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Abstract

Almost all genome-wide association studies (GWASs), including Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), are based on the case-control study design, implying that the 

resulting case-control data are likely a biased, not random, sample of the target population. 

Although association analysis of the disease (e.g. Alzheimer’s disease in the ADNI) can be 

conducted using a standard logistic regression by ignoring the biased case-control sampling, a 

standard linear regression analysis on a secondary phenotype (e.g. any neuroimaging phenotype in 

the ADNI) may in general lead to biased inference, including biased parameter estimates, inflated 

Type I errors and reduced power for association testing. Despite of this well known result in 

genetic epidemiology, to our surprise, all the published studies on secondary phenotypes with the 

ADNI data have ignored this potential problem. Here we aim to answer whether such a standard 

analysis of a secondary phenotype is valid or problematic with the ADNI data. Through both real 

data analyses and simulation studies, we found that, strikingly, such an analysis was generally 

valid (with only small biases or slightly inflated Type I errors) for the ADNI data, though cautions 

must be taken when analyzing other data. We also illustrate applications and possible problems of 

two methods specifically developed for valid analysis of secondary phenotypes.
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1 Introduction

Genome-wide association studies (GWASs) have become popular for identifying genetic 

variants associated with complex diseases and other secondary phenotypes. Most existing 

GWASs adopt the case-control design, in which a certain number of disease-affected and 

disease-free individuals are sampled from the corresponding subpopulations respectively 

(Hunter et al. 2007; Scott et al. 2007; Thomas et al. 2008). Due to its separate samplings on 

the subjects conditional on their disease status, a key feature of a case-control sample is that 

it is not a random sample from the population; though both the case sample and the control 

sample are a random sample from the corresponding subpopulation, the combined case-

control sample is biased for the population because, for example, a fraction of the cases 

(often close to 50%) much larger than that of the population are included in the case-control 

sample. Interestingly, when a standard logistic regression model is applied to a case-control 

sample to assess the disease and a (genetic or other) risk factor association, the case-control 

sample can be treated as a random sample from the population, though the estimated disease 

prevalence (i.e. the intercept) is biased (Prentice and Pyke 1979). However, when a linear 

regression model is applied to other secondary phenotypes to assess their associations with a 

risk factor, if no adjustment is made for the biased case-control sample, estimation and 

inference result except under some special situations (Lin and Zeng 2009). These 

conclusions apply to neuroimaging genetic studies. For example, the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) collected its samples based on participants’ disease status: 

specifically, in ADNI (or more precisely, ADNI-1 as used throughout), 200 healthy controls 

(HCs),biased 400 subjects with mild cognitive impairment (MCI) and 200 patients with 

Alzheimer’s Disease (AD) were recruited; the set of the ADNI participants is not expected 

to be a random sample of the age-matched general population. For instance, in the general 

population, ten to twenty percent of people age 65 or older is known to have mild cognitive 

impairment (MCI) (Lopez et al 2003; Roberts et al 2008; Hanninen et al 2002), but nearly a 

half of the ADNI samples consists of MCI individuals. Hence, although a standard logistic 

regression model can be applied to draw unbiased inference for genetic associations with the 

risk of AD, a standard regression model (without any suitable adjustment) may lead to 

biased inference of genetic associations with secondary phenotypes, such as many 

neuroimaging phenotypes. On the other hand, surprisingly, to our knowledge, all the 

publications on analyses of secondary phenotypes for the ADNI data have relied on standard 

linear regression without any adjustment to or even any discussion on possible problems 

with the biased ADNI sample (e.g. Shen et al. 2010; Stein et al. 2010a; Meda et al. 2012; 

Hibar et al. 2015b). Biased inference may lead to not only biased parameter estimates, but 

also inflated Type I error rates and reduced power. It is the primary goal of this paper to 

address whether such standard linear regression really leads to biased inference for 

secondary phenotypes using the ADNI data as an example; if so, to what extent.

As a result, findings from previous studies may be questioned. A number of strategies have 

been proposed for correct inference for secondary phenotypes, including inverse probability 

weighted regression (Schifano et al. 2013; Monsees et al. 2009), use of retrospective 

likelihoods (Lin and Zeng 2009; Wei et al 2013; Ghosh et al 2014) and conditional and other 

methods (Chen et al 2013; Tchetgen 2014). Since the retrospective likelihood method of Lin 
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and Zeng (2009) is statistically efficient (but technically more challenging to extend to other 

more complex situations), while inverse probability weighted regression is easier to 

implement (but less efficient statistically), we use them as the references against the 

standard linear regression. In addition, since some imaging genetics studies (Potkin et al. 

