSE between the 

input and the reconstructed input sample. The weights, W(2,1),e, and the bias, b(1),e, were 

trained from the AE between the first hidden layer and the second hidden layer, whereby the 

output of the first hidden layer was used as the input to this AE. Then, the trained weights 

and bias terms from these AEs were stacked and used as initial weights of the DNN in the 

subsequent fine-tuning phase using the target output and actual output of the input sample. A 

random zeroing scheme was adopted for the AE, in which randomly selected elements 

(approximately 30% of the input pattern) were set to zero (Vincent et al., 2010). The 

learning rate α(t) in Eq. (2) was initially set to 0.01 and then gradually reduced after 500 

epochs (Bengio, 2013). The total number of epochs was set to 1,000 to allow for 
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convergence of the weights. The learning rate of the momentum factor was fixed to 0.1. The 

L2-norm regularization parameter γ in Eq. (2) was set to 10−5 as in the fine-tuning step. In 

the DNN without pre-training and with sparsity control, the L1-norm regularization 

parameter was also adaptively changed using Eq. (4). In a condition without pre-training, 

uniformly distributed random numbers within the range of  were 

assigned as initial weights for random initialization, where nin and nout corresponded to the 

numbers of nodes in the input and output layers (Bengio, 2013). Table 2 summarizes four 

combinatorial scenarios for the training of DNN weights, depending on the use of sparsity 

control and/or pre-training. To evaluate the efficacy of the pre-training scheme in the DNN, 

the average learning curves of error rates across all permuted training/validation/test sets 

with the pre-training scheme were compared with the learning curves obtained without pre-

training in the sparsity control-based L1-norm regularization framework. The learning 

curves of the average non-zero ratio and adjusted L1-norm regularization parameter during 

the training phase were also compared across the two weight initialization schemes.

Classification test

Classification performance was evaluated by using a nested CV framework during a training 

phase and the consequent test phase (Fig. 1b). In detail, a total of 50 subjects for each of the 

SZ and HC groups were split into five folds, with ten subjects in each fold for each group. 

During the training phase using the training data (three out of five folds) and the validation 

data (one fold), a grid search was conducted for several target non-zero ratios and optimal 

non-zero ratio parameters were obtained. Once the DNN classifier was trained, the 

classification performance was estimated by using the test data in the remaining fold. Using 

this scheme, a so-called “circular analysis” or “double dipping” issue could be prevented 

(Kriegeskorte et al., 2009). For instance, by using the DNN architecture with one hidden 

layer for each of the four target non-zero ratios, the DNN training and classification tests 

were both conducted 20 times, due to the numbers of scenarios required to select the training 

data (n=5C3) and the validation data (n=2C1). The classification tests were repeated ten 

times with a randomized split into five data folds, giving a total of 50 available error rates 

for each of the four target non-zero ratios. The reproducibility of these error rates for each of 

the conditions (i.e., with/without L1-norm regularization and with/without pre-training) was 

evaluated using an ICC (Koch, 1982). Potentially significant main effects and/or interactions 

of these error rates were evaluated for all data via a three-way repeated measures analysis of 

variance (ANOVA). In the three-way ANOVA, one factor pertained to the use of sparsity 

control, one factor pertained to the use of pre-training, and one factor pertained to the 

number of hidden layers of the DNN. The resulting p-value was Bonferroni-corrected for 

multiple comparisons (i.e., d.f. = 999 due to 50 permuted training/validation/test data sets for 

each option of the sparsity-control/pre-training/five hidden layers).

SVM-based classification

For comparison with the DNN classifier, a SVM classifier with a linear kernel or a Gaussian 

radial basis function (RBF) kernel was used as implemented in the LIBSVM software 

package (www.csie.ntu.edu.tw/~cjlin/libsvm) (Chang and Lin, 2011). To train the SVM 

classifier, the soft margin parameter, C, and the γSVM parameter to control for RBF kernel 
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size were optimized using the training data (three out of five folds) and the validation data 

(one fold) via a grid search (i.e., C = 2−5, 2−3, …, and 215, and γSVM = 2−15, 2−13, …, and 

23) (Cristianini and Shawe-Taylor, 2000; Lee et al., 2009). The parameters of the SVM 

classifier were determined optimal when the validation accuracy was maximal, and the 

optimally chosen parameters across the CV sets were reported. Once the SVM classifier was 

trained, the classification performance was estimated using the test data in the remaining 

fold.

Learned features from the trained DNN and its qualitative interpretation via visualization

To test our hypothesis regarding the lower-to-higher level FC features of the DNN, the DNN 

weights were trained by taking into account the data from all of the subjects. This scheme 

avoids the complication of merging DNN weights obtained from various sets of training, 

validation, and test data, although classification accuracy is not simultaneously available. In 

this type of DNN training, the average non-zero ratio level (i.e., the weight sparsity) 

presenting the highest classification performance during the classification test is used to set 

the target non-zero ratio for each of the layers.

A linear combination of the weights across layers for feature representation from the trained 

DNN assumes that a hidden node can be characterized by the filters/weights of the previous 

layer that it is most strongly connected to (Lee et al., 2008a). For example, using the Mixed 

National Institute of Standards and Technology (MNIST) database of handwritten digits and 

natural images as inputs to the DNN, simple cell response (i.e., edge filters) in the early 

visual cortex was extracted from the weights between the input and first hidden layers, and 

the linear combination of these weights to the second layer resembled corner filters (Lee et 

al., 2008a). Similarly, the trained weights in each hidden layer of our DNN were visualized 

by linear projection from the input layer to the corresponding hidden layer (Fig. 3) (Denil et 

al., 2013; Lee et al., 2008a; Suk et al., 2014). Specifically, a feature vector at the kth node in 

the (J+1)th hidden layer was defined using the trained DNN weights as follows:

(5)

where  is a set of the node indices at the Jth hidden layer that presents large 

magnitude values among the elements of the weight vector from the Jth hidden layer to the 

kth node at the (J+1)th hidden layer, . The choice of the number of hidden nodes for 

which weights were linearly combined might alter the characteristics of the DNN features; 

thus the DNN features were obtained for several numbers of linearly combined weights (i.e., 

10, 15, and 30). Then, the reproducibility of the modularity and kurtosis values of the DNN 

features across these several numbers of the linear combination was evaluated via the ICC. 

The feature vectors were interpreted as the learned features of the whole-brain FC patterns 

in the corresponding hidden layer and then visualized using two options including (a) the 

BrainNet Viewer software (www.nitrc.org/projects/bnv) toolbox (Xia et al., 2013) and (b) 

the “circularGraph” toolbox available at MATLAB Central (www.mathworks.com/

matlabcentral) to clearly illustrate the connectivity across the regions of interest (ROIs).
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Quantitative interpretation of learned features from trained DNN via spatial correlation and 
Fisher’s scores

Absolute values of spatial CCs between the learned features of the DNN and either the 

average FC patterns for the HC/SZ groups or the t-scored group-difference FC patterns 

(obtained from a two-sample t-test) were calculated. The capability of each hidden layer to 

discriminate between the two groups was also assessed using Fisher’s scores (Bishop, 1995), 

defined as follows:

(6)

where the mean value of the jth node input at the Jth hidden layer for the HC group 

 ; sgm is the sigmoid 

function; the variance of the hidden node input for the HC group 

; N is the number of hidden nodes; and NHC and 

NSZ are the number of subjects in the HC and SZ groups, respectively (a superscript 

indicates a layer index or a group label, and a subscript denotes a node index). The average 

Fisher’s score across 50 nodes in each hidden layer was taken as the score of the 

corresponding hidden layer. Hidden layers with higher Fisher’s scores represented layers 

with a greater capacity to discriminate between the two groups. To assess statistical 

significance of the hidden node input within each group and between the HC and SZ groups, 

a one-sample t-test and a two-sample t-test were administered using the hidden node input 

prior to application of sigmoid function of each hidden node.

The modularity of the learned features in each hidden layer was further analyzed via a 

graph-theoretical measurement (Girvan and Newman, 2002; Newman and Girvan, 2004) 

implemented in a graph-theoretical analysis toolbox (Hosseini et al., 2012). A modularity 

analysis incorporating the learned features of the DNN can reveal how whole-brain FC 

patterns are decomposed in each of the hidden layers to better discriminate SZ patients from 

HCs. The kurtosis values of the learned features in each layer were also calculated to 

evaluate the corresponding sparsity levels via non-Gaussianity and were compared between 

the layers using two-sample t-test.

