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Abstract

The brain’s functional network exhibits many features facilitating functional specialization, 

integration and robustness to attack. Using graph theory to characterize brain networks, studies 

demonstrate their small-world, modular, and “rich-club” properties, with deviations reported in 

many common neuropathological conditions. Here we estimate the heritability of five widely used 

graph theoretical metrics (Mean Clustering Coefficient (γ), Modularity (Q), Rich Club Coefficient 

(ϕnorm), Global Efficiency (λ), Small Worldness (σ)) over a range of connection densities (k=5–

25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin pairs, 246 single twins, age 

23±2.5). We also considered the effects of global signal regression (GSR). We found the graph 

metrics were moderately influenced by genetic factors h2(γ=47–59%, Q=38–59%, ϕnorm=0–29%, 

λ =52–64%, σ=51–59%) at lower connection densities (≤15%), and when global signal regression 

was implemented heritability estimates decreased substantially h2(γ=0–26%, Q=0–28%, 

ϕnorm=0%, λ =23–30%, σ=0–27%). Distinct network features were phenotypically correlated (|r|

=0.15–0.81) and γ, Q and λ were found to be influenced by overlapping genetic factors. Our 

findings suggest that these metrics may be potential endophenotypes for psychiatric disease and 

suitable for genetic association studies, but that genetic effects must be interpreted with respect to 

methodological choices.
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Introduction

There is growing evidence that the functional architecture of human brain networks has a 

profound influence on cognition and disease. The efficiency of information propagation in 

brain networks, or how far signals must travel to reach disparate parts of the network, has 

been shown to correlate significantly with intelligence (Li et al., 2009; van den Heuvel et al., 

2009). The modularity of an individual’s functional brain network, or the degree to which 

the network is partitioned into sub networks (e.g., visual, sensory-motor, and default mode 

networks), can also predict performance on working memory tasks (Stevens et al., 2012). 

Further, almost all psychiatric diseases studied with neuroimaging have been characterized 

by departures from the established network architecture seen in healthy individuals (see 

Wang et al., 2010).

Even in the absence of a specific task or stimulus, fluctuations in the blood-oxygenation 

level dependent (BOLD) signal are correlated across the brain, revealing spatially distributed 

networks of coherent activity (Fox and Raichle, 2007), which overlap with task-related 

functional networks (Smith et al., 2009) and underlying structural networks (Damoiseaux 

and Greicius, 2009; Honey et al., 2009). Graph theory- a mathematical approach to study 

networks - has been applied to such resting state data (rs-fMRI) to measure higher order 

features of resting state networks (RSNs), such as efficiency and modularity (for a brief 

description of graph theory metrics see Table 1, and Rubinov and Sporns, 2010 for a 

review). These features provide measures of the topological organization of brain networks, 

which have direct biological significance. Here we consider three measures of network 

segregation and community structure (γ, Q, ϕnorm), a measure of network integration (λ), 
and a composite measure describing the trade-off between integration and segregation (σ).

Features showing strong heritability may be promising endophenotypes for neuropsychiatric 

disorders. More significantly, they may serve as targets for subsequent searches to identify 

particular sets of influential genes, to better understand molecular mechanisms affecting 

intra-brain communication. Prior twin studies of RSNs suggest that cost efficiency (Fornito 

et al., 2011) and global efficiency (van den Heuvel et al., 2013) are moderately to strongly 

heritable (heritability, h2 =60% and 42% respectively). However, both of these studies had 

small samples, examined different age groups (n=58 and 86; ages 40 and 12; for Fornito et 

al. (2011) and van den Heuvel et al. (2013), respectively) and did not correct for nuisance 

covariates of global signal, white matter and CSF. Heritability of graph measures of brain 

networks have also been observed with diffusion weighted MRI (Dennis et al., 2011) and 

EEG (Smit et al., 2008).

We hypothesized that the common graph metrics of RSNs (γ, Q, ϕnorm, λ and σ) calculated 

using a standard processing pipeline, would be moderately heritable and we examined the 

association between metrics and to what extent any association is due to a common genetic 

factor. As a network may vary according to the number of links, we estimated the heritability 
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of each metric over a range of connection densities (k=5–25%), as well as considering the 

effect of binarising graphs. In addition, given the ongoing debate as to the inclusion of 

global signal regression (Murphy et al., 2009; Fox et al., 2009), we conducted our analysis 

both with and without GSR. We tested these predictions in a large cohort (N=592) at 

approximately full brain maturation (mean age 23.5; e.g. Lebel et al., 2008).