2010; Hibar et al. 2015a) have considered a variation of the standard linear regression by 

adjusting for the (primary phenotype) disease status, we also consider this method.

We first briefly review the above four methods for association analysis of a genetic variant 

and a secondary phenotype. We then apply the methods to the ADNI data in section 3. In 

section 4, realistic simulation studies mimicking the ADNI data are conducted to further 

investigate possible problems when analyzing a secondary phenotype. Section 5 provides a 

simple toy example to demonstrate the problem and offers some intuitive explanations. A 

summary of our conclusions is given in section 6.

2 Methods

Let {xi, Yi, Zi, Di} be the observed data for subject i = 1, …, n, where xi is an additive 

genotype score of an SNP of interest, Yi is a univariate and quantitative secondary 

phenotype, Di = 1 or 0 is an indicator of the disease (i.e. primary phenotype), and Zi = (Zi1, 

…, Zil)′ is a vector of covariates. Define the number of controls (with Di = 0) as n0, and that 

of cases (with Di = 1) as n1. A major characteristic of a case-control study is that the 

disease-status is identified at the beginning of the study, and the sampling of the subjects is 

conditional on their disease status. One implication is that the combined case-control data 

may not be a random sample from the population. A proper analysis should take account of 

the sampling scheme; otherwise biases may result. This paper considers following four 

approaches: the first two are standard approaches currently widely used in imaging genetics, 

while the last two were specifically developed for valid analysis of secondary phenotypes.

2.1 Unadjusted linear model

A standard linear model regressing the secondary phenotype (Yi) on the genotype score (xi) 

has been used for testing association between the two:

(1)

and it is assumed that the conditional distribution f(Yi|xi, Zi) is Normal, N(β0 + β1χi + 

. Accordingly, based on the likelihood , maximum likelihood 

is used to draw inference on β1. For example, as used in the following, the Wald test is 

applied to test the null hypothesis H0 : β1 = 0 based on the maximum likelihood estimate 

(MLE) .

Note that with a case-control sample, in general the above likelihood function 

 is not appropriate, failing to account for the conditional sampling. 

Hence, in general the above inference is expected to be biased.
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2.2 Disease status adjusted linear model

A simple way to adjust for the case-control sampling is to adjust for the disease status (Di) in 

a standard linear regression model (Potkin et al. 2010):

and it is assumed that the distribution density f(Yi|xi, Zi, Di) is 

. The likelihood function  is used 

for inference of β1 in the framework of maximum likelihood. Again note that the likelihood 

 is in general invalid for the case-control data.

2.3 Inverse probability weighted regression

To properly account for biased case-control sampling, a weighted likelihood (or weighted 

estimating equations) can be used (Richardson et al. 2007; Monsees et al. 2009; Schifano et 

al. 2013). The weight for each subject is defined to be proportional to the inverse probability 

of the subject’s being sampled into the case-control data. Intuitively, for instance, if the 

disease is rare in the population, but an equal number of cases and controls are sampled, the 

weight is used to up-weight the controls and down-weight the affected individuals so that 

the weighted case-control sample is like a random sample from the population. Monsees et 

al. (2009) discussed such an inverse probability weighted (IPW) regression approach, 

offering unbiased inference of genotype-secondary phenotype associations, though its 

statistical efficiency may be low. Following Schifano et al. (2013), in this study, the weight 

(wi) for subject i was specified as wi = p/π if Di = 1, and wi = (1 − p)/(1 − π) if Di = 0, where 

p = P(D = 1) is the disease prevalence in the population, and π = p(D = 1|sampled) is the 

proportion of affected individuals in the case-control sample, which is always substituted 

with n1/(n0 + n1) throughout. The regression model is the same as equation (1), but the 

likelihood is weighted with wi, i.e. , where f(Yi|xi, Zi) is the density 

function for a normal distribution, . Maximum likelihood is used for 

inference. We implemented the above IPW regression approach using geeglm() function in 

R.

2.4 A retrospective likelihood approach

Lin and Zeng (2009) and Ghosh et al. (2014) proposed retrospective likelihoods to properly 

account for the fact that the case-control data should be conditioned on the disease status. 

