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Abstract

Parcellation of the human brain into fine-grained units by grouping voxels into distinct clusters 

has been an effective approach for delineating specific brain regions and their subregions. 

Published neuroimaging studies employing coordinate-based meta-analyses have shown that the 

activation foci and their corresponding behavioral categories may contain useful information about 

the anatomical–functional organization of brain regions. Inspired by these developments, we 

proposed a new parcellation scheme called meta-analytic activation modeling-based parcellation 

(MAMP) that uses meta-analytically obtained information. The raw meta data, including the 

experiments and the reported activation coordinates related to a brain region of interest, were 

acquired from the Brainmap database. Using this data, we first obtained the “modeled activation” 
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pattern by modeling the voxel-wise activation probability given spatial uncertainty for each 

experiment that featured at least one focus within the region of interest. Then, we processed these 

“modeled activation” patterns across the experiments with a K-means clustering algorithm to 

group the voxels into different subregions. In order to verify the reliability of the method, we 

employed our method to parcellate the amygdala and the left Brodmann area 44 (BA44). The 

parcellation results were quite consistent with previous cytoarchitectonic and in vivo 

neuroimaging findings. Therefore, the MAMP proposed in the current study could be a useful 

complement to other methods for uncovering the functional organization of the human brain.
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Introduction

Neuroimaging techniques have been used to find the relationships between function and 

structure in the human brain (for an overview see Eickhoff & Grefkes, 2011). From one 

perspective, researchers want to know which brain region is activated by the task at hand 

(Fox and Lancaster, 2002). Additionally, they want to know which tasks a brain region will 

participate in and how brain regions interact and cooperate with each other to accomplish a 

task. The relationship between tasks and brain activations is, however, complex. Because of 

the complexity of the mechanisms of brain function, a single task will commonly activate 

several brain regions simultaneously. In fact, different brain regions need to cooperate to 

accomplish almost any task (Bullmore and Sporns, 2009; Fox and Friston, 2012). On the 

other hand, considerable evidence suggests that one brain region may be involved in 

different functional networks (Bressler, 1995; Bullmore and Sporns, 2009) and activated in 

many different tasks (e.g., Dosenbach et al., 2006). The best way to simultaneously 

characterize the structural and functional properties of the human brain currently seems to be 

to use functional neuroimaging techniques such as functional magnetic resonance imaging 

(fMRI) or positron emission tomography (PET). In functional neuroimaging studies, 

researchers use such techniques to localize the brain regions that participate in certain tasks. 

The statistical map related to a particular task encodes the information about the two aspects 

of the relationships. In this paper, we will refer to the way a region activates in different 

tasks as its activation pattern. Regions that have similar activation patterns across different 

tasks may thus belong to the same functional community and work together to accomplish 

common mental processes (Smith et al., 2009). Based on this, we assumed that if the 

activation level of two voxels covaries across experiments, meaning that they both have a 

high level of activation in the same group of tasks and a low level of activation in other 

tasks, they should form a distinct module or functionally homogenous region. Thus, it is 

possible to design some elaborate task fMRI experiments and use such task-dependent 

activation patterns to study the functional topology of the human brain. However, the major 

problem is that the information needed to predict which tasks will cover the function of a 

brain region is not really known. Another problem is that it would be very costly to collect 

so many task fMRI images in a single study.
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Due to the development of various neuroimaging study databases and tools such as 

Brainmap (Fox et al., 2005) and Neurosynth (Yarkoni et al., 2011), researchers have been 

able to begin to focus on the coordinate-based meta-analysis of neuroimaging studies. 

Rather than collecting the raw task fMRI images or the statistical parametric maps, these 

databases store the peak coordinates of the statistical maps related to a particular task, 

reported in standard space. The advantage of meta-analysis is that researchers can recruit 

published statistics to perform higher-level statistical analyses without having to collect the 

actual image data. The key in such coordinate-based meta-analyses has been to model the 

whole brain activation using the sparse peak coordinates; this modeling procedure has been 

implemented in several algorithms such as the activation likelihood estimation algorithm 

(ALE) (Laird et al., 2005; Turkeltaub et al., 2002) and multi-level kernel density analysis 

