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Non-linear effects of age on white matter integrity are ubiquitous in the brain and indicate that these effects are
more pronounced in certain brain regions at specific ages. Box-Cox analysis is a technique to increase the log-
likelihood of linear relationships between variables by means of monotonic non-linear transformations. Here
we employ Box-Cox transformations to flexibly and parsimoniously determine the degree of non-linearity of
age-related effects on white matter integrity by means of model comparisons using a voxel-wise approach. Anal-
ysis of white matter integrity in a sample of adults between 20 and 89 years of age (n = 88) revealed that con-
siderable portions of the white matter in the corpus callosum, cerebellum, pallidum, brainstem, superior occipito-
frontal fascicle and optic radiation show non-linear effects of age. Global analyses revealed an increase in the av-
erage non-linearity from fractional anisotropy to radial diffusivity, axial diffusivity, and mean diffusivity. These
results suggest that Box-Cox transformations are a useful and flexible tool to investigate more complex non-
linear effects of age on white matter integrity and extend the functionality of the Box-Cox analysis in

neuroimaging.

© 2015 Elsevier Inc. All rights reserved.

Introduction

Effects of aging on white matter integrity are pronounced and have
been well-documented in the literature (Abe et al., 2008; Hsu et al.,
2008; Nusbaum et al., 2001; Pfefferbaum et al., 2000; Salat et al.,
2005; Sullivan et al., 2001). Fractional anisotropy (FA) tends to decrease
in most brain regions while mean diffusivity (MD) and radial diffusivity
(RD) tend to increase with advancing age. Axial diffusivity (AD), howev-
er, shows a region-dependent behavior; some regions showing in-
creased AD in function of age, and some showing decreased AD.
Although the exact mechanisms driving these changes in diffusivity
measures and FA are still not completely understood, it is generally
agreed that the changes in diffusivity and FA indicate an age-related
loss of fiber structure and mass in the white matter of the brain (Gong
et al,, 2014; Lockhart and DeCarli, 2014).

The shape of the relation between white matter integrity and age is
not the same across different brain regions or different age groups.
While in some regions changes in white matter integrity seem to change
at a relatively constant pace across different age intervals, there are var-
ious examples in the literature of a non-linear relationship between dif-
fusivity and FA (Michielse et al., 2010; Westlye et al., 2010). Moreover,
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different parameters of diffusivity and FA also can show a specific behav-
ior (Lebel et al., 2010). Several methods have been employed to investi-
gate more complex associations between age and white matter integrity.
One of them is to define regions or fiber tracts of interest or to parcellate
the brain regions (Lebel et al., 2010; Pfefferbaum et al., 2013) and exam-
ine the impact of age in each one of them. Another one is to fit higher-
order polynomials to diffusion values at a voxel-wise basis (Hsu et al.,
2008). Generally, several methods are combined to provide information
on more global and more local patterns of age-related changes in diffu-
sivity and FA (Hsu et al., 2010; Westlye et al., 2010).

Higher-order polynomials are a useful and flexible tool to quantify
non-linear properties of the association between variables (Hsu et al.,
2010; Pfefferbaum et al., 2013; Sala et al., 2012; Westlye et al., 2010).
Higher-order polynomials have the property to characterize non-
monotonic effects of age with the help of only a few model parameters
describing transformations of the independent variables typically ac-
cording to a priori integer exponents (i.e., quadratic and cubic terms).
The employment of higher-order polynomials may have some limita-
tions as well (Fjell et al., 2010).

First, consider a white matter structure in which the true relation be-
tween age and white matter integrity is a fourth-order polynomial: in
this case, a third-order polynomial fitted to age will probably still con-
vey significant results although the true degree of non-linearity is
more extreme than the statistical model was specified to describe. Ac-
cordingly, if the correct exponent were 0.5, a linear model would still
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show reasonable fit, although one may agree that it is only a coarse ap-
proximation to the correct shape of the age-related effect.

Second, the ability to model non-monotonicity may be not always an
advantage when evaluating age-related effects in adult populations. In-
spection of scatterplots depicting age vs. white matter integrity in the lit-
erature is illustrative in this respect: Usually, the non-monotonic age-
related effects are produced by the trajectory of early development occur-
ring before individuals reach adult age (Fjell et al., 2010; Pfefferbaum
et al, 2013; Sala et al., 2012; Westlye et al., 2010). For this reason, one
may argue that evidence for non-monotonic age-related effects in adult
life is limited at best, and that the ability of monotonic non-linear models
to describe age-related effects in adults should be assessed.

Finally, under certain circumstances the researcher may prefer for
reasons of parsimony and straightforwardness of interpretability not
to decompose the effect of age into different terms age + age® + age®
but rather to preserve its natural scale. When this is the case, the depen-
dent variable should be transformed.

The Box-Cox analysis (Box and Cox, 1964) is a technique to simplify
statistical models by means of monotonic transformations of the depen-
dent variable with several applications in neuroimaging, particularly re-
garding the Gaussian field based statistical models (Miranda et al., 2013;
Pajevic, 2011; Ziegler et al., 2014).