Performance evaluation for several parameter sets

Our proposed continuous update of the L1-norm regularization parameter β(t) based on the 

targeted non-zero ratio was compared with an approach that fixed the L1-norm 

regularization parameter to one of several values (i.e., β = 10−2, 10−3, and 10−4), in which 

the weight parameters were initialized with either pre-training or random initialization. The 

maximum number of epochs was set to 1,000 to train the DNN with the fixed L1-norm 

regularization parameter because of the potentially slow convergence. The resulting learning 

curves of both the classification accuracy and non-zero ratios were collated across all of the 
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permuted 5-fold CV sets. The L2-norm regularization parameter γ was chosen from several 

additional values (i.e., 10−3, 10−4, and 10−6), and the classification performance was 

evaluated. The number of hidden layers and the number of nodes in each hidden layer can 

also be optimized using the training/validation data. Thus, we adopted a grid search to select 

the optimal number of hidden layers (i.e., among one to five hidden layers) and nodes (i.e., 

among 10, 25, 50, and 100) in each hidden layer.

Potential bias on classification performance due to head motion

The head motion of SZ patients is generally greater than that of HC subjects (Kong et al., 

2014). Despite the volume scrubbing and removal of the motion-related component in the 

BOLD signal when the FC patterns were calculated in our present study, the classification 

performance could be positively biased due to head motions because the SZ patients 

potentially have less volume than the HC subjects. To evaluate this potential bias, the 

average framewise displacement (FD) for each subject was calculated, and averaged FD 

values for all subjects in the HC and SZ groups in the training sets were adopted as a 

regressor in the least-squares estimation. Then, the FC patterns with the confounding factor 

removed from the average FD values were calculated as follows and used as input samples 

for the DNN.

(7)

where Y and Ŷ (N×P; N is the number of subjects in the training set, and P is the number of 

elements [i.e., 6,670] in the FC pattern for each subject) are the FC patterns for all subjects 

in the HC and SZ groups in the training set with and without the FD components, 

respectively; xFD (N×1) is the FD values for all subjects; 1 is a vector with an element of 1 

to adjust a bias of the FC level; and ϕFD and ϕbias are the regression coefficients of the 

average FD values and the bias obtained from the least-squares estimation, respectively. The 

estimated coefficient of the FD (i.e., ϕFD) was used to remove the FD component of the FC 

patterns for the subjects in the test set. The FD-removed FC patterns were used as inputs of 

(1) the DNN classifier (with three hidden layers and 50 nodes in each hidden layer) by 

applying both the pre-training and weight sparsity control strategies and (2) the SVM 

classifiers with linear and RBF kernels. As a result, classification performance obtained 

from 50 randomly permuted training/validation/test data was reported along with the 

kurtosis and skewness values of the FC patterns with and without FD components.

Classification test employing FC patterns of functionally parcellated regions from group 
ICA

The average BOLD signal could potentially smooth out useful subtle patterns between 

BOLD signals. These hundreds or even thousands of BOLD signals could be very 

heterogeneous within each AAL region since the BOLD signal in each voxel may come 

from many different brain networks. To alleviate this potential limitation, an alternative 

method to functionally parcellate the brain networks was considered using a group ICA 
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(GICA) (Calhoun and Adali, 2012; Calhoun et al., 2001). Subsequently, the time-courses 

(TCs) of the brain networks (i.e., spatial patterns) of independent components (ICs) were 

used to calculate FC patterns across these brain networks (Arbabshirani et al., 2013).

This functional parcellation was conducted in the CV framework. In detail, the preprocessed 

rsfMRI data from the training/validation sets (i.e., subjects) were analyzed using a spatial 

GICA as implemented in the GIFT toolbox (mialab.mrn.org/software/gift). Two-step 

dimension reduction was applied via a PCA, and the reduced dimensions in subject and 

group levels were 100 and 145, respectively. Then, 145 ICs were estimated from the 

Infomax algorithm (Bell and Sejnowski, 1995). Once the group spatial patterns (SPs) of the 

145 ICs were estimated from GICA using the training/validation data to parcellate the whole 

brain into 145 regions, the SPs and TCs corresponding to the 145 brain regions were 

estimated using the spatio-temporal dual-regression applied to preprocessed rsfMRI data for 

each subject in the training/validation/test sets (Silva et al., 2014). The dual-regression 

estimates were (1) individual TCs using a group SPs as regressors and (2) individual SPs 

using the individual TCs as regressors (Beckmann and Smith, 2005; Calhoun and Adali, 

2012; Du et al., 2012; Kim et al., 2012).

Each voxel was assigned to one of the SPs (i.e., brain regions) of 145 ICs if the t-score of 

the voxel (available from one-sample t-test using SPs across the training/validation data) of 

the assigned IC was greater than that of the remaining ICs. The probabilities that each voxel 

belongs to gray matter (GM), WM, and CSF are readily available in a priori maps of these 

three brain structures in SPM8. Thus, the proportions of the GM, WM, or CSF areas in each 

of the brain regions (i.e., SPs of ICs) were calculated by counting the number of voxels of 

the corresponding structure. Then, the top 116 ICs with greater proportions of GM than WM 

or CSF (i.e., 116 functionally parcellated brain regions) were selected to match the number 

of brain regions defined in the AAL template.

The TCs of these 116 ICs were used to calculate the FC patterns of the functionally 

parcellated brain regions. The six motion parameters (three rotations and three translations) 

obtained from the realignment step were regressed out from the TCs to remove any potential 

confounding factors due to head motion. Subsequently, the Pearson’s CC values were 

calculated and Fisher’s r-to-z transformed. An optimal non-zero ratio between two 

subsequent layers ρ(J+1,J) was identified via a grid search from 0.3 to 1.0 with an interval of 

0.1 (excluding 0.9) to include the grid search range of the non-zero ratios applied to the FC 

patterns using the AAL template. The classification test was performed using the DNNs 

with one to five hidden layers and with both pre-training and the proposed weight sparsity 

control schemes.

Results

Group-level FC patterns

The number of removed and interpolated volumes by volume scrubbing (mean ± the 

standard deviation, SD: 2.9 ± 3.5 and 5.7 ± 6.6 from the HC and SZ group, respectively) 

was not significantly different between the two groups (uncorrected p > 0.05) from the 

Mann-Whitney U test (Mann and Whitney, 1947). Figure 4 illustrates the average FC 
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patterns for each group and the group differences between the HC and SZ groups obtained 

by using a two-sample t-test. The average FC patterns showed prominent intra-network 

patterns involving the frontal, visual, subcortical, and cerebellar areas, as well as inter-

network patterns involving DMNs and the fronto-temporal, cortical-thalamus, cortical-

cerebellar, and subcortical-cerebellar networks (Liu et al., 2008; Salvador et al., 2005). The 

FC patterns were statistically different (uncorrected p < 0.05) between the two groups in the 

fronto-temporal, cortical-thalamus, and cortical-cerebellar networks.

Classification performance depending on weight sparsity levels

Figure 5a exemplifies the learning curves of (1) the target non-zero ratio ρ(J+1,J) (i.e., 0.5) of 

the DNN weights and (2) the L1-norm regularization parameter, β(J+1,J)(t), for the DNN with 

three hidden layers. The non-zero ratio was rapidly converged to the target value after 

several hundreds of epochs by adjusting β(J+1,J)(t). Figure 5b shows the average learning 

curves of the DNNs with and without pre-training in the weight sparsity control framework. 

The faster convergence and the lower minimum error rate that were achieved from pre-

training (i.e., 14.2%) compared with that from random initialization (i.e., 20.2%) may 

indicate that pre-training facilitates the initialization of DNN weights to render the 

optimization process of the initial weights more effectively as opposed to the random 

initialization (Erhan et al., 2010).

Figure 6 depicts the average error rates obtained from 50 randomly permuted training/

validation/test data for each of the target non-zero ratios and for the DNNs with several 

numbers of hidden layers. The average error rate of the DNN with one hidden layer (22.5%) 

was lowest when the target non-zero ratio was 0.5 (Fig. 6a). For the DNN with three hidden 

layers, the average error rate was 14.2% when the target non-zero ratios were 0.5, 0.7, and 

0.7 from the first, second, and third hidden layers, respectively (Fig. 6c). Figure 6f shows the 

optimal (i.e., when the error rate was at its minimum) non-zero ratio for each of the hidden 

layers obtained via explicit control of the weight sparsity for each of the DNNs with several 

numbers of hidden layers. Overall, the optimal non-zero ratio of the first hidden layer was 

consistently smaller than that of the higher hidden layers (Bonferroni-corrected p < 10−6, 

one-way ANOVA). For example, the average non-zero ratios for the DNN with three hidden 

layers were 0.52 for the first hidden layer, 0.72 for the second hidden layer, and 0.85 for the 

third hidden layer. Figure 7 shows the line plots of the non-zero ratio parameters optimally 

chosen for the DNNs with several numbers of hidden layers. The ICC value for the DNN 

with three hidden layers was maximal (i.e., 0.82); thus the optimally determined non-zero 

ratios were most reproducible from the DNN with three hidden layers among those tested.