Materials and Methods

Participants

Adult twins were recruited as part of the Queensland Twin IMaging (QTIM) study (de 

Zubicaray et al., 2008), under approval of the Human Research Ethics Committees of the 

QIMR Berghofer Medical Research Institute, University of Queensland, and Uniting Health 

Care, Wesley Hospital. Written informed consent was obtained for each participant. Twins 

were scanned in the same session or within a week of each other. Participants were excluded 

if they reported any history of psychiatric disease, brain injury, substance abuse or MR 

incompatibility.

Of the 619 participants with rs-fMRI data, 27 participants (including one twin pair) were 

rejected due to excessive head motion (mean motion > 1 voxel), image artifacts or 

observable neurological abnormalities (on visual inspection of images). The final sample 

consisted of 346 paired twins (84 monozygotic (MZ) pairs (61 female, 23 male) and 89 

dizygotic (DZ) pairs (34 female, 13 male, 42 opposite sex)), and 246 unpaired twins, mean 

age 23.5 (±2.5), range 18–30. Zygosity was established using 9 independent polymorphic 

DNA markers, cross checked with blood group and phenotypic data to give a greater than 

99.99% probability of correct zygosity assignment (Wright and Martin, 2004). Zygosity was 

later confirmed by genome-wide single nucleotide polymorphism genotyping (Illumina 

610K chip).

Image Acquisition

Imaging was conducted on a 4 Tesla Bruker Medspec whole body scanner (Bruker). 

Participants were instructed to remain at rest with their eyes closed, and to not think of 

anything in particular and not fall asleep. The imaging sequence was a T2*-weighted 

gradient echo, echo planar imaging (GE-EPI) sequence (repetition time TR = 2100 ms; echo 

time TE = 30 ms; flip angle = 90°; field of view FOV = 230 mm × 230 mm, pixel size 

3.6×3.6mm, 36 coronal 3.0mm slices with 0.6mm gap, 150 volumes, total scan time 315s). 

Prior to the rs-fMRI scan a T1-weighted 3D structural image was acquired (MPRAGE, TR = 

1500 ms; TE = 3.35 ms; inversion time TI=700ms; flip angle = 8°; FOV = 230 mm3, pixel 

size 0.9×0.9×0.9mm).

Image Processing

Images were preprocessed using FSL (www.fmrib.ox.ac.uk) and AFNI (http://

afni.nimh.nih.gov/afni) as implemented in the 1000 Functional Connectomes Project scripts 

(https://www.nitrc.org/projects/fcon_1000/). The first 5 EPI volumes were removed to allow 

for steady state tissue magnetization. EPI volumes were realigned to a mean image to correct 

for between-scan head movement, spatially normalized to the standard template of the 
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Montreal Neurological Institute (MNI), smoothed and detrended. Signal from white matter 

and CSF was regressed from voxel time-series to remove non-neuronal BOLD fluctuations. 

We conducted our analysis both with and without GSR, where global signal is a calculated at 

each time point as the mean signal BOLD signal within a whole-brain mask. The set of 6 

motion parameters from the realignment was also regressed out, and a mean motion 

summary measure retained for inclusion as a nuisance covariate in group level analysis (Van 

Dijk et al., 2012). Finally, the normalized volumes were temporally filtered (0.01–0.1Hz).

Graph Construction

The AAL template (Tzourio-Mazoyer et al., 2002) comprising 116 macro-anatomical 

regions, which is the most widely used atlas in the graph theory literature, was used to 

establish ROIs. The time series were extracted from each ROI by taking the mean signal in 

all voxels. FC was calculated as the pairwise correlation between all ROI time series, which 

resulted in a 116×116 connectivity matrix for each participant. Matrices were thresholded at 

connection densities of k=5–25% (k; proportion of total connections retained). We analysed 

both weighted and binary graphs. For the binary graphs, suprathreshold connections were 

then set to 1, resulting in graphs where 1 signified a connection and 0 no connection. 

Thresholding is important in binary graphs to exclude weak connections, which are assigned 

the same weight (1) as stronger connections. In weighted graphs, thresholding is still 

important as the sheer number of low weight connections can dominate the value of graph 

metrics, and graph metrics tend to those of random graphs as the connection density tends to 

100%. Network features are known to vary with different numbers of links considered (Stam 

and Reijneveld, 2007; van Wijk et al., 2010), and so a range of connection densities 

(typically between 5–35%) is typically used. High thresholds (lower connection densities, 

i.e., 5–10%) correspond to networks comprising the strongest and presumably most 

important routes in a network, with functional units clearly separated into distinct modules, 

but higher connection densities also consider weaker links in the network, with greater 

crosstalk between modules.