(MKDA) (Wager et al., 2009). This type of coordinate-based meta-analysis has been used to 

study the functional connectivity of brain regions and further used to perform task-

dependent parcellations. Toro et al. (2008) mapped the functional connectivity between 

regions by estimating the co-occurrence of the voxel activity across several neuroimaging 

studies. This approach was later formalized as meta-analytic connectivity modeling 

(MACM) (Robinson et al., 2010), which used the ALE algorithm to identify regions 

showing statistically significant co-activation patterns, i.e., the task-dependent functional 

connectivity of the seed region. Later such meta-analytic co-activation maps were used as 

voxel-wise features to identify the subregions in a given area (Eickhoff et al., 2011). 

Moreover, the behavioral metadata in the Brainmap database, specifically the paradigm and 

behavioral domain descriptions of the experiments, enable researchers to infer the functional 

properties of the subregions. Recently, the method was successfully used to parcellate 

various brain regions, including the amygdala, BA44, and the posterior superior temporal 

gyrus (Bzdok et al., 2013; Clos et al., 2013; Wang et al., 2015).

Co-activation-based parcellation is quite similar to connectivity-based parcellation 

(Anwander et al., 2007; Beckmann et al., 2009; Mars et al., 2011; Wang et al., 2012). 

Although the covariance of resting state signal fluctuations is conceptually different from 

these methods, some researchers have directly used covariance to parcellate brain areas 

(Zhang et al., 2014). Similarly, another study used the Brainmap database to investigate the 

covariance within the activation pattern rather than focusing on co-activations (Smith et al., 

2009). In this latter study, an independent component analysis (ICA)-based analysis of 

spatial activation maps from Brainmap discovered some major explicit activation networks 

that are very similar to the majority of networks that can be identified by measuring 

spontaneous covariations in the resting fMRI brain. By an extension of this to parcellation, it 

is possible to measure the voxel-wise similarity directly rather than doing this through 

identifying the co-activation pattern. For this reason, we proposed a new meta-analysis-

based parcellation method called meta-analytic activation modeling-based parcellation 

(MAMP) by modeling of the voxel-wise activation followed by the K-means clustering 

algorithm. To test the accuracy of this method, we used it to parcellate the amygdala and the 

left side BA44 that had previously been parcellated using the MACM method (Bzdok et al., 

2013; Clos et al., 2013).
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Materials and methods

In our method we assumed that, in contrast to two voxels in different regions, foci located in 

a functionally homogeneous region or subregion should tend to be reported in experiments 

that share the same paradigm and should have similar activation patterns that co-vary across 

experiments from different paradigms. To estimate the activation of a voxel in an 

experiment, we applied the modeled activation value (MA value) from the ALE algorithm. 

The modeled activation value estimates the likelihood of a particular voxel's being activated 

during a given experiment. Such MA value images across experiments were combined to 

form MA value image sequences. This sequence of MA values was treated as a feature 

profile for each voxel. Then we applied the K-means clustering algorithm to the MA value 

sequences. This method can divide the region of interest (ROI) into functionally 

homogenous subregions, and also can help us to interpret the relationship between the 

functions of the subregions and the specific tasks to which they respond. The basic steps of 

our method included data preparation to obtain ROI related experiments from the Brainmap 

database followed by construction of voxel-wise MA patterns based on meta-analytic 

activation modeling and voxel clustering, as shown in Fig. 1.

Data preparation

The image files for the two ROIs, i.e., the amygdala and the BA44, were created with the 

Anatomy Toolbox in SPM8 (Eickhoff et al., 2005). Specially, the left and right amygdala 

ROIs were composed of three micro-anatomically-defined cyto-architectonic subregions of 

the amygdala (Amunts et al., 2005), namely the laterobasal nuclei group (LB), centromedial 

nuclei group (CM), and the superficial nuclei group (SF) in the Jülich amygdala atlas. All 

the ROIs were down sampled to a 2 mm × 2 mm × 2 mm resolution space.

