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Abstract

The underlying mechanism of how the human brain solves the cocktail party problem is largely 

unknown. Recent neuroimaging studies, however, suggest salient temporal correlations between 

the auditory neural response and the attended auditory object. Using magnetoencephalography 

(MEG) recordings of the neural responses of human subjects, we propose a decoding approach for 

tracking the attentional state while subjects are selectively listening to one of the two speech 

streams embedded in a competing-speaker environment. We develop a biophysically-inspired 

state-space model to account for the modulation of the neural response with respect to the 

attentional state of the listener. The constructed decoder is based on a maximum a posteriori 

(MAP) estimate of the state parameters via the Expectation Maximization (EM) algorithm. Using 

only the envelope of the two speech streams as covariates, the proposed decoder enables us to 

track the attentional state of the listener with a temporal resolution of the order of seconds, 

together with statistical confidence intervals. We evaluate the performance of the proposed model 

using numerical simulations and experimentally measured evoked MEG responses from the 

human brain. Our analysis reveals considerable performance gains provided by the state-space 

model in terms of temporal resolution, computational complexity and decoding accuracy.
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Introduction

One of the hallmarks of brain function is the ability to segregate and focus on an auditory 

object in a complex auditory scene. From a mathematical perspective, this is a highly ill-

posed problem; however, our brain is able to solve this problem in a remarkably fast and 

accurate fashion. It has been hypothesized that after entering the auditory system, the 

complex auditory signal resulting from sound sources in a crowded environment is 

decomposed into acoustic features at different stages of the auditory pathway. Then, a rich 

representation of spectrotemporal features reaches the auditory cortex, where an appropriate 

binding of the relevant features and discounting of others leads to the perception of an 

auditory object (Bergman, 1994; Griffiths and Warren, 2004; Fishman and Steinschneider, 

2010; Shamma et al., 2011). A compelling example is the Cocktail Party effect (Cherry, 

1953; Brungart, 2001; McDermott, 2009), in which a listener is able to attend to an 

individual speaker in the presence of other competing speakers and to segregate the attended 

speech from all other sound sources in the environment.

The neural representation of speech as a distinct auditory object has been extensively studied 

using auditory scenes consisting of pairs of concurrent speech streams mixed into a single 

acoustic channel with no spatial cues provided. Any neural representation of a single stream 

of speech (considered as an auditory object) involves complex segregation and grouping 

processes (Ding and Simon, 2012a,b; Mesgarani and Chang, 2012; O'Sullivan et al., 2014), 

given the substantial overlaps in spectral and temporal domains. As reported by these 

studies, concurrent auditory objects – even those with highly overlapping spectrotemporal 

features – are neurally encoded as a distinct object in the auditory cortex and emerge as 

fundamental representational units for high-level cognitive processing. In the case of 

listening to speech, it has recently been demonstrated that the auditory response manifested 

in magnetoencephalographic recordings is strongly modulated by the spectrotemporal 

features of the speech (Ding and Simon, 2012b; Pasley et al., 2012). In the presence of two 

speakers, this modulation appears to be strongly phase-locked to the spectrotemporal 

features of the attended speaker as opposed to the unattended speaker (See Fig. 1) (Ding and 

Simon, 2012a; Mesgarani and Chang, 2012).

A widely-used mathematical approach for decoding these cortical modulations is reverse 

correlation, which can be used to reconstruct the stimulus from the response of the neural 

population, which then can be compared with the original stimulus to reveal preserved or 

dismissed features in the population response (Bialek et al., 1991; Gielen et al., 1988; 

Hesselmans and Johannesma, 1989). Although useful for evaluating data from neural 

populations using electrocorticography (ECoG) (Mesgarani et al., 2009; Mesgarani and 

Chang, 2012), MEG (Ding and Simon, 2012a,b) and EEG (O'Sullivan et al., 2014; Mirkovic 

et al., 2015), this method has a number of limitations. The achievable temporal resolution of 

the current techniques is of the order of minutes. In a real-world scenario, attention of the 

listener can switch dynamically from one speaker to another; therefore, an appropriate 

decoder needs to have a dynamic estimation framework with high temporal resolution in 

order to capture attention switches in real-time, especially in light of the emergence and 

rapid growth of brain–computer interface systems. Moreover, these decoders often relyon 
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ad-hoc assumptions and simplifications, which in turn overshadow a reliable statistical 

interpretation of the data.

