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Abstract

Historically, the human frontal pole (FP) has been considered as a single architectonic area. 

Brodmann’s area 10, in the frontal lobe with known contributions in the execution of various 

higher order cognitive processes. However, recent cytoarchitectural studies of the FP in humans 

have shown that this portion of cortex contains two distinct cytoarchitectonic regions. Since 

architectonic differences are accompanied by differential connectivity and functions, the frontal 

pole qualifies as a candidate region for exploratory parcellation into functionally discrete 

subregions. We investigated whether this functional heterogeneity is reflected in distinct 

segregations within cytoarchitectonically defined FP-areas using meta-analytic co-activation based 

parcellation (CBP). The CBP method examined the co-activation patterns of all voxels within the 

FP as reported in functional neuroimaging studies archived in the BrainMap database. Voxels 

within the FP were subsequently clustered into sub-regions based on the similarity of their 

respective meta-analytically derived co-activation maps. Performing this CBP analysis on the FP 

via k-means clustering produced a distinct 3-cluster parcellation for each hemisphere 
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corresponding to previously identified cytoarchitectural differences. Post-hoc functional 

characterization of clusters via BrainMap metadata revealed that lateral regions of the FP mapped 

to memory and emotion domains, while the dorso- and ventromedial clusters were associated 

broadly with emotion and social cognition processes. Furthermore, the dorsomedial regions 

contain an emphasis on theory of mind and affective related paradigms whereas ventromedial 

regions couple with reward tasks. Results from this study support previous segregations of the FP 

and provide meta-analytic contributions to the ongoing discussion of elucidating functional 

architecture within human FP.
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Introduction

The frontal pole (FP) of the human brain, often referred to as BA 10, is situated in the most 

rostral curvature of the cerebral cortex. During hominid evolution, this region experienced a 

differential reorganization in apes and humans, and subsequently encompasses a 

significantly larger proportion of the cortex in humans than in other species (Öngür et al., 

2003; Semendeferi et al., 2001; Semendeferi et al., 2011). This region continues to develop 

deep into adolescence in humans and has been shown to play a crucial role in a diverse 

range of higher order cognitive functions, including many adapted behaviors claimed to be 

“human-specific” (Duncan, 2010; Kovach et al., 2012; Ramnani & Owen, 2004; Waskom et 

al., 2014).

Anatomical definition of the FP was guided by a combination of post-mortem human and 

nonhuman primate histology and cytoarchitectural studies. Brodmann’s (1909) classic 

cytoarchitectural definition of BA 10 encompassed a wide area of 6-layer granular isocortex 

located on the rostral surface of the frontal lobe as well as the contiguous region along the 

medial wall of the hemisphere. Brodmann’s definition (as adopted by Talairach & 

Tournoux, 1988) has been widely employed in neuroimaging and neuropsychological 

research. However, treatment of the anatomically defined FP as a single homogenous area, 

without respect to its’ functional properties, likely masks a more detailed regional specificity 

within the rostral frontal cortex. Furthermore, functional boundaries of this region have been 

highly variable across studies, leading to inconsistencies in their resultant functional 

properties. Indeed, a recent cytoarchitectural study of the FP in humans (Bludau et al., 2014) 

showed that the frontopolar cortex contains two distinct cytoarchitectonic regions. This 

mapping study distinguished between a region on the rostral surface of the frontal lobe that 

they labeled area Fp1, and an area located along the mesial surface of the superior frontal 

gyrus that they labeled Fp2. Cytoarchitecturally, Fp1 shows higher cell density in layer II 

and in lower parts of layer III, and a broader layer IV than area Fp2. Thus, in a region that 

was once thought to be cytoarchitecturally homogeneous (Dumontheil et al., 2008), we now 

have evidence to the contrary, which suggests that there may be functionally discrete sub-

regions of the FP.
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In addition to using cytoarchitectural differences to subdivide a region, it is also possible to 

distinguish cortical areas based on their patterns of connectivity. For example, fiber tracing 

studies in the marmoset and the macaque monkey have indicated that areas within the FP 

possess different anatomical connection patterns (Burman et al., 2011; Petrides & Pandya, 

2007). These connectional differences are further supported by diffusion tensor imaging 

(DTI) findings in humans that indicate that the FP can be divided into sub-regions based on 

connection patterns (Liu et al., 2013). Using a clustering procedure, Liu performed a 

connectivity-based parcellation and defined three subregions of the frontopolar cortex and 

neighboring transitional area of the extreme rostral orbitofrontal cortex.

It is also possible to parcellate regions based on differences in functional connectivity 

patterns. Connectivity-based parcellation techniques can be applied to resting-state fMRI 

data to identify sub-regions within an ROI based on differences in voxel-wise time-series 

correlations between the seed and the whole-brain. Most previous efforts to identify 

functional distinctions within subregions of the FP were carried out, however, before 

quantitative coordinate-based meta-analytic methods were made available (Christoff & 

Gabrieli, 2000; Gilbert et al., 2010; Gilbert et al., 2006). More recently, a robust and task-

dependent approach for investigating connectivity between brain regions has emerged with 

the advent of meta-analytic connectivity modeling (MACM) (Eickhoff et al., 2010; Laird et 

al., 2009b; Robinson et al., 2010). This technique mines the co-activation patterns reported 

across hundreds of published neuroimaging studies archived in the BrainMap database 

(http://brainmap.org) in order to determine the task-based functional connectivity of brain 

regions. This data-driven parcellation technique provides a complementary approach toward 

the delineation of cortical modules (Muhle-Karbe et al., 2014). The methodology is 

motivated by the notion that the function of a brain region is ultimately constrained by its 

connections with other areas (Passingham et al., 2002) known from monkey and cat axonal 

tracing, which implies that functional units should be distinguishable based on the 

dissimilarity of their connections. Bludau et al. provided a preliminary MACM in which 

they tested whether FP areas defined by probabilistic locations of FP1 and FP2 showed 

different patterns of co-activation. Their results showed definite regional differences, 

however they did not test whether a parcellation based on task-based functional connectivity 

follows similar contours as their cytoarchitecturally defined areas.