Classification performance depending on pre-training

Figure 8 summarizes the error rates of the DNNs with several numbers of hidden layers and 

(a) sparsity control and SAE-based pre-training (DNNwSwP), (b) sparsity control but no pre-

training (DNNwSwoP), (c) SAE-based pre-training but no sparsity control (DNNwoSwP), 

and (d) neither sparsity control nor pre-training (DNNwoSwoP). Overall, SAE-based pre-

training further reduced the error rates of the DNN compared with random initialization. 

This trend was particularly evident for DNNs with more than two hidden layers. Average 

error rates (± the SD) from the DNN with sparsity control and SAE-based pre-training were 
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22.5 (± 0.7), 17.6 (± 0.4), 14.2 (± 0.4), 14.5 (± 1.2), and 16.6 (± 2.2)% for one, two, three, 

four, and five hidden layers, respectively. Furthermore, the average error rates (± the SD) 

from the DNN with sparsity control but no pre-training were 22.7 (± 1.0), 20.8 (± 0.9), 20.2 

(± 1.2), 24.1 (± 1.4), and 25.2 (± 1.4)% for one, two, three, four, and five hidden layers, 

respectively. Error rates from the DNN with a standard back-propagation algorithm (i.e., 

without sparsity control or pre-training) were 25.1 (± 1.8), 23.1 (± 1.5), 25.1 (± 1.4), 25.0 (± 

1.7), and 27.0 (± 2.1)%, respectively. The classification results from the five hidden layers 

were substantially degraded compared with the results from the three hidden layers with pre-

training and sparsity control (Bonferroni-corrected p < 10−2 from a paired t-test; d.f. = 98). 

Table 3 summarizes the error rates, sensitivities, and specificities for all combinatorial 

scenarios of the training strategies. The ICC values using the error rates across the pre-

training and random initialization methods were greater from the DNN with three (0.49) and 

four (0.59) hidden layers (i.e., more reproducible) than from the DNNs with one (0.00), two 

(0.30), and five (0.29) hidden layers. When the pre-training initialization was used, the error 

rates from the DNN training with/without the L1-norm regularization schemes were 

reproducible when the DNNs with two (0.48), three (0.32), and four (0.51) hidden layers 

were deployed rather than the DNNs with one (0.04) and five (0.15) hidden layers. A three-

way repeated measures ANOVA revealed that the main effects of sparsity control, pre-

training, and the number of hidden layers to the error rates were all statistically significant 

(Bonferroni-corrected p < 10−7; d.f. = 999). Moreover, significant interactions were 

observed between (1) the number of hidden layers and the use of the sparsity control 

(Bonferroni-corrected p < 0.05; d.f. = 499), and (2) the number of hidden layers and the use 

of the pre-training (Bonferroni-corrected p < 10−7; d.f. = 499).

Classification performance from SVM

Error rates for the SVM classifier with a linear kernel (22.3 ± 0.8%) or a RBF kernel (24.9 ± 

1.0%) were generally inferior compared with error rates obtained for DNNs with sparsity 

control and pre-training (Fig. 8). Figure 9 illustrates that the optimal parameters of the SVM 

from the grid search were 213 for the soft margin parameter C (using a linear kernel), 29 for 

the soft margin parameter C, and 2−2 for the RBF kernel size γSVM (using an RBF kernel).

Hierarchical features interpreted from DNN weights

The learned features of the first hidden layer of the DNN with three hidden layers are 

visualized in Figures 10a–c and Figure S1 (see Tables S1–S4 for details). These learned 

features represent (1) the reduced FC level from SZ group between the cerebellum and the 

subcortical areas, and (2) both the reduced and increased FC levels from SZ group between 

the thalamus and the cortical regions (the first column in Fig. 10c, Table S1) (Çetin et al., 

2014). The posterior cingulate cortex (PCC), angular gyrus, paracentral lobule, and occipital 

gyrus showed aberrant FC patterns (the second column in Fig. 10c, Table S2). The frontal 

areas, temporal lobe, and occipital gyrus exhibited reduced FC level from SZ group (the 

third column in Fig. 10c, Table S3), in addition to altered striatal FC patterns (the fourth 

column in Fig. 10c, Table S4). The learned features of the second and the third hidden layer 

showed densely populated FC patterns across multiple brain regions (Figs. 10a–b). All of the 

learned features for each hidden node in each hidden layer are visualized in Figures S1–S3. 

Overall, lower-level/localized features from the first hidden layer (Fig. S1) and higher-level/
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global features from the second (Fig. S2) and third (Fig. S3) hidden layers were observed. 

The first and second hidden node input from the first hidden layer were statistically different 

between the HC and SZ groups (Fig. 10c; Bonferroni-corrected p < 10−4 from a two-sample 

t-test; d.f. = 99), whereas all four hidden node input from the third hidden layer were 

statistically different between the two groups (Fig. 10a; Bonferroni-corrected p < 10−14 from 

a two-sample t-test; d.f. = 99). Moreover, all four hidden node input from the third hidden 

layer was statistically different from zero within each group presenting opposite signs across 

the two groups (Fig. 10a; Bonferroni-corrected p < 10−5 from a one-sample t-test; d.f. = 49), 

and thus this indicates that the hidden node output with sigmoid node function is readily 

separable from 0.5.

Figure 11a shows the increased average absolute values of the spatial CCs between the 

learned features and (1) the mean FC patterns from the SZ or HC group, as well as (2) the 

group differences in the FC patterns between the SZ and HC groups in the higher layer (see 

Fig. 4b). Meanwhile, Figure 11b shows the average Fisher’s score of each hidden layer for 

the DNN with three hidden layers. Note that the Fisher’s score of the third hidden layer was 

significantly larger than that of the first hidden layer (1.94 ± 0.30 and 0.07 ± 0.01 from the 

third and first hidden layers, respectively; Bonferroni-corrected p < 10−4 from a two-sample 

t-test; d.f. = 98). Overall, these results support the idea that learned features in the higher 

layers represent holistic information of the FC patterns associated with each group and/or 

group-level differences in FC patterns between the two groups. On the other hand, learned 

features in the lower layers characterize a portion of the FC patterns.

Table S5 shows the kurtosis and modularity values of the DNN weights obtained for varying 

numbers of linearly combined weights. The estimated kurtosis values of the learned features 

for the first hidden layer (7.1 ± 0.9) were significantly greater than the kurtosis values of the 

second hidden layer (3.9 ± 0.4; Bonferroni-corrected p <10−4 from a two-sample t-test; d.f. 

= 98) and the third hidden layer (3.4 ± 0.2; Bonferroni-corrected p <10−4 from a two-sample 

t-test; d.f. = 98) when 15 DNN features in the lower layer were averaged to estimate the 

DNN feature in the higher layer. The average modularity values of the DNN features 

decreased from the lower to the higher layers. Across the hidden layers, the kurtosis values 

were more reproducible than the modularity values (ICC of 0.92 for kurtosis values vs. ICC 

of 0.44 for modularity values when the number of linearly combined weights/features was 

15).

Classification performance for various parameter sets

Figure 12a illustrates the average learning curves, in which the proposed adaptive L1-norm 

regularization β(t) along with pre-training initialization was superior in terms of final error 

rate and convergence speed compared with the fixed β. When β was fixed to 10−2, the DNN 

weights during the DNN training diverged (i.e., the intensity of the DNN weights keeps 

increasing/decreasing). The adaptive β(t) method enabled a convergence (a) to a minimum 

error rate (compared with error rates from the fixed β of 10−3 and 10−4) and (b) to the target 

non-zero ratio (compared with the gradually decreasing non-zero ratio from the fixed β). A 

similar trend for the learning curves obtained from the adaptive β(t) and fixed β can be 

observed in the results using the random initialization of DNN weights, but with much 
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higher error rates than the pre-training initialization of DNN weights (Fig. 12b). The average 

learning curves without pre-training (i.e., random initialization) suggested that the proposed 

adaptive β(t) was consistently better than the approach using a fixed β in terms of error rate 

(e.g., 20.2% with an adaptive β(t) vs. 24.3% with a fixed β of 10−3) and convergence speed 

(e.g., less than 500 epochs to converge with an adaptive β(t) vs. approximately 750 epochs 

to converge with a fixed β of 10−3) (Fig. 12b). Overall, the performance of the DNN without 

pre-training was inferior to that of the DNN with pre-training as evidenced by the greater 

error rate (20.2% vs. 14.2%) and slower convergence speed.