As we will show in the following, Box-Cox transformations may help
to overcome the limitations of higher-order polynomial regression
enumerated above. First, Box—Cox transformations offer a straightfor-
ward way to determine the degree of nonlinearity by means of a A-
exponent, which can assume any real value and account flexibly and ac-
curately for different degrees of non-linearity in the data. Second, Box-
Cox transformations are monotonic. Third, Box-Cox transformations
are usually applied to the dependent variable, so that the interpretabil-
ity of the effect of the predictor age is very good. The Box—-Cox analysis
performs transformations of data to obtain a coefficient A which can
be interpreted as the degree of non-linear bias observed when comput-
ing the linear association between variables. The dependent variable y is

transformed in a monotonic and non-linear way as described in Eq. (1).
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According to this definition, only when the dependent variable y is
>0 the A-exponent can be estimated (Box and Cox, 1964). When dealing

Positive association

with diffusivity or FA data, this is not an important limitation since one
is interested mainly in brain regions showing some degree of diffusivity
and FA, which is always larger than zero. Whenever the Box-Cox trans-
formation can be calculated, one has a simple metric to express non-
linear associations between diffusivity and FA measurements and age
in the brain.

A A-exponent of 1 reveals that the association is linear and that no
transformation of data is necessary. In turn, the farther away the A-
exponents are from 1, the higher is the degree of non-linearity observed.
When considering the relative impact of age, four main cases of non-
linearity can be identified, namely, two classes of accelerating age-
effects and two classes of decelerating age effects. Accelerating age-
effects, i.e.,, much larger age-related changes in later years than in
young adulthood are found in two cases, when the diffusivity or FA
are positively associated with age and the A-exponent is <1 or when
they are negatively associated with age and the A-exponent is >1
(Fig. 1). Accordingly, decelerating age-effects characterize larger age-
related changes in young adulthood than in later years. Decelerating
age-effects are associated with the A-exponent > 1 when diffusivity or
FA is positively associated with age and a A-exponent < 1, when they
are negatively associated with age (Fig. 1).

The A-exponent established by means of Box-Cox analyses yields
the monotonic transformation of the dependent variable that produces
largest log-likelihood for the prediction of a dependent variable by a set
of predictors (Sakia, 1992). For these reasons, the slopes on age calculat-
ed after the transformation of the dependent variable have always the
same sign and are associated with R? values which are at least as high
as for the non-transformed dependent variable, when no nonlinearity
is present in a certain voxel and higher R? values, when non-linearity
is present. In the present study, Box-Cox transformations were
employed to determine voxel-wise the degree of non-linearity of age-
effects. We employed a combination of robust regression analysis and
the Box—Cox transformations to develop a straightforward metric to de-
termine the pace of age-related changes and their characterization as
linear, accelerating, or decelerating age effects.

Methods
Participants

The sample included 88 healthy adults between the ages 18 and 89
(M = 45.47,SD = 18.37, 54 female; Table 1). Written informed consent
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Fig. 1. Shape of the association between age and diffusivity as captured by A-exponents = 1, 0.5, and 2. Linear effects of age on diffusivity are associated with A-exponent = 1 (black line).
Accelerating vs. decelerating effects of age are associated with A-exponents larger or smaller than 1 depending on whether the slope of diffusivity on age is positive or negative. The trans-
formation of diffusivity measurements using the A-exponents depicted along with the red and green curves maximizes the linear association between these measurements of white matter

diffusivity and age.



M. Morozova et al. / Neurolmage 125 (2016) 1119-1130 1121

Table 1
Socio-demographic description of the sample.
Age interval Mean age + SD  Number of subjects Education
(years) (years) (males/females) (<12 years/>12 years)
18-39 26.69 £ 5.34 36 (17/19) 22/14
40-59 49.04 + 6.31 27 (8/19) 16/11
60-89 68.64 + 5.96 25 (9/16) 13/12

was provided by all participants as well as a health-screening question-
naire. All participants were healthy and reported no history of chronic
psychiatric or neurological illnesses, heart or brain surgery, and had nor-
mal or corrected to normal vision. Participants over 60 years were addi-
tionally screened for dementia using the Mini Mental State Examination
(MMSE, Folstein et al., 1975), all scoring over 27 points and for depres-
sion using the General Depression-scale in German (“Allgemeine
Depressionsskala”; Hautzinger et al., 2012) ensuring that they were not
depressed and free from dementia. All participants received monetary
reimbursement at the end of the testing. All but 10 participants were
right-handed. Out of these 10, three used their right hand to write.
The study was approved by the local ethics committee and is in line
with the Declaration of Helsinki.

MRI acquisition

Imaging data was acquired on a 3 T Siemens Skyra (Siemens Medical
Systems, Erlangen, Germany) using a 32 channel head coil. Restraining
foam pads were used to minimize head movement. For diffusion
weighted images a single-shot echo planar imaging sequence was
used. The parameters were: TR/TE/flip angle = 6600 ms/95 ms/90°,
matrix size = 122 x 122 mm, FoV = 240 mm, 50 transverse slices of
2 mm thickness measured, slice gap = 0.5 mm, GRAPPA acceleration
factor = 2. 64 diffusion sensitizing gradient directions applied
(b-value = 1000 s/mm?) and one non-diffusion weighted image
(bvalue = 0 s/mm?). A total acquisition time of 7 min 30 s was required.
Structural T1 images were obtained using a MPRAGE sequence with the
following parameters: TR/TE/TI = 2530/2.07/900 ms, flip angle = 9°,
number of slices = 176, slice thickness = 1 mm, matrix = 256 x 256,
and scan time = 6 min 03 s.