Although structure and function are closely related in brain architecture, there is not 

necessarily a one-to-one relationship between them. Instead, it is possible for differential 

functional zones to exist even within an area that shares gross similarities in 

cytoarchitecture. This occurrence has been noted in previous studies examining the 

prefrontal cortex (Duncan & Owen, 2000), but has yet to be explicitly studied across a range 

of cognitive processes within the FP. To further investigate the task-based functional 

connectivity of the FP, we conducted co-activation based parcellation (Eickhoff et al., 2011; 

Johansen-Berg et al., 2004) in conjunction with MACM. This allowed us to test whether 

regional differences in the whole-brain functional co-activation patterns of the FP enable 

identification of discrete subdivisions of the region. These frontopolar sub-regions were then 

functionally characterized by means of forward and reverse inference to determine their 

behavioral profiles according to the BrainMap taxonomic classification system.
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Methods

Region of Interest Definition

The region of interest (ROI) for each hemisphere encompassed the two cytoarchitectonic 

areas of BA 10; the lateral frontopolar area 1 (FP1) and the medial frontopolar area 2 (FP2) 

as defined by Bludau et al. (2014). A detailed description of the analyses carried out to 

identify the cytoarchitectonic organization of the FP can be found in (Bludau et al., 2014). In 

summary, observer-independent detection of cytoarchitectonic borders was performed via 

histological analysis of 10 post-mortem human brains. To this end, histological sections 

(thickness = 20μm) containing the frontal polar region were digitized with an in-plane 

resolution of 1.02μm per pixel. Gray-level index (GLI; Wree et al., 1982) images of these 

slices were then calculated, thus providing a means for identification of the cytoarchitectonic 

organization for the region (e.g. identification of the borders for each cellular layer within 

the cortex, volume fraction of cells within cellular layers). A sliding window procedure was 

used for border detection along the cortical ribbon, which compared adjacent groups of 

profiles against each other (Schleicher & Zilles, 1990; Schleicher et al., 1999; Schleicher et 

al., 2000;Schleicher et al., 2009; Schleicher et al., 2005).

The frontopolar areas were 3D-reconstructed using linear and non-linear transformation 

algorithms (Hömke, 2006), and normalized to the T1-weighted single-subject template of 

the MNI (Montreal Neurological Institute; (Evans, Janke, Collins, & Baillet, 2012; Evans et 

al., 1992). From there, a maximum probability map (MPM) of Fp1 and Fp2 was created that 

assigned the cytoarchitectonic area of each voxel with the highest probability in the 

reference space of the MNI template (Amunts et al., 2005; Eickhoff et al., 2006; Eickhoff et 

al., 2005). This allowed the inclusion of only those voxels into the ROI where the frontal 

polar fields had been more likely found than any other brain region in histological 

examination (Fig. 1A).

Taking into consideration that the FP includes a midline region along the medial wall of the 

rostral frontal lobe, we separated the initial search region into two independent ROIs for the 

right and left hemisphere. This was done to ensure that resultant parcellation solutions 

would not contain cross-hemispheric clusters. The MPM of the right and left FP were 

thresholded and reformatted into two binary masks, where voxels within the ROI were 

assigned a value of 1 and all other voxels a value of zero. The resultant left hemisphere ROI 

consisted of 3020 voxels, while the resultant right hemisphere ROI consisted of 2777 voxels 

(voxel size: 2 × 2 × 2 mm3) (Fig. 1B).

Data Processing Outline

Once the boundaries of our ROIs (the right and left FP) were established, a meta-analytic 

connectivity map was created for each voxel within each ROI. These voxel-wise MACMs 

assigned the probability of co-activation of each remaining voxel in the brain with the seed-

voxel based on the thousands of experiments archived in the BrainMap database. Next, 

voxels within the ROI were grouped together (via k-means clustering) based on the 

similarities of their MACM co-activation maps. The stability and consistency of k-means 
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cluster solutions were assessed using a combination of different cluster stability metrics to 

identify an optimal parcellation solution.

A second MACM was performed using each cluster within the optimal parcellation solution 

as independent seed regions. This step in our analysis yielded a whole-brain co-activation 

map for each cluster within the right and left FP. Lastly, functional characterization of each 

cluster was assessed by testing for significant overrepresentation of taxonomic classes of the 

BrainMap database, which describe psychological and experimental information regarding 

all archived studies. The culmination of these analysis steps provides a data-driven 

framework to examine functional properties of the human frontal pole.

Meta-Analytic Connectivity Mapping

Whole-brain co-activation maps were computed for each voxel within each ROI (left and 

right FP, independently) using data archived in the BrainMap database (Laird et al., 2005; 

Laird et al., 2009a; Laird et al., 2011a). This type of analysis can be considered 

complementary to a seed-based correlation analysis of a single voxel from an fMRI time-

series (Laird et al., 2013). However, instead of correlating the time-series of a seed-voxel, 

MACM derived voxel-wise co-activation profiles provide a measure of the co-activation 

probability of a given seed voxel with every other voxel in the brain using the ALE method 

(Eickhoff et al., 2009; Eickhoff et al., 2012). Of note, only fMRI and PET studies reporting 

activations in healthy subjects were included (i.e., no pharmacological or otherwise 

interventions, no between-group comparisons), yielding approximately 7,200 functional 

neuroimaging experiments at the time of the query.

When mapping voxel-wise co-activation profiles within a volume, one must take into 

consideration the variable and usually low number of foci reported for each seed voxel. To 

account for this variability, we calculated the co-activation profile for each voxel using a set 

of n experiments (determined by an inclusion filter) containing the closest activation foci for 

every voxel in each ROI (Bzdok et al., 2012; Cieslik et al., 2013; Clos et al., 2013). The 

inclusion filter (referred to in some papers as a spatial filter because of its impact on the 

spatial range of included foci) was applied to every voxel systematically to include the 

closest 20 – 200 experiments in steps of two (i.e., we selected the nearest 20, 22, 24… 200 

experiments; 91 filter sizes in total) where the foci proximity was measured using Euclidian 

distances. For example, the co-activation profile for the voxel at coordinate x,y,z (where 

x,y,z occurs within the ROI) was measured using the 20 experiments containing an 

activation foci closest to x,y,z; this step was then repeated for the remaining 90 filter sizes 

(i.e. the closest 22, 24, …, 200 sets of experiment foci) and for each voxel within the ROI.

We examined co-activation profiles using a range of inclusion filters because the number of 

experiments associated with a seed voxel has a considerable influence on the ensuing whole-

brain maps (Bzdok et al., 2015). With out this inclusion filtering, an unbalanced number of 

experiments associated with the voxels within an ROI could results in a biased cluster 

solution. In other words, ensuing cluster solutions derived from unbalanced voxel-wise co-

activation profiles could be strongly driven by their unequal sizes of seed voxel’s 

experiment sets, rather than their actual whole-brain connectivity pattern. The present 

approach to inclusion filtering provides a more uniform “resolution”, or level of detail, 
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across the whole-brain as compared to applying a single predetermined radius constraint on 

the selection of experiments contributing to voxel-wise MACMs. The danger of using a 

more simple radius constraint filtering approach in an analysis such as this is the resultant 

low level of detail, or poor quality, of co-activation in parts of the brain that are reported less 

frequently in BrainMap experiments (Behrens et al., 2013) which makes the current 

approach superior compared to other model-free methods such as independent component 

analysis (Beckmann, 2012) or principal component analysis.