Figure 13a shows that error rate obtained from an adaptive control of the L1-norm 

regularization parameter (i.e., β(t)) to train the DNN with three hidden layers was 14.2 ± 

0.4%, which is superior to the error rates (42.1 ± 1.7%, 18.2 ± 0.8%, and 20.1 ± 1.2% using 

10−2, 10−3, and 10−4, respectively) from the fixed L1-norm regularization parameter (i.e., β). 

The L2-norm regularization parameter γ had virtually no impact on classification 

performance as shown in Figure 13b. Figure 13c shows the classification performance 

depending on the numbers of hidden layers/nodes via a grid search, and the error rate was 

minimal (14.2%) when three hidden layers and 50 hidden nodes were used.

Classification performance bias due to framewise displacement

The average FD values from the HC (0.22 ± 0.09 mm) and SZ (0.28 ± 0.10 mm) groups 

were statistically different (Bonferroni-corrected p < 0.01 via a two-sample t-test; d.f. = 99). 

The higher-order momentum values (i.e., skewness and kurtosis) of the FC pattern before 

and after the FD removal are summarized in Table S6. Overall, the skewness and kurtosis 

values were significantly reduced after the FD removal, which indicated that the FC patterns 

were Gaussianized after the FD correction. There was no significant difference in these 

values between the two groups as measured using a two-sample t-test, and no significant 

interaction (group × FD) was detected using a two-way ANOVA (uncorrected p = 0.12). 

Figure 14 illustrates that the classification performance was slightly degraded by removing 

the FD component in the FC patterns, in which the error rates from the DNN classifier were 

14.2 ± 0.4% and 16.6 ± 1.2% using the FC patterns with and without the FD removal, 

respectively. A similar trend was observed using SVM classifiers with the linear kernel 

(22.3 ± 0.8% and 26.6 ± 1.8%) and the RBF kernel (24.7 ± 1.3% and 24.9 ± 0.8%).

Classification performance using FC patterns of functionally parcellated brain regions 
from GICA

The 145 brain regions were functionally defined using the 145 ICs from the GICA (Fig. S4). 

The 126 ICs were predominantly located in the GM. Among these ICs, the TCs of the 116 

ICs with greater proportions of voxels defined in the GM than those in the ten remaining ICs 

were further used to calculate the FC patterns. Figure 15a depicts the average error rates 

obtained from 50 randomly permuted training/validation/test data for each of the target non-

zero ratios and for the DNNs with several numbers of hidden layers. The average error rate 

of the DNN with one hidden layer (24.1%) was lowest, and the optimal non-zero ratio was 

0.4. For the DNN with three hidden layers, the average error rate was 13.5%, and the 

optimal non-zero ratios were 0.4, 0.6, and 0.7 from the first, second, and third hidden layers, 

respectively. Figure 15b shows the optimal (i.e., when the error rate was at its minimum) 
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non-zero ratio for each of the hidden layers obtained via explicit control of the weight 

sparsity for each of the DNNs. Figure 15c shows that the error rates of 24.1 ± 0.7%, 16.4 ± 

0.8%, 13.5 ± 1.2%, 15.1 ± 1.3%, and 17.6 ± 2.2% were achieved from the DNNs with one, 

two, three, four, and five hidden layers, respectively, whereas the error rates from the SVM 

with linear and RBF kernels were 23.1 ± 1.1% and 24.2 ± 1.2%, respectively.

Discussion

Study summary

In the present study, a DNN classifier trained with pre-training and explicit control of weight 

sparsity demonstrated significantly enhanced performance for the rsfMRI-facilitated 

automated diagnosis of SZ patients from HC subjects relative to the SVM classifier. The 

classification performance was systematically evaluated under various conditions, including 

(1) differing numbers of hidden layers and hidden nodes, (2) the presence or absence of 

adaptive L1-norm regularization for weight sparsity control, (3) the presence or absence of 

SAE-based pre-training for weight initialization, (4) the presence or absence of FD 

regression to the FC patterns, and (5) anatomically or functionally defined ROIs to calculate 

the FC patterns.

The key findings of this investigation are summarized as follows: (1) the L1-norm 

regularization of the DNN weights via explicit sparsity control improved the classification 

performance; (2) the SAE-based pre-training of DNN weights further enhanced 

classification performance; (3) the lower-to-higher level features of the whole-brain FC 

patterns were learned in the lower-to-higher layers of the DNN; and (4) lower-level/local 

features in the lower layer reflected aberrant FC pairs associated with SZ, whereas higher-

level/global features in the higher layer represented FC alterations of SZ patients across the 

entire brain. The minimum error rate (14.2%) obtained from the DNN with three hidden 

layers employing both L1-norm regularization and SAE-based pre-training was markedly 

decreased compared with the minimum error rate (28.1%) obtained from an earlier study 

using the same data set (albeit with slightly different included subjects) and the SVM-based 

classifier (Watanabe et al., 2014), as well as that obtained from the SVM classifier in the 

current study (22.3%).

Classification performance improvement from adaptive L1-norm regularization and pre-
training

Both L1-norm regularization of the DNN weights via explicit sparsity control and SAE-

based pre-training of the DNN weights contribute to the improved classification 

performance. Based on the results of a three-way ANOVA with three factors, including the 

use of sparsity control, use of pre-training, and the number of hidden layers of the DNN, the 

statistical significance of the interaction between the number of hidden layers and the use of 

pre-training (Bonferroni-corrected p < 10−7; d.f. = 499) was greater than that between the 

number of hidden layers and the use of sparsity control (Bonferroni-corrected p < 0.05; d.f. 

= 499). Pre-training benefitted DNNs with a greater number of hidden layers more than 

DNNs with a fewer number of hidden layers. L1-norm regularization of the DNN weights 

can work as an efficient feature selection strategy that yields a sparse solution, particularly 
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in the lower layer, to deal with high dimensionality of the input and intra-subject variability 

(Michel et al., 2012).

Efficacy of sparsity control of weights to DNN training

It is important to note that our proposed explicit control of the weight sparsity via 

application of the adaptive L1-norm regularization parameter, β(t), improved the 

classification performance of the DNN by optimizing the sparsity level in each hidden layer 

through the use of non-zero ratios of the DNN weights during a training phase. On the other 

hand, the L1-norm regularization parameter was fixed in previous studies (Kim et al., 2012; 

Watanabe et al., 2014). Thus, the scheme employed herein allowed a systematic evaluation 

of DNN classifier performance depending on the sparsity level of the weights for each 

hidden layer. Consequent results indicated that the error rate was more sensitive to the target 

non-zero ratios for the first hidden layer than to the ratios for the higher hidden layers, and 

that the error rate deviated less across the target non-zero ratios in the higher hidden layers 

(Figs. 6b–e).

The optimization criterion of the proposed DNN that incorporate both L2-norm 

regularization and L1-norm regularization were similar to those of the elastic net (Zou and 

Hastie, 2005) in the context of sparse feature extraction and dealing with highly correlated 

variables. However, there are distinctions between the elastic net and the proposed DNN, in 

which (1) our proposed regularization scheme is to adaptively update the L1-norm 

regularization parameter explicitly to reach the target non-zero ratio, as opposed to the use 

of a constant regularization parameter in the elastic net, (2) optimization criteria with both 

L1-norm and L2-norm terms were extended to the multilayer networks of the DNN, and (3) 

the weight initialization was performed using an AE (stacked) in our DNN and using 

random initialization in an elastic net.

Importantly, an approach enforcing a sparsity level of the weights with L1-norm 

regularization would not guarantee that the obtained weights (i.e., features) were correct and 

would, thus, potentially generate multiple false positives. Even for the simpler LASSO 

scheme, there is no statistical control over false positives since ground truth may not be 

available. In our study, the maximum validation accuracy in the CV phase was used as a 

ground truth to identify the optimal weight sparsity levels (i.e., assuming lower false 

positives at the optimal sparsity level) across the layers among several pre-defined 

candidates. The fine-tuning of the optimal sparsity level with increased number of candidate 

sparsity levels in each layer can be implemented at the expense of computational 

complexity. Future study is warranted to investigate the optimal sparsity level in each of the 

hidden layers in a more systematic manner than that presented, such as by controlling a 

smoothing parameter of the adaptive LASSO to reach a desired local false discovery rate 

(Sampson et al., 2013).

Spatial regularization, in addition to sparsity control, is necessary to include variable 

patterns across subjects. Thus, consideration of both sparsity control to deal with the intra-

subject variability and spatial regularization to deal with the inter-subject variability may 

further improve the classification performance (Michel et al., 2012; Ng and Abugharbieh, 

2011; Ng et al., 2012). As an example, Michel and colleagues (2012) reported that the 
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sparsity in an individual subject enhances prediction accuracy because of the capability of 

finding sparse and fine-grained patterns.