Graph Metrics

Non-normalised mean clustering coefficient (mC), global efficiency (Eg), modularity (Q) 

and rich-club coefficient (ϕ) were first calculated using the brain connectivity toolbox 

(Rubinov and Sporns, 2010). mC, Eg and ϕ were then normalized to remove the effect of 

overall functional connectivity and basic network features such as degree distribution. Doing 

so more specifically elucidates the network structure, while removing contributions from 

lower level connectivity attributes. Normalisation was achieved by dividing the values of 

mC, Eg and ϕ by those obtained from a random network with the same number of nodes, 

links and degree distribution (null networks). To obtain null networks, each link in the 

connectivity matrix was randomly reconnected an average of three times, then the matrix 

thresholded and binarised, and mC, Eg and ϕ calculated on the resulting random graph. This 

process was repeated 20 times, and the average of randomized mC, Eg and ϕ calculated. γ, λ 

and ϕnorm are then defined as mC/mCrand, Eg/Egrand and ϕ/ϕrand respectively. To calculate 

small-worldness (σ), γ and λ were multiplied, σ = γ x λ, or equivalently σ = γ ÷ Λ, where Λ 

is the harmonic mean of path length1. Metrics were all normally distributed and did not 

require further transformation prior to genetic analysis. To reduce the influence of outliers, 
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data was winsorised, with the maximum distance from the mean for all metrics set to three 

standard deviations. No more than 1.69% of the data was adjusted in this manner for any 

given graph metric.

Genetic Modeling

MZ and DZ twin correlations were calculated for each metric via maximum likelihood 

estimation implemented in Mx (Neale et al., 2002). An MZ correlation higher than DZ 

correlation is indicative of a genetic contribution. We then used structural equation models 

(SEM) to estimate to what extent the variance in each metric was attributable to additive 

genetic, A, common environment, C, and unique environment/residual modeling error, E 

(Neale et al., 2002). Initially, variance models including all components A, C and E were 

fitted, including age, sex and mean head motion as covariates. This sample is a sub-set of 

that used in Couvy-Duchesne et al. (2014), which found that head motion metrics are 

significantly heritable (35–57%), and highlights the importance of accounting for this source 

of heritability at the group level. We tested additive genetic models (ACE) rather than 

genetic dominance models (ADE), even though in some cases the MZ correlations were 

more than double the DZ correlations (Tables 2a, 2b), since preliminary testing of ADE 

models (data not shown) indicated low power (i.e. wide confidence intervals) to discriminate 

A and D factors.

Parameters were successively dropped from the model and reduced models were tested for 

goodness of fit. The model with greatest model parsimony as quantified by the lowest 

Akaike Information Criterion (AIC) was retained for heritability estimation.

In order to determine whether hub regions (those with high degree) were heritable, post-hoc 

genetic modeling was applied to the degree of all 116 nodes. The degree of a node is simply 

the number of supra-threshold connections of that node, so no further calculations were 

required to obtain these metrics. Given the pattern of heritability observed for the global 

graph metrics, we chose a connection density of 10%, did not apply global signal regression, 

and used the weighted measure of degree.

Phenotypic Relationships

Pairwise Pearson correlations between 3 of the graph metrics were calculated. σ was not 

included in either the correlational or multivariate genetic analysis, as it is a composite of 

two of the other metrics. Correlated metrics were tested in a multivariate ACE model using 

Cholesky decomposition (Neale et al., 2002) to see if the relationship could be attributed to 

common genetic factors, or common environmental factors influencing all phenotypes 

(Figure 6).

1Path length between two nodes is the smallest number of links required to connect the two nodes.
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Results

Network Visualisation

To visualize networks obtained over the range of connection densities, the mean over 

participants of each pairwise connection was taken, resulting in a groupwise graph, which 

was then thresholded (k=5–35%) and binarised. This graph was decomposed into modules 

using the modularity algorithm of (Newman, 2006), and illustrated using BrainNet Viewer 

(http://www.nitrc.org/projects/bnv/; Xia et al., 2013; Figure 1). Between k=5–25% (Figures 

1a–1c), a familiar pattern of resting state networks appears. The default mode network 

(DMN; blue), dorsal attention/task positive network (red), visual network (pink), subcortical 

(yellow), sensorimotor (cyan), cerebellar (green), and hippocampus/amygdala/temporal 

(black) are apparent at various connection densities. As the connection density is increased, 

different modules lose their distinction and merge, leading to fewer and larger modules. 

After k = 25%, the modular network architecture is lost. The main difference between global 

signal regression not implemented (a) and implemented (b), is that networks with GSR 

implemented are more modular, with more distinct modules observable.