Voxel-wise brain-wide co-activation maps were generated for each of the 91 filter sizes 

using the activation likelihood estimation (ALE) algorithm, a coordinate-based meta-

analytic approach. In particular, meta-analysis was performed using the revised ALE method 

(Eickhoff et al., 2009; Turkeltaub et al., 2012). Here, foci within a set of experiments (i.e., a 

single filter size) were treated as smoothed centers of 3D Gaussian probability distributions 

where the spatial extent of those Gaussian probability distributions was based on empirical 

estimates of between-subject and between-template variance of neuroimaging foci (Eickhoff 

et al., 2009) that reflect the spatial uncertainty associated with neuroimaging results. 

Smoothed foci were subsequently combined to create a modeled activation map that 

identified the probability of activation for each voxel within a given experiment using a 

“nonadditive” approach that prevented local summation effects (Turkeltaub et al., 2012). 

The union of experiment-wise modeled activation maps was then used to calculate ALE 

scores describing the co-activation probability of that particular voxel location with the 

current seed voxel. Unthresholded ALE scores of all voxels within gray matter (based on 

10% probability according to the ICBM maps within MNI template space) were recorded for 

each voxel within the right and left FP ROIs.

In summary, we performed a quantitative ALE meta-analysis for each voxel within the ROI 

at each inclusion filter size. This allowed us to measure how likely any voxel in the brain 

was to co-activate with a particular seed-voxel within the ROI and subsequently assess the 

variability of voxel-wise co-activation patterns across the range of filter sizes employed.

Co-Activation Based Parcellation

Brain-wide co-activation profiles containing the unthresholded MACMs for all seed voxels 

were combined into a NS x NT co-activation matrix, where NS denotes the number of seed 

voxels (3020 and 2777 voxels for the left and right ROIs respectively) and NT the number of 

target voxels in the gray matter of the reference brain volume (~211,000 voxels) at 2 × 2 × 2 

mm3 resolution. This step was performed 91 times, once for each inclusion filter, resulting 

in 91 individual co-activation matrices, each representing the whole-brain connectivity of 

the seed voxels at a particular filter size. Parcellation of the ROI into K non-overlapping 

clusters was carried out using K-means clustering, as implemented in Matlab, with K = 2 – 4 

using one minus the correlation between the connectivity patterns of seed voxels as a 

distance measure (i.e., correlation distance). This parcellation was performed for each of the 

91 filter sizes independently, yielding 3 (K-means cluster solutions) × 91 (filter size) 

independent cluster solutions. K-means clustering is a non-hierarchical clustering method 

that uses an iterative algorithm to separate the seed region into a previously selected number 

of K non-overlapping clusters (Forgy, 1965; Hartigan & Wong, 1979). The K-means 
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algorithm randomly selects K voxels within the ROI as representative centers-of-mass for its 

respective cluster in which remaining voxels are assigned thereby assigned to the closest 

cluster center. This randomization of selected center-of-mass voxels cause final assignments 

of seed voxels to particular clusters to slightly vary from one initialization to another. 

Therefore, we repeated this process 100 times, and recorded the best solution for each of the 

6 (left and right hemisphere) × 91 parcellations.

Inclusion Filter Selection

The CBP procedure outlined above produced three unique parcellation solutions (K = 2–4) 

for each inclusion filter of both the right and left FP. One of the many issues in analyzing 

and interpreting large datasets is identifying the optimal solution for a myriad of situations. 

The process for selecting an appropriate range of inclusion filters for MACM-based CBP 

analyses has recently evolved. Previous studies averaged K-means cluster solutions across 

all filter sizes (Bzdok et al., 2012; Cieslik et al., 2013); this was most appropriate where 

there was a generally homogenous set of solutions across inclusion filter sizes. The current 

study, however, implemented the more refined and multifaceted process presented in Clos et 

al., (2013) that examined the properties of the various solutions to identify the most stable 

range of inclusion filter sizes, and then determined the optimal number of K clusters based 

on a series of metrics (Bzdok et al., 2015; 2013; Clos et al., 2013; Eickhoff et al., 2014; 

Muhle-Karbe et al., 2014; EIckhoff et al., in press). In other words, we assessed the 

consistency of the cluster assignment for individual voxels across all filter sizes collected 

and selected the inclusion filter range that produced solutions most similar to the ‘consensus 

solution’ (i.e., the cluster solution most representative of the 91 filter sizes). This ensured 

that subsequent steps in our analysis were carried out using the most stable range of filter 

sizes that produced the most consistent co-activation profiles.

The first step of this two-step procedure involved identifying the consistency of cluster 

assignment for individual voxels across different inclusion filters. The range of filter sizes 

that produced clustering solutions most similar to the consensus solution was selected based 

on the proportion of deviant voxels (i.e., the number of times a given voxel assignment 

disagreed with the consensus solution) per filter size across K. Inclusion filters with few 

deviant voxels were most desirable, thus we selected those whose number of deviants was at 

least half a standard-deviation below the average number of deviants across all filter sizes 

thereby restricting the analysis to filter sizes that reflected solutions most similar to the 

consensus solution. Previous CBP studies have commonly observed a central tendency in 

the selection of the optimal filter range (Muhle-Karbe et al., 2014), where the intermediate 

portion of the initial range is deemed optimal (given some variation among studies). 

Accordingly, further analysis steps were restricted to the parcellations based on co-

activation as estimated from the nearest 92 to 168, and 94 to 158 experiments for the right 

and left FP respectively.

Optimal Parcellation Solution

The second step in determining an optimal parcellation solution involved selecting the most 

appropriate number of K-means clusters based on the output solutions from the optimal 

range of inclusion filter sizes identified in the previous step of this analysis. The cluster 
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solution yielding the highest measure of improvement (as compared to the K−1 cluster 

solution, where K is the number of clusters) was interpreted as bearing the highest model fit 

of the clustering given the data. We used six different criteria describing information-

theoretic, cluster separation, and topological properties to assess cluster solutions across K.