Efficacy of SAE-based pre-training for DNNs

The adopted cost function of our DNN with multiple hidden layers may be highly non-

convex in the parameter space, and multiple distinct local minima or plateaus would exist in 

the parameter space. The major challenge is that not all of these local minima provide 

equivalent classification errors, and a gradient descent learning method with random 

initialization may be trapped into severe local minima or plateaus (Bengio and LeCun, 

2007). Initialization of the weights with SAE-based pre-training can be seen as a constraint, 

that. the weights represent the distribution of the input p(XFC) modeled by an AE, where 

XFC is an input FC pattern (Bengio et al., 2007). This initialization can work as a good 

starting point to maximize the conditional probability of the target vector of the class for a 

given input, p(tclass|XFC) (Bengio et al., 2007). Since the supervised fine-tuning step of Eq. 

(2) was exactly the same for cases with and without pre-training, the performance 

degradation of random initialization compared with that of pre-training in our findings may 

provide empirical evidence in this context. The minimum error rates and lower variance in 

the error rates from the DNN with pre-training (14.2 ± 0.4%) compared with those using 

random initialization (20.2 ± 1.2%) in the adaptive L1-norm regularization framework 

would support the assertion that the DNN with pre-training is more robust to the variability 

of samples than the DNN training with random initialization (Table 3). The results from the 

report showing that the unsupervised pre-training scheme is particularly well-suited when 

the supervised training data are limited (Deng and Yu, 2014) may well explain our findings. 

Accordingly, SAE-based pre-training can maximize classification performance using the 

whole-brain rsfMRI FC patterns, particularly for DNNs with multiple hidden layers.

Optimal parameters of adopted classifiers

The optimal non-zero ratio parameters for the DNNs with several numbers of hidden layers 

were reproducible across the permuted CV sets. The DNN with three hidden layers 

presented the maximum ICC value as well as the highest classification performance among 

the DNNs with several different numbers of hidden layers, indicating that this DNN is well-

suited to our input data. Compared with the optimally selected parameter of the linear kernel 

SVM, the SVM with the RBF kernel represented a trade-off between the soft margin and 

RBF kernel size parameters.

Hierarchical feature representation of whole-brain FC patterns obtained from DNNs with 
sparsity control and pre-training

The linear combination of weights adopted in the present study is straightforward and 

efficient; however, this approach has potential limitations, including (1) an absence of an 

analytical guideline for the number of weights to be combined, and (2) a linear 

approximation of the nonlinear sigmoid function in each hidden node. This linear 

combination is proportional to the gradient update term of maximization of activation 

patterns of hidden nodes (Erhan et al., 2009). Using this feature representation, the lower-to-

higher level features of the whole-brain rsfMRI data were extracted from the hidden layers 
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of the DNN (Figs. 10, S1–S3). In DNNs presenting with the minimum error rates, the non-

zero ratios were consistently smaller in the first hidden layer than in the higher hidden layers 

(Fig. 6f). This was also indicated by the sparsely formed FC features in the first hidden layer 

decomposed from the whole-brain FC patterns (Fig. 10, Table S5). The linear combination 

of these sparsely connected FC patterns can be interpreted as the integration of the aberrant 

FC levels that maximize the output of the hidden nodes at the higher layers (i.e., FC features 

that maximize the difference between the HC and SZ groups). According to the Fisher’s 

scores and the spatial CCs between the learned features and the t-scored group-level FC 

differences (Fig. 11), the trained weights of the higher hidden layers reflected inter-group 

differences and exhibited higher discriminative power than the lower hidden layers. 

Therefore, the learned features in the higher layers represent FC alterations in SZ patients 

distributed throughout the entire brain, which may implement the dysfunctional integration 

of aberrant “small-world” FC patterns (Liang et al., 2006; Liu et al., 2008).

Based on quantitative analysis of kurtosis, the learned features from the first hidden layer 

represent a super-Gaussian distribution (kurtosis value = 7.1 ± 0.9) when the number of the 

linearly combined weights is 15, while the learned features from the higher hidden layers 

approximate a Gaussian distribution (kurtosis values = 3.9 ± 0.4 and 3.4 ± 0.2 for the second 

and third hidden layers, respectively; Table S5). A graph theoretic modularity measure has 

been demonstrated the hierarchical characteristics of brain networks (Meunier et al., 2010). 

The greater degree of modularity from the first hidden layer than the higher hidden layers 

implies that whole-brain FC patterns are parcellated into several sub-modules at the first 

hidden layer and a nonlinear combination of these sub-modules at the higher hidden layer 

due to the sigmoid function of the hidden node, constituted a fully connected, large-scale FC 

network. Furthermore, the modularity of the learned DNN features was moderately 

consistent across several choices in number of the linearly combined weights, whereas the 

local to global layouts of the DNN features measured from the kurtosis values were highly 

reproducible across several choices in the number of linearly combined weights (Table S5).

Classification performance depending on various parameter sets

The classification performance from our proposed scheme to control the weight sparsity 

level via the adaptive L1-norm regularization parameter β(t) using a target non-zero ratio of 

the DNN weights (i.e., minimum error rate of 14.2%) outperformed that of the fixed L1-

norm regularization parameter (i.e., 18.2% and 20.1% when β = 10−3 and 10−4, 

respectively). When β was fixed to 10−2, the learning curves of the error rates kept 

increasing both with/without pre-training initialization, indicating that the DNN learning 

diverged. A stringent L1-norm regularization of the DNN weights may prevent the 

minimization of the MSE cost function (Mohr et al., 2015). The classification performance 

was insensitive to the L2-norm regularization parameter.

It appears that there is a trade-off in the DNN size, that is, the number of hidden layers vs. 

the number of nodes in each hidden layer. In our study, the optimal numbers of hidden 

layers and nodes in each hidden layer were investigated via a grid search using several 

candidate parameter values to prevent an exhaustive search of these parameters. Using our 

data, three hidden layers and 50 nodes in each hidden layer were chosen as an optimal size 
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of the DNN (Fig. 13c). The classification performance kept increasing as the number of 

hidden layer was increased to three, whereas the classification performance was saturated/

degraded for the DNNs with four/five hidden layers, respectively (Fig. 8) (Plis et al., 2014). 

The lower numbers of hidden layers/nodes may not be well suited to extract meaningful 

information hidden in the input sample dimension (i.e., 6670). Similarly, another empirical 

study on the number of hidden layers using an MNIST database with SAE-based pre-

training demonstrated that the classification performance gradually increased when the 

number of hidden layers was increased to four and marginally deteriorated with five hidden 

layers (Erhan et al., 2010). The reason for this performance degradation would be due to the 

(1) increased number of parameters to train the DNN compared with the available number of 

input samples (Deng and Yu, 2014), (2) increased likelihood of finding poor local minima 

even after pre-training (Erhan et al., 2010), and (3) vanished or exploded gradient of a back-

propagation algorithm as the number of hidden layers increased (Glorot and Bengio, 2010; 

Raiko et al., 2012). We believe that our proposed adaptive approach of weight sparsity 

control can alleviate the possibility of the solution getting stuck in poor local minima by 

reducing the number of non-zero parameters while maintaining the complexity of the 

network to extract meaningful information from lower-to-higher layers using complex 

whole-brain resting-state FC patterns. This may lead to the superior performance using our 

DNN compared with that using the SVM classifier.

Classification performance bias due to head motion

Based on recent reports, micromovements (e.g., a subtle head motion > 0.1 mm) have been 

significantly associated with regional BOLD signals identified using rsfMRI data (Van Dijk 

et al., 2012; Yan et al., 2013). Specifically, positive and negative motion-BOLD associations 

were found in the primary/supplementary motor and prefrontal areas, respectively (Yan et 

al., 2013), and a decreased coupling between head motion and FC levels was found in the 

DMN and fronto-parietal networks (Van Dijk et al., 2012). In our study, volume scrubbing 

and FD regression were used to minimize the effect of head motion on FC patterns in intra-

subject and inter-subject/group levels and to reduce a potential bias on the classification 

performance which was degraded after the FD removal. Head motion at both the intra- and 

inter-subject levels must be carefully considered, particularly when groups composed of 

participants such as SZ patients tend to exhibit greater head movements in the raw fMRI 

data than the comparison group.