Graph theory metric means

Means of our five metrics are given in Tables 2a and 2b. The mean values of the metrics are 

typical of those seen in the literature (e.g. Achard et al., 2006; Lord et al., 2012), and 

indicate small world, modular, rich-club topology, irrespective of methodological choices. 

However, the means of the metrics do differ depending on methodological choices, 

indicating that the nature of the networks obtained varies. The choice of threshold has a 

strong effect on the metric means and variances, with γ, λ and σ tending to 1 as k increases, 

indicating a loss of small world properties as the addition of weaker connections causes a 

shift towards random graphs. Likewise, Q reduces as k increases, indicating a loss of 

modular architecture, as depicted in Figure 1. We thus henceforth primarily discuss results at 

k=10%, which we believe to represent an optimal balance between removing spurious weak 

connections on the one hand and avoiding graph fragmentation on the other (observed to 

occur extensively at a threshold of 5%). The behavior of ϕnorm with k was less 

straightforward and depended on GSR and binarising (Tables 2a,b and Supplementary tables 

1a,1b). γ, Q, ϕnorm and σ are greatly increased if GSR is employed (mean % change = 143%,

50%,7%,150% respectively at k=10%, paired t-test p<10−15), whilst λ is relatively 

unchanged (−1% at k=10%, p<10−4). Finally, binarising seems to have little effect on 

numeric values of γ, Q, λ, σ (−1%, −6%, 2%, 1% respectively at k=10% p<10−15), but a 

large effect on ϕnorm (40% at k=10% p<10−15).

Heritability

Heritability estimates were seen to vary substantially depending on threshold and 

implementation of global signal regression, and weakly affected by binarising. Generally, 

heritability estimates were higher at lower connection densities, without global signal 

regression and without binarising. Without GSR, all metrics had a higher MZ correlation 

than DZ correlation over the whole range of connection densities (Figure 2), both for 

weighted (Table 2a) and binary graphs (Supplementary Table 1a), indicating a genetic 

contribution. MZ correlations ranged from 0.22–0.42 across metrics and connection 
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densities and were significant at all k, whereas DZ correlations ranged from 0.10–0.20 and 

were not all significant (95% confidence intervals crossed zero). SEM revealed that all 

metrics had significant estimates of genetic variance (a2) over a certain range of connection 

densities (Table 2a, Figure 3). Dropping the C parameter gave improved model parsimony 

for all metrics over connection densities 5–15%. At k=20% and above, the best fitting model 

was CE for some metrics. However, notably the fit of the AE and CE models were often 

very similar. The heritability estimates (i.e., A (=a2)) for the best fitting model are given in 

Table 2a. γ, Q, λ and σ were all strongly heritable, (51, 46, 54, 54% respectively, k=10%) 

with similar estimates for binary networks. ϕnorm was moderately heritable (29%, k=10%) 

for weighted graphs, but not for binary networks. As k increased from 10% to 25%, 

progressively more variance is attributed to unique environmental variance and/or modeling/

experimental error for all metrics.

The heritability estimates varied little between weighted and binary graphs with the 

exception of ϕnorm which for binary networks has best fitting model without genetic 

component. The heritability of Q was lower for binary compared to weighted graphs at k=5–

10%, and at k=15% and above the best fitting model did not have a genetic component.

Regressing out global signal substantially reduced the heritability estimates (Table 2b, 

Figure 4). At k=10%, Q, λ and σ were moderately heritable (28%, 23% and 27%), whereas γ 

and ϕnorm had a best fitting model without a genetic component, although AE and CE 

models had similar fit. As with the no global signal regression case, binarising had little 

effect on heritability estimates (Supplementary Table 2), although γbinary had a best fitting 

model with genetic component and corresponding a2 of 26(8,42), and Q had best fitting 

model without genetic component, and as k increased beyond 10%, variance attributable to 

unique environmental/modeling error increased (See Supplementary Tables 1a–1b).

The spatial distribution of genetic influences on degree, at a connection density of 10%, 

without global signal regression, is summarized in Supplementary Table 3 and Figure 5. 

Genetic influences varied across the brain, and do not appear to cluster specifically to any of 

the functional modules depicted in Figure 1. 47 out of 116 regions were significantly 

heritable, and these regions were distributed approximately evenly across the brain, with a 

slight over-representation in the occipital lobe (9/14 regions), and under-representation in 

parietal lobes (4/12 regions) and subcortex (2/10 regions). Of the 47 regions, 18 were 

bilateral pairs, 10 were left lateralized, 15 were right lateralized and 4 were in the vermis. 