Specifically, a regression model for secondary phenotype data (SPREG) proposed by Lin 

and Zeng (2009) is based on a retrospective likelihood f(Yi, xi, Zi|Di) =

(2)

where P(Di = 1) = ∫Y ∫x,Z P(Di = 1|Yi, xi, Zi)f(Yi|xi, Zi)f(xi, Zi)dYdx,Z, P(Di = 0) = 1 − P(Di = 

1), P(Di = 1|Yi, xi, Zi) determined by
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f(Yi|xi, Zi) is the density function of N(β0 + β1xi + βzZi, σ2), and f(xi, Zi) is treated as nuisance 

parameters. A profile likelihood is used to eliminate nuisance parameters, which is then 

maximized by the Newton-Raphson algorithm; maximum likelihood is used to draw 

inference on β1. Since this method is likelihood-based, it is efficient. However, due to the 

presence of high-dimensional nuisance parameters, the (profile) likelihood may be difficult 

to maximize, leading to some numerical problems as pointed out by Lutz et al (2014) and to 

be confirmed later, especially if the disease prevalence is unknown or estimated inaccurately 

(Chen et al 2013). Software for SPREG was downloaded from http://dlin.web.unc.edu/

software/spreg-2/.

3 ADNI data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). Data used in the preparation 

of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute on 

Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the 

Food and Drug Administration (FDA), private pharmaceutical companies and non-profit 

organizations, as a 60 million, 5-year public private partnership. The primary goal of ADNI 

has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific markers 

of very early AD progression is intended to aid researchers and clinicians to develop new 

treatments and monitor their effectiveness, as well as lessen the time and cost of clinical 

trials. The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical 

Center and University of California San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date 

information, see www.adni-info.org.

3.1 ADNI data analysis

We considered a univariate and quantitative secondary phenotype, volume of right 

hippocampus, for its possible association with each of several SNPs, rs429358, rs2075650, 

rs7526034, rs10932886, rs7647307, rs7610017, rs4692256 and rs6463843, which were 

chosen because they were shown to be highly associated with multiple imaging phenotypes 
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when using the standard (unadjusted) linear regression method (Shen et al. 2010). From the 

ADNI baseline data, we extracted the secondary phenotype, the SNPs and five covariates: 

gender, education, handedness, age, and intracranial volume (ICV) for association testing.

We regressed hippocampus volume on each genotype score and five covariates using the 

four methods: standard linear regression without adjusting for disease status (unadj-lm), 

with adjustment for disease status (D-adj-lm), IPW regression (lm-w), and SPREG (Lin and 

Zeng 2009). For the latter two methods, an estimate of the AD prevalence in the population 

is needed, which was obtained based on the following data. In 2014, it was reported that one 

in nine people age 65 and older (11 percent) had AD, and one third of people age 85 and 

older (32 percent) had AD; in 2012, 13 percent people age 65 and older were believed to 

have AD, and nearly half of people age 85 and older had AD (Alzheimer’s Association, 

2014, 2012; Hebert et al. 2013). It was not straightforward to determine the disease 

prevalence, since the AD prevalence for an aging population varies over time and it is not 

always clear what is the age-matched population based on the given case-control sample. 

The subjects in our collected data had mean age 75.68 with minimum 56, the first and third 

quantiles 71.75 and 75.68 respectively. Thus we estimated that the AD prevalence (p) in the 

population ranged from 0.10 to 0.30. Accordingly we considered disease prevalence p ∈ 

{0.10, 0.13, 0.16, 0.20, 0.23, 0.27, 0.30}, investigating how the results depended on the 

chosen p. For IPW regression, a subject’s weight (wi) was calculated based on a given p as 

discussed before; for SPREG, a given p was input to the software program.

We applied the methods to the ADNI data including all n0 = 180 healthy controls (HCs) and 

n1 = 144 AD patients available from the ADNI baseline data. The results are summarized in 

Table 1. Unadj-lm, lm-w and SPREG suggested significant associations between rs429358/

rs2075650 and right hippocampus volume. This is consistent with the results from previous 

studies (Shen et al. 2010; Kim et al. 2002; Lu et al. 2011; Mori et al. 2002). Unadj-lm and 

SPREG showed more significant p-values. When the disease prevalence p=0.10 or 0.13 was 

assumed, none of the p-values given by lm-w could reach the genome- wide significance 

level (5 × 10−8); however, if p=0.27 or 0.30 was used, rs429358 became highly significant, 

demonstrating that the results of lm-w were sensitive to the estimate of the disease 

prevalence p. The dependence of SPREG on p was to a lesser degree. It is noted that disease 

adjusted linear model (D-adj-lm) gave no significant p-value for any SNP. Interestingly, 

when the disease prevalence p=0.23 was assumed, which was reasonable, unadj-lm and 

SPREG showed p-values close to each other.