The first topological criterion assessed was the percentage of voxels not assigned to its 

parent (K−1) solution. This metric takes into account the hierarchy of solutions as K 

increases, and corresponds to the percentage of voxels in the current solution, K, that were 

assigned to a different cluster than its K−1 solution (Kahnt et al., 2012). For example, voxels 

in cluster 1 of solution K would be excluded if the majority of its voxels stemmed from a 

cluster not in the same topological area in its K−1 solution. This metric favors hierarchical 

consistency of voxel assignment, and therefore, a K cluster parcellation was considered a 

good solution for those in which the percentage of lost voxels was below the median across 

all clustering steps. We additionally utilized another topological criterion that measured the 

percentage of “misclassified” voxels. This metric addressed across-filter stability of voxel-

to-cluster assignment and represented the percentage of voxels (computed within each filter 

size) that were assigned to a different cluster compared to the consensus solution across all 

filter sizes. Favorable solutions for this metric were indicated by percentages that were not 

significantly higher than the K−1 solution, in particular when followed by a significant 

increase in the K+1 solution. The final topological measures assessed were the mean and 

minimum number of consistent voxels per cluster. For these measures, solutions in which the 

ratio between the minimum and the average cluster size was more than 0.5 were considered 

acceptable.

As an information-theoretic criterion, we evaluated the similarity of cluster assignment 

between the current solution and neighboring K−1 and K+1 solutions within the range of 

optimal filter-sizes using the variation of information (VI) metric. This metric was 

previously established as a cluster criterion for determining the optimal K-means 

parcellation of a particular brain region (Kelly et al., 2010; Kahnt et al., 2012; Clos et al., 

2013; Bzdok et al., 2015). The variation of information between two cluster solutions C and 

C′ was computed by

(Equation 1)

where H represents the amount of information (entropy) present in the cluster solutions C 

and C′, respectively, while I is the mutual information shared by the two cluster solutions C 

and C′ (Clos et al., 2013). Using this metric, stable solutions exhibit a significant increase 

from K to K+1 solutions, or a significant decrease from K−1 to K solutions.

Lastly, we employed two cluster separation criteria to assess the goodness of fit of resultant 

parcellation solutions: the change in intercluster to intracluster distance, and the average 

silhouette value. We calculated the average intercluster to intracluster distance ratio as 

presented in Chang et al., (2012) by
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(Equation 2)

where N represents the number of voxels in the matrix and K reflects the number of clusters. 

We take x to be each voxel and zi to be the center of cluster Ci. The change in intercluster to 

intracluster distances was measured by taking the first derivative of the average intercluster 

to intracluster distance ratio (Equation 2). Solutions were considered stable if the subsequent 

step did not offer a significantly larger increase in the inter/intra-cluster distance. The 

average silhouette value ranges from −1 to 1 and is a general measure of how similar a 

given voxel is to other voxels in its own cluster compared to voxels in other clusters. A 

parcellation solution, K, was deemed acceptable when its silhouette value was significantly 

higher than the K−1 value or not significantly lower than that of K−1.

Task-Dependent Connectivity of Parcellation

Once the optimal parcellation solution was identified for the right and left FP, meta-analytic 

connectivity modeling was performed on the individual ensuing clusters to characterize their 

task-based functional connectivity (i.e., co-activation) patterns. In this context, the seed of 

each MACM corresponds to the collection of voxels within one of the clusters resulting 

from the optimal CBP solution. In other words, unlike in the initial MACM where individual 

co-activation maps were created for each voxel within a given ROI, we here created a single 

co-activation map representative of all voxels within the respective cluster of a particular K-

means solution. The co-activation profiles of each cluster were obtained by first identifying 

all experiments in BrainMap (meeting the previously mentioned search criteria) containing 

an activation coordinated within the parcellated seed region. Considering that each 

individual seed region (e.g., each cluster from the optimal parcellation solution) contained 

more than 300 voxels (2 × 2 × 2 mm3), we did not search for the nearest x experiments as in 

the previous voxel-wise co-activation analysis. Here, all experiments meeting the search 

criteria were exported into an individual workspace for each of the six clusters for further 

analysis.

The ALE algorithm was applied to each set of experiments to identify their respective co-

activation patterns. In this instance of MACM, additional statistics were assessed where 

ALE scores of a given cluster were compared to a null-distribution reflecting a random 

spatial association between experiments with a fixed within-experiment distribution of foci 

in order to determine significance (Eickhoff et al., 2009). This random-effects inference 

assesses above-chance convergence between experiments, rather than the clustering of foci 

within a particular experiment. The observed ALE scores from the actual meta-analysis of 

experiments activating within a particular cluster were then tested against ALE scores 

obtained under a null-distribution of random spatial association yielding a P value based on 

the proportion of equal or higher random values (Eickhoff et al., 2012). Resulting non-

parametric P values were transformed into Z-scores and thresholded at a cluster-level 

corrected threshold of P < 0.05 (cluster-forming threshold at voxel-level P < 0.001) and 

output as ALE/MACM map in image format.
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Functional Characterization of Cluster Parcellations

Finally, quantitative functional decoding was performed on the ensuing clusters via forward 

and reverse inference of MACM maps. Functional characterization was based on the 

metadata associated with experiments archived in the BrainMap database, specifically the 

taxonomic classifications of Behavioral Domain and Paradigm Class. Briefly, the 

behavioral domain field captures the cognitive process isolated by the experimental contrast, 

while the paradigm class field categorizes the task performed during each experiment (see 

http://brainmap.org/scribe for more information regarding BrainMap taxonomy). These two 

metadata fields were chosen because previous studies have identified them as most salient 

for network characterization (Laird et al., 2011b).

We performed a forward and reverse inference analysis on each sub-region of the right and 

left FP. In doing so, we identified taxonomic labels for which the probability of finding 

activation in the respective cluster was significantly higher than chance (forward inference), 

and the most likely behavioral domains and paradigms given activation in the particular 

cluster (reverse inference; (Poldrack, 2006; Yarkoni et al., 2011; Poldrack et al., 2012; 

Bzdok et al., 2012; Cieslik et al., 2013;). Significance for the forward inference analyses was 

established using a binomial test (P < 0.05) in which we tested whether the conditional 

probability of activation given a particular label [P(Activation|Task)] was higher than the 

baseline probability of activating the region in question per se [P(Activation)]. Significance 

for reverse inference analyses was assessed by means of a chi-square test (P < 0.05). This 

likelihood P(Task|Activation) was derived from P(Activation|Task) as well as P(Task) and 

P(Activation) using Bayes’ rule.

Results

Co-Activation Based Parcellation

Co-activation based parcellation produced three unique parcellation solutions (K = 2–4) for 

both the right and left FP. These parcellations were based on co-activation profiles from the 

nearest 92 to 168, and 94 to 158 experiments (inclusion filter) for the right and left FP 

respectively. Selection of the optimal solution for each hemisphere was determined using six 

different cluster validity criteria: the percentage of voxels not assigned to its parent, 

percentage of “misclassified” voxels, the mean vs. minimum number of consistent voxels 

per cluster, optimal filter-sizes using the variation of information (VI) metric, the change in 

intercluster to intracluster distance, and the average silhouette value. The cluster solution 

identified as desirable or acceptable in the most number of these six criteria was deemed as 

the “optimal solution”.