In this paper, we overcome the aforementioned limitations by introducing a biophysically-

inspired state-space model that accounts for the dynamicity of the attentional state as well as 

its correlation with MEG observations in a competing-speaker scenario. State-space models 

are widely used in control engineering for describing the dynamics of the systems under 

study (Hinrichsen and Pritchard, 2005). These models consist of two components: one 

relating the observations from a stochastic dynamical system to a set of unobserved state 

variables (forward model), and the other describing the time evolution of the unobserved 

states (state dynamics). By combining the forward model and state dynamics in a 

probabilistic framework, it is possible to obtain accurate estimates of the system parameters, 

perform prediction, and design control mechanisms. Here, we first utilize a forward model 

relating the auditory neural response activity to the envelopes of the two speech streams by 

employing the sparse structure of the auditory response. We then model the attentional state 

of the listener using a non-stationary Bernoulli process. Finally, we employ von Mises–

Fisher circular statistics to form a robust inverse model that accounts for the correlation of 

the observed neural response activity with respect to the two speech streams. We use the 

Maximum a posteriori (MAP) estimation framework to infer the state-space parameters 

from the observed data. In particular, we devise a novel application of two nested 

Expectation–Maximization (EM) algorithms to efficiently solve the MAP problem.

Our proposed model has several advantages over existing methods. First, theoretically 

speaking, our state-space model is able to preserve dynamics as fast as the sampling 

resolution. Simulation studies as well as application to experimental data reveal that our 

model is indeed capable of predicting the attentional state of the listener with a temporal 

resolution of seconds, which is a significant improvement over the state-of-the-art temporal 

resolution of minutes. Second, we only require the envelopes of the two speech streams as 

covariates, which is a substantial reduction in the dimension of the spectrotemporal feature 

set used for decoding auditory attention. Finally, our state-space framework provides 

confidence bounds on the state parameters, which can in turn be used for precise statistical 

inference procedures such as hypothesis testing. We further provide simulation studies as 

well as applications of our method on experimentally acquired neural response data. Our 

analyses reveal the superior performance of the proposed decoder in tracking the attentional 

state of a listener in a competing-speaker environment, as compared to existing techniques.

Methods

Modeling

We divide our modeling framework into three stages: the forward problem of relating the 

neural response observations to the temporal features of the attended and unattended speech 

streams; the attention model which takes into account the dynamics of selective attention; 

and the inverse problem of decoding the attentional state of the listener given the neural 

response observations and the temporal features of the two speech streams.
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The forward problem: Estimating the temporal response function

Consider a task where the subject is passively listening to a speech stream. Let the discrete-

time neural response observation at time t, sensor j, and trial r be denoted by xt,j,r, for t = 1, 

2, …, T, j = 1, 2, …, M and r = 1, 2, …, R. Let the time series y1,r, y2,r, …, yT,r denote an 

auditory component of the MEG observations. This component can be obtained through 

source localization techniques or sensor-space source separation algorithms, and will be 

referred to hereafter as the neural response (See Section MEG processing and neural source 

localization). Also, let Et be the speech envelope of the speaker at time t in dB scale. In a 

linear model, the neural response is linearly related to the envelope of speech as:

(1)

where τt is a linear filter of length L denoted by the temporal response function (TRF), * 

denotes the convolution operator, and vt,r is a nuisance component accounting for trial-

dependent and stimulus-independent components manifested in the neural response. It is 

known that the TRF is a sparse filter, with significant components analogous to the M50 and 

M100 auditory responses (Ding and Simon, 2012a,b). A commonly-used technique for 

estimating the TRF is known as Boosting (David et al., 2007; Ding and Simon, 2012b), 

where the components of the TRF are greedily selected to decrease the mean square error 

(MSE) of the fit to the neural response. We employ an alternative estimation framework 

based on ℓ1-regularization. Let τ:= [τL, τL − 1, …, τ1] ′ be the time-reversed version of the 

TRF filter in vector form, and let Et := [Et, Et − 1, …, Et – L + 1] ′. In order to obtain a sparse 

estimate of the TRF, we seek the ℓ1-regularized estimate:

(2)

where γ is the regularization parameter. The above problem can be solved using standard 

optimization software. We use a fast solver based on iteratively re-weighted least squares 

(Ba et al., 2014). The parameter γ is chosen by two-fold cross-validation, where the first half 

of the data is used for estimating τ and the second half is used to evaluate the goodness-of-

fit in the MSE sense. In a competing-speaker environment, where the subjects are only 

attending to one of the two speakers, the linear model takes the form:

(3)

with , and , denoting the TRF and envelope of the attended and unattended 

speakers, respectively. The above estimation framework can be generalized to the two-

speaker case by replacing the re-gressor τ′Et with , where τa, , τu, and 

are defined in a fashion similar to the single-speaker case. Similarly, the regularization γ‖τ‖1 

is replaced by γa‖τa‖1 + γu‖τu‖1.
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Selective attention: A non-stationary Bernoulli process

Suppose that at each window of observation, the subject is attending to either of the two 

speakers. Let nk,r be a binary variable denoting the attention state of the subject at window k 

and trial r:

(4)