To confirm the results in Table 1 with a larger sample size, we included additional 311 MCI 

subjects in the ADNI data. We treated the MCI subjects as controls, and applied the methods 

with 491 controls and 144 AD patients. In Table 2, all p-values became smaller but only 

rs429358 and rs2075650 showed strong associations with the right hippocampus volume, in 

agreement to that in Table 1. Again, when assuming disease prevalence p = 0.16 or 0.20, 

which was reasonable (because MCIs were treated as controls), unadj-lm, lm-w and SPREG, 

but not D-adj-lm, all gave similar results.
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3.2 An association scan on chromosome 19

Rather than drawing our conclusions based on only a few SNPs, we conducted a genome-

wide scan on chromosome 19. The secondary phenotype was still the right hippocampus 

volume. We included all the SNPs with minor allele frequency (maf) ≥ 0.05, genotyping rate 

more than 90%, and surviving the Hardy-Weinberg Equilibrium test with p-value > 0.001, 

resulting in 9184 SNPs to be tested. Subjects with more than 10% missing genotypes were 

excluded; only non-Hispanic Caucasians whose right hippocampus volume was measured at 

baseline were included. As in the previous section, two sample sizes were considered: (1) n0 

= 180 controls (HCs) and n1 = 144 AD patients; (2) n0 = 491 controls (including both HCs 

and MCIs) and n1 = 144 AD patients.

The quantile-quantile (Q-Q) plots in Figures 1 and 2 show the distributions of the observed 

p-values against those of the expected (null) p-values. For each method, the pattern shown 

on the two plots is similar. Surprisingly, both unadj-lm and D-adj-lm had their estimated 

inflation factors (λ) (almost) 1 in each case, and the observed p-values were in close 

agreement with the expected ones, suggesting no obvious inflation of their Type I errors. 

Although the estimated inflation factors for lm-w were also close to 1, there were a few 

more points falling outside of the confidence regions. Depending on the population disease 

prevalence p used, the estimated inflation factors of SPREG ranged from 1.06 to 1.16, which 

were not too bad; however, most strikingly, in every Q-Q plot, there were many observed p-

values far more significant than expected, implying a large portion of likely false positives, 

presumably due to some numerical problems for those SNPs in SPREG. In our experience, 

especially for secondary phenotypes with large variances such as brain volumetric measures, 

SPREG might not converge, and scaling a phenotype by its standard deviation improved its 

convergence; even with scaling, in this example, SPREG failed to converge for about 1000 

SNPs (10%) when the disease prevalence (p) was set to be less than 0.23.

In summary, in an association scan on chromosome 19 with two sample sizes, all methods 

seemed to give reasonable estimates of inflation factors. In addition, the two unadjusted 

methods and IPW regression did not show any obvious problem in Type I error inflations; in 

contrast, SPREG had some numerical problems, giving many SNPs more significant p-

values than expected.

For more generalizable conclusions, we also conducted a genome-wide scan on chromo- 

some 19 with each of 27 other FreeSurfer phenotypes defined as volumetric or cortical 

thickness measures extracted from the ADNI data (Table S1 in Supplementary Materials). In 

Supplementary Materials, Figure S1 summarizes the results of the methods when applied to 

the 27 secondary phenotypes. For each phenotype, unadj-lm had an inflation factor close to 

1 and showed a similar pattern to that of lm-w in the Q-Q plots. In addition, Tables S2 and 

S3 show the p-values of several candidate SNPs when the methods were applied to two 

selected secondary phenotypes; again unadj-lm gave the results similar to those of lm-w and 

SPREG (with a suitable p), while D-adj-lm gave less significant p-values for rs429358.
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4 Simulations

4.1 Simulation set-ups

We conducted simulation studies with realistic set-ups to mimic the ADNI data. First we 

selected two SNPs, rs429358 and rs6463843 in Table 1, to represent two association 

patterns. SNP rs429358 (in gene APOE) is well known for its strong associations with both 

hippocampus volume and AD (Kim et al. 2002; Lu et al. 2011; Mori et al. 2002); by 

choosing rs429358, we had a representative case where both the SNP and secondary 

phenotype are highly associated with the disease risk. On the other hand, rs6463843 (in gene 