MRI data preprocessing

First, b-values and b-vectors were extracted using MRIcron. The
resulting images were preprocessed using the University of Oxford's
Center for Functional Magnetic Resonance Imaging of the Brain
(FMRIB) Software Library (FSL) in a standard multi-step procedure:
(a) motion and eddy current correction, (b) removal of the skull and
non-brain tissue using the Brain Extraction Tool (BET; Smith, 2002),
and (c) voxel-wise calculation of diffusion tensors and computation of
fractional anisotropy (FA), mean (MD), radial (RD), and axial diffusion
(AD) maps using DTIfit. All of those steps are part of the FMRIB Diffusion
Toolbox (FDT). The maps were used in the subsequent processing in
Tract-Based Spatial Statistics (TBSS), which is also implemented in the
FSL Toolbox. Each participant's FA volume was brought into a
1 x 1 x 1 mm> common space (Montreal Neurological Institute space;
MNI152) via the FMRIB58_FA template using FMRIB's nonlinear regis-
tration tool (FNIRT).

To ensure that each voxel used in the statistical analysis was really
part of the white matter the subsequent procedure was followed. The
T1-weighted images were registered to the b0-images of the same sub-
ject using a rigid body transformation in SPM12. The b0O-image is the
non-diffusion weighted image of the DWI data set, hence shows more
signal. For each participant, the T1-image was segmented using
SPM12 in native space (tissue types = 6, sampling distance = 3, seg-
mented image voxel size = 1 x 1 x 1 mm?) resulting in individual

white matter masks after binarization. These masks were applied to
the FA-, MD-, RD-, and AD-images in native space. Thereafter, TBSS
was used and the same voxelwise statistical analysis was carried out
for the individual binary masks and the masked FA-, MD-, RD- and
AD-images, by applying the nonlinear warps obtained from unmasked
FA images. As the following statistical analysis is a voxel-wise one, we
skipped the skeletonization step of TBSS.! Using R, a general mask was
computed out of the individual masks now in MNI space, containing
only voxels in which every participant presented white matter. This
procedure left 230.079 voxels for statistical analysis.

Box-Cox transformations and statistical analysis

FA, MD, RD, and AD images were masked using a white matter mask
obtained from the mean of coregistered T1 images. Diffusion values
were extracted from individual images. Only those FA, MD, RD, and
AD values larger than 0 observed consistently in every individual were
considered in further analyses. A Box-Cox transformation analysis was
employed to establish the value of the A-exponent (Box and Cox,
1964) employed to maximize the log-likelihood for a regression
model describing the effect of age on the (transformed) FA, MD, RD,
and AD values. The A-exponent can be understood as an index of the de-
gree of numerical compression necessary to linearize the relation be-
tween measurements of white matter integrity and a set of predictors.
To perform the Box-Cox transformation analysis, different libraries of
the software R were employed: “MASS” (Venables and Ripley, 2002)
for the Box-Cox transformation and robust regression, “snowfall” for
parallel computing (Knaus, 2013), “brainR” for display of imaging data
(Muschelli, 2014), and “oro.nifti” (Whitcher et al., 2011) to read individ-
ual images in and out of R (CRAN, http://cran.r-project.org/). The A-
exponent maximizing the log-likelihood estimator was established in
each voxel by means of successive approximations. Pilot analyses re-
vealed that the numerical interval [—6, 6] was sufficient to capture
the behavior of all measures of white matter integrity. After the pilot
analyses, the search for the most adequate A-exponent was set to be
performed in the numerical interval between —6 and 6 in successive
steps of 0.01. The A value showing the highest log-likelihood for
model fit for the model diffusivity measurement < —age + sex + resid-
uals was determined for each voxel individually and stored at its coordi-
nates in a NIfTI image. The interpretation of A is the following: When the
value of A is close to 1, the relation with age + sex is considered to be
linear, a A = 0.5 equals the square root vdiffusivity, when A is close to
0, the relation is logarithmic and so on (see Formula (1)). Generally,
when the value is in the interval (—6, 1], the non-linear compression
describes an acceleration of positive age-effects and a deceleration of
negative age-effects in comparison to linear effects. When A values are
in the interval [1, 6), the non-linear compression describes a decelera-
tion of positive age-effects and an acceleration of negative age-effects.
The Box-Cox analysis as performed combining the R libraries MASS,
oro.NIfTI and snowball is not time-consuming and can be performed
with considerable numerical accuracy within a few minutes of work
on a standard PC even for a large number of participants and a large
number of voxels per participant.

Non-linear transformations involving large exponents may lead to
an inflation of the R? due to the presence of outliers. To circumvent
the negative impact of outliers in the estimation of the degree of non-
linearity of age-related effects, robust regression models were
employed in all statistical calculations (Hampel et al., 1986). This
is the standard procedure recommended to overcome problems
with outliers which can be associated with Box—Cox transformations

T No smoothing was applied to the diffusion images, as results obtained with different
smoothing methods and different kernel sizes are heterogeneous (Assaf and Pasternak,
2008; Carmichael et al., 2013; Viswanath et al., 2012) and not always increase the validity
of Gaussian assumptions (Jones et al., 2005).
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(Sakia, 1992).2 Since data are transformed monotonically in the Box-
Cox analysis, the interpretation of model fit is straightforward regarding
the presence of deviations from linearity.