We then searched the Brainmap database (Fox et al., 2005; Fox and Lancaster, 2002) to get 

the ROI-related functional experiments. Brainmap archives over 10,000 neuroimaging 

experiments with the coordinates of reported activations and labels each experiment with its 

experimental paradigms and behavior domains, a practice which makes it feasible to 

perform a task-based analysis. We constrained our analysis to fMRI (functional magnetic 

resonance imaging) and PET (positron emission tomography) experiments with 

conventional mapping (no interventions, no group comparisons) which used healthy 

participants and reported the results as coordinates in stereotaxic space. These inclusion 

criteria yielded ~7300 eligible experiments at the time of the analysis. From these 

experiments, we then filtered out those that reported activation foci located in and 

surrounding the ROIs we had selected with a 2 mm tolerance margin outside the ROIs.

Meta-analytic activation modeling

First, we constructed the meta-analytic modeled activation profiles. For each experiment 

obtained from the database, we used the modeled activation value obtained from the ALE 

algorithm (Eickhoff et al., 2009) to estimate the probability of activation for each seed voxel 

in the ROI. Each reported focus was modeled by a 3D Gaussian distribution with adaptive 

full-width at half-maximum (FWHM), which depends on the sample size in the experiment, 

to evaluate the spatial uncertainty of the real position of the focus and the inter-subject 
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localization uncertainty. Let Xi denote the situation in which the i th focus is located in a 

given voxel. The probability of Xi occurring at a seed voxel is

where di is the Euclidean distance from the center of the seed voxel to the i th focus and σ is 

the standard deviation of the Gaussian distribution. To obtain the probability estimate for the 

entire voxel volume instead of just its central point, the Gaussian probability density was 

multiplied by the voxel size, ΔV. The voxel-wise MA value takes the maximum probability 

associated with any one focus, as reported from the experiment (Turkeltaub et al., 2012).

After calculating MA values for each voxel in each experiment, the values were rearranged 

into a N × M matrix (1173 × 1307,556 × 413, 584 × 386 for the left BA44, the left 

amygdala, and the right amygdala, respectively), where N was the number of seed voxels 

and M was the number of experiments that activated a particular ROI. The row vector of M 

elements is called the modeled activation pattern. Each element in the sequence measures 

the activation level of the voxel in the corresponding experiment. The activation pattern 

series varies across experiments. The features of a particular voxel (the activation 

likelihoods in different experiments) are independent of each other. The features of different 

voxels will be correlated given that activation likelihoods are spatially smooth. We 

normalized each row of the MA patterns to unit vectors to ensure that the features were scale 

invariant.

Similarity matrix calculating

We computed the similarity between every pair of meta-analytically-modeled activation 

patterns and got an N × N similarity matrix. Different metrics, such as correlation (the 

sample linear correlation between observations), Euclidean similarity (one minus the 

normalized Euclidean distance), and cosine similarity (one minus the cosine distance), can 

be used to compute the similarity matrix. We tested our method on all of these most widely 

used similarity measures.

Voxel clustering and experiment clustering

Once we produced the MA patterns, we used clustering algorithms to cluster the voxels. We 

could have used any of several clustering algorithms, such as K-means or N-cut. For the 

convenience of allowing a comparison between the MAMP and MACM, we used the K-

means clustering algorithm, which was implemented in Matlab 2012a, because that 

algorithm was used in the MACM. K-means clustering is a non-hierarchical clustering 

method that uses an iterative algorithm to separate the seed region into a previously selected 

number of K non-overlapping clusters (Hartigan and Wong, 1979). Clustering using the K-

means algorithm consists of minimizing the variance within clusters and maximizing the 

variance between clusters by first computing the centroid of each cluster and subsequently 
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reassigning voxels to the clusters such that their difference from the nearest centroid is 

minimal. We needed to choose K, the number of clusters, and the distance metric. All three 

distances used to compute a similarity matrix, for which correlation, Euclidean similarity, 

and cosine similarity could be used here. The input of the clustering algorithm was an N × M 

MA value sequence and K (the number of the clusters); the output was the index vector of 

the cluster label. For the amygdala, both left and right, we set K to 3, expecting to get 

parcellation results which were similar to those in the cytoarchitecture map from the 

Anatomy Toolbox. For the left BA44, we set K to 5 based on the MACM parcellation results 

(Clos et al., 2013). To measure the overlap of the corresponding subregions between 

different parcellation methods (cytoarchitecture, MACM, and MAMP), we computed the 

dice index for each pair of subregions. The dice coefficient is a statistic used for comparing 

the similarity of two sets:

As we assumed, voxels in the same subregion tended to be activated under the same 

functional paradigms. In other words, it is likely that different groups of voxels may be 

activated by different groups of experiments. Or even further, these groups of experiments 

may belong to different behavior domains. To find the relationship between activation and 

tasks, we used the K-means clustering algorithm to group the experiments into K subsets. 