Brain volume registration/parcellation to define ROIs and functionally defined ROIs

The EPI volume registration and parcellation have long been a major issue (Ashburner, 

2007; Klein et al., 2009). In our study, a normalization scheme using the subject’s EPI and 

an EPI template available in SPM8 was adopted to register the subject’s EPI volume into the 

MNI space and to assign each voxel to the ROIs in the AAL template. However, a 

normalization method using a high-resolution structural MRI with, in particular, the 

Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL), 

would further enhance the precision of the ROI definition. This may improve the specificity 

and sensitivity of the identified features associated with the SZ patients and, consequently, 

the classification performance. In addition to the structurally defined ROIs using brain 

volume registration, functionally defined ROIs has been proposed using various parcellation 
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approaches such as hierarchical clustering and GICA approaches (Blumensath et al., 2013; 

Calhoun and Adali, 2012). For example, Blumensath and colleagues (2013) investigated an 

individual-level functional parcellation of the whole brain using a hierarchical clustering 

approach that enforces spatial contiguity of the parcels.

The FC patterns using the functionally defined ROIs from the GICA represented greater 

classification performance (i.e., error rates of 13.5 ± 1.2% using the DNN with three hidden 

layers) compared with that for the FC patterns using the anatomically defined ROIs from the 

AAL template (14.2 ± 0.4%; Bonferroni-corrected p < 10−3; d.f. = 99). In addition, the 

optimal non-zero ratios in the lower layer were slightly reduced (i.e., more sparse) using the 

FC patterns from the functionally defined brain regions (i.e., 0.41) compared with those 

obtained using the anatomically guided brain regions (i.e., 0.52). Thus, this may indicate that 

the GICA-based functional parcellation of brain regions provides more homogenous 

temporal patterns of neuronal activations via TCs of ICs than the average BOLD signal in 

each of the brain regions defined in the AAL template. Rigorous evaluations of our adopted 

GICA-based functional parcellation are warranted to address potential issues, such as an 

ambiguity in defining the total number of ICs to extract and the identification of non-

neuronal components, including movements and brain edges (McKeown et al., 1998). 

Alternative options to functionally divide brain regions are available, such as using a 

variance-minimizing approach based on hierarchical agglomerative clustering or a spatially 

constrained spectral clustering approach (Craddock et al., 2012; Thirion et al., 2014).

Aberrant features of FC patterns in the first hidden layer

The learned features of the DNN weights between the input layer and the first hidden layer 

are in agreement with previous studies and include findings such as aberrant FC patterns 

between the thalamus and the cerebellum (Çetin et al., 2014; Collin et al., 2011; Magnotta et 

al., 2008) and between the frontal and the temporal areas, possibly due to auditory 

hallucinations (Martí-Bonmatí et al., 2007). The reduced FC level from SZ group between 

the precuneus/PCC and the striatum may indicate altered striatal dopaminergic functions 

(Dandash et al., 2013; Tu et al., 2012). The causal relationship of this connectivity requires 

further investigation.

DNN as a potential pattern classifier of neuroimaging data

How correlated features are handled is an important characteristic of a classifier. For 

example, a random forest deals with correlated features via subsampling for both the input 

sample and feature dimensions (Breiman, 2001). Empirical evidence suggests that the DNN 

can efficiently handle correlated features (Pan et al., 2012), although a rigorous theoretical 

derivation examining how it does so is warranted. For example, superior classification 

performance was found for input data of temporally concatenated and, thus, correlated 

speech frames using a DNN compared with that for input data of a single speech frame 

using the Gaussian mixture model, which cannot handle the correlated feature (Pan et al., 

2012). Despite specific methodological differences, the DNN shares several important 

properties with the random forest. First, the semi-batch learning process with a randomized 

order of input samples for the DNN is similar to the subsampling of input samples for the 

random forest. Also, stochastic corruption of the input pattern via random zeroing of the 
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DNN (Hinton et al., 2012; Vincent et al., 2010) is comparable to the subsampling of the 

feature dimension using the random forest. Finally, the weight sparsity control of our DNN 

may be analogous to the Gini index-based feature selection of the random forest, in which 

unimportant nodes have small values and vice versa (Qi, 2012).

In our study, the numbers of samples were balanced between the two groups (i.e., 50 

subjects each in the HC and SZ groups), and the training/validation/test data were stratified 

in the nested CV framework to include balanced numbers of subjects from each of the two 

groups. With limited or imbalanced sample sizes, such as in neuroimaging or gene data, the 

classification performance can be severely biased. As a data-based method to deal with the 

class-imbalanced samples for classification, a bootstrap resampling approach can be 

successfully applied (He and Garcia, 2009; Leung et al., 2014; Lin and Chen, 2012). For 

example, Lin and Chen (2012) adopted bootstrap resampling with equal sample sizes for 

each class of gene data set, followed by a post-hoc modification of the SVM output values 

weighted by the number of samples in each class. This approach can also be used with the 

DNN classifier.

Considering the above practical guidelines and theoretical points of view, we suggest that 

the presented DNN classifier can also be applied to other neuropsychiatric disorders 

characterized by aberrant FC patterns (Anand et al., 2005; Barkhof et al., 2014; Li et al., 

2002), such as attention deficit hyperactivity disorder (Castellanos et al., 2008; Tomasi and 

Volkow, 2012) and major depressive disorder (Berman et al., 2014; Kerestes et al., 2014). 

More importantly, the presented DNN classifier could be extended to separate patient groups 

that in some cases are difficult to diagnose correctly due to overlapping symptoms such as 

psychotic bipolar and SZ patients (Meda et al., 2012).

Classification performance in comparison with earlier reports using similar data sets

It would not be straightforward to directly compare our classification performance with that 

of several previous studies (Du et al., 2012; Shen et al., 2010; Silva et al., 2014). Despite 

similar data sets adopted in some studies (Du et al., 2012; Silva et al., 2014), discrepancies 

may exist, such as with the demographic information of participants and severity of disease 

in SZ patients, in addition to the input pattern of the classifier (i.e., whole-brain FC pattern 

in our study). For example, the SZ participants in our study and in the study by Shen et al. 

(2010) were described as having relatively mild (i.e., “mildly ill” with a PANSS score of 

58.78 ± 14.35) and severe (i.e., “markedly ill” with a PANSS score of 80.06 ± 16.55) 

pathology (Leucht et al., 2005), respectively. Age differences between groups can influence 

the classification performance (Manza et al., 2015). In the study by Shen et al. (2010), the 

ages of the participants in the HC (39.4 ± 12.7) and SZ (31.5 ± 11.1) groups were 

significantly different (uncorrected p = 0.02, using a two-sample t-test), whereas the ages of 

the participants in the two groups in our study were not (HC, 35.9 ± 13.6 vs. SZ, 35.5 ± 

11.9; uncorrected p > 0.05). Thus, this difference between the studies may affect 

classification performance. The dimensionality of the input sample used to build a classifier 

may also influence the classification performance. For example, the dimensionality of the 

input sample for the classifier was much smaller (i.e., 53 by applying a kernel PCA to spatial 

patterns of GICA) in the study by Du and colleagues (2012) than that in our study (i.e., 
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6,670 from a whole-brain FC). The classification performance may be limited when the 

number of input samples is more restricted than the number of adjustable free parameters as 

this was also evidenced from our classification performance depending on various numbers 

of hidden layers/nodes.

Classification using multimodal data can be gainfully adopted for classification of brain 

disorders such as SZ and Alzheimer’s disease (Kim and Lee, 2013; Sui et al., 2012). In a 

recent report, Silva and colleagues (2014) reviewed the tenth annual Machine Learning for 

Signal Processing competition on the schizophrenia classification challenge using 

multimodal neuroimaging data from fMRI (to estimate FNC patterns) and structural MRI (to 

extract GM density). Data was divided into a training set and a public and private test set 

(the private set was only evaluated after the competition was completed). The best 

performance on the public test data was 0.95, though the competition organizers 

summarized as an overall area under the receiver operating characteristic curve (AUC) 

measure including both public and private test data. The best classification performance for 

the overall AUC measure was 0.89 using a Gaussian process classifier with prior 

distribution scaled by a probit transformation (Silva et al., 2014; Solin and Sarkka, 2014).

Future work

In future explorations, a larger data set would undoubtedly augment the DNN classification 

accuracy, because the variety of characteristic features related to input FC patterns can be 

disentangled when an appropriate strategy for DNN training is employed (Bengio, 2013). 

Therefore, it will be important to explore whether the DNN classifier can benefit from a 

cohort of SZ patients and HC subjects acquired across multiple sites (Gollub et al., 2013). 

Such a multi-site investigation would enable greater optimization of the free parameters of 

the DNN classifier, including the number of hidden layers, the number of nodes in each 

hidden layer, L1-/L2-norm regularization parameters, and the number of epochs.

The SZ patients in the current data set were taking assorted antipsychotic drugs for at least 

six months at the time of fMRI scanning, with the exception of one subject. Given that FC 

patterns are apparently modulated by antipsychotic drug use (Alonso-Solís et al., 2012; 

Fornito et al., 2011), the use of the present DNN model for the automated classification/

diagnosis of unmedicated patients (Schlagenhauf et al., 2014; Zarogianni et al., 2013) forms 

the subject of another prospective future study. Moreover, the computer-aided prediction of 

the prognosis of pharmaceutical SZ treatment as assessed by neurobehavioral scales (e.g., 

the PANSS) and consequent guidance of treatment selection in an individual basis (Guo et 

al., 2008) are crucial future applications of our DNN model.