Model evaluation and comparison

To correct for multiple comparisons, p-values were thresholded to
correct for false discovery rate (FDR; Benjamini and Yekutieli, 2001).
A corrected threshold of p < 0.05 and at least 80 voxels was considered
statistically significant. Because both transformed and non-transformed
models have the same number of degrees of freedom, the statistical
comparison of both models was performed by means of the corrected
Akaike Information Criterion (AICc, which adjusts the likelihood esti-
mate for sample size). For the transformed and the non-transformed
model, AICc values were calculated and normalized to obtain the Akaike
weights w; (Burnham and Anderson, 2002) for each model in each
voxel. The decision to consider the transformed model better than the
non-transformed voxel in a given voxel was based on the confidence
set of candidate models (analogous to a confidence interval for a
mean estimate), which includes models with Akaike weights that are
within 10% of the highest (Royall, 1997). When in a given voxel the
Akaike weight Wyransformed model Was at least 10 times larger than the
Whon-transformed model, W€ considered to have sufficient evidence to con-
sider the transformed model to fit the age effects on diffusion data bet-
ter than the non-transformed model.

Results

For the sake of straightforwardness, only voxel-wise analysis of data
will be reported. Moreover, although sex-related effects have been in-
cluded in the regression models, they will not be reported.

Box-Cox analysis — global analysis of A-exponents

The regression slopes for age on DTI indices were calculated in each
voxel. The number of voxels presenting either a positive or a negative
slope on age is depicted in Table 2. The majority of voxels showed a de-
crease in FA and an increase in MD and RD in function of age. Moreover,
approximately as many voxels showed either an increase or a decrease
in AD. The A-exponents were estimated in each voxel as well. Marginal
distribution parameters are depicted in Table 2 separately for voxels
showing either an increase or decrease in the diffusivity parameters
and FA in function of age. Kernel density plots for the marginal distribu-
tion of A-exponents are presented in Fig. 2. Voxels showing an increase
as well as those showing a decrease in FA presented similar A-
exponents, which in average were in the interval between 0.5 and 1.
The A-exponents of FA were slightly leptokurtic, what means that
more voxels showed A-exponents close to the average than would be
expected from a Gaussian distribution. Together, these results suggest
that the effect of age on FA only shows a low degree of non-linearity, ir-
respective of slopes being positive or negative. RD also shows a similar
behavior, but the average A-exponents between 0.22 and 0.75 suggest
a stronger degree of non-linearity.

Interestingly, MD and AD have a more heterogeneous behavior. In
voxels with a positive slope on age, the average A-exponents of MD
and AD were more strongly non-linear, since A < 0. However, in the
voxels with a negative slope on age, the average A-exponents of MD
and AD were very close to linear as A was close to 1. A more detailed in-
spection of the variance of A-exponents of MD and AD reveals a hetero-
geneity at least two times as large as that observed in the A-exponents

2 To ascertain that Box Cox transformations do not lead to capitalization on noise mag-
nification, we run simulations of the form noise ~ age + sex + residuals employing nor-
mal, lognormal and beta distributions to generate noise with different degrees of non-
linearity. Results of these simulations revealed that regardless of the non-linear transfor-
mation applied to data, statistical models evaluating the effect of age after transformation
held to fair nominal significance levels i.e., alpha-error = 5% (see the S1 Support online
materials for further details).

Table 2
Distribution of A-exponents for diffusivity measurements and FA averaged across all
voxels.

Pos/neg Number of Median Mean  Variance Skew Kurtosis
slope voxels A A A A A
FA  Pos 33,619 0.51 057 1.16 0.61 1.97
Neg 196,460 0.75 0.76 091 0.28 1.71
MD Pos 195,069 —0.45 —048 2.66 0.06 —0.29
Neg 33,847 0.85 0.69 2.16 —047 0.41
RD  Pos 202,734 0.29 022 098 —026 —0.01
Neg 21,740 0.84 0.75 0.75 —0.43 0.39
AD  Pos 132,001 —0.16 —020 216 —0.09 —0.04
Neg 97,821 0.62 059 1.73 —0.11 0.08

of FA and RD. In summary, the degree of non-linearity seems to increase
from FA, RD, AD to MD and the variability of A-exponents is smaller in
RD and FA than in AD and MD.

Voxel-based analysis of age on DTl indices

FDR-corrected p-values for the effect of age on different measure-
ments of diffusion were calculated voxel-wise for non-transformed
and Box-Cox transformed models separately using regression (Fig. 2).
The Box-Cox transformed model produced a larger number of signifi-
cant voxels than the non-transformed model for all diffusivity measure-
ments and FA. With over 20,000 significant voxels, FA and RD showed
the most pronounced age-related changes (ngaiin = 21,094, Npapox =
21,540, ngpjin = 22,902, Nrppox = 23,572). A considerably smaller num-
ber of voxels presented age-related MD changes (ny, = 5830, Npox =
7135) and AD changes (ny, = 2387, npox = 2503). The localization of
neuroanatomical structures showing linear and non-linear age-related
effects is reported below.

Spatial localization of significant age-effects

Clusters defined with the help of the Juelich Histological Atlas
(Eickhoff et al., 2005, 2006, 2007) with an FDR corrected threshold of
p<0.05 and k > 80 voxels are reported (Figs. 3 and 4). When the Juelich
Histological Atlas could not localize one area, the Talairach Atlas
(Lancaster et al., 2007) was used. Localization of clusters obtained for
the non-transformed and the Box-Cox transformed model was compa-
rable. For this reason, only the coordinates of the non-linear effects ob-
tained from Box-Cox transformations will be described in detail, below.

