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Abstract

Neuroimaging and genetic studies provide distinct and complementary information about the 

structural and biological aspects of a disease. Integrating the two sources of data facilitates the 

investigation of the links between genetic variability and brain mechanisms among different 

individuals for various medical disorders. This article presents a general statistical framework for 

integrative Bayesian analysis of neuroimaging-genetic (iBANG) data, which is motivated by a 

neuroimaging-genetic study in cocaine dependence. Statistical inference necessitated the 

integration of spatially dependent voxel-level measurements with various patient-level genetic and 

demographic characteristics under an appropriate probability model to account for the multiple 

inherent sources of variation. Our framework uses Bayesian model averaging to integrate genetic 

information into the analysis of voxel-wise neuroimaging data, accounting for spatial correlations 

in the voxels. Using multiplicity controls based on the false discovery rate, we delineate voxels 

associated with genetic and demographic features that may impact diffusion as measured by 

fractional anisotropy (FA) obtained from DTI images. We demonstrate the benefits of accounting 

for model uncertainties in both model fit and prediction. Our results suggest that cocaine 

consumption is associated with FA reduction in most white matter regions of interest in the brain. 

Additionally, gene polymorphisms associated with GABAergic, serotonergic and dopaminergic 

neurotransmitters and receptors were associated with FA.
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1 Introduction

Cocaine use is associated with several acute effects on a variety of intracellular pathways 

such as inhibition of the serotonin, dopamine, and norepinephrine transporters (Han and Gu, 

2006). Chronic use of cocaine leads to addiction, which inflicts high costs to individuals and 

society. Long-term drug addiction is known to cause many health problems, both 

psychological (depression, paranoia, anxiety) and physical (cardiac disease). Although 

genetics contribute substantially to addiction vulnerability, the identification of genes 

associated with this susceptibility has been slow (Li and Burmeister, 2009). Several studies 

have suggested that certain DNA polymorphisms may impact the extent to which a person is 

vulnerable to drug abuse and addiction (Nielsen and Kreek, 2012; Kreek et al., 2005b), and 

may have significant effects on an individual’s response to treatment (Berrettini and Lerman, 

2005; Kreek et al., 2005a; Nielsen et al., 2014; Bauer et al., 2014).

Recent advances in imaging technologies such as positron emission tomography (PET), 

functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) have 

enabled non-invasive investigation of neurochemical, functional and structural alterations in 

the brains of drug-addicted subjects, revealing new insights into the mechanism of addiction 

(Volkow et al., 2003). Chronic cocaine users have been shown to exhibit subtle abnormalities 

in different areas of the brain, as measured by DTI (Lim et al., 2008; Moeller et al., 2007; 

Lane et al., 2010; Moeller et al., 2005; Ma et al., 2009; Romero et al., 2010; Liu et al., 

2008). These areas include the anterior and posterior corpus callosum and tracts in the 

frontal and parietal regions of the brain. In addition, cocaine has been shown to alter the 

methylation of myelin genes in rodents (Nielsen et al., 2012b). However, the precise 

mechanisms that cause alterations in white matter remain unknown.

The search for genetic factors associated with a disease is complicated due to the intrinsic 

confluence of genetic, epigenetic (Nielsen et al., 2012c), environmental and psychological 

components as well as additional factors that may not have been defined (Craig et al., 2008). 

Understanding the links between genetics, brain structure and function is an inherently 

multidisciplinary endeavor that has broad implications for a number of medical disorders, 

including neurological conditions such as Alzheimer’s disease (Kohannim et al., 2011; 

Braskie et al., 2011), autism (Dennis et al., 2011), bipolar disorder (Frazier et al., 2014), 

obesity (Ho et al., 2010), and schizophrenia (Braskie et al., 2012).

Statistical integration of imaging and genetic data for investigating brain-wide, candidate-

gene associations is challenging because the method of inference must account for (i) spatial 

dependence among the high-dimensional measurements of imaging phenotypes; (ii) 

multiplicity adjustments among the numerous tests; and (iii) model uncertainty in the 

presence of a large set of genetic factors. For example, even with a relatively modest number 

of genetic variables, such as 23, our study yields a prohibitively large number of possible 

models (more than 8 million) for conducting inference at a single voxel. Moreover, we 
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expect associations to be spatially heterogeneous across brain regions due to varied 

functional and physical features, which thereby precludes inference using any single model 

applied uniformly to all voxels in the brain (which is typically in the hundreds of thousands).