After that, both the N × M MA value matrix and the N × N similarity matrix were reordered 

to find whether the K subsets of the experiments corresponded to each individual voxel 

cluster. This is possible because each voxel cluster will have a high activation in its 

corresponding experiments but a low activation in other experiments.

Function decoding

Furthermore, we employed behavior analysis to characterize the function of each subregion. 

The functional profile of a subregion quantitatively describes the statistical association 

between the activation of the region and the behavior domains. The behavioral domains 

comprise the main categories of cognition, action, perception, emotion, and interoception, as 

well as their related subcategories. These categories denote the mental processes that have 

been isolated by contrasts between different conditions. We filtered the Brainmap database 

for those experiments that featured at least one focus of activation within the ROI that we 

were currently researching. We then determined the individual functional profile of the 

MAMP-derived clusters using both forward and reverse inference (Clos et al., 2013). 

Forward inference refers to the probability of observing activity in a brain region given 

knowledge of the psychological process, represented as P(activation ∣ domain), whereas 

reverse inference refers to the probability of a psychological process's being present given 

knowledge of the activation in a particular brain region, represented as P(domain ∣ 

activation). Using forward inference, a cluster's functional profile was determined by 

identifying taxonomic labels for which the probability of finding activation in the respective 

cluster was significantly higher than the a priori chance (across the entire database) of 

finding activation in that particular cluster. Significance was established using a binomial 

test (p < 0.05; Eickhoff et al., 2011; Nickl-Jockschat et al., 2012). That is, we tested whether 
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the conditional probability of activation given a particular label [P(activation ∣ domain)] was 

higher than the baseline probability of activating the brain region in question per se 

[P(activation)]. Using reverse inference, a cluster's functional profile was determined by 

identifying the most likely behavioral domains given activation in a particular cluster. This 

likelihood P(domain ∣ activation) can be derived from P(activation ∣ domain) as well as 

P(domain) and P(activation) using Bayes' rule. Significance was then assessed by means of a 

chi-square test (p < 0.05).

Results

Parcellation of the amygdala

In the cytoarchitecture results as well as in the previous MACM-based parcellation results, 

the human amygdala was divided into three subregions, the laterobasal nuclei group (LB), 

centromedial nuclei group (CM), and superficial nuclei group (SF). In order to maintain 

consistency, the cluster number K in our experiment was also set to three. Fig. 2 displays the 

computational procedure of the MAMP process performed on the MA value patterns of the 

left amygdala. Figs. 2A and B show the original MA maps and the original similarity matrix. 

We filtered out 413 experiments that featured at least one focus that fell within the area of 

the left amygdala. Each column in the MA map matrix represents the MA map for each 

experiment within the ROI. Each row (the modeled activation pattern), reflects the 

likelihood of the voxel to activate in the experiment. The similarity matrix was computed as 

the cosine similarity between two MA value sequences, as shown in Fig. 2B. After 

clustering the voxels, we were able to reorder the MA maps to clearly reveal the different 

activation patterns of distinct groups of voxels (Fig. 2C). In the reordered MA maps, the 

rows were arranged in the order of cluster 1 (CM), cluster 2 (SF) and cluster 3 (LB). The 

experiments were also grouped into three subsets using clustering based on the similarity of 

the spatial activation map for each pair of experiments. From this we saw that the three 

subsets of the experiments and the three subregions corresponded very well. The red, green 

and blue rectangles in Fig. 2 mark three different groups of experiments with a relatively 

higher activation for each cluster. The CM subregion had a relatively higher activation for 

the second group of experiments, marked with red rectangles. The SF had a higher 

activation in the third group of experiments, marked with green rectangles. The LB had a 

higher activation in the first group of experiments, marked with blue rectangles. The 

reordered similarity matrix (Fig. 2D) shows the separation between the three groups of 

voxels. It shows a high similarity inside a group but a low similarity between groups, 

leading to higher value blocks along the diagonal line.