Regarding the left hemisphere parcellations (Table 1; Supplementary Fig. 1); the percentage 

of voxels not with parent indicated that the three-cluster solution was a good candidate 

solution because it fell below the median value across all clustering steps. The percent of 

misclassified voxels suggested that the three-cluster solution was stable because it was not 

significantly higher than the previous solution (K = 2), but was followed by a significant 

increase in the next solution (K = 4). The smallest cluster in each parcellation solution was 

greater than one half of the mean number of voxels, indicating that all solutions were 
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plausible. The variation of information across filter sizes suggested that the three-cluster 

parcellation was best because there was the smallest change in values from K = 2 to K = 3 as 

compared to other solutions. Likewise, the change in inter/intra cluster distances metric 

supported the solution for K = 3. Lastly, the average silhouette value supported both K = 3 

and K = 4 solutions.

When evaluating the right hemisphere parcellations (Table 1; Supplementary Fig. 2), the 

percentage of voxels not with parent indicated that the three-cluster solution was a good 

candidate solution because it fell below the median value across all clustering steps. The 

percent of misclassified voxels metric also supported the three-cluster solution, as it was the 

only parcellation that was not significantly greater than the previous solution, and was 

followed with a significant increase to the next solution. Comparing the mean vs. minimum 

number of voxels per cluster indicated that all solutions examined were plausible. The 

variation of information across filter sizes suggested that the three-cluster parcellation was 

best because there was the smallest change in values from K = 2 to K = 3. The change in 

inter/intra cluster distances metric supported the K = 3 solution. Lastly, the average 

silhouette value indicated that the three- and four-cluster solutions were considered as 

acceptable solutions.

Taking these metrics into consideration, CBP solutions indicate that the left and right 

hemispheres parcellate optimally into three discrete sub-regions (Table 1; Fig. 2). These 

divisions were fairly symmetric across hemispheres, with both right and left frontopolar 

region yielding a single lateral cluster and two medial clusters (dorsal and ventral with the 

transition occurring approximately at z = 2). Right hemisphere clusters encompassed 7427 

mm3, 5848 mm3, and 4748 mm3 in the lateral, ventromedial, and dorsomedial regions 

respectively. Left hemisphere clusters were comprised of 7527 mm3, 7018 mm3, and 5156 

mm3 voxels in the lateral, ventromedial, and dorsomedial regions respectively.

As can be seen in Figures 1 and 2, the CBP divisions (Fig. 2) follow a similar, although not 

identical, alignment with the cytoarchitecturally-defined boundaries of Fp1 and Fp2 (Fig. 

1a). In both hemispheres, the lateral cluster of the CBP division was completely contained 

within the borders of FP 1. This lateral CBP derived cluster stops around x = +/− 16, 

whereas Fp1 extends to the anterior medial wall of the hemisphere. The CBP analysis 

indicates that the more medial section on the rostral surface of the frontal lobe is occupied 

by a cluster containing both the medial rostral surface of the FP and the area just posterior to 

it on the medial wall that would be equivalent to Fp2. Furthermore, the CBP analysis 

indicates that this medial cluster can be split into distinct dorsal and ventral regions at K = 3, 

whereas the cytoarchitectural divisions defined by Bludau et al. (2014) did not feature such a 

ventral-dorsal split in either Fp1 or Fp2 similar to the CBP results at K = 2.

Task-Dependent Functional Connectivity of Parcellated Regions

Meta-analytic connectivity modeling was performed on each cluster within the optimal 

parcellation for each hemisphere of the three-cluster solution. In doing so, the specific task-

dependent functional connectivity patterns of the three clusters for each hemisphere was 

established and cluster-level corrected (Fig. 3, Table 2). In other words, we identified areas 

of the brain that were most likely to be activated, given activation of the seed region.
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The right lateral cluster contained a relatively widespread co-activation pattern including 

portions of the anterior cingulate gyrus, bilateral middle frontal gyrus, insula, and inferior 

parietal lobe. Similar to the right lateral cluster, the left lateral cluster contained a relatively 

high level of co-activations, including the anterior cingulate, bilateral middle frontal gyrus 

extending into the left inferior frontal gyrus, bilateral mid frontal gyrus, bilateral insula, the 

left fusiform gyrus and right caudate. The right dorsomedial cluster revealed co-activation 

in the posterior cingulate, the left medial temporal gyrus, and the left globus pallidus in 

conjunction with the parahippocampus. Co-activation with the left dorsomedial cluster was 

highly left-lateralized, with the exception to bilateral co-activation in the middle temporal 

gyrus; this included the left middle and inferior frontal gyrus, left parietal, and left 

parahippocampus. The right ventromedial region co-activated with the anterior and 

posterior cingulate, the left superior temporal gyrus, and bilateral amygdala. In addition, the 

left ventromedial cluster co-activated with the left superior and inferior frontal gyrus, left 

caudate and lentiform nucleus, left superior temporal gyrus, and bilateral amygdala & 

anterior hippocampus. Of note, each of the three clusters for the left hemisphere shared a 

common co-activation in the posterior cingulate cortex, and the left angular gyrus.

Functional Characterization of Cluster Parcellations

After parcellating the right and left FP into discrete clusters and delineating the connectivity 

of the ensuing subdivisions, the functional profiles of each sub-region were determined 

based on cognitive terms from the BrainMap taxonomy. Specifically, we performed a 

forward and reverse inference analysis of the behavioral domains and paradigm classes 

associated with each subregion of the right and left FP, wherein forward inference derives 

co-activation from a psychological term, and reverse inference derives a psychological term 

from regional co-activation (Poldrack, 2006). In particular, these analyses demonstrate that 

although the FP may be activated in the context of a wide range of tasks, meta-analysis 

provides a rigorous methodology for examining which tasks consistently yield activation 

with a measure of statistical significance. Overall, functional decoding results indicated a 

high degree of agreement across significant metadata in the forward and reverse inference 

analyses, and bilateral clusters were typically associated with similar metadata results (i.e., 

the right and left lateral clusters presented with similar functional characterizations) (Fig. 4). 

Notably, the results of the forward and reverse inference analyses are inherently constrained 

by the taxonomic terms available in the BrainMap database.