There was no correlation between the degree of a node and its heritability derived from the 

best fitting model (r=0.12, p=0.21), and the high degree hubs were no more heritable than 

the other nodes. When heritability is extracted from the full ACE model, there is a weak 

correlation (r=0.19, p=0.04) between heritability and degree. Further, a large proportion of 

nodes (66/116) had best fitting models without additive genetic variance, of which 50/116 

had a significant common environmental variance (See Table S3).

In addition, we found strong phenotypic correlations among the different network measures 

(Table 3). Without GSR, all metrics were significantly correlated with the others, with the 

highest correlation at k=10% being 0.92 between γ and Q. With GSR implemented the 

correlations were generally lower (highest was 0.63 between γ and Q), suggesting that 
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global signal fluctuations represent a common source of variance for the different metrics. 

With GSR, Q and λ were negatively correlated, reflecting the trade-off between separation of 

and integration between modules. A similar pattern of correlations was seen across k both 

with and without GSR (Supplementary Tables 2a–2d). The one exception to this is with 

GSR at k>20%, where the correlation between λ and γ also becomes negative.

A multivariate genetic analysis was used to estimate the shared genetic contribution across 

metrics. Without GSR, a single genetic factor, A1, accounted for most of the genetic 

variance in all of the metrics at all connection densities (A1/Atotal=93%, 87% for Q and λ 

respectively at k=10%). With GSR implemented, 40% of the genetic variance (12% of the 

total variance) in Q was accounted for by a second genetic factor A2, which also accounted 

for 97% of the genetic variance in λ (Figure 6). The path coefficients for the second genetic 

factor, were the opposite sign for Q and λ, meaning that if this factor increases modularity, 

then the same factor will reduce λ. At higher connection densities the independent genetic 

factors (A2, A3) were reduced (Supplementary Tables 2a–2d ) and not significant, and most 

of variance was attributed to a single genetic factor, A1. This is related to the increasing 

correlations between the metrics at higher connection densities.

Multivariate models also revealed overlapping environmental influences/experimental error 

on the different metrics. Without GSR, The environmental influences on γ and Q 

overlapped, with sources influencing environmental variance in γ accounting for 75% (E1/

Etotal) of the environmental variance in Q. This same factor accounted for only 23% of the 

environmental variance in λ. A second environmental factor accounted for 23% of the 

environmental variance in Q, and 3% of the environmental variance in λ, and a final unique 

environmental factor accounted for the remaining 75% of the environmental variance in λ. 

With GSR implemented, the overlapping environmental/error influences were much 

reduced, with the majority of environmental variance in Q and λ attributed to E2 and E3 

respectively, implying that without GSR implemented, much of E1 is due to global signal.

Discussion

This study shows that network characteristics of resting state functional activity are partially 

under genetic influence, and that heritability estimates vary substantially depending on 

methodological choices. We found that γ(h2 =47–61%), Q (h2=38–59%), λ(h2=52–64%) and 

σ(h2=51–59%) were strongly influenced by genetic factors at connection densities ranging 

between k=5–15%, with heritability reducing at k>15%. Heritability estimates were 

substantially lower when global signal regression was implemented h2 (γ=0–26%, Q=0–

28%, ϕnorm=0%, λ =23–30%, σ=0–27%) and there was little difference between considering 

weighted graphs or binary graphs, other than for φnorm. Furthermore, these heritable traits 

were moderately correlated (|r|=0.62–0.92, without GSR, 0.27–0.63 with GSR) and largely 

influenced by overlapping genetic factors.

The heritability of global efficiency is largely consistent with prior studies of rs-fMRI graph 

metrics. Fornito et al. (2011) found a heritability of 60(CI:17, 83)% (without GSR) for cost 

efficiency in 58 adults (cost efficiency reflects the trade off between the need for efficiency 

in a network and the cost of wiring). In 86 young children (mean age 12), van den Heuvel et 
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al. (2013) estimated a heritability of 42(CI:5,73)% for λ, but no genetic influence on γ 

(without GSR). While the results for λ are similar, the participants were younger, and 

genetic and environmental effects on a trait can change with age (e.g. Bartels et al., 2002; 

Lenroot et al., 2009). Furthermore, their analysis was performed using voxel-wise networks, 

where each voxel constitutes a network node. Such networks differ topologically from 

anatomically informed networks, and they are ‘scale-free’ (van den Heuvel et al., 2008) – 

i.e., dominated by very highly connected hubs (Barabasi and Albert, 1999). In contrast to the 

previous two studies, we detect significant heritability of γ. This may represent 

methodological differences (van den Heuvel et al. (2013) did not correct for white matter 

signal, csf signal or motion confounds), but may also reflect that the previous two studies 

were underpowered, emphasizing the necessity of large sample sizes for heritability 

estimates. We performed power calculations (Neale and Cardon, 1992) based on the effect 

sizes in our sample, and determined that the sample sizes (number of twin pairs) required to 

reject the null hypothesis of no genetic component at a significance level of 0.05, with a 

power of 50% were (203, 97, 482, 5531 for λ(no GSR), γ(no GSR), λ(GSR), γ(GSR) 

respectively, k=10%), indicating that our study was underpowered for detecting heritability 

with GSR implemented, but sufficiently powered without GSR implemented.