Fig. 3A shows the results of parcellating the amygdala using cytoarchitecture, MACM, and 

MAMP. Both the MAMP and MACM results demonstrated inter-hemisphere symmetry in 

the shape and topology of the subregions. As shown in Fig. S3, the parcellation results were 

robust to the choice of different similarity measures. We computed the dice coefficients of 

the volumes from the three different parcellations to see whether the dice coefficients would 

be consistent between the methods. The topology of the three subregions derived from all 

three methods was highly similar between the different methods, as showed in the bar chart 

of the dice coefficient computed for each pair of corresponding subregions (Fig. 3B). In 
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particular, the MACM and MAMP methods yielded very similar results. The lowest dice 

coefficient between these two meta-analytic methods was 0.89 for the left SF. The 

comparison between the two data-driven methods and the histological maximum probability 

map provided strong support for the biological meaningfulness of the data driven methods, 

that is, for either MACM or MAMP.

Fig. 4 shows the function decoding results for the left amygdala. Only the results that 

remained significant (p < 0.05) after a false discovery rate (FDR) correction are displayed. 

For the left amygdala, all three sub-regions were highly activated by tasks involved with 

domains such as those involved with emotion (e.g. fear or happiness) or with olfactory 

perception. The CM was specifically related with the emotion of anger, whereas the SF was 

related with the emotion of disgust. Sexuality interoception was strongly present in the SF. 

The right amygdala also showed a close relationship with emotion but had slightly different 

functional profiles between the three subregions (see Supplementary Fig. S2).

Parcellation of the left BA44

Common brain region parcellation methods depend on choosing the most optimal and 

reasonable cluster number. In order to focus on a comparison with previous results, we 

chose a cluster number of five, as previous MACM parcellation results yielded this number 

(Clos et al., 2013). We filtered 1307 experiments that featured at least one focus falling 

within the left BA44. After calculating the MA maps we got a 1173 × 1307 MA value 

pattern matrix (Fig. 5A). The original cosine similarity matrix before clustering is displayed 

in Fig. 5B. After the K-means clustering, the voxels in the ROI were grouped into five 

isolated sets. Again, we used the K-means clustering algorithms to detect the subgroup 

structure of the experiments by clustering the MA maps within the ROI (columns in the MA 

value sequence matrix). As shown in the reordered MA map matrix (Fig. 5C), the apparent 

blocks in the matrix indicate that each subgroup of voxels corresponded with certain sets of 

experiments. The rows of the matrix indicate that voxels from different subregions had 

different activation patterns. The columns of the matrix indicate that different sets of 

experiments activated distinct brain regions within the ROI. Fig. 5D shows the reordered 

similarity matrix with higher value blocks along the diagonal line. The correspondence 

between the results of the two methods was high (Fig. 6). The dice coefficients between the 

two methods were on average above 0.74 for the five subregions (Fig. 6), indicating that the 

location of the five clusters corresponded well in the two methods. Cluster 1 showed the 

greatest difference between the two results. The differences may be attributable to 

uncertainty about the location of the borders between the subregions. The function profiles 

of the five subregions showed that all five subregions were highly associated with language 

related functions (Fig. 7). Four subregions, not including cluster 3, were involved with 

action. Cluster 4 was involved with music. Cluster 2 and cluster 5 were involved with 

working memory.

Voxel-wise density map

According to our assumption, different subregions should express different activation 

patterns. This can be confirmed by checking the reordered MA maps in Figs. 2C or 5C. We 

see that the subsets of the experiments and those of the subregions corresponded very 
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closely. The subset of the experiments showed spatially varied density within the ROI. 

Different sets of experiments divided up the ROI. We call this the voxel-wise density map of 

the experiments.

Supplementary experiments showed that the MAMP algorithm is invariant to the choice of 

the similarity measure. The K-means obtained using different similarity measures provided 

almost identical results for both the amygdala and the BA44 (Figs. S1, S2).