Various statistical methods have been used to examine relationships between genetics and 

brain imaging features. Multivariate generalized linear modeling is commonly used to 

identify associations among multivariate phenotypes and candidate genotypes (Chung et al., 

2010; Taylor and Worsley, 2008; Worsley et al., 2004). Component-wise methods offer 

alternatives that use univariate analysis for each component, with multiplicity control 

through post hoc application of Bonferroni correction, false discovery rates, or random field 

theory to adjust for multiple comparisons (Heller et al., 2007; Lazar et al., 2002). Principal 

component analysis is another approach that is used to reduce the dimension of the 

multivariate phenotype (Formisano et al., 2008; Teipel et al., 2007; Rowe and Hoffmann, 

2006; Kherif et al., 2002). In addition, sparse reduced rank regression is often implemented 

in brain-wide, genome-wide association studies (Vounou et al., 2010). Partial least squares 

regression can be used to identify linear projections of the multivariate phenotype and 

genotype on lower dimensional spaces (Chun and Keleş, 2010; Krishnan et al., 2011). The 

effects of multiple genes can be modeled nonparametrically using least squares kernel-based 

learning methods (Liu et al., 2007; Ge et al., 2012).

The aforementioned statistical methods currently available for voxel-wise analysis fail to 

account for uncertainty in model selection, and thus are limited for detecting associations 

between brain features and a large set of genetic covariates that may vary over the volume of 

interest. In addition, these methods do not allow for the explicit quantification of model 

uncertainties. To overcome these limitations, we developed a statistical framework that 

enables probabilistic inference for voxel-wise analysis that leverages Bayesian model 

averaging procedures. This allows us to not only quantify the genetic associations, but also 

to explicitly calculate uncertainties in terms of posterior probabilities, which admits precise 

multiplicity controls for coherent inference and variable selection. Briefly, our framework 

for integrative Bayesian analysis of neuroimaging-genetic (iBANG) features circumvents the 

high-dimensional problem by decoupling model fitting and inference. We first conduct a 

voxel-based Bayesian model averaging procedure, in parallel, to generate posterior 

probability maps for each genetic variable spanning the entire brain. Subsequently, we 

incorporate spatial information into our inferential techniques by locally smoothing the 

probability maps. Finally, we demarcate specific regions of association using multiplicity-

corrected false discovery rates. This allows our methods to scale to large datasets as well as 

provide principled statistical inference while accounting for various sources of variability 

induced by model selection and spatial heterogeneity. Furthermore, we demonstrate the 

benefits of accounting for model uncertainties in both model fit and prediction. Figure 1 is a 

schematic representation of our modeling strategy.

Our methods are applied to data from a recent cocaine addiction study (see Section 2 for 

details) that sought to identify brain regions that exhibit strong evidence of differential 

diffusion patterns among candidate genetic variants, cocaine users, and demographic 

covariates using FA in the white matter space as defined by the Montreal Neurological 
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Institute (MNI). Our framework is general enough to be applied to any imaging modality to 

conduct voxel-wise analyses of specific imaging parameters and outcomes of interest.

The structure of our article is as follows: Section 2 summarizes the main aspects of the 

cocaine addiction study, including the target population and acquisition of brain images and 

genetic data. Section 3 details the iBANG methodology and Section 4 presents the 

neurobiological findings from the integrative analysis. Section 5 provides a discussion of the 

assumptions, implications, and possible extensions of our work. Additional technical, 

computational and analytic details and results are provided in the supplementary materials.

2 Motivating Data

2.1 Study population

Study participants were recruited to the Center for Neurobehavioral Research on Addictions 

at the University of Texas Health Science Center at Houston through advertisements for 

research volunteers. All individuals with cocaine dependence and all non-drug users 

(controls) were screened for psychiatric and non-psychiatric medical disorders using the 

Structured Clinical Interview for DSM-IV (First et al., 1996). The study population included 

39 cocaine users (29 male and 10 female users) and 19 control participants (12 male and 7 

female controls). Table 1 lists the characteristics of the study population. This study was 

approved by the Institutional Review Boards of the University of Texas Health Science 

Center and Baylor College of Medicine, as well as the Research and Development 

committee of the Michael E. DeBakey Veteran Affairs Medical Center.