The subjective experience of attending to a specific speech stream among a number of 

competing speeches reveals that the attention may switch to a competing speaker, although 

not intended so by the listener. Therefore, we model the statistics of nk,r by a Bernoulli 

process with a success probability of pk:

(5)

A value of pk close to 1 (respectively 0) implies attention to speaker 1 (respectively 2). The 

process  is assumed to be common among different trials. In order to model the 

dynamics of pk, we perform a change of variables by defining zk such that

(6)

Note that zk and pk have a one-to-one monotonic relation, i.e., when zk varies from − ∞ to 

∞, pk monotonically varies from 0 to 1. Hence, instead of working with pk with a restricted 

range, we impose dynamics on zk which admits a larger class of widely-used linear dynamic 

models. To this end, we employ a first-order autoregressive model of the form:

(7)

where wk is an uncertainty parameter. The autoregressive model in Eq. (7) implies that the 

parameter zk at time k is equal to zk − 1 at time k − 1 up to some uncertainty which is 

modeled by a random variable wk. Since the range of zk is symmetric around zero, we 

assume that the uncertainty parameters {wk}k = 1, 2, … follow centered independent Gaussian 

distributions with unknown variances {ηk}k = 1,, 2, …. If need be, higher order autoregressive 

processes can be used to model the dynamics of zk as well as non-Gaussian distributions to 

capture the uncertainty wk. However, our simulation studies as well as the analysis of real 

data suggest that it is not necessary to go beyond the first-order model and Gaussian 

uncertainty parameters for the problem at hand. We further assume that ηk are distributed 

according to the conjugate prior given by the inverse-Gamma distribution with hyper-

parameters α (shape) and β (scale).
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The inverse problem: Decoding attentional modulation

Let y1,r, y2,r, …, yT,r denote the neural response time series at trial r, for r = 1, 2, …, R 

during an observation period of length T. For a window length W, let

(8)

for k = 1, 2, …, K := └T/W┘. Also, let Ei,t be the speech envelope of speaker i at time t in 

dB scale, i = 1, 2. We extract the envelope of the speech signal by taking the absolute value 

of its analytic extension (Hilbert Transform) and low-pass filter with a cut-off frequency of 

20 Hz to obtain a smoothed envelope. Let  and  denote the TRFs of the attended and 

unattended speakers, respectively. The neural response predictors in the linear model are 

given by:

(9)

Let

(10)

for i = 1, 2 and k = 1, 2, …, K. Recent work by (Ding and Simon, 2012a) suggests that the 

neural response yk is more correlated with the predictor ei,k when the subject is attending to 

the ith speaker at window k. Let

(11)

denote the empirical correlation between the observed neural response and the model 

prediction when attending to speaker i at window k and trial r. When θi,k,r is close to 0 

(respectively π), the neural response and its predicted value are highly (respectively poorly) 

correlated. Inspired by the findings of (Ding and Simon, 2012a), we model the statistics of 

θi,k,r by the von Mises–Fisher distribution (Fisher, 1993) with density:

(12)

where IW(·) is the Wth order modified Bessel function of the first kind, and κi denotes the 

spread parameter of the von Mises–Fisher distribution for i = 1, 2. Note that the extra 

normalization factor of 2 in the numerator is due to the restriction of θi,k,r to [0, π]. The von 

Mises–Fisher distribution gives more (respectively less) weight to higher (respectively 

lower) values of correlation between the neural response and its predictor. The spread 

parameter κi accounts for the concentration of θi,k,r around 0. Fig. 2 shows a schematic 
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depiction of the von Mises–Fisher statistics in modeling the correlation of the neural 

response with its predictors based on speech envelopes. We assume a conjugate prior of the 

form  over κi, for some hyper-parameters c0 and d.

Parameter estimation: A novel em-based decoder

Let

(13)

be the set of state-space parameters. In principle, these parameters can be estimated through 

maximum a posteriori (MAP) estimation. However, due to the involved functional form of 

the log-likelihood and particularly temporal coupling of the state parameters, direct 

maximization of the log-posterior requires solving a high dimensional convex optimization 

problem. Instead, we use a novel form of the Expectation–Maximization (EM) algorithm to 

efficiently estimate the state parameters (Dempster et al., 1977). Taking  as the 

unobserved data, the complete data log-posterior can lead to a feasible MAP estimate of the 

parameters, due to its tractable functional form for optimization purpose.