Our heritability estimates are similar to those for other functional-imaging derived measures 

such as activation in N-Back working memory tasks, (h2~0–65%) (Blokland et al., 2011), 

and connectivity in the default mode network h2 = 42±17% (Glahn et al., 2010). They are 

lower than for cognitive phenotypes such as intelligence (h2 ~ 50–80%) (Plomin and 

Spinath, 2004) and performance on working memory tasks (h2 ~ 40–60%) (e.g., Ando et al., 

2001; Polderman et al., 2006).

γ, λ and σ may be collectively described as the small-world properties of networks. Small-

world networks allow strong contact between groups of nodes with common functionality 

and simultaneously allow highly efficient information transfer via a small number of long 

range connections (Watts and Strogatz, 1998). Many studies (e.g. Salvador et al., 2005; 

Achard et al., 2006) have reported that the small-world architecture applies to human brain 

functional networks, and we observe the same in this data set (mean (SD) γ = 2.02 (0.80), 

mean λ =0.77 (0.07), k=10%, Table 2). This study demonstrates that this favorable set-up is 

substantially conferred by genetic factors. Furthermore, as we increase the connection 

density of the networks, and the small world properties of the graph reduce (γ decreases, λ 

increases), we see a corresponding drop-off in heritability, suggesting an underlying genetic 

influence which is only observed when the chosen connection density appropriately balances 

removal of weak and confounding connections with avoidance of network fragmentation. 

We believe this balance is best achieved at lower thresholds at around k=10%, as this is 

where we observe highest penetrance of genetic effects, and highest small-world properties.

In addition to high clustering and high efficiency, brain networks are modular (Beckmann et 

al., 2005; He et al., 2009): the nodes separate into modules with many strong connections 

between nodes within the same module, and relatively few between modules. Modularity 

measures this separation into distinct sub-networks with particular functions such as the 

visual, sensorimotor, and default mode networks, etc. Here we find a genetic contribution to 
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modularity of (h2=0–59%), a result not previously observed in other studies of the 

heritability of functional connectivity.

Recently, brain functional networks have been observed to display a ‘rich-club’ 

organization, whereby the network hubs (nodes with the largest number of connections) are 

highly connected to each other, forming a network core (van den Heuvel and Sporns, 2011); 

most of the shortest paths between nodes in the network pass via this rich club. Such 

organisation is hypothesized to give the network higher resilience against targeted attack of 

hubs (Kaiser et al., 2007; van den Heuvel and Sporns, 2011). Here, we did not find strong 

evidence that the rich club coefficient is heritable. ϕnorm showed the most variability 

between the binary and weighted analysis, did not show the tendency to randomness as 

connection density increased as did the other metrics, and yielded the lowest heritability 

parameters. Thus, ϕnorm appears to be the least promising phenotype for use as a genetic 

biomarker, however, it is important to note that in the context of brain imaging, ϕnorm was 

originally defined on structural data (van den Heuvel and Sporns, 2011), not resting state 

functional data. In addition to the low heritability of rich club, our results do not support the 

idea of highly heritable hub regions. Only 47 of 116 nodes had a significant additive genetic 

variance component for degree, and there was no correlation between the degree of a node 

and its heritability, meaning that the degree of hubs is no more heritable than that of other 

nodes. This is at odds with the idea of a genetically mediated network core of functional 

connectivity (c.f. Fornito et al., 2011).