2.2 Brain image acquisition and processing

Whole brain diffusion-weighted images (DWI) were acquired on a Philips 3.0 T Intera 

system with a six-channel phased array receiver head coil (Philips Medical Systems, Best, 

Netherlands). Images were acquired in the transverse plane using a single-shot spin-echo 

diffusion sensitized echo-planar imaging (EPI) sequence (bfactor=1000 s/mm2, repetition 

time=6100 ms, echo time=84 ms, 44 contiguous axial slices, field-of-view= 240 mm × 240 

mm, 112 × 112 acquisition matrix, 256 × 256 reconstructed matrix, 0.9375 mm × 0.9375 

mm reconstructed in-plane resolution, slice thickness=3 mm). The diffusion tensor encoding 

scheme is based on the uniformly distributed and balanced rotationally invariant Icosa21 

tensor-encoding set (21 gradient directions) (Hasan et al., 2001). A SENSE acceleration 

factor or kspace under sampling was set to be R=2 to reduce EPI image distortions. The 

diffusion-encoded volumes were acquired with fat suppression. The acquisition time was 

approximately 7 minutes and resulted in signal-to-noise ratio independent DTI-measure 

estimation (Hasan, 2007). All the DTI images were processed using the FMRIB Software 

Library (www.fmrib.ox.ac.uk/fsl, version 5.04) (Jenkinson et al., 2012). For each scan, the 

DWI images were corrected for eddy current distortions and head motion (Jenkinson and 

Smith, 2001) after converting the Philips DICOM files into NIfTI format using dcm2nii. 

Then, brain was extracted from the images using FSL’s Brain Extraction Tool (BET) (Smith, 

2002). Next, the FMRIBs Diffusion Toolbox (FDT/FSL) (Behrens et al., 2003) was used to 

fit the data to extract FA and other DTI parameters for each voxel. All the FA images were 
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aligned to the standard MNI space using the FSL’s nonlinear registration (Andersson et al., 

2007a,b) with the FMRIB58-FA template image.

2.3 Genetic data acquisition

Twenty-one candidate genetic variants in seventeen genes that we had hypothesized may 

play a role in the vulnerability to develop addiction, have previously been associated with 

addiction vulnerability, known to be involved in psychiatric morbidities, or in 

neurotransmitter pathways were examined. These have been assessed in prior studies 

(Nielsen et al., 2012a; Kosten et al., 2013b,a; Spellicy et al., 2013; Kosten et al., 2013b, 

2014; Anastasio et al., 2014; Spellicy et al., 2014; Frazier et al., 2014; Liu et al., 2014; 

Brewer III et al., 2015). This includes several polymorphisms in the dopamine and serotonin 

transporters, and in the norepinephrine postsynaptic receptor. Genotypes were coded as 0 or 

1 following the dominant model. The list of genetic variants, genetic descriptions and 

genotype coding are given in Table 2.

3 Methods

In this section, we introduce iBANG, a method for integrative Bayesian analysis of 

neuroimaging-genetic data. The statistical method is motivated by the use of FA values 

acquired in voxels in the MNI white matter space that spans the entire brain. However, the 

framework is quite general and can be used for integrative analysis of any continuous image-

derived parameters.

3.1 iBANG model formulation

Suppose that the imaging feature (e.g., FA values) at voxel ν = 1, . . . , V for subject i = 

1, . . . , n is represented as yi(ν) and the corresponding (k-dimensional) genetic and 

demographic variables are represented as xi1, . . . , xik. Assume Y (ν) is a column-wise 

matrix of imaging features {y1(ν), . . . , yn(ν)} , X is a n × k matrix, and β(ν) is the full k-

dimensional vector of regression coefficients. The linear regression model for the νth voxel 

is

(3.1.1)

where α is an intercept, σ ∈ ℝ+ is a scale parameter, and ε is random noise (accounting for 

unknown sources of variation), which follows an n-dimensional normal distribution with 

zero mean and the identity covariance matrix. Our primary construct for inference is the 

effect surfaces β(ν)’s that capture the associations between the imaging features and each of 

the k covariates across the brain. However, this requires estimation of V × k number of 

parameters, which in our case is 3×106×24 ≈ 72 million parameters without accounting for 

model uncertainty, which represents considerable analytical and computational challenges. 