The overall estimation procedure consists of two nested EM algorithms and is outlined in 

Algorithm 1. At the ℓth iteration of the outer EM, the E-step involves computing 

, using Bayes' rule, and the M-step updates 

 and . As for the last two sets of parameters, the 

maximization in the M-step itself is computed using the inner EM algorithm. In the inner 

EM algorithm, the E-step corresponds to a Bernoulli smoothing algorithm (Smith and 

Brown, 2003; Smith et al., 2004) and the M-step updates the state variance sequence 

(Shumway and Stoffer, 1982). The detailed derivations of the estimation procedure are 

provided in Appendices A and B. Confidence intervals for the estimated values of pk can be 

obtained by mapping the confidence intervals of the posterior estimates of the Gaussian 

variables zk via the inverse logit mapping (See the output of Algorithm 1). In summary, the 

decoder inputs the neural response observations and the envelopes of the two speech 

streams, and outputs the Bernoulli success probability sequence corresponding to attending 

to speaker 1. The choice of the hyper-parameters will be discussed in Section Decoding 

auditory attention from MEG: a simulation study. We will refer to the estimator outlined in 

Algorithm 1 as the attention decoder in the remainder of the paper.

Subjects, stimuli, and procedures

Eleven normal-hearing, right-handed young adults (ages between 20 and 31) participated in 

this study, consisting of two experiments: constant-attention experiment (eight subjects, 

three female) and attention-switch (seven subjects, four female). Four subjects (three 

female) participated in both experiments. All subjects were compensated for their 

participation. The experimental procedures were approved by the University of Maryland 
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Institutional Review Board. Written, informed consent was obtained from each subject 

before the experiment.

The stimuli consist of segments from the book A Child's History of England by Charles 

Dickens, narrated by two different readers (of opposite genders). Four speech segments (one 

target and one masker segment for each speaker) were used to generate three speech 

mixtures. Each speech mixture was constructed by mixing two speech segments digitally in 

a single channel with duration of 1 min, as described next. The first mixture was generated 

using the male target segment and the female masker segment, whereas the second mixture 

was generated using the female target segment and the male masker segment. The third 

mixture was generated using male and female target segments. Periods of silence longer 

than 300 ms were shortened to 300 ms to keep the speech streams flowing continuously. All 

stimuli were low-pass-filtered below4 kHz and delivered diotically at both ears using tube 

phones plugged into the ear canals. In all trials, the stimuli were mixtures with equal root-

mean-square values of sound amplitude, presented roughly at a 65 dB sound pressure level 

(SPL).

In the constant-attention experiment, subjects were asked to focus on one speaker (speaker 

1, male; speaker 2, female) through the entire trial. In the attention-switch experiment, 

subjects were instructed to focus on one speaker in the first 28 s of the trial, switch their 

attention to the other speaker after hearing a 2 second pause (28th to 30th seconds), and 

maintain their focus on the latter speaker through the end of that trial. Consequently, there 

were four conditions: 1) attending to speaker 1 for the entire trial duration, 2) attending to 

speaker 2 for the entire trial duration, 3) attending to speaker 1 and switching to speaker 2 

halfway through the trial, and 4) attending to speaker 2 and switching to speaker 1 halfway 

through the trial. The first mixture was used as the stimulus for condition 1, second mixture 

for condition 2 and third mixture for conditions 3 and 4. Each mixture was repeated three 

times during each experimental condition. The first second of each section was replaced by 

the clean recording from the target speaker to help the listener attend to the target speaker. 

After each condition was presented, subjects answered comprehensive questions related to 

the passage on which they focused, as a way to keep them motivated in attending to the 

target speaker. Eighty percent of the questions were correctly answered on average. The 

order of presentation for the constant-attention experiment (conditions 1 and 2), and the 

attention switch (conditions 3 and 4) was counterbalanced across subjects participating in 

that experiment.
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Algorithm 1. Estimation of the state-space parameters

A pilot study from subjects listening to single speakers was performed prior to the main 

study. In this experiment, 6 trials (3 repetitions each of speaker 1 and speaker 2 target 

segments) were presented to the subjects and recordings were used for estimating the 

Temporal Response Functions (TRFs) in the forward model.

Data recording

MEG signals were recorded in a dimly lit magnetically shielded room (Yokogawa Electric 

Corporation) using a 160-channel whole-head system (Kanazawa Institute of Technology, 

Kanazawa, Japan), and with a sampling rate of 1 kHz. Detection coils were arranged in a 

uniform array on a helmet-shaped surface on the bottom of the dewar, with 25 mm between 

the centers of two adjacent 15.5-mm-diameter coils. Sensors are configured as first-order 

axial gradiometers with a baseline of 50 mm; their field sensitivities are  or better 

in the white noise region.

Stimuli were presented using the software package Presentation (Neurobehavioral Systems, 

Inc., Berkeley, CA, USA). The sounds (approximately 65 dB SPL) were delivered to the 

participants Õ ears with 50 Ω sound tubing (E-A-RTONE 3A; Etymotic Research), attached 

to E-A-RLINK foam plugs inserted into the ear canal. The entire acoustic delivery system 
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was equalized to give an approximately flat transfer function from 40 to 3000 Hz, thereby 

encompassing the range of the presently delivered stimuli.