As expected, a majority of the behavioral domains significantly associated with FP clusters 

were related to cognition. More specifically, the left lateral cluster was associated with 

explicit and working memory behaviors, while the right cluster was more broadly associated 

with general cognition and emotion, as well as fear and social cognition. The left lateral 

cluster was also significantly associated with the paradigm classes of cued explicit 

recognition and the n-back task, while the right lateral cluster was significantly associated 

with reward tasks and chewing/swallowing tasks. Bilateral dorsomedial regions were 

significantly related to social cognition and sexuality; the left hemisphere was additionally 

related to general emotion, while the right hemisphere was more specifically associated with 

sadness. These dorsomedial regions were both linked to theory of mind tasks, with the left 

dorsomedial cluster additionally linked to episodic recall and semantic discrimination, while 
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the right dorsomedial region was associated with subjective emotional picture 

discrimination. Lastly, bilateral ventromedial clusters were broadly related to general 

cognition behaviors with the left hemisphere additionally linked with general emotion, and 

right hemisphere with explicit memory. These ventromedial clusters were also related to 

paradigms including pared associate recall, chewing/swallowing, and reward tasks.

The ROIs generated from the parcellation solutions shown in Figure 4 will be provided 

online through the BrainMap database website at brainmap.org.

Discussion

Connectivity-based parcellation was performed on regions of the left and right FP using 

boundaries defined by cytoarchitectural analysis of human areas Fp1 and Fp2. An optimal 

cluster solution was determined using metrics relevant to information-theoretic criteria, 

cluster separation, and topological properties. Convergence of acceptable parcellation 

metrics was observed independently for the three-cluster solution in each hemisphere, 

resulting in identification of ventromedial, dorsomedial, and lateral sub-regions of the FP. 

The symmetry between the three-cluster solutions of the right and left FP were very high, 

with their borders in relative agreement to their cytoarchitecture. Meta-analytic connectivity 

modeling was performed for these FP sub-regions, yielding individual whole brain co-

activation maps for each of the CBP clusters. Furthermore, performing functional decoding 

on the three sub-regions yielded a complex set of cognitive and affective behavioral profiles 

that suggest unique functional specialization across the FP. Functional characterization of 

the FP subregions revealed that the lateral portions of the FP mapped to memory and 

emotion domains, while medial clusters were associated broadly with emotion and social 

cognition processes. We further show that dorsomedial regions contain an emphasis on 

theory of mind and affective related paradigms whereas ventromedial regions couple with 

reward tasks.

Methodological Limitations

A few methodological limitations warrant attention in considering the present findings. 

Although we have applied several criteria for determining the optimal number of clusters, at 

present the field lacks a gold-standard criterion. As such, different sets of criteria might lead 

to further parcellation of the FP. Nevertheless, the three cluster solution appeared optimal by 

several different criteria. A second issue concerns the extent to which the results of the 

MACM technique may be biased by the types of studies in the neuroimaging literature. Peak 

activation coordinates of an individual fMRI study may reflect bias due to methodological 

issues in both functional connectivity and task-based activation results. Studies archived in 

BrainMap do not represent an even distribution of paradigms due to the nature that some 

tasks may be better suited to the MRI environment, used more frequently than others, or 

pertain to a cognitive domain of high interest. Furthermore, the functions probed in 

neuroimaging studies are almost certainly influenced by funding priorities of granting 

agencies, which in many cases place priority on functions relevant to understanding disease 

states. Among a set of tasks that engage the FP, those that are more frequently studied will 

likely have the most influence on task-related CBP. Similarly, methodological issues in 
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studies utilized in the MACM could influence the results. Although the BrainMap database 

only includes “whole brain” studies, susceptibility related signal dropout may lead to an 

underrepresentation of co-activations within certain areas, thus reducing the impact of these 

areas on the CBP. While this cannot be ruled out as a potential source of bias, it is clear from 

prior MACM analyses that the technique successfully identifies patterns of co-activation 

even in difficult to image regions (e.g., Robinson et al., 2010; Zald et al., 2013). More 

specifically, a recent CBP analysis successfully segmented the human subiculum (Chase et 

al., 2015), a region also known to be susceptible to artifacts, and thus this issue should not 

substantially impact the results of the CBP as long as there are a sufficient number of studies 

with sufficient image quality, as is the case for the large BrainMap database. Finally, the 

specific pattern of connectivity identified with MACM is agnostic to dynamics in function 

connectivity, and the causal direction and type (i.e., feedback, feedforward, etc.) of 

connections, which are critical for understanding information flow within high-level cortical 

networks (Ray & Zald, 2012).

Agreement and disagreement with Cytoarchitectonic and DTI Parcellation

The FP consists of two cytoarchitectonically distinct areas: lateral frontopolar area 1 (Fp1) 

and medial frontopolar area 2 (Fp2; Bludau et al., 2014). Using regions of interest based on 

their cytoarchitectonic division, Bludau and colleagues provided further evidence for a 

broad lateral vs. medial FP distinction based on patterns of coactivation and differential 

engagement in specific functional domains. We were therefore particularly interested 

whether task-based CBP would produce a similar solution. Consistent with the prior work, 

the combined dorsomedial and ventromedial clusters identified via our task-based CBP 

share a large portion of voxels with Fp2, while the lateral cluster in the current CBP analysis 

overlapped with Fp1. Despite these similarities, there are two notable differences between 

the cytoarchitectural results of Bludau et al. (2014) and the results of CBP. Most 

importantly, in the CBP analysis, the medial aspects of the rostral surface of the FP clustered 

with medial wall regions equivalent to Fp2, rather than clustering with the rest of the rostral 

surface, as would have been expected based on the cytoarchitectural boundaries in Bludau et 

al. (2014). It is worth noting that individual differences in cytoarchitectural boundaries exist 

in this region. Whereas in Figure 1a we display Bludau et al.’s regions with a strict 

boundary, in reality there are individual differences in the boundary between Fp1 and Fp2 

within this medial rostral zone, as can be seen in the probabilistic maps presented in Figure 

11 from Bludau et al. (2014). As such, this region may be viewed as transitional when 

considered across subjects. Nevertheless, the greater similarity of this area connectionally to 

the medial wall than the rostral surface regions was unexpected.

The most recognizable difference between the CBP and the cytoarchitectural segregation of 

the frontopolar cortex into Fp1 and Fp2 involves the split of the medial region into dorsal 

and ventral areas. While this specific split was not predicted based on existing 

cytoarchitectural divisions, it is consistent with a frequently articulated, although not always 

precisely defined, split between ventromedial vs. dorsomedial prefrontal cortex (e.g., 

Northoff & Bermpohl, 2004; Roy et al., 2012). Although not specific to just medial areas of 

FP, data from neuroanatomical tract tracing studies in macaques support a difference 

between dorsal and ventral (orbital) portions of area 10, with more dorsal portions showing 
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greater engagement of superior frontal regions, while ventral regions show preferential 

ventromedial connectivity (Petrides & Pandya, 2007). Nevertheless, this dorsal-ventral 

distinction appears more subtle than the lateral-medial distinction in that there is a 

significant overlap in the areas that co-activate with the dorsomedial and ventromedial FP, 

both within the medial FP itself and in more distal connections. For instance, within the 

medial FP zones there was a significant area of overlap in the co-activations suggesting the 

presence of a relatively broad transitional area between the dorsal and ventral sectors. 