FA — Box—-Cox transformed model

The superior orbitofrontal fasciculus and the callosal body share the
large cluster (k = 16,437). Another cluster is shared by the body of CC
and the left optic radiation (k = 377), while two clusters can be
assigned exclusively to the left (k = 328, k = 84) and one to the right
(k = 151) optic radiation. Five clusters can be allocated in the CST,
three in the left (k = 452, k = 293, k = 130) and two in the right
(k =226,k = 109) hemisphere. The left superior longitudinal fasciculus
contains two clusters (k = 283, k = 103), the brainstem one cluster
(k = 90) and the fornix, also one cluster (k = 84). One cluster can be
found in the left sub-lobar extra-nuclear white matter (k = 99).

MD — Box—-Cox transformed model

A similar pattern as for the linear model can be found for the Box-
Cox model. Seven out of 18 clusters are located in the body of CC, 4 in
the left (k =818, k = 323,k = 100, k = 80) and three in the right hemi-
sphere (k = 626, k = 304, k = 86). Further 4 clusters can be assigned to
the left CST (k = 590, k = 123, k = 121, k = 109) and one the right
(k = 644). Another cluster can be found in the right optic radiation
(k = 285), another in the right frontal (k = 270), one in the left frontal
white matter (k = 274). Furthermore, one cluster can be assigned to the
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Fig. 2. Kernel density plots for the marginal distribution of A-exponents of positive associations (above) and negative associations with age (below).

right sub-lobar extra nuclear white matter (k = 84), one to the left pa-
rietal (k = 276) and the right temporal (k = 81) white matter.

RD — Box-Cox transformed model

The largest clusters are shared by the body of CC and the left superior
orbitofrontal fasciculus (k = 9633), the right cingulum (k = 4556), the
right CST (k = 2809) and the right optic radiation (k = 815). Two clus-
ters can be exclusively allocated to the body of CC (k = 1039, k = 288)
and one to the left CST (k = 1200). Further two clusters can be found in
the right frontal (k = 255, k = 86) and two in the left parietal white
(k =422, k = 132) matter.

AD — Box—Cox transformed model

5 clusters were found, four thereof can be found in the body of CC,
one cluster in the left (k = 760), two clusters in the right (k = 587,
k = 83) hemisphere and one in between (k = 101). The fifth cluster
can be assigned to the CST (k = 354).

Model comparison: transformed > non-transformed model

Table 3 presents the distribution of A-exponents where the trans-
formed Box-Cox model fits better than the linear model. Strong non-
linear effects of age on FA, RD, AD, and MD were observed. There was
a significantly better fit for the non-linear model for both, FA and AD
in a substantial number of voxels (kga = 1749 and kap = 1575). For
MD and RD, respectively, an even larger number of voxels showed a sig-
nificantly better fit for the non-linear model (kyp = 5813 and kgp =
4365). The proportion of voxels showing either a positive or negative
age-related effect was comparable to that observed in the marginal dis-
tribution in FA, MD, and RD: in all cases at least 80% of voxels showed
either a decrease in FA or an increase in MD and RD. In contrast to the
balanced ratio between positive and negative slopes observed in the
marginal distribution of AD (Table 2), voxels with a positive slope on
age predominated among those showing non-linear effects. For AD,
over 80% of voxels revealing non-linear age related effects also showed
a positive slope on age.

The A-exponents in MD and AD were close to — 3 and indicating
considerably late onsets for accelerating positive age-effects as well as

considerably early onsets for decelerating negative age-effects. Again,
the degree of non-linearity in FA was lower than in RD, AD, and MD.
Moreover, the variance of A-exponents across voxels was generally larg-
er in comparison to the marginal distribution (Table 2) for FA and AD,
but comparable to MD and RD.

Localization of non-linear age effects

The spatial distribution of voxels showing significantly better model
fit for the Box—Cox transformed model than for the non-transformed
model was assessed with the help of the Juelich Histological Atlas
(Eickhoff et al., 2005, 2006, 2007). Only clusters larger than k = 80
with p-values FDR-corrected to 5% are reported. A total of 22 different
clusters of voxels were identified (Table 4 and Fig. 1 of Support online
materials). Accelerating age-related effects have been observed in FA
in the left cerebellar declive, in MD in the left and right callosal body,
right optical radiation and the right sub-gyral white matter, in RD in
the left and right callosal body and right optical radiation and, finally,
in AD in the left superior occipito-frontal fascicle. Decelerating age-
related effects were observed in FA in the left pallidum and left superior
occipito-frontal fascicle, and in both MD and RD in the left brainstem.

Scatterplots for the age-related effects are presented in Fig. 5A for all
voxels pooled together and Fig. 5B for individual clusters. In Figs. 5A and
B transformed and non-transformed values are plotted in function of
age and allow a view of the effects of Box-Cox transformation on diffu-
sivity measurements and FA. A lowess fit curve for non-transformed
data is also displayed as in previous work (e.g., Westlye et al., 2010).
Transformed values tend to show a more linear association with age
and the dispersion of data points is smaller than in the non-
transformed data.

Confidence intervals for A-exponents in each neuroanatomical structure

To further evaluate how individual neuroanatomical structures re-
spond to non-linear age-related effects, 95% lower and upper confi-
dence intervals for individual voxels within each neuroanatomical
structure were depicted in function of their A-exponents (Fig. 6). MD,
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Fig. 3. Voxel-based maps of significant age-effects on fractional anisotropy (FA) and mean diffusivity (MD; p < 0.05, FDR corrected) as computed by robust regression for the linear model

(blue) and the Box-Cox model (green).