A 200 Hz low-pass filter and a notch filter at 60 Hz were applied to the magnetic signal 

online. Three of the 160 channels were magnetometers separated from the others and used as 

reference channels in measuring and canceling environmental noise (de Cheveigné and 

Simon, 2007). Five electromagnetic coils were used to measure each subject's head position 

inside the MEG machine. The head position was measured twice during the experiment, 

once before and once after to quantify the head movement.

MEG processing and neural source localization

Recorded MEG signals contained both stimulus-driven responses and stimulus-irrelevant 

background neural activity. In order to extract components that were phase-locked to the 

stimulus and consistent over trials, as opposed to the random irrelevant activities, we 

employed the Denoising Source Separation (DSS) algorithm (Särelä and Valpola, 2005; de 

Cheveigné and Simon, 2008). This algorithm is a blind source separation method that 

decomposes the data into temporally uncorrelated components by removing inconsistent 

temporal components not phased-locked to the stimulus. In other words, DSS suppresses the 

components of the data that are noise-like and enhances those that are consistent across 

trials, with no knowledge of the stimulus or the timing of the task. The recorded neural 

response during each 60 s was band-pass filtered between 1–8 Hz and down sampled to 200 

Hz before submission to the DSS analysis. We found that the first DSS component alone 

was sufficient, so analysis was restricted to this component, which we denote by the 

auditory neural response throughout this paper. The spatial magnetic field distribution 

pattern of the auditory neural response was used for neural source localization. In all 

subjects, the magnetic field corresponding to the auditory neural response showed a 

stereotypical bilateral dipolar pattern (See Fig. 3-A).

Results

In order to evaluate the performance of the state-space model in decoding the attentional 

state of listeners and to illustrate the effectiveness of this model in various stimulus 

conditions, a number of realistic simulations and experimental data sets were employed. We 

first present our results on the robust estimation of the TRF, which forms the basis of the 

forward models used in both simulations and experimental data analysis. We will then 

present simulation results which highlight the capability of our proposed estimation 

framework in tracking the attentional state under a wide range of SNR values as well as 

dynamics. Finally, we will apply the proposed attentional decoding framework to 

experimental MEG data from several subjects which chimes in accordance to our simulation 

studies.

TRF estimation

TRFs corresponding to the attended speaker were estimated from the pilot conditions, where 

only single speech streams were presented to the subjects. Separate TRFs were obtained for 

speakers one and two, using 3 repeated trials for each and the TRF with smaller normalized 
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least square error was chosen and used throughout the rest of our analysis. The TRF 

corresponding to the unattended speaker was approximated by truncating the attended TRF 

beyond a lag of 90 ms, on the grounds of the recent findings of Ding and Simon (2012a), 

which show that the components of the unattended TRF are significantly suppressed beyond 

the M50 evoked field. An example of an estimated TRF using the auditory neural response 

for a sample subject is shown in Fig. 3-B. The spatial magnetic field distribution pattern of 

the auditory neural response (Fig. 3-A) demonstrates a stereotypical bilateral dipolar pattern, 

as expected for auditory evoked field.

Decoding auditory attention from MEG: A simulation Study

In order to simulate neural response modulated by attention, first a binary sequence 

 was generated as realizations of a Bernoulli process with success probability 

pk = 0.95 or 0.05, corresponding to attention to the first or second speakers, respectively. 

The total observation time was 60 s with a sampling rate of Fs = 200 Hz (T = 12,000 

samples) and the processing window length was chosen to be 250 ms (W = 50 samples). 

Using a TRF template of length 0.5 s estimated from experimental data (See Section TRF 

estimation), we generated 3 trials for various SNR values and with multiple attention 

switches throughout each trial.

Figs. 4-A and -B show the simulated neural signal (black traces) and predictors of attending 

to speaker one and two (red traces) at an SNR of 10 dB. Regions indicated by arrows in 

panels A and B demonstrate the time intervals, in which listeners are supposed to attend to 

either of the two speakers.

The hyper-parameters for the von Mises–Fisher distribution were chosen as d = 100KR/2 

and c0 = 0.01, consistent with the observed correlation values between the simulated neural 

response and the model prediction. The choice of d = 100KR/2 gives more weight to the 

prior than the empirical estimate of κi. The hyper-parameters α and β for the inverse-Gamma 

prior on the state variance were chosen as α = 2.01 and β = 0.5. This choice of α close to 2 

results in a non-informative prior, as the variance of the prior is given by β2/[(α − 1)2(α − 

2)] ≈ 245, while the mean is given by β/(α − 1) ≈ 0.5.