The network metrics were correlated (Table 3), suggesting that common genetic or 

environmental factors might produce an advantageous network structure. Without GSR, the 

genetic source influencing γ also accounts for a common set of genes were responsible for 

93% and 87% of the genetic variance in Q and λ respectively. This may represent a single 

set of genetic processes giving rise to distinct network characteristics, or it may represent a 

common underlying factor to all metrics, unrelated to network architecture, which has not 

been accounted for, such as the global signal. With GSR implemented, genetic influences 

were partitioned into two main factors, with one influencing γ and Q, and the second 

influencing Q and λ. γ and Q both measure features of network segregation and would be 

expected to be highly correlated and share common genetic underpinnings. More 

interestingly, Q and λ, were significantly negatively correlated and almost all of the genetic 

variation in λ, was accounted for by the second genetic factor influencing Q. Further, the set 

of genes which contributed positively to Q, negatively influence λ, indicating that this set of 

genes may regulate to trade-off between the separation of and the integration between 

modules. The phenotypic correlations between metrics were also mediated in part by 

environmental factors. γ and Q and λ were all influenced to varying degrees by overlapping 

environmental factors or correlated measurement error, so all phenotypic correlations 

between metrics have both genetic and environmental origins.

An important implication of this study is that the heritability of graph metrics is substantially 

reduced with global signal regressed out. The origin of the global signal is uncertain, but it 

may have non-neuronal (cardiac, respiratory), as well as neuronal (e.g. ascending arousal 

systems) contributions (Fox et al., 2009). Global signal fluctuations are considered by many 

as a nuisance confound giving rise to artificial correlations between unrelated time series. 
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There is ongoing debate as to the nature of anti-correlations introduced by global signal 

regression (Murphy et al., 2009; Fox et al., 2009) For this reason, we have carried out the 

analysis both with and without GSR. The results of this paper imply that a large proportion 

of the heritability estimates are dependent on these global signal fluctuations, and further, 

that global signal represents a common cause of variance in the different metrics, with all 

metrics strongly correlated and sharing a largely identical set of genetic influences when 

global signal is not accounted for. The two papers reporting heritability of network 

efficiency (Fornito et al., 2011; van den Heuvel et al., 2013), did not account for global 

signal, and reported similar estimates to those in this study without global signal accounted 

for. It is not clear which feature of the global signal contributes to the enhanced heritability 

estimates for the graph metrics. Since global signal regression is designed to remove 

physiological, non-neuronal contributions to the BOLD signal, itself a complex combination 

of neuronal, vascular and metabolic factors (Liu, 2013), this raises the possibility that the 

high heritability of graph metrics seen here, and in previous studies (Fornito et al., 2011; van 

den Heuvel et al., 2013), may primarily represent the graph characteristics of vascular, as 

opposed to neural networks.

The current study has some limitations. The sample size is modest for establishing the 

importance of genetics and environment for phenotype as indicated by relatively wide 

confidence intervals, particularly for DZ twins where the confidence intervals spanned zero. 

Our multivariate analysis may suggest one set of genes regulating the trade-off between 

network modularity and network efficiency, with another set of genes influencing γ, but this 

finding is not robust to choice of threshold or binarising. Secondly the difference in 

heritability estimates when global signal regression is implemented may indicate that a 

proportion of the heritability is related to non-neuronal fluctuations in the BOLD signal, 

since GSR aims to remove such fluctuations. Indeed, γ and Q increase when global signal 

regression is implemented (λbinary increases, λweighted reduces), perhaps reflecting that the 

resulting graphs better ‘capture’ the underlying favorable network properties. Some non-

neuronal influences can be ruled out as contributing to the heritability estimates. Head-

motion was corrected for both at the subject level by regressing 6 head-motion parameters 

from voxel time series, and at the group level by inclusion of a mean-motion covariate. 

Overall levels of functional connectivity (and their neuronal and non-neuronal origins) are 

implicitly controlled for by normalizing metrics to those of random graphs with the same 

overall level of functional connectivity (and other low level network characteristics such as 

degree distribution). Another limitation of this study is the relatively short scan time of 5min 

15s. Though scan times of 5–7 minutes are typical in resting state experiments, Birn et al. 

(2013) demonstrate that the test-retest reliability of functional connectivity estimates 

increase with scan time, plateauing at 8–12 minutes. The short scan time may contribute to 

the under-power of some of our statistical tests.

Despite these limitations, to date this is the largest study of twins with fMRI resting state 

scans, allowing the strongest and most comprehensive current estimates of network 

heritability. We find the first evidence of heritability of γ and Q, and strong evidence that λ is 

heritable. We used a range of the most common and consensual processing procedures for 

both resting state fMRI and graph theory, to make these results as applicable as possible to 

prior studies using these metrics.
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Highlights

• Graph metrics were moderately influenced by genetic factors (h2=0–64%)

• When global signal regression was implemented heritability estimates decreased 

substantially

• γ, Q and λ were found to be influenced by overlapping genetic factors
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Figure 1. 
Modular decomposition of groupwise mean network over a range of connection densities 

(i.e. k=5–35%), without and with global signal regression (GSR). Yellow lines indicate a 

supra-threshold connection and node colors indicate module membership (DMN (blue), 

dorsal attention network (red), visual network (pink), subcortical (yellow), sensorimotor 

(cyan), hippocampus/amygdala/temporal (black). As the connection density increases, 

different modules lose their distinction and merge, leading to fewer and larger modules. 