AD and FA clusters show high heterogeneity while RD shows systemat-
ically a comparatively low heterogeneity in A-exponents (Fig. 6).

Inspection of the first three plots of Fig. 6 reveals that although these
clusters have a similar amount of voxels (Table 4) the heterogeneity of
A-exponents and confidence intervals for FA is larger in the left superior
occipito-frontal fascicle than in the pallidum or in the cerebellar declive.
MD showed large heterogeneity in the degree of non-linearity in the
callosal body and optical radiation and slightly less variability in the
subgyral white matter of the left prefrontal cortex and brainstem. A sim-
ilar pattern was observed in smaller scale for RD in the same neuroana-
tomical structures. Finally, AD showed high variability in the degree of
non-linearity in the callosal body and the left superior occipito-frontal
fascicle. Generally these results point out that the heterogeneity of A-
exponents depends on the diffusion measurement at hand as well as
on the neuroanatomical structure being examined.

Discussion
In the present study, we employed monotonic non-linear Box-Cox

transformations (Box and Cox, 1964) to investigate effects of age on
white matter diffusivity and FA. This approach may complement the

more traditional methods based on the evaluation of higher-order poly-
nomials to investigate non-linear effects of age and is in line with sever-
al other applications of Box-Cox transformations in neuroimaging
(Miranda et al., 2013; Pajevic, 2011; Ziegler et al., 2014). In the Box-
Cox analysis, monotonic non-linear transformations were applied to dif-
fusivity measurements and FA to determine which A-exponent yields
the highest log-likelihood when modeling the effects of age. The
A-exponent was calculated voxel-wise for FA, MD, RD, and AD and
used to determine the degree of non-linearity of the effect of age. The
majority of all voxels presented a A-exponent close to 1, meaning that
the effect of age in these voxels seems to be largely linear. Nonetheless,
a considerable number of voxels showed A-exponents farther away
from 1, which is indicative of the presence of non-linear effects of age.
Interestingly, a lower degree of non-linearity was observed in FA and
RD and a higher one in AD and MD. Similar results were obtained
when evaluating the variability of A-exponents across voxels: FA and
RD showed lower variance across voxels while the A-exponents obtain-
ed for AD and MD revealed two times more variability. Inspection of the
distribution of A-exponents and the respective confidence intervals
within clusters of voxels, in which strong non-linear age-related effects
have been detected, revealed different degrees of heterogeneity in
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BoxCox

Boxcox

Fig. 4. Voxel-based maps of significant age-effects on axial diffusivity (AD) and radial diffusivity (RD; p < 0.05, FDR corrected) as computed by robust regression for the linear model (blue)

and the Box-Cox model (green).

A-exponents. Some neuroanatomical regions presented very homoge-
nous A-exponents in single voxels while other ones presented very het-
erogeneous coefficients, which ranged from slightly non-linear to
strong non-linearities. FA presents a distribution of A-exponents similar
to AD and MD. Moreover, model comparisons revealed that the large
majority of non-linear effects of age had a A-exponent < 1 regardless
of the slope being positive or negative for all diffusivity measurements.

Table 3
Distribution of A-exponents for diffusivity measurements and FA averaged across voxels
where the Box-Cox model fits better than the linear model.

Pos/neg  Number of  Median  Mean Varianz ~ Percentage of
Slope voxels A A A significance
FA Pos 183 —0.93 —080 1.17 0.5
Neg 1566 —0.76 —043 258 0.8
MD Pos 5477 —3.05 —2.94 1.73 2.8
Neg 336 —1.96 —-1.77 2.26 1.0
RD Pos 4158 —1.52 —143 091 2.0
Neg 207 —1.01 —099 052 1.0
AD Pos 1382 —3.04 —3.01 1.25 1.0
Neg 293 —2.06 —122 594 0.2

For FA on the other hand, one cluster was found showing a negative
slope and A-exponents > 1. Finally, a large number of neuroanatomical
structures presented accelerating non-linear age-related effects, where-
as a smaller set of other regions showed decelerating non-linear age-
related effects.

These results replicate and extend previous findings obtained with
higher-order polynomial regression models. Moreover, the localization
of non-linear age-related changes in the corpus callosum, globus
pallidus, left brainstem, and optic radiation is in line with the literature
and will be discussed in more detail below.

The distribution of A-exponents for effects of age on white matter integrity

The distribution of A-exponents across voxels for FA, MD, RD, and AD
was confined to the interval between —6 and 6 and showed a clear
central tendency. More importantly, the large majority of voxels
showed A-exponents in the interval between —4 and 4. As shown in
Fig. 6, the confidence intervals for these estimates involved in some
cases values even below — 6. These results indicate that the degree of
non-linearity can be higher than quadratic or even cubic terms can ac-
curately describe. On the other hand, these results also indicate that
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only a negligible number of voxels show the degree of non-linearity
more extreme than the fourth exponent or its reciprocal. Inspection of
the average A-exponents and their kernel densities indicates that the
degree of non-linearity increased from FA, RD, AD to MD. Moreover,
MD and AD showed the largest variability in the A-exponent across
voxels while FA and RD showed a smaller variance, which was close
to 1. This indicates that the non-linear effects of age on MD and AD
are much more heterogeneous. This finding is consistent with previous
studies pointing out that the global effect of age on FA is predominantly
linear, while the global effect of age on MD was reported to be quadratic
(Hsu et al., 2010). Importantly, the slightly leptokurtic distribution
across voxels of A-exponents for FA reveals that the proportion of all
voxels showing a linear association with age is larger than it would be
expected based on a Gaussian distribution. This reinforces previous
findings on the predominantly linear behavior of FA (Hsu et al,, 2010).