NXPH1) was chosen to reflect an opposite scenario where both the SNP and the secondary 

phenotype are only moderately associated with the disease. Next, we used the ADNI data to 

estimated various association parameters for each SNP. Specifically, we fitted a linear 

regression model with the right hippocampus volume as the secondary phenotype and an 

SNP (x) and covariates (Z, including gender, education, handedness, age, ICV) as predictors, 

obtaining the estimated regression coefficients, βxy and βzy. Then a logistic regression model 

was fitted to determine the effects of SNP (x) and the phenotype (Y) on the disease (D), 

obtaining the estimated regression coefficients βDyand βDx. The parameter values for the two 

SNPs/set-ups are given in Table 3, which were used as the true parameter values for 

generating simulated data.

To maintain the true correlation structures among the five covariates, we sampled Zi = (Zi1, 

…, Zi5) from the ADNI data in each simulation. An additive genotype score (xi) was 

randomly generated from a binomial distribution Bin(2, maf) with maf=0.27 and 0.45 for the 

two SNPs respectively. The secondary phenotype was generated from a Normal distribution 

based on the simulated covariates and genotype score {Zi, xi}:

(3)

where βxy and βzy are presented in Table 3,  was obtained from the sample variance of 

hippocampus volume, and ϕ is a scaling parameter controlling the association strength 

between x and Y. When ϕ = 0, we created a null case with no association; when ϕ = 1, the 

effect size was equal to the estimate from the ADNI data.

For each subject i, the disease status Di was generated from a Bernoulli distribution with 

probability P(Di = 1|xi, Yi) determined by

where the values of βDy and βDx are shown in Table 3, and βD0 = logit−1p. The disease 

prevalence was set at p = 0.23 or 0.10 to mimic that for the ADNI data. Note however that p 

= 0.23 was more reasonable for AD.

To generate a simulated data set, we repeated simulating observations {Zi, xi, Yi, Di} until 

reaching the predefined sample size of n1 cases and n0 controls; any simulated observations 

not used in the case-control sample were added back to the case-control sample to form a 
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cohort sample. Since a cohort sample was a random sample from the population, while a 

case-control sample was not, we used the results from cohort samples as benchmarks.

We also used each cohort sample to obtain an estimate  of the disease prevalence for the 

corresponding case-control sample. To investigate the effects of the specified disease 

prevalence on analysis, three different disease prevalence rates, −0.05, , and  +0.05, 

were input to lm-w and SPREG.

For each simulation set-up, the results were based on 104 independent simulation replicates.

4.2 Results

In Table 4, we report the empirical Type I errors for the methods for the null case (with ϕ = 

0). SPREG and lm-w had valid Type I errors in all cases, while the results of unadj-lm and 

D-adj-lm largely depended on the simulation set-ups and the true disease prevalence. In set-

up 1, where both the SNP and the secondary phenotype were highly associated with the 

disease risk, unadj-lm, lm-w and SPREG showed proper type I error rates, with the true 

prevalence p = 0.23; however, D-adj-lm gave highly inflated ones. Yet when the true disease 

prevalence was set at p = 0.10, only SPREG had type I errors close to the nominal level 

(0.05), and lm-w (with  applied) gave slightly inflated ones. However, the numerical results 

suggested that both SPREG and lm-w were sensitive to the pre-specified disease prevalence.

In set-up 2 where the SNP or the secondary phenotype was not highly associated with the 

disease risk, the Type I error rates of all the methods except D-adj-lm were controlled, 

though the inflations by D-adj-lm were small to moderate.

In order to ensure the above results were not due to a small sample size, we increased the 

sample size to n0 = n1 = 500 and n0 = n1 = 1000. As shown in Supplementary Materials 

(Table S4), the empirical Type I error rates of SPREG and lm-w were reliable as compared 

to unadj-lm and D-adj-lm. In Supplementary Materials, a more extreme disease prevalence p 

= 0.01 was also considered, in which the Type I errors of unadj-lm were more inflated, while 

D-adj-lm performed well as pointed out in Monsees et al. (2009). The corresponding Q-Q 

plots for Table 4 are presented in Supplementary Figures S2 and S3.