Estimated values of  (green trace) and the corresponding confidence intervals (green 

hull) are shown in Fig. 4-C. The estimated pk values reliably track the attentional state, and 

the transitions are captured with high accuracy. MEG data recorded from the brain is usually 

contaminated with environmental noise as well as nuisance sources of neural activity, which 

can considerably decrease the SNR of the measured signal. In order to test the robustness of 

the decoder with respect to observation noise, we repeated the above simulation with SNR 

values ranging from − 20 to 10 dB. As demonstrated in Fig. 4-D, the confidence intervals 

and the estimated transition width widen gracefully as the SNR decreases. The dynamic 

denoising feature of the proposed state-space model results in a desirable decoding 

performance for SNR values above − 15 dB (Fig. 4-E).
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Decoding auditory attention from MEG: Application to experimental MEG data

We assessed our proposed state-space model and decoder on experimental MEG data 

recorded from 11 human subjects who listened to one of the two competing speakers in 

constant-attention and attention-switch experiments (see Methods). All hyper-parameters in 

the model were chosen similar to those of the simulation studies in the previous section, 

except for the prior parameter c0 for the von Mises–Fisher distribution which was 

conservatively chosen as c0 = 0.01, consistent with the observed correlation values between 

the simulated neural response and the model prediction.

The predicted pk values resulted from single and multi-trial analysis are shown in Fig. 5 for 

three sample subjects. For multi-trial analysis (3rd panel of each plot) 90% confidence 

intervals are shown by the shaded hulls around the estimated values. In the first and second 

conditions subjects were instructed to maintain their attention through the entire experiment 

to the speaker one and speaker two, respectively (Figs. 5-A and -B). The decoding results 

demonstrate the decoder's reliable recovery of the attention modulation by estimating {pk} 

close to 1 for the first condition and values close to 0 for the second condition. For the third 

and fourth conditions, subjects were instructed to switch their attention after hearing a 2 s 

pause, in the middle of each trial, from the speaker one to the speaker two (Fig. 5-C) and 

from the speaker two to the speaker one (Fig. 5-D). Using multiple-trial analysis, the 

decoder was able to capture the attentional switch occurring roughly halfway through the 

trial. The decoding of individual trials in the fourth panel of Fig. 5-C & -D suggest that the 

exact switching times were not consistent across different trials, as the attentional switch 

might have occurred slightly earlier or later than the presented cue.

The performance of individual subjects were evaluated by computing time fractions in 

which the target speaker or the alternative speaker were followed according to the estimated 

results from the state-space decoder. All computations were done within the confidence 

interval of 90% for multi-trial and 70% for single-trial analysis. An illustrative example of 

the time intervals in which a sample subject is in target, alternative target (Alt-target) or 

unfollowed attentional sate is shown in Fig. 6-A, for a sample trial in speaker one-speaker 

two attention-switch condition (condition 3). The evaluated target and Alt-target attentional 

time fractions for single trials are plotted in Figs. 6-B1 and -B2, for the constant-attention 

and the attention-switch experiments, respectively. As shown in these figures, most of the 

data points fall above the identity line, indicating larger time fractions in which the target 

speakers were attended vs. the alternative targets. The behavioral results from multi-trial 

analysis were significantly improved compared to the single-trial estimations (one way 

ANOVA, P < 0.01). This is indeed expected from the state-space formulation, as the 

variance of the state variable zk is inversely proportional to the number of trials R (See Eq. 

(A.5)). The results of multi-trial estimations are shown in Figs. 6-C1 & -C2 for each 

individual subject and two experimental conditions. The median, 25% and 75% quartile 

values are shown in separate box plots for target and Alt-target attended time fractions and 

for each individual experiment. In addition, individual subject performances averaged over 

condition pairs within constant-attention experiment (conditions one & two) and attention-

switch experiment (conditions three & four) are plotted in blue on top of the corresponding 

box plots. Evaluated performances for the decoded attentional states show that time fractions 
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in which the target speakers were attended to, were significantly larger than the Alt-target 

attended time fractions (one way ANOVA, P < 0.001), highlighting the successful decoding 

of the attentional states via the state-space model.

Discussion

In this study, we developed a biophysically-inspired state-space model that provides an 

estimation framework for decoding the attentional state of a listener in a competing-speaker 

environment. The proposed algorithm takes advantage of the temporal continuity in the 

attentional state, resulting in a decoding performance, which is highly accurate and resolved 

in time. Parameter estimation of this model is carried out using the EM algorithm, which is 

tied to the efficient computation of the Bernoulli process smoothing, resulting in a very low 

overall computational complexity. The output of the state-space model at each EM iteration 

is plotted in Fig. 7 for a sample subject and all four experimental conditions. These plots 

illustrate the convergence path of the EM iterations in estimating the attention probability 

values pk, starting from values at chance level (0.5) and converging to values near 0 or 1 

depending on the targeted speaker.

The novel state space model proposed in this study is supported by performance evaluation 

of the model on realistic simulated data, as well as evoked neural activity from the auditory 

cortex of humans, recorded via MEG. These studies divulge two main advantages in the 

current model over the state of the art methods such as the reverse correlation technique 

(Bialek et al., 1991; Gielen et al., 1988; Hesselmans and Johannesma, 1989).