Several studies have shown a quadratic relationship between age
and diffusion measurements in specific neuroanatomical white matter
regions (Hsu et al., 2010; Sala et al., 2012; Westlye et al., 2010). How-
ever, previous studies reporting highly non-linear effects were limited
to track-based statistics (e.g., Michielse et al., 2010). Hitherto, no study
has been able to report voxel-wise statistical evidence for more extreme
non-linear associations. In contrast, our results suggest the presence of
non-linear effects of different degrees at the level of single voxels and
individual neuroanatomical structures, because regression models in-
cluding Box-Cox transformed measures yielded better fit statistics
than the non-transformed measures. In this vein, two aspects of these
results deserve further characterization: first, the degree of non-
linearity expressed by the A-exponents and their spatial distribution
in white matter. The stronger the non-linear effect of age, the farther
away is the A-exponent from 1 and the larger are the differences in
the pace of development across adult age. Therefore, an accurate esti-
mate of the degree of non-linearity is informative about the amount of
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acceleration or deceleration of age-related changes. Second, the spatial
distribution of A-exponents reveals not only which white-matter struc-
tures show accelerated or decelerated age effects but also the extent to
which the voxels in this structure show more or less the same trend in
development. This will be discussed in more detail below.

Voxelwise analysis of the A-exponent

The spatial distribution of voxels revealing significant age-related ef-
fects was highly similar in both the transformed and the non-
transformed model (Figs. 3 and 4). This is due to the fact that for the ma-
jority of the voxels, non-linear transformations of FA, MD, AD, and RD do
not improve the model fit in comparison to untransformed data. Re-
garding FA, both transformed and non-transformed models revealed
age-related effects in the cortico-spinal tract, optic radiation the
splenium of the corpus callosum, small medial parts of the uncinate fas-
cicle, the superior longitudinal fasciculus as well as the inferior fronto-
occipital fascicle when encompassing the external/extreme capsule sys-
tem (EC/EmC), bilaterally. Regarding MD, both transformed and non-
transformed models revealed age-related effects in the body of corpus
callosum, cortico-spinal tract, the frontal white matter, and the superior
longitudinal fascicle (in the right hemisphere extending into more dor-
sal/parietal regions), bilaterally, as well as in the EC/EmC system, bilat-
erally. Regarding AD, both transformed and non-transformed models
revealed age-related effects in the body of the corpus callosum, bilater-
ally, as well as the right corticospinal tract and the superior longitudinal
fasciculus. Regarding RD, both transformed and non-transformed
models revealed age-related effects in the cortico-spinal tract, body of
the corpus callosum, superior orbitofrontal fasciculus, optic radiation,
the inferior fronto-occipital fascicle, especially when encompassing
the external/extreme capsule system (EC/EmC), and the long segment
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Fig. 6. Confidence intervals in dependence of the A-exponents are depicted for all clusters showing significant non-linear age-effects.

of the arcuate fascicule, frontal white matter, the right superior
orbitofrontal fasciculus, bilaterally.

Moreover, in a proportion of 0.2% to 2.8% of all voxels sensitive to
age-effects, the transformed model showed a better fit than the non-
transformed model. These results are consistent with previous findings

by Hsu et al. (2010), who found a contribution of non-linear regression
components only in a small minority of all voxels.

The direct comparison of both models revealed that several neuro-
anatomical structures are under non-linear influence of age. These re-
sults are generally in line with the literature. The transformed model
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Table 4
Location and coordinates of the center of gravity for all clusters showing a significantly better fit for the non-linear model compared to the linear model.
Parameter Effect Voxels COG X COGY COGZ Location
(mm) (mm) (mm)
FA Descending accelerating 93 —21 —46.4 —33.2 Left cerebellar declive
Descending decelerating 106 —17 2 —0.2 Left pallidum
98 —21 25 8.8 Left superior occipito-frontal fascicle
MD Descending decelerating 97 -0.9 —26.7 —16.9 Left brainstem
Ascending accelerating 957 —21 -7 32 Left callosal body
882 239 —39.2 34 Right callosal body
513 20 9 29 Right callosal body
322 273 —67.8 10 Right optical radiation
314 —28 —54.8 223 Left callosal body
269 36.5 —47.6 24.7 Right optical radiation
128 —27 —65.1 115 Left callosal body
91 31.5 8 223 Right sub-gyral white matter
RD Descending decelerating 90 —-1.7 —273 —-17.1 Left brainstem
Ascending accelerating 522 —20 —4 32 Left callosal body
504 22.7 —39.9 36 Right callosal body
293 19.6 8 29 Right callosal body
277 26.5 —69.9 9.4 Right optical radiation
210 —29 —55 21.6 Left callosal body
149 34 —51.8 232 Right optical radiation
123 —29 —63.8 11.2 Left callosal body
AD Ascending accelerating 593 —21 —4 30 Left superior occipito-frontal fascicle
297 20.6 7 27.9 Right callosal body

revealed significant non-linear age-related effects on FA in the left supe-
rior orbitofrontal fasciculus, the left brainstem, and the left cerebellar
declive. With the single exception of the left cerebellar declive, signifi-
cant non-linear effects of age showed consistently a A-exponent < 1 in
all diffusivity measures and FA in different white matter structures.
We also observed an age-related decrease in FA in the left fronto-
occipital fascicle and left pallidum. Lebel et al. (2012)) and Bendlin
et al. (2010) found an increase in MD in the superior fronto-occipital
fascicle. Moreover, Walhovd et al. (2005, 2011) observed reductions in
the white matter volumes in the left pallidum in function of age.