Lastly, it will also be important to investigate whether a random sampling of hyper-

parameters (Bergstra and Bengio, 2012) and iterative shrinkage-thresholding algorithms in 

the context of L1- and L2-norm regularization of DNN weights (Beck and Teboulle, 2009) 

would further enhance the classification performance.
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Potential limitations of the current investigation

The DNN training described herein required an enormous amount of computational 

resources and time compared with the SVM training. For instance, a DNN classifier with 

three hidden layers necessitated a training time with the currently employed hardware 

system (comprising a Linux cluster system with 32 CPU cores with Intel Xeon processors of 

2.9 GHz and 64 GB RAM for each core) of ~100-fold longer than that afforded by the SVM 

classifier (~3.3 days vs. 0.8 h). The extended training time would drastically be reduced by 

utilizing dedicated hardware systems such as using a graphic processing unit (GPU) with the 

cuda-convnet software package (code.google.com/p/cuda-convnet). Also, the Bayesian 

optimization to find hyper-parameters (e.g., L1-norm regularization parameter in each layer) 

instead of a grid search can be adopted (Snoek et al., 2012). Specifically, Snoek and 

colleagues (2012) adopted the Bayesian framework to reduce the number of hyper-

parameters to be estimated and presented an increased classification performance compared 

to that of the standard grid search approach.

Conclusions

The current study successfully demonstrated the feasibility of the DNN classifier toward the 

automated diagnosis of SZ patients by using resting-state whole-brain FC patterns as input 

patterns. The minimum error rate obtained from a DNN with three hidden layers was 

superior to that obtained from the SVM classifier. We believe that the presented DNN with 

the extensions of weight sparsity control and SAE-based pre-training will be useful for a 

better understanding of the neural basis of various neuropsychiatric disorders in addition to 

SZ that are associated with aberrant FC patterns, and, ultimately, for the development of 

improved computer-aided diagnosis tools in clinical and pre-clinical settings.
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Abbreviations

AAL automated anatomical labeling

AE autoencoder

ANOVA analysis of variance

AUC area under the receiver operating characteristic curve

BOLD blood-oxygenation-level-dependent
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CC correlation coefficient

CSF cerebrospinal fluid

CV cross validation

DARTEL Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra

DMN default-mode network

DNN deep neural network

DSM Diagnostic and Statistical Manual of Mental Disorders

EPI echo-planar imaging

FC functional connectivity

FNC functional network connectivity

GICA group independent component analysis

GM gray matter

HC healthy control

ICA independent component analysis

IC independent component

ICC intra-class correlation coefficient

LASSO least absolute shrinkage and selection operator

MNI Montreal Neurological Institute

MNIST Mixed National Institute of Standards and Technology

MSE mean squared error

NITRC Neuroimaging Informatics Tools and Resources Clearinghouse

PANSS Positive and Negative Syndrome Scale

PCA principal component analysis

PCC posterior cingulate cortex

RBF radial basis function

ROI regions of interest

rsfMRI resting-state functional magnetic resonance imaging

SAE stacked autoencoder

SCID Structured Clinical Interview for DSM Disorders

SD standard deviation

SP spatial pattern

SPM Statistical Parametric Mapping
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TC time course

SVM support vector machine

SZ schizophrenia

TS time series

WM white matter
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Highlights

• Deep neural network (DNN) improves schizophrenia (SZ) classification 

performance.

• Sparsity control of weights via L1-norm regularization increases performance.

• Stacked autoencoder pre-training of DNN weights further enhances 

performance.

• Lower/higher level features can be extracted from the DNN.

• Lower/higher level features show aberrant FC in the pairs-of-nodes/networks in 

SZ.
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Figure 1. 
Overall flow diagram of the functional connectivity (FC) analysis. (a) Raw functional 

magnetic resonance imaging (fMRI) data were preprocessed, and the input patterns (i.e., 

whole-brain FC patterns) were extracted. (b) The FC patterns were used as input for the 

deep neural network (DNN) classifier. In the nested cross-validation scheme, the DNN 

classifier was trained by using the training (three out of five folds) and validation (one fold) 

data for parameter optimization employing optional sparsity control of weights and stacked 

autoencoder (SAE)-based pre-training. The trained DNN classifier was used to estimate 

classification accuracy using the test data in the remaining fold. BOLD, blood-oxygenation-

level-dependent; ROI, region-of-interest; TS, time series; AAL, automated anatomical 

labeling; HC, healthy control; SZ, schizophrenia, NHC, number of subjects in the HC group; 

NSZ, number of subjects in the SZ group; , optimal target non-zero ratio of weights 

between the Jth and (J+1)th hidden layers of the DNN obtained from the inner loop of nested 

cross validation using the training and validation data.
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Figure 2. 
Pre-training-based initialization of deep neural network (DNN) weights. Left: The 

autoencoder (AE) architecture for the layer-wise pre-training; Right: the stacked AE (SAE) 

architecture between the input and the second hidden layers using the output of the first 

hidden layer as an input to the AE; Middle: SAE pre-training-based multilayer networks. 

SAE-based pre-training is performed using the weights and bias terms trained from the AE 

of each layer (please refer to the detailed description in the Methods section).

Kim et al. Page 37

Neuroimage. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Feature vector representation from the trained DNN weights. The learned feature vector, 

, at the kth hidden node in the (J+1)th hidden layer is defined from a linear 

combination of the feature vectors in the Jth hidden layer (please refer to the detailed 

description in the Methods section). Input layer is defined as the 0th layer.
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Figure 4. 
Group-level functional connectivity (FC) patterns. (a) Average FC patterns in the healthy 

control (HC) and schizophrenia (SZ) groups and (b) group differences in the FC patterns 

(evaluated via a two-sample t-test with a threshold of uncorrected p-values of < 0.05) are 

shown. Positive t-scores indicate greater FC level from HC group than SZ group. SC, 

subcortical area; CB, cerebellum.
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Figure 5. 
(a) Learning curves are exemplified for (i) the non-zero ratio of weights between the input 

and first hidden layers controlled during the training phase (target value = 0.5), and (ii) the 

L1-norm regularization parameter adaptation for the sparsity control of weights between the 

input and first hidden layers using the DNN with three hidden layers. (b) Averaged learning 

curves of error rates from the training, validation, and test data (top) and the learning curves 

of the non-zero ratio and L1-norm regularization parameter (bottom). DNN, deep neural 

network.
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Figure 6. 
Error rates for several target non-zero ratios. Error rates are shown for deep neural networks 

(DNNs) with (a) one hidden layer, (b) two hidden layers, (c) three hidden layers, (d) four 

hidden layers, and (e) five hidden layers. (f) The resulting non-zero ratios for each layer 

(mean ± SD) are presented for the DNNs with one, two, three, four, or five hidden layers. 

ρ(J+1, J) is the target non-zero ratio of weights W(J+1,J) between the Jth and (J+1)th layer 

(e.g., the 0 layer is the input layer, and the 1st layer is the first hidden layer). The optimal 

non-zero ratio in each layer is determined using the validation data after the DNN has been 

trained using the training data for all combinatorial sets of non-zero ratios across the layers. 

The error rates are obtained using the test data.
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Figure 7. 
The non-zero ratio parameters optimally chosen for each of the hidden layers from the DNN 

with one to five hidden layers. The optimal non-zero ratios were found when the validation 

accuracy was maximal among the sets of non-zero ratios across hidden layers. The line in 

each subplot indicates each of the randomly permuted CV sets with training/validation/test 

data. ICC, intra-class correlation coefficient; CV, cross validation.
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Figure 8. 
Comparison of error rates. Error rates are shown for deep neural networks (DNNs) with (a) 

L1-norm regularization of weights (i.e., weight sparsity control) and stacked autoencoder 

(SAE)-based pre-training (DNNwSwP), (b) weight sparsity control but no pre-training (i.e., 

random initialization) (DNNwSwoP), (c) pre-training but no weight sparsity control 

(DNNwoSwP), and (d) neither weight sparsity control nor pre-training (DNNwoSwoP) for 

one, two, three, four, or five hidden layers, as well as for (e) the support vector machine 

(SVM) with a linear kernel or a Gaussian radial basis function (RBF) kernel. The DNN 

training neither weight sparsity control nor pre-training corresponds to a standard back-

propagation algorithm.
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Figure 9. 
Optimally chosen SVM parameters: (a) the soft margin parameter C from the SVM with a 

linear kernel and (b) C and the RBF kernel size γSVM from the SVM with an RBF kernel.
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Figure 10. 
Learned features of the top four hidden nodes (sorted by Fisher’s scores) in the (a) third, (b) 

second, and (c) first hidden layers. In the learned features, all weight values above 0.2 or 

below −0.2 are shown. Each number in the circular graphs indicates the automated 

anatomical labeling (AAL) region (as defined in the AAL toolbox for SPM8; odd indices are 

shown for brevity). The boxplots represent the mean and standard deviation of the 

corresponding hidden node input values prior to application of the sigmoid node function. 