First, in this proposed model, temporal resolution of the estimated state of attention is in the 

order of a few seconds rather than a minute. This resolution is comparable to empirically 

estimated speed of attention switching in humans; therefore the proposed model provides a 

dynamic framework for tracking the attentional state of a listener in real world scenarios. 

This is a considerable improvement over the commonly used methods based on reverse 

correlation, in which the recovery of the stimulus paradigm from the corresponding neural 

response results is a poor reconstruction of the stimulus using short processing time 

windows, and therefore fails in tracking the attentional state in a precise fashion (Ding and 

Simon, 2012a; Mesgarani and Chang, 2012).

Second, the principled statistical framework used in constructing the decoder allows us to 

obtain confidence bounds on the estimated attentional state. This feature is crucial to 

obtaining a statistically principled framework for assessing the validity of the algorithm 

output. Moreover, the proposed approach benefits from the inherent model-based dynamic 

denoising of the underlying state-space model, and is able to reliably decode the attentional 

state under very low SNR conditions. A comparison of our method with a correlation-based 

classifier (without the state-space mechanism) was presented in our earlier work (Akram et 

al., 2014), which confirmed the latter observation and revealed a significant performance 

gap.

A potential application of this analysis framework is to be used as a real-time cocktail party 

analyzer, tracking the attentional state of a listener in a complex auditory environment. The 
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state-space model provides estimation of the probability of attending to either one of the 

speakers at each time point t based on the recorded neural data at all other time points before 

(via non-linear filtering) and after (via backward smoothing) t. Assuming that the cognitive 

state of attention is a continuous process in time, this continuity is appropriately accounted 

for in the proposed model; however, for real-time Brain– Computer Interface (BCI) 

applications, the smoothing step can be omitted and estimation of the attentional state can be 

causally carried out via the proposed non-linear filter.

Future work includes generalization of the proposed model to more realistic and complex 

auditory environments with more diverse sources such as mixtures of speech, music and 

structured background noise. Nevertheless, the promising performance of the proposed 

algorithm for MEG recordings makes it an appealing candidate for EEG applications.
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Appendix A. Parameter estimation of the inverse problem

Let

(A.1)

be the set of parameters.

The log-posterior of the parameter set Ω given the observed data  is given by:
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where cst. denotes terms that are not functions of Ω. The MAP estimate of the parameters is 

difficult to obtain given the involved functional form of the log-posterior. However, the 

complete data log-posterior, where the unobservable sequence  is given, takes 

the form:

The log-posterior of the parameters given the complete data has a tractable functional form 

for optimization purposes. Therefore, by taking  as the unobserved data, we 

can estimate Ω via the EM algorithm (Dempster et al., 1977). Using Bayes' rule, the 

expectation of nk,r, given  and current estimates of the parameters 

 is given by:
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(A.

2)

Denoting the above expectation by the shorthand (ℓ){nk,r}, the M-step of the EM algorithm 

for  and  gives:

(A.3)

where , with IW(·) denoting the Wth order 

modified Bessel function of the first kind. Inversion of A(·) can be carried out numerically in 

order to find  and . The M-step for  and  corresponds to the 

following maximization problem:

(A.

4)

An efficient approximate solution to this maximization problem is given by another EM 

algorithm, where the E-step is the point process smoothing algorithm (Smith and Brown, 

2003; Smith et al., 2004) and the M-step updates the state variance sequence (Shumway and 

Stoffer, 1982). At iteration m, given an estimate of , denoted by , the forward 

pass of the E-step for k = 1, 2, …, K is given by:

(A.5)

Note that the third equation in the forward filter is non-linear in , and can be solved 

using standard techniques (e.g., Newton's method). More details on derivation of the non-

linear forward filter can be found in Appendix B. For k = K – 1, K – 2, …, 1, the backward 

pass of the E-step is given by:
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(A.6)

The M-step gives the updated value of  as:

(A.

7)

Appendix B. Derivation of the recursive nonlinear filtering algorithm

Assume that at time (k – 1), zk – 1|k – 1 and  are given. The distribution of zk given all 

the data up to time k is , where . To derive the 

non-linear recursive filter, we keep track of the parameters of the posterior distribution p(zk|

Ω):

(B.