We also found an increase of MD, RD, and AD in regions compatible
with the localization of fibers from the right and left corpus callosum.
Cross-sectional (Lebel et al., 2010; Sala et al.,, 2012) as well as longitudi-
nal studies (Ly et al,, 2014) have reported loss of white matter integrity
in these regions. Moreover, Lockhart and DeCarli (2014) and Sullivan
et al. (2001, 2008) suggested white matter integrity in these regions
to be associated with age-related changes in cognitive performance.
An acceleration in the increase of MD and RD in function of age was ob-
served in the optic radiation in the present study. These results comple-
ment previous findings reporting a negative correlation between age
and FA in the optic radiation (Zhang et al., 2014). Finally, age-related ef-
fects on the volume of white matter in the cerebellum (Walhovd et al.,
2005, 2011) are consistent with the presence of age-related effects in
FA, MD and RD, as found in the present study. In summary, the neuroan-
atomical structures found to be under non-linear age-related effects in
the present study have been reported in several other studies as well,
which not only investigated FA and diffusivity measurements, but also
the white matter volumes of these structures.

Age-related effects on RD were found in the right optic radiation and
the right temporal white matter and finally, age-related effects on RD in
the left superior orbitofrontal fasciculus, the right cingulum, and in the
left parietal white matter. Non-linear effects of age have been reported
in all these white-matter structures in previous studies (Lebel et al.,
2012; Sala et al., 2012; Westlye et al., 2010). The present results extend
previous ones by approximating the degree of non-linearity by means of
the A-exponents with higher accuracy. As discussed above, this ap-
proach revealed a considerable number of voxels in which even a
cubic term in a polynomial regression model would still fail to describe
the correct degree of non-linearity. In contrast, the Box-Cox analysis
provides a natural and intuitive way to achieve an estimation of the de-
gree of non-linearity.

Accelerating vs. decelerating effects

Accelerating age-related effects have been observed in FA, MD, RD,
and AD. These accelerating age-related effects led FA values to decrease
at a faster pace in late adulthood, and MD, RD, and AD values to increase
at a faster pace in late adulthood. This is an interesting finding, as differ-
ent studies indicate the presence of aging effects that tend to accelerate
in older ages (Hsu et al., 2010; Westlye et al., 2010). In contrast, the age-
related effects observed in MD, RD, and AD were accelerating and posi-
tive. This reflects larger changes in MD, RD, and AD in later rather than
in early adulthood. These results are in line with a recent longitudinal
study reporting an acceleration of age-related effects to begin in the
fifth decade (Sexton et al., 2014).

Importantly, decelerating age-related effects were observed in FA in
the left pallidum and left superior fronto-occipital fascicle, and in both
MD and RD in the left brainstem. While the interpretation of accelerat-
ing effects is straightforward and reflects the cumulative effect of differ-
ent aging processes, decelerating age-related effects are more difficult
to conceptualize. It seems implausible to us that the speed of aging
might genuinely slow down in late adulthood. A more tangible explana-
tion for the deceleration of age-related effects is the result of the selec-
tion of participants with sufficient levels of cognitive and brain health to
participate in imaging studies. Since the proportion of older individuals
from the general population failing to fulfill the typical inclusion criteria
for neuroimaging studies is generally larger than the proportion of
younger individuals, the shape of deceleration may be observed,
which is due only to the selection criteria employed to construct the
sample. Further studies combining older individuals with lower levels
of cognitive performance and stronger decline of neuroanatomical
structures may help to evaluate this claim. In summary, the Box-Cox
analysis revealed that diffusion measurements and FA are sensitive to
age-effects not all in the same way, since different A coefficients for
each diffusivity measurement were observed in different voxels spatial-
ly close to each other.

Study limitations and future perspectives
Since the A-exponent can assume any real value, the Box-Cox trans-

formations come closer to the genuine degree of compression presented
by natural data than higher-order polynomials, which rely upon a priori
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defined quadratic or cubic trends. However, the Box-Cox analysis is not
a method to determine the correct model to fit the data but rather a
technique to approximate it with a degree of parsimony higher than
most alternative methods. The Box-Cox analysis captures only mono-
tonic non-linear behavior. Therefore, one may argue that age-related
effects may be overseen when employing the Box-Cox analysis. Inspec-
tion of scatterplots depicting regression slopes for non-linear effects of
age on diffusivity as published in the last 15 years (e.g., Hsu et al.,
2010; Lebel et al., 2012; Sala et al., 2012) does not reveal any neuroan-
atomical region in which a monotonic transformation would have be-
haved much worse than a higher order polynomial regression model,
at least not when the analysis is limited to adult age. For this reason,
we believe that the Box-Cox analysis can be very useful to detect and
describe non-linear effects of age even with the limitation imposed by
monotonicity. Finally, application of the Box-Cox analysis to whole-
brain data yields a sensitive measurement of the degree of nonlinearity.
This can complement evidence obtained for isolated fiber tracts, since
the voxel-based Box-Cox analysis does not have to assume that a fiber
tract in its entirety responds uniformly to aging. Further studies are re-
quired to investigate the heterogeneity of A within the main fiber tracts.
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