The empirical power of each method is presented in Table 5. In set-up 1, unadj-lm had the 

highest power (but recall that it had slightly inflated Type I errors), followed by SPREG, 

then by lm-w. Note the dramatic power loss of D-adj-lm in spite of its severely inflated Type 

I errors. In set-up 2, D-adj-lm was most powerful but, due to its inflated Type I errors, it 

should not count; the other three methods were similarly powered.

Figures 3 and 4 illustrate the distributions of the parameter estimates  by each method. In 

set-up 1 (Figure 3) lm-w and SPREG provided almost unbiased estimates, while D-adj-lm 

always yielded largely biased estimates; unadj-lm gave almost unbiased estimates for p = 

0.23, but slightly biased ones for p = 0.10. For set-up 2 (Figure 4), only D-adj-lm gave 

obviously biased estimates.
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More detailed numerical results are presented in Supplementary Tables S5 and S6. In all 

cases, lm-w and SPREG yielded unbiased estimates, while the performance of unadj-lm and 

D-adj-lm largely depended on the disease prevalence (and simulation set-ups).

In summary, under practical situations mimicking the ADNI data, the standard linear 

regression method unadj-lm, but not D-adj-lm, performed satisfactorily, giving results 

similar to the other two valid methods.

5 An Illustrative Example

Finally we used a simple toy example to illustrate the problems with Unadj-lm and D-adj-

lm. For better visualization, we took a continuous x and no covariate Z; it is easy to see that 

the main points carry over to the case with a genotype score x and with Z. We assumed a 

finite population (or equivalently, a random sample from a super-population) containing 

9000 controls (with D = 0) and 1000 cases (with D = 1). For controls, we had a predictor x ~ 

N(0, 1), while x ~ N(2, 1) for cases. A secondary phenotype Y was distributed as Y ~ N (2D, 

1).

Based on the assumed model, we can see that conditional on D, Y was not associated with x, 

which is confirmed in the left panel of Figure 5: for either the control or case group, 

regressing Y on x yielded a horizontal line; the OLS estimates for the slope parameter of the 

two groups were 0.005 (SE=0.01) and 0.004 (SE=0.03), respectively. On the other hand, 

marginally Y was associated with x: the OLS estimate of the slope parameter was 0.260 

(SE=0.009).

Now we consider a case-control sample. To minimize the influence of the sampling errors, 

for simplicity, we took a random sample of 1000 controls and all 1000 cases. As shown in 

the right panel of Figure 5, applying Unadj-lm and D-adj-lm led to the OLS estimates of the 

slope parameter for x as 0.511 (SE=0.019) and 0.006 (SE=0.022) respectively; that is, 

Unadj-lm over-estimated the population marginal association (i.e. 0.511 versus 0.260), while 

D-adj-lm was on the target for the conditional association (0.006 versus 0) but again off 

from the marginal association (0.006 versus 0.260). We also applied weighted regression 

with lm-w: based on the sampling proportions, a weight 9 was assigned to each control and 

weight 1 to each case in the case-control sample; then we regressed Y on x; the WLS 

estimate of the slope parameter was 0.279 (SE=0.021), very close to the population marginal 

association (i.e. 0.279 versus 0.260).

It is simple why Unadj-lm may not work for a case-control sample: a case-control sample 

may not represent the population. More importantly, this example also clearly demonstrates 

that, even with the data from the whole population (or a large random sample), marginal 

association based on Unadj-lm and conditional association based on D-adj-lm may be quite 

different. More formally, we are interested in inference for β1 in a marginal model

However, D-adj-lm is based on a conditional model
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from which we can derive

If D is associated with x, say E(D|x) = a0+ a1x, then we have

based on which we may have β1 ≠ b1+ b2a1 unless b2 = 0 or a1 = 0.

6 Conclusions and Discussion

We set out to address whether standard linear regression of secondary phenotypes in a 

practical neuroimaging genetic study would lead to biased inference, i.e. biased estimates, 

inflated Type I errors and reduced power. This is an important question given that in general 

it will lead to biased inference while the current practice in neuroimaging genetics has 

largely ignored this potential problem. Using the ADNI data as an example, we conducted 

both real data analyses and simulation studies. Our main conclusion was the following: 

under practical situations similar to the ADNI data, using standard linear regression without 

any adjustment (unadj-lm), but not the one adjusting for the disease status (D-adj-lm), to 

assess SNP-secondary phenotype associations did not appear to cause any severe problem, 

though cautions still must be taken.