Discussion

In this study, we proposed a new method called meta-analytic activation modeling-based 

parcellation in which we utilized the information in the Brainmap database to identify 

subregions in the left and right amygdala and the left area 44. The experiments on these 

areas showed subregional structures that were consistent with previous cytoarchitecture and 

MACM-based parcellation studies. Furthermore, we applied behavioral domain analysis for 

each subregion to make inferences about the functions of the subregions. We verified that 

each subregion was activated in different sets of experiments.

Method comparisons

Brain parcellation currently uses several different approaches, which can be categorized 

based on the data modality and the similarity measure strategy that they use. One strategy 

for measuring voxel-wise similarity is to first compute the voxel-wise connectivity profiles, 

such as those derived from anatomical, resting-state functional, and task-dependent co-

activation-based connectivity data. Then these connectivity profiles are used to measure the 

similarity between voxels indirectly. The other is a local strategy, which is often used in 

fMRI-based parcellations. In this type of study, the local covariance of the voxel-wise fMRI 

time series is computed as the voxel-wise similarity. Different modalities can also provide 

different information about brain structure and function. Anatomical connectivity estimates 

the fiber tracts between individual brain regions, but such structural connectivity cannot 

fully encode the functional network structure of the brain (Honey et al., 2009). Therefore, 

we cannot guarantee that identifying differences in structure will yield accurate information 

about functionally distinct subregions. In resting state functional connectivity studies, the 

dynamics of the resting fMRI can lead to unstable results. Compared with task fMRI data, 

resting state signals tend to yield an insignificant amount of information about functional 

relationships and thus are not likely to provide much information about the function of a 

brain region. This defect restricts the use of this technique. Both a whole brain connectivity 

strategy and the local covariance have been used in resting state fMRI-based parcellations 

(Yeo et al., 2011; Zhang et al., 2014). Since our goal was to obtain brain function-structure 

mapping, we were obliged to dig deeply into the task-fMRI data. MACM-based connectivity 

took advantage of the rich information encoded in task-dependent neuroimaging studies and 

used global information by computing the connectivity with the rest of the brain. In fact, we 

can envision the available data as being processed according to a 2 (resting state fMRI data, 

coordinate-based meta data) × 2 (whole brain connectivity-based strategy, local covariance-

based strategy) matrix of methods. Since 3/4 of this information was previously available 

(various studies have combined resting state data with either local or whole brain data and 
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MACM supplied the third by combining whole brain connectivity with meta data), MAMP 

fills the last cell by combining resting state fMRI data with the local covariance. Our 

covariance-based strategy is conceptually different from that used in MACM in that our 

scheme directly measured the task-dependent functional relationship between two voxels 

within each ROI rather than across the entire brain. The advantage of a local strategy is that 

the measurement of voxel-wise similarity is direct and efficient. Our method recruits only 

the local activation information, whereas MACM must compute the whole brain MA map 

for each voxel. Thus, our MAMP method avoids error propagation arising from an indirect 

relationship, making the results more direct and interpretable. Interestingly, the MACM-

based parcellation and that obtained by MAMP provided almost identical results in our 

experiments. This reflects the intrinsic relationship between these two methods. To some 

degree, our similarity measure of the MA value pattern can be expected to be close to the 

MACM-based similarity measure of the co-activation pattern. If one voxel is coactive with 

another, these two voxels should always either be simultaneously present or absent in any 

given experiment. In this situation, their MA value patterns will be similar as well. In spite 

of both our observed similarity between our MACM method and the MAMP as well as a 

reasonable explanation of why these should be similar, future studies should investigate to 

see whether these two methods produce greater differences in other regions. In either case, 

this may help to elucidate the underlying mechanisms.

Modeled activation value pattern

The most pivotal aspect of our method is the modeled activation value pattern. Some peak 

coordinate-based meta-analytical neuroimaging studies used the MA value to estimate the 

activation of a voxel in each experiment. This is the basis of the ALE algorithm (Laird et al., 

2005; Turkeltaub et al., 2002) and of MACM-based parcellation. Another study used the 

MA value pattern as a voxel-wise feature to identify specific major activation networks in 

the Brainmap database (Smith et al., 2009).