After k = 25%, the modular network architecture is lost.
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Figure 2. 
Monozygotic (MZ), Dizygotic (DZ) twin correlations across metrics and thresholds, GSR 

not implemented. Error bars represent 95% confidence intervals.
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Figure 3. 
Additive genetic (a2) and unique environmental (e2) variance components across metrics and 

thresholds, GSR not implemented.
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Figure 4. 
Additive genetic variance components across metrics and thresholds estimated both without 

(solid line) and with (dashed line) global signal regression (GSR). Heritability estimates are 

much reduced with GSR implemented.
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Figure 5. 
Regions with significant heritability for weighted degree at connection density of 10%, 

without global signal regression.
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Figure 6. 
Path diagram for multivariate genetic model showing genetic and environmental sources of 

covariation between three metrics, with parameter estimates given for k=10%, GSR 

implemented. Path labels give standardized path coefficients (bold) and variance 

components (the square of the path coefficients) of each factor. Thus, the genetic factor 

influencing γ also accounts for 18% of the total variation in Q (60% of the genetic 

variation), and 1% of the variation in λ. Q has a second genetic factor accounting for 12% of 

its variation, which also accounts for 24% of the variation in λ. Whereas overlapping genetic 

factors accounted for much of genetic variation in the metrics, separate environmental 

factors account for the majority of environmental variance in Q (47%) and λ (41%). 

Heritability (the sum of sources of genetic variance for each variable; h2) is shown for each 

variable. Non-significant path coefficients shown by dotted arrows.
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Table 1

Description of graph metrics. For a full review see Rubinov & Sporns (2010).

Metric Description Mathematical Definition

Mean Clustering 
Coefficient,

γ = mC
mCrandom

The clustering coefficient describes the 
likelihood of two nodes that are connected to a 
common node being connected to each other. It is 
a measure of ‘cliquishness’ in a network. To 
normalize, this probability is divided by the 
corresponding probability one would observe for 
a null hypothesis random network.6

mC = 1
n ∑

i ∈ N
Ci

Ci =
2ti

k(k − 1)

where ti is the number of complete triangles around node i.

Modularity, Q Modularity is the degree to which the network is 
partitioned into sub-graphs with a large number 
of connections within the sub-graphs, but 
relatively few connections between sub-graphs.

Q = ∑
u ∈ M

[euu − ∑
v ∈ M

euv]

where M is the set of modules, and euv is the proportion of links 
that connect nodes in module u with nodes in module v.

Rich Club 
Coefficient, ϕ

ϕ quantifies the degree to which hubs (highly 
connected and/or central nodes) preferentially 
associate with each other. To normalize, this 
proportion is divided by the proportion that 
would be observed in a random network.

ϕ(k) =
2E > k

N > k(N > k − 1)

where N>k is the number of nodes with degree greater than k, 
and E>k is the number of links between those nodes.

Global Efficiency

λ =
Eg

Eg
random

Efficiency is the inverse of path length, where 
path length is the number of connections 
traversed to get from one node to another. This is 
averaged over all node pairs to give global 
efficiency. To normalize, the efficiency is divided 
by the efficiency one would observe in a random 
network..

Eg = 1
n ∑

i ∈ N
Ei = 1

n ∑
i ∈ N

∑ j ∈ N di j
−1

n − 1

Small World Index, σ 
= γ λ

Small world index describes how nodes in a 
network can be connected in relatively few steps, 
whilst maintaining local clustering. Complex 
networks generally have greater clustering than 
random networks, but comparable efficiency, 
giving them a greater small-worldness.

σ = γ λ

λ = 1
Λ

where Λ is the harmonic mean of path length, i.e. the shortest 
number of links

Random Network Random networks provide null hypothesis 
reference networks to which the values of graph 
metrics can be compared. To create these 
networks, rewiring algorithms randomly reassign 
connections, a process which preserves low order 
features such as the connection density, number 
of nodes and degree distribution, whilst 
destroying higher order topological features such 
as clustering.

Random networks were generated using the Maslov and 
Sneppen (2002) algorithm, which preserves the degree 
distribution but not the weighted strength distribution. Rewiring 
was constrained to maintain full connectedness.

Degree The degree of a node is the number of 
connections of that node Ki = ∑

j ∈ N
ai j
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Metric Description Mathematical Definition

Where a is the adjacency/connectivity matrix
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