Similarly, in posterior regions such as the retrosplenial cortex, there was significant overlap 

of voxels co-activating with both the dorso- and ventro - medial areas. Yet, there were 

substantial enough differences between the dorsal and ventral co-activation patterns to 

distinguish between the two regions indicating that differential functional zones can arise 

within a particular microstructural region. Functional differences also emerged in terms of 

the types of studies that engage the areas, providing support for a general distinction 

between dorso- and ventro- medial FP regions.

In summary, although there is broad agreement in distinguishing a lateral and medial FP 

region, the assignment of the most medial aspects of the rostral surface differs across 

analyses, as does the presence or absence of a dorsomedial vs. ventromedial distinction. We 

do not propose that the divisions that we describe based on functional connectivity should 

supplant cytoarchitectural definitions. Nevertheless, the present analyses do suggest that 

differences in functional connectivity allow distinctions that may not be apparent on the 

basis of cytoarchitecture alone. Cortex with nearly identical architectural features may share 

very similarly processing features, but due to differences in connections, they may be 

involved in distinguishable functions. Alternatively, a region that appears to be relatively 

homogenous on some cytoarchitectural features may nevertheless possess substantial 

differences in other anatomical features such as the types of interneurons, which could lead 

to distinct functional properties. Similarly, while an area may be treated as homogenous on 

architectural grounds because there is no clear qualitative boundary between areas, there 

may nevertheless be a gradient in anatomical characteristics that lead to distinct functional 

properties within the region even though the boundary between these functional zones 

remains imprecise. As such, the present discrepancy between parcellation using 

cytoarchitecture and task-related CBP should provoke further examination of the detailed 

quantitative features of FP structure and their relation to the functional properties of the FP.

The only prior connectivity based parcellation studies of the human FP utilized diffusion 

imaging of anatomical connection patterns. Much like the present study, Liu et al. (2013) 

identified a three-cluster parcellation scheme defined by a lateral, medial, and orbital region 

that best fit their DTI data. While the areas proposed by Liu and colleagues are not identical 

to the current suggested parcellation, the clusters share a majority of voxels with the 

dorsomedial, ventromedial and lateral clusters, respectively. Additional resting-state 

connectivity analyses presented by Liu et al. (2013) using the centers of mass of their DTI-

defined clusters identified similar patterns as the MACMs presented in the current study. 

However, it must be noted that the topography of the FP region displayed by Liu et al. does 

not fully fit with the applied topographical and cytoarchitectural boundaries of the FP, in 

that their scheme suggests that this cortex extends much further laterally in the ventral 

sections of the FP than in more intermediate or dorsal sections. This stands in contrast to 
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maps developed on the basis of cytoarchitectural features (Brodmann, 1909; Bludau et al., 

2014; Sarkisov et al. 1949), in which the lateral extension of the FP is at least as broad in its 

intermediate planes (z = 0) as its inferior planes. Because of this, the area that we label as 

lateral FP extends substantially more laterally than what is characterized as lateral FP by Liu 

et al., and some of the more lateral aspects of the area that Liu et al. describe as orbital 

correspond more closely to our lateral area and cytoarchitectonic area Fp1. Recently, 

Moayedi et al., (2014) used DWI to create two- and three-cluster subdivisions of the FP, 

ultimately concluding that the structural connectivity of the two-cluster solution was more 

consistent at the population level. A visual inspection indicates that solutions provided by 

Moayedi and colleagues are topologically similar to those of the current study, yielding a 

medial and lateral division of the FP at K = 2 with further breakdown of the medial cluster 

into ventral and dorsal subregions at K = 3. Resting state analyses of FP clusters by Moayedi 

and colleagues provided only a two-cluster solution where functional connectivity in the 

lateral cluster contained a high correspondence to that of the lateral cluster in the current 

study, however comparisons of the medial portion of the FP was not possible given the 

difference in number of clusters across studies. Likewise, clustering and connectional 

differences between Moayedi et al., (2014) and the current study can be largely attributed to 

differences in the number of clusters, as well as the defined boundaries of the FP. More 

specifically, Moayedi et al., (2014) used a cortical surface parcellation of BA 10 provided by 

FreeSurfer (http://surfer.nmr.mgh.harvard.edu/).

Of note, Moayedi et al. (2014) identified a “lateral” and “rostral” anatomical parcellation 

solution at k = 4 that could be visually interpreted as a sub-division of the lateral portion of 

the FP. However, Moayedi et al. ultimately suggested the 2- and 3-cluster solutions as more 

optimal given their greater consistency across subjects. Liu et al., (2013) produced similar 

results in their DTI based parcellation, citing greater inconsistency for parcellations 

containing a larger number of clusters. Additional previous review of the localization of 

activations related to different functional tasks has suggested that there are either two or 

three sub-regions in the frontal polar region (Gilbert et al., 2006; 2010). Similarly, the lateral 

portion of the FP eventually decomposed into smaller sub-regions in preliminary CBP 

analyses at higher k-means cluster solutions. However, these higher k-means solutions were 

less optimal because they were less hierarchically consistent, contained a larger percent of 

misclassified voxels, contained a greater amount of variation (with regards to voxel-wise co-

activation profiles) across filter sizes, and were less symmetric across hemispheres.

Task Based Functional Connectivity and Functional Differences

The specific pattern of co-activations revealed by the MACM analysis highlights a number 

of features of FP connectivity. First, there was marked divergence in the functional 

connectivity of the lateral and medial regions of the FP. This observation may seem circular 

given that the three FP regions were defined based on their divergent pattern of functional 

connectivity. Nevertheless, the extent of the divergence is remarkable, as there was little 

overlap between co-activations of the lateral and medial regions with exception for the 

posterior cingulate, left amygdala, and the FP itself. In accordance with general patterns of 

connections observed in tract tracing data from nonhuman primates (Barbas & Pandya, 

1989; Carmichael & Price, 1996; Petrides & Pandya, 2007), lateral portions of the FP 
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showed greater connectivity with more dorsolateral prefrontal regions, particularly in the 

middle frontal gyrus, while the medial FP regions showed greater association with areas 

along the superior frontal gyrus and the medial wall of the frontal lobe.