An MA value pattern models the spatial uncertainty of a peak that has been identified using 

contrasting conditions and resembles the statistical activation map from the experiment. The 

peaks reported in a neuroimaging study constitute a rather discrete and sparse representation 

of the activation map obtained from an experiment. The activation level of the voxels other 

than those that are reported as peaks is unknown. Using 3D Gaussian kernel smoothing, we 

transformed the discrete activation map into a ‘continuous activation map’, a new statistical 

parametric map that represents the likelihood of the location of the peaks. After the 

transformation, every voxel in the ROI had an MA value for each experiment. If we had a 

sufficient number and variety of kinds of experiments archived in the database, almost every 

gray matter voxel in the brain image would be activated in some of the experiments. Under 

such an ideal condition, the MA pattern of any voxel would not be zero or meaningless but 

would have meaningful values that would fluctuate across the experiments. However, in 

practice, some voxels, particularly in larger ROIs, will always be near zero. This thorny 

problem however, exists in almost all coordinate-based meta-analysis tools. In fMRI or PET 

studies, activation usually appears in a cluster of several voxels that have statistically 

surpassed a certain threshold rather than in an isolated voxel. This is especially true because 

spatial smoothing is a common preprocessing step in these studies. Therefore, the 
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neighboring voxels will share similar activation patterns with the peak voxel. By modeling 

peaks with a Gaussian kernel center at the peak, we were similarly able to estimate the 

activation level of the neighboring voxels of the peaks. This model also thereby takes into 

account uncertainties about the coordinates of the focus in a group analysis.

Density map of experiments

The density map for the experiments indicated that different subregions were specifically 

activated by different sets of experiments. This finding may be explained by results from 

Laird et al. (2011), which furthered the work of Smith et al. (2009) by exploring the 

relationship between the ICA maps derived from the Brainmap database and the behavioral 

metadata associated with these components. They found corresponding relationships 

between the network architecture and the Brainmap taxonomy, a finding that indicated each 

independent component corresponded with specific tasks. Another study constructed a meta-

analytic network that revealed community structure (Crossley et al., 2013). That study found 

that many aspects of the co-activation network converged with a connectivity network 

derived from resting state fMRI data. These studies indicate that, as with resting fMRI, the 

task functional networks are organized into modules, and the role of a module is explicitly 

characterized by the related task behavior domain. In our method, the subregions in a ROI 

may belong to different networks or communities and respond to different tasks, as shown 

by the behavior profiles for each subregion. This can also be confirmed by previous MACM 

based parcellation studies because the subregions differentiate between the co-activation 

patterns. Therefore, their MA value patterns show differences between the subregions. The 

networks that the subregions involve may overlap. Nevertheless, wherever Brainmap has 

enough experiments to cover a sufficient number of task configurations for the subregions, 

we should be able to differentiate the subregions.

Parcellation results

Amygdala—Our results showed a subregion configuration that was similar to previous 

cytoarchitecture studies (Amunts et al., 2005; Eickhoff et al., 2005) and to MACM-based 

parcellation (Bzdok et al., 2013; Robinson et al., 2010). The correspondence between 

microstructure and task-based meta-analytic parcellation indicates that functional topology 

may have an underlying structural basis, though this may not be true for all brain regions. 

Although the two different meta-analytic methods deal with the data in different ways, in 

that MACM uses the whole brain gray matter to get the co-activation pattern for each voxel 

while MAMP uses only local information to compute the activation pattern, they provided 

almost identical results. This may be because voxels in the same region have both the same 

co-activation pattern and the same activation pattern across the experiments. The two 

approaches are similar in that they both use a task-based activation to represent a region 

functionally.

Area 44—The left BA44 is known as part of the Broca's area, a region involved in semantic 

tasks. Some recent findings have indicated that the BA44 is activated in tasks such as music 

perception and hand movements (Brown et al., 2006; Rizzolatti et al., 2002). Postmortem, 

receptor-based parcellation of Broca's area has suggested that this area is organized into the 

anterior–dorsal area 44d and the posterior–ventral area 44v (Amunts et al., 2010; Amunts et 
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al., 1999; Amunts and Zilles, 2012). A recent MACM-based study revealed that this area 

can be separated into five functionally heterogeneous regions (Clos et al., 2013). The region 

was first divided into anterior and posterior clusters. Then the anterior portion was 

hierarchically separated into clusters 2, 3, and 5 and the ventral portion was separated into 

clusters 1 and 4 (Fig. 4A). The MAMP method provided similar results to the MACM 

parcellation with a high overlap between each pair of subregions (Fig. 4B).