The number in each boxplot is the Fisher’s score of the corresponding hidden node input. 

The thickness of each red or blue line represents the normalized magnitude of the weight 
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parameters (i.e., the thicker the line, the greater the magnitude). HC, healthy control; SZ, 

schizophrenia; CB, cerebellum; SC, subcortical region; PCG, postcentral gyrus; PCL, 

paracentral lobule; SOG, superior occipital gyrus; PCC, posterior cingulate cortex; MOG, 

middle occipital gyrus; IFG, inferior frontal gyrus; ITG, inferior temporal gyrus; a.u., 

arbitrary unit.
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Figure 11. 
Quantitative evaluation of the learned hierarchical features across the hidden layers. (a) 

Absolute values of the spatial correlation coefficients (SCCs) using the learned features in 

each of the hidden layers and (b) Fisher’s scores across 50 hidden nodes in each of the 

hidden layers (both data sets, means ± the SD). F(J) indicates the learned features in the Jth 

hidden layer. All measures were calculated from the trained deep neural network (DNN) 

with three hidden layers. FC, functional connectivity; SZ, schizophrenia; HC, healthy 

control.
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Figure 12. 
Average learning curves (with SD) of error rates (first row) and the non-zero ratios (second 

row) from the first hidden layer (a) with pre-training and (b) without pre-training. The first 

column denotes the results from the proposed weight sparsity control via adaptation of the 

L1-norm regularization parameter. The second, third, and fourth columns are the results 

from the fixed L1-norm regularization parameter (10−2, 10−3, and 10−4, respectively). SD, 

standard deviation.
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Figure 13. 
Classification performance obtained from varying sets of parameters: (a) the proposed 

adaptive L1-norm regularization parameter vs. several fixed L1-norm regularization 

parameters, (b) the L2-norm regularization parameters, and (c) a grid of the numbers of 

hidden layers and hidden nodes.
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Figure 14. 
Classification performance obtained from the adopted classifiers (i.e., the DNN with three 

hidden layers and 50 nodes in each hidden layer; the SVM with linear or RBF kernels) using 

FC patterns with and without framewise displacement (FD) removal. DNN, deep neural 

network; SVM, support vector machine; RBF, radial basis function.
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Figure 15. 
(a) Error rates for several target non-zero ratios using input FC patterns obtained from the 

GICA-based functional parcellation approach and using DNNs with several hidden layers. 

(b) The optimal (i.e., when average error rate evaluated across validation data was at the 

minimum) non-zero ratios for each of the DNNs (mean ± SD). (c) Minimum error rates from 

each of the DNNs with several numbers of hidden layers and from SVM classifiers with 

linear or RBF kernels. GICA, group independent component analysis; DNN, deep neural 

network; SD, standard deviation; RBF, radial basis function; ρ(J+1,J), target non-zero ratio of 

W(J+1,J); W(J+1, J), the DNN weights between the Jth and (J+1)th layers.
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Table 1

Summary of sociodemographics, neuropsychological test, and clinical characteristics for each of the HC and 

SZ groups.

HC (Mean ± SD, N = 50) SZ (Mean ± SD, N = 50) p-value

Demographics

 Age (years) 35.50 ± 11.88 35.94 ± 13.59 0.86

 Gender (male/%) 34/68% 43/86%

 Handedness (right/%) 48/96% 42/84%

 Ethnicity (Caucasian/%)* 23/46% 25/50%

Neuropsychological performance*

 WTAR standard score 109.93 ± 12.73 103.04 ± 13.07 1×10−2

 WASI verbal IQ 108.17 ± 9.02 100.74 ± 16.63 9×10−3

 WASI performance IQ 113.86 ± 12.58 104.83 ± 16.18 3×10−3

Clinical characteristics

 Age of onset (years) 20.94 ± 6.95

 Illness duration (years) 15.00 ± 11.85

 PANSS positive 14.36 ± 4.78

 PANSS negative 15.00 ± 5.36

 PANSS general 29.42 ± 8.55

 PANSS total 58.78 ± 14.35

 Olanzapine equivalent dose (mg) 11.00 ± 6.32

HC: healthy control; SZ: schizophrenia patients; SD: standard deviation; WTAR: Wechsler test of adult reading; WASI: Wechsler abbreviated 
scale of intelligence; IQ: intelligence quotient; PANSS: positive and negative syndrome scale.

*
missing values from some subjects were removed in calculating the mean and SD)
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Table 2

Pseudo codes of the DNN training depending on the use of (a) L1-norm regularization for weight sparsity 

control and (b) SAE-based pre-training. The DNN training without L1-norm regularization and without pre-

training corresponds to a standard back-propagation algorithm.

Initialization of weights

With pre-training
Without Pre-training (i.e., random 
initialization)

Weight sparsity control

With L1-norm regularization

1 Pre-training of SAE with L1-
norm regularization 
parameter as in Eq. (2) and 
(4)

2 Fine-tuning with L1-norm 
regularization parameter as 
in Eq. (2) and (4)

1 Random initialization of 
weights

2 Fine-tuning with L1-
norm regularization 
parameter as in Eq. (2) 
and (4)

Without L1-norm 
regularization (i.e. β(J+1,J)(t)= 

0)

1 Pre-training of SAE without 
L1-norm regularization 
parameter

2 Fine-tuning without L1-
norm regularization 
parameter

1 Random initialization of 
the weights

2 Fine-tuning without L1-
norm regularization 
parameter

DNN, deep neural network; SAE, stacked autoencoder
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Table 3

Classification performance in terms of error rate (mean ± SD), sensitivity, and specificity. Sensitivity was 

defined as the ratio between (i) the number of true positives (i.e., correctly classified SZ patients) and (ii) the 

sum of the true positives and false negatives (i.e., incorrectly classified SZ patients). Specificity was defined 

as the ratio between (i) the number of true negatives (i.e., correctly classified HC subjects) and (ii) the sum of 

the true negatives and false positives (i.e., incorrectly classified HC subjects). The DNN training without L1-

norm regularization and without pre-training (i.e., random initialization) corresponds to a standard back-

propagation algorithm. The ICC values were obtained using the error rates from the with/without pre-training 

approaches across all the permuted sets, or using the error rates from the with/without L1-norm regularization 

schemes across all the permuted sets.

Number of 
hidden layer Weight sparsity control

Initialization of weights

ICC
With pre-training Without Pre-training

Error rate (Sensitivity; 
Specificity) Error rate (Sensitivity; Specificity)

1

With L1-norm regularization 22.5 ± 0.7 (77.1; 77.9) 22.7 ± 1.2 (75.8; 78.8) 0.00

Without L1-norm regularization 24.2 ± 1.2 (77.0; 74.6) 25.1 ± 1.8 (74.4; 75.4) 0.00

ICC 0.04 0.03

2

With L1-norm regularization 17.6 ± 0.4 (82.6; 82.2) 20.8 ± 0.9 (79.9; 78.6) 0.30

Without L1-norm regularization 22.9 ± 1.1 (76.8; 77.4) 23.1 ± 1.5 (77.1; 76.7) 0.00

ICC 0.48 0.06

3

With L1-norm regularization 14.2 ± 0.4 (86.3; 85.3) 20.2 ± 1.2 (79.8; 79.8) 0.49

Without L1-norm regularization 17.5 ± 0.9 (83.0; 82.0) 25.1 ± 1.4 (74.9; 74.9) 0.44

ICC 0.32 0.22

4

With L1-norm regularization 14.5 ± 1.2 (85.3; 87.5) 24.1 ± 1.4 (75.4; 76.4) 0.59

Without L1-norm regularization 22.4 ± 1.0 (77.0; 78.2) 25.0 ± 1.7 (75.1; 74.9) 0.05

ICC 0.51 0.00

5

With L1-norm regularization 16.6 ± 2.2 (83.3; 83.5) 25.2 ± 1.4 (75.4; 74.2) 0.29

Without L1-norm regularization 22.8 ± 1.7 (77.5; 76.9) 27.0 ± 2.1 (73.0; 74.9) 0.06

ICC 0.15 0.00

ICC, intra-class correlation coefficient
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