Subsequently, accounting for model uncertainty over all possible models, this number 

increases exponentially to 3 × 106 × 224. While Bayesian model averaging (BMA) involves 

more effective parameters, by explicitly accounting for model uncertainty, BMA both 

shrinks the influence of certain variables to zero through the model weights and provides an 
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unified method of inference for all voxels. Therefore, the BMA approach when applied in 

this context eschews the dilemma posed by implementation of voxel-wise model selection 

procedures, which can yield a joint inference that utilizes discordant models at adjacent 

voxels, and thereby neglects spatial dependence in the model space. To address this, we 

decouple the model fitting and inference using a three-step component-wise analysis 

pipeline:

• Step I: Estimate the association between each genetic and demographic 

variable via voxel-based Bayesian model averaging and obtain posterior 

probability maps (PPMs) of the associated genetic and demographic 

features for each covariate.

• Step II: Incorporate spatial information pertaining to voxel locations to 

smooth the PPMs using prefiltered rotationally invariant nonlocal means to 

generate smoothed posterior probability maps (sPPMs) of the associated 

genetic and demographic variables.

• Step III: Conduct rigorous inference on the sPPMs of the genetic and 

demographic variables using Bayesian false discovery rates to delineate 

regions of brain activation while controlling for multiplicities.

We detail each of these steps below.

3.1.1 Bayesian model averaging—BMA is a tool used to enumerate model uncertainty 

by averaging across the best models using each model’s posterior probability as weights. 

BMA considers all 2k subsets of possible explanatory variables in the analysis but shrinks 

the influence of certain variables to zero through the model weights (Raftery, 1995). 

Denoting the space of all 2k possible models by ℳ = {Mj : j = 1, . . . , 2k}, a specific model 

Mj has a subset of Xj clinical, demographic and genetic variables, leading to the following 

reduced equation:

(3.1.2)

where βj ∈ ℝkj (0 ≤ kj ≤ k) is the reduced subset of covariates from (3.1.1) with the 

exclusion of a regressor indicating that the corresponding element of βk−kj (ν) is zero.

Priors: To conduct Bayesian inference, prior distributions need to be defined for the model 

space ℳ and the corresponding parameters β, α and σ. The choice of prior distributions 

could significantly impact the resulting posterior model probabilities, thereby necessitating 

careful consideration (Kass and Raftery, 1995; Hoeting et al., 1999; Raftery, 1995; Friston 

and Penny, 2003). We consider improper noninformative priors for the parameters common 

to all models, namely α and σ, such that p(α, σ) ∝ σ−1, allowing for maximal learning from 

the data. σ is the residual error variance, and thereby accounts for unknown sources of 

variability that are not attributable to the covariates. We assume a common prior for σ across 

the different models, which is the usual approach (Mitchell and Beauchamp, 1988; Raftery 

et al., 1997). Also, we consider a g-prior structure for βj(ν) whereby p {βj(ν)|α, σ, Mj} is 

modeled as a kj-dimensional normal distribution with mean zero and covariance matrix of 
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, where g = 1/max{n, k2}. The choice of g is based on theoretical 

considerations to guarantee asymptotic consistency for selecting the correct model, i.e., 

ensuring that the posterior probability of the correct model approaches 1 for increasing 

sample size (Fernandez et al., 2001a). Finally for model selection, we consider a prior 

distribution over all 2k possible models. We denote the model probability for the jth model 

by p(Mj) = pj, j = 1, 2, . . . , 2k. We assume an uniform distribution on the model space to 

avoid a priori model preference in the absence of prior knowledge.

Posterior computations: The posterior distribution of βj(ν) can be written as

(3.1.3)

The second term ℘ {Mj|Y (ν)}, the posterior model-specific probability is calculated as 

follows

(3.1.4)

where the marginal likelihood of model Mj, which we denote by ℒ(ν)(Mj), is

(3.1.5)

where p {Y (ν)|α, βj(ν), σ, Mj} represents the sampling model, (3.1.2), p(α, σ) and p {βj(ν)|

α, σ, Mj} are the priors distributions for the intercept, scale, and regression coefficients, 

respectively. The marginal likelihood can be obtained analytically (Fernandez et al., 2001a) 

as follows:

(3.1.6)

where  and  is the sample mean of response variable. We 

use Markov chain Monte Carlo (MCMC) based methods to estimate all model parameters 

and posterior probabilities. Details of the computational algorithms are briefly described 
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below. Note that the BMA procedure is performed voxel-wise and hence can run 

simultaneously for each voxel, which allows the algorithm to be parallelized.