Based on the behavior analysis, the three anterior clusters are engaged in language-related 

task domains, such as semantics, phonology, syntax, speech, and working memory, while 

the functional profiles of the two posterior clusters indicate that the BA44 is also involved in 

functions such as music perception and action (Fig. 5).

Methodological considerations

Our method is based on published neuroimaging studies. That means that all the information 

our method retrieved was from existing experiments. We cannot guarantee that the whole 

brain and all its subregions were completely covered by these studies. The number of 

available experiments would not have been sufficient for a less studied brain region, which 

could have led to unreliable results. There is currently no way to judge whether the database 

contained enough experiments involving a particular region to allow us to perform an 

adequate parcellation. However, this does not mean that the results are meaningless. Our 

study indicated that the results were very consistent with a cytoarchitecture-based 

parcellation, indicating that the results are biologically meaningful. Nevertheless, we must 

take care in interpreting the results, so making further comparisons with results from other 

modalities, such as microstructure (Amunts et al., 2007), resting-state fMRI (Cohen et al., 

2008), and diffusion tensor imaging (DTI) (Fan et al., 2014) will be necessary.

Conclusion

In this study, we proposed a new brain parcellation scheme that modeled activation patterns 

for each voxel across the experiments in the Brainmap database. Reconstructing the peaks in 

neuroimaging studies into MA values and mapping their activation patterns enabled us to 

retrieve task-related information in the neuroimaging study databases. Because we were able 

to verify its identification of subregions in both cortical and subcortical areas, MAMP seems 

to be able to provide a fresh method for mining the Brainmap data and can complement 

other brain parcellation schemes with different neuroimaging modalities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Pipeline of MAMP. Schematic of MAMP pipeline. The raw meta data related to a ROI were 

acquired form the Brainmap database; molded activation patterns were constructed using the 

ALE algorithm; voxels were grouped into subregions by applying K-means clustering to the 

MA patterns.
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Fig. 2. 
Original and reordered MA maps and similarity matrix for the left amygdala. (A) Original 

MA maps. (B) Original similarity matrix. (C) Reordered MA maps. From top to bottom, 

each row represents a voxel in the ROI in the order of cluster 1, cluster 2, and cluster 3. 

From left to right, each column represents an experiment in the order of the grouped three 

subsets of the experiments. (D) Reordered similarity matrix.
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Fig. 3. 
Parcellation of the amygdala. (A) Three subregions (red: CM, green: SF, blue: LB) of the 

parcellation of the left amygdala using different methods (cytoarchitecture, MACM-CBP 

and MAMP). (B) Overlap (Dice coefficient) of the voxels in the subregions between 

different methods.
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Fig. 4. 
Behavior domains of the subregions in the left amygdala. Forward inference on the final 

clusters: significant activation probability of the cluster given a certain domain (left 

column). Reverse inference on the final clusters: significant probability of domain (left 

column) occurrence given activation in a cluster. Color code: Red = CM, green = SF, blue = 

LB.
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Fig. 5. 
Original and reordered MA maps and similarity matrix for the left BA44. (A) Original MA 

maps. (B) Original similarity matrix. (C) Reordered MA maps. From top to bottom, each 

row represents a voxel in the ROI in the order of cluster 1, cluster 2, and cluster 3. From left 

to right, each column represents an experiment in the order of the grouped three subsets of 

the experiments. (D) Reordered similarity matrix.
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Fig. 6. 
Parcellation of the left BA44. (A) Five subregions labeled cluster 1 (red), cluster 2 (green), 

cluster 3 (blue), cluster 4 (yellow) and cluster 5 (cyan). (B) Overlap (Dice coefficient) of the 

voxels in the subregions between the results using MACM and MAMP.
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Fig. 7. 
Behavior domains of the subregions in the left BA44. Forward inference on the final 

clusters: significant activation probability of the cluster given a certain domain (left 

column). Reverse inference on the final clusters: significant probability of domain (left 

column) occurrence given activation in a cluster. Color code: Red = cluster 1, green = 

cluster 2, blue = cluster 3, yellow = cluster 4, cyan = cluster 5.
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