1)

To find the mode of p(zk|Ω), we apply Gaussian approximation to the posterior density. The 

approximation is based on recursively computing the posterior mode zk|k and computing its 

variance  as the negative inverse Hessian of the log-posterior probability density 

(Tanner, 1993). Differentiating Eq. (A1) w.r.t. zk gives

(B.2)

and solving for z yields

(B.3)

This equation is non-linear w.r.t. zk and can be solved using the Newton's method. The 

Hessian of Eq. (B.1) is given by
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(B.4)

and hence the variance of zk, under the Gaussian approximation is given by:

(B.5)

Appendix C. Covariance smoothing

The lagged covariance  can be computed from the state-space covariance smoothing 

algorithm (De Jong and Mackinnon, 1988) given by the following equation:

(C.1)

for 1 ≤ k ≤ l ≤ K. Hence, the lagged covariance term appearing in our E-step is given by:

(C.2)

which is easily computable using the smoothed state variances.
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Fig. 1. 
Schematic depiction of auditory object encoding in the auditory cortex. Here, the auditory 

scene consists of the mixture of two concurrent speech streams. Recent studies show that 

cortical activity (black traces) is selectively phased-locked to the temporal envelope of the 

attended speaker as opposed to the unattended speaker's envelope.
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Fig. 2. 
A) von Mises–Fisher probability density for different κ parameters. B)Schematic view of 

von Mises–Fisher statistics on a three dimensional sphere: normalized neural response data 

points are shown by black dots on the unit sphere. Red and green arrows indicate the vectors 

of predicted neural response based on attending to speaker 1 or speaker 2, respectively. The 

angles between the neural response at window k and each of the predictors are shown as θ1,k 

and θ2,k, for the case of attending to speaker 1 (left plot) and speaker 2 (right plot), 

respectively. The point cloud formed by the neural response is aligned with the direction of 

the predictor vector corresponding to the attention state.
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Fig. 3. 
A) MEG magnetic field distribution for the first DSS component of a sample subject shows 

a stereotypical pattern of neural activity, originating separately in the left and right auditory 

cortices. Red and green contours represent the magnetic field strength. Blue arrows 

schematically represent the locations of the dipole currents, generating the measured 

magnetic field. B) Estimated TRF for the sample subject has significant components 

analogous to the well-known M50 and M100 auditory responses, as well as later responses, 

as demonstrated in the figure.
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Fig. 4. 
Simulated neural response (black traces) and model prediction (red traces) of A) speaker one 

and B) speaker two at SNR = 10 dB. Black arrows indicate the instructed attentional state of 

the subjects. The MEG units are in pT/m. C) Estimated values of {pk} with 95% confidence 

intervals. D) Estimated values of {pk} from simulated neural response vs. SNR=0,−10and 

−15 dB. Error hulls indicate 95% confidence intervals. E) Behavioral results of the 

simulated neural response vs. SNR values ranging from −20 to 10 dB. The time fraction for 

which the estimated attentional state follows the target speaker (the opposite speaker) as a 

function of different SNRs is shown in the left panel (right panel).
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Fig. 5. 
Decoding auditory attentional modulation in experimental MEG data. In each subplot, the 

neural response (black traces) and the model prediction (red traces) for attending to speaker 

one and speaker two are shown in the first and second panels, respectively, for one sample 

subject. The third panel shows the estimated values of {pk} and the corresponding 

confidence intervals using multi-trial analysis for three sample subjects. The fourth panel 

shows the estimated {pk} values for single trials. A) Condition 1: attending to the speaker 

one through the entire trial. B) Condition 2: attending to the speaker two through the entire 

trial. C) Condition 3: attending to the speaker one until t = 28 s and switching attention to 

the speaker two after the 2 s pause. D) Condition 4: attending to the speaker two until t = 28 

s and switching attention to the speaker one after the 2 s pause. Dashed lines in subplots C 

and D indicate the start of the 2 s silence cue for attentional switch. Error hulls indicate 90% 

confidence intervals. The MEG units are in pT/m.
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Fig. 6. 
Schematic illustration of attentional states and behavioral analysis. A) The estimated 

attentional condition at each time point can take one of the followings states: Target 

Attended (TA), Alternative Target Attended (Alt-TA), and the Unfollowed state (UF). 

Examples of the attentional states for a sample subject are depicted in panel A, for a sample 

trial from condition 3. B1, C1) Target speaker attended time fractions are plotted with 

respect to the Alt-target attended time fractions for individual subjects in constant-attention 

and attention-switch experiments, respectively. B2, C2) Target and Alt-target attended time 

fractions are computed via multi-trial analysis. Box plots indicate the median and quartile 

percentages of subjects' behavioral performances in attending to the target and non-target 

speakers (first and second boxes in each plot, respectively). Individual subject performances, 

shown in blue markers, are plotted on top of each box plot.
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Fig. 7. 
A step-wise illustration of the EM convergence. A) The output of the state-space decoder is 

plotted after each EM iteration for sample trials of attending to speaker 1 (green curves), and 

attending to speaker 2 (orange curves), in the Constant-Attention experiment. B) EM 

iterations are plotted for sample trials of the Attention-Switch experiment and for attention 

switches from speaker 1 to speaker 2 (green curves), and from speaker 2 to speaker 1 

(orange curves).
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