In general our MACM results show substantial similarities to the MACM analysis of 

cytoarchitecturally defined areas Fp1 and Fp2 reported in (Bludau et al., 2014). However, 

they differ in terms of some of the ventral prefrontal co-activations that have been 

articulated for Fp1. These ventral frontal co-activations appear to be strictly associated with 

ventromedial regions. Given their differential association across studies, it seems likely that 

these connections derive specifically from the ventral portions of the medial rostral surface 

that is part of Fp1, but whose task based functional connectivity is more similar to cortex 

along the ventromedial wall. The functional association of this ventromedial FP region to 

other areas along the ventromedial wall of the frontal lobe is consistent with the structural 

connectivity of this region in Macaque monkeys. Specifically, Carmichael and Price (1996) 

describe both medial and orbital portions of the FP as part of a larger medial frontal network 

based on their preferential pattern of connections with other medial regions.

The patterns of co-activations generally showed congruence with the differences in 

functional domains engaging the different FP sub-regions. For instance, the left lateral FP 

showed preferential engagement during working memory tasks, and both prefrontal and 

parietal areas that are active during working memory tasks showed functional connectivity 

with the lateral FP regions (Owen et al., 2005; Rottschy et al., 2012). On the other hand, 

despite a frequent engagement of the lateral FP during explicit memory tasks, the lateral FP 

failed to show co-activations with medial temporal lobe regions. To the extent that medial 

temporal lobe co-activations included the hippocampus, this was limited to medial FP, for 

which co-activations occurred contiguous with the amygdala. This discordance naturally 

raises a question as to what role the lateral FP may have in episodic memory if it is not 

engaged in conjunction with medial temporal regions. Although activated during memory 

retrieval, Koechlin and Hyafil (2007) argue that this engagement is unlikely to reflect the 

retrieval process itself, but that it instead reflects the coordination of multiple embedded 

subtasks necessary for the recurrent retrieval of relevant information and judgment of 

stimuli or representations necessary to complete the memory tasks. As such, these 

activations may be more reflective of the executive regulation of processes necessary for 

task performance as opposed to memory retrieval itself.

A distinguishing feature of the medial FP areas is their significant level of connectivity to 

limbic-paralimbic regions. Both medial FP areas showed significant and partially 

overlapping associations with the posterior cingulate/retrosplenial cortex, an area that is 

often associated with emotion and memory functions (Maddock, 1999; Vann et al., 2009). 

These connections are consistent with demonstrated efferents from area 10 to posterior 

cingulate cortices in monkeys (Petrides & Pandya, 2007). Similarly, both ventro- and 

dorsomedial FP showed functional connectivity with the amygdala, with a broader pattern of 

connection arising for the ventromedial FP. While the strength of direct projections between 

the amygdala and FP is relatively modest (Carmichael & Price, 1995; Ghashghaei et al., 

2007), the FP nevertheless sends direct efferents to the basolateral amygdala in nonhuman 

primates (Petrides & Pandya, 2007). Ventromedial FP was additionally the only part of the 
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FP that showed coactivation with the ventral striatum. Taken together, such connections are 

consistent with the frequent engagement of medial FP regions in emotional, reward-related 

and social processing tasks. This pattern is also consistent with the involvement of medial 

prefrontal networks in visceral functions (Price et al., 2006).

The presence of emotion and social processing as a core functional domain in the medial FP 

is consistent with past functional analyses of the medial FP (Bludau et al., 2014; Gilbert et 

al., 2006). Nevertheless, it is notable that there has sometimes been an implied or even 

explicit equation of the development of isocortical areas with the triumph of executive 

cognitive abilities over more “primitive” emotional processes (for example MacLean, 1990). 

Thus, the strong involvement of a portion of the FP in emotional processing may be viewed 

as a challenge to such a perspective. Yet, such emotional processing may be easily 

integrated into models of this portion of the brain. Koechlin and Hyafil (2007) posit that the 

FP implements cognitive branching and task selection on the basis of potential reward value. 

Other theorists have noted the FP’s potential role in evaluation of internal representations 

(Christoff & Gabrieli, 2000), including evaluations of the potential reward value of future 

actions (Boorman et al., 2009). Similarly, the ability to evaluate potential social responses 

figures heavily in action choice, and thus FP processing of current or predicted social 

consequences may directly contribute to these computational steps.

Conclusion

The current study presented a meta-analytic functional parcellation of the human FP based 

on co-activation patterns across thousands of neuroimaging studies archived in the 

BrainMap database. CBP analyses carried out independently for each hemisphere both 

support three-cluster solutions dividing the FP into dorsomedial, ventromedial, and lateral 

sub-regions. Results from these analyses suggest that differences in functional connectivity 

reflect aspects of brain organization that are overlapping, but not necessarily identical with 

distinctions based on cytoarchitecture (Bludau et al., 2014). Consequently, future 

development of carefully constructed multimodal mapping techniques may contribute to a 

more comprehensive understanding of cortical organization. The co-activation based 

parcellation method additionally provided the unique advantage of facilitating probes into 

the cognitive implications of a particular solution thus allowing us to further elucidate 

functional specificity within human FP.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The volumes of interest used in the current CBP analysis were derived from A) the 

cytoarchitectonic borders of area frontopolaris one (FP 1 in red) and area frontopolaris two 

(FP 2 in blue) as identified in Bludau et al., (2014). B) The FP1 and FP2 within each 

hemisphere were joined to create a single binary mask for the right hemisphere and an 

additional binary mask for the left hemisphere for the CBP analysis.
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Figure 2. 
CBP was performed on the right and left FP independently. Optimal solutions contained a 

three-cluster solution for each hemisphere. Right and left dorsomedial, ventromedial, and 

lateral clusters are shown in blue, green, and red, respectively.
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Figure 3. 
Meta-analytic connectivity modeling (MACM) was performed on each of the ensuing 

clusters resulting from the preferred K-means clustering solution as indicated in Table 1. 

MACMs identify regions that commonly co-activate with the particular seed region. Right 

and left dorsomedial, ventromedial, and lateral clusters are shown in blue, green, and red, 

respectively. Cluster-level corrected threshold of P < 0.05 (cluster-forming threshold at 

voxel-level P < 0.001).
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Figure 4. 
A forward and reverse inference analysis was performed on each cluster to identify 

behavioral domains and paradigm classes presented in the BrainMap database that were 

significantly associated with each cluster. Results from the reverse inference analyses are 

shown, however metadata fields meeting significance in the forward inference analyses 

correspond highly with those shown here. Metadata fields meeting significance (p < 0.05) 

are shown in blue for the left hemisphere and teal for the right hemisphere.
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