Of course, our main conclusion is only specific to the ADNI data, and is not applicable in 

general; some geenral principles were discussed, which might offer some guidelines to 

practitioners for other applications. The main theoretical reason for our conclusion to hold 

for the ADNI data (and possibly other data) is due to the high prevalence of the AD (or other 

disease) in the target population, leading to its small difference from the sampling 

proportion of the cases in the case-control sample, which is usually close to 50%. In other 

words, the key issue is how much biased is the case-control sample for the target population. 

For example, if the disease is less common, say at 10% in the general population, while as 

usual about a half of the case-control sample are cases, then a suitable adjustment in analysis 

is more likely to be necessary. There is also another factor influencing the validity of the 

standard unadjusted methods: the association strength between the disease and a secondary 

phenotype. For example, if the disease and the secondary phenotype are not associated, then 

a standard unadjusted analysis for the secondary phenotype is fine (Lin and Zeng 2009). 

However, in neuroimaging genetic studies, often a secondary phenotype is of interest simply 

because it is treated an intermediate phenotype for the disease, suggesting its likely 

association with the disease. Nevertheless, if the secondary phenotype-disease association is 

weak, a standard unadjusted analysis of the secondary phenotype may be only slightly 

biased. We have also discussed why simply adjusting for disease status (D-adj-lm) might not 

work: in addition to the possible poor representation of a case-control sample for the 
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population, D-adj-lm targets the conditional association between the secondary phenotype 

and an SNP (after adjusting for possible covariates), not the marginal association of interest, 

which may be quite different from the conditional association as shown in our toy example 

in section 5.

It is fair to ask why we do not always use one of the valid methods that properly correct for 

the sampling bias of case-control studies. In this paper we have considered two 

representative methods, IPW regression and SPREG; the former is general, more robust 

(Tapsoba et al 2014) and easier to implement but less efficient, while the latter is the 

opposite. For SPREG, it is challenging to extend it (or other retrospective likelihood 

methods) to more complex study designs beyond the simple case-control design, such as 

with longitudinal phenotypes or familial relatedness. Although IPW regression is general 

and easy to implement, its loss of power may hinder its wide use, especially for small 

neuroimaging GWASs. In addition, there may be numerical problems with the use of 

SPREG (see Figures 1 and 2, and Supplementary Materials Table S7). Furthermore, both of 

the methods require an estimate of the disease prevalence in the target population, and their 

results may be sensitive to the estimate; however, it may not be easy to obtain an accurate 

estimate, as in the ADNI data, since the target population is not well defined, e.g. with 

respect to the study participants’ age while the AD (or MCI) prevalence largely depends on 

the age.

Although we have only considered single quantitative secondary phenotype–single SNP 

associations, we anticipate that our conclusions will be likely to hold for other cases, such as 

for binary secondary phenotypes (Wang and Shete 2010; Chen et al 2013), multiple 

secondary phenotypes (Lin et al 2012; Zhang et al 2014; Zhu et al 2014), longitudinal 

secondary phenotypes (Skup et al 2012; Xu et al 2014), or for gene-gene or gene-

environment interactions (Ge et al 2015; Hibar et al 2015b), though further studies are 

needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Q-Q plots of the p-values for each methods when applied to SNPs on chromosome 19 for 

the ADNI data.

Kim and Pan Page 16

Neuroimage. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Q-Q plots of the p-values for each methods when applied to SNPs on chromosome 19 for 

the ADNI data. All subjects with MCI were included as controls.

Kim and Pan Page 17

Neuroimage. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 

Simulation set-up 1: Distributions of the estimates  from each method with two different 

values of the disease prevalence p.
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Figure 4. 

Simulation set-up 2: Distributions of the estimates  from each method with two different 

values of the disease prevalence p.
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Figure 5. 
An illustrative example. The left panel is for a population with 9000 controls and 1000 

cases, while the right panel is for a case-control sample with 1000 controls and 1000 cases.
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Table 3

Simulation set-ups: parameter values used.

Set-up SNP maf p ϕ β xy β Dx p-value β Dy p-value

1 rs429358 0.27 0.23, 0.10 0 ≤ ϕ ≤ 1 −270 1.76 4.61e-16 −4.6e-04 2.29e-15

2 rs6463843 0.45 0.23, 0.10 0 ≤ ϕ ≤ 2 −106 0.61 8.66e-05 −3.3e-04 4.58e-08
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