Estimation of model parameters and posterior probabilities using MCMC: In practice, 

computing the posterior probabilities is a challenge due to the large amount of summations 

involved in calculating the posterior probability maps (PPMs). In our application, we have 

k=24 possible clinic/demographic and genetic variables. Hence, we need to calculate the 

posterior probabilities for each 224 = 16777216 models and average the required 

distributions over all models. To ease the computational effort, we adopt the approach of 

(Madigan et al., 1995) and approximate the posterior distribution on the model space ℳ by 

applying MCMC frequencies obtained from a Metropolis-based sampler. Assuming that the 

chain is currently at model Ms which contains Xs regressors, and Xj denotes a (single) 

regressor which could include or exclude one of Xs regressors. A new model Mj was 

proposed randomly by sampling from an uniform distribution on the space containing Ms 

and all models with one variable more or less than Ms. So the number of regressors in Mj is 

Xs ± Xj. Two options are effectuated at each iteration of the sampling algorithm. The chain 

could move to Mj with probability  or remain at model Ms with 

probability 1 − pr (see e.g. Fernandez et al., 2001b; Raftery et al., 1997, for implementations 

in the context of linear models). Additional details describing the MCMC software 

implementation and performance metrics such as mixing and computational times are 

provided in Section S1 of the supplementary materials.

3.1.2 Smoothing posterior probability maps by prefiltered rotationally 
invariant non-local means—The BMA procedure above yields voxel-wise PPMs of the 

clinical, demographic and genetic variables. To account for spatial correlation among voxels 

that is inherent to the PPMs, a post-hoc smoothing procedure is conducted to generate 

smoothed posterior probability maps (sPPMs) by borrowing strength from neighboring 

voxels. Standard (linear) smoothing approaches such as Gaussian kernels could be adopted 

here. While approaches based on Gaussian filters are capable of reducing image noise, 

especially in homogeneous areas, they tend to remove some high-frequency signal 

components as well, which produces images with blurred edges (Ashburner and Friston, 

2000). In our context, this could have implications for identification of the resulting 

significant regions, as a simple Gaussian smoother may yield posterior probability maps 

with blurred edges.

We follow the method proposed by (Manjón et al., 2012) via prefiltered rotationally 

invariant nonlocal means (PRI-NLM3D). This method maintains domain and scale 
symmetry i.e since the raw (non-smoothed) posterior probabilities lie in the interval (0, 1) 

this method maps the (smoothed) probabilities on same interval (0, 1). This is especially 

helpful since all of our downstream analyses are based on the smoothed probabilities maps. 

Moreover, from the scale perspective, this technique is similar to the processing methods, 

since the original FA values are also in (0, 1).

This technique is a combination of the Oracel-based 3D discrete cosine transform (3D-DCT) 

and rotationally invariant nonlocal means (RI-NLM). The method offers several advantages, 
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namely that it provides better smoothing performance around the edges and benefits from 

faster smoothing time in comparison to Oracel-based 3D-DCT and block-wise NLM. Let 

℘(ν) denote the PPM of any variable on voxel ν. The PPM can be written as a sum of 

sPPMs, ℘s(ν), plus white noise corresponding to voxel-based BMA analysis, which leads 

to:

(3.1.7)

The smoothing process includes two steps:

• Step I: Pre-smoothing based on a three-dimensional moving-window DCT 

hard thresholding.

• Step II: Smoothing the pre-smoothed PPMs using a three-dimensional 

rotationally invariant version of the nonlocal means.

The main concepts of each step are explained in sequence below.

3D discrete cosine transform smoothing: The DCT is a similarity transformation. The 

advantage of this technique is robustness and absence of any assumptions concerning PPM 

statistics beyond sparsity (Guleryuz, 2007). Let  denote a pre-smoothed posterior. A 

3D block DCT (4×4×4 block size, which indicates data cubes) is used. We apply a hard 

threshold to obtain the local smoothed estimation at block b , , which is presented as

(3.1.8)

where H represents a 3D DCT, cb shows the transform coefficients for block b, and T is the 

hard thresholding operator with threshold τ. By combining all overlapping B blocks at the 

position of ν and following the weighted rule, we can derive the local estimator of :

(3.1.9)

and B represents the number of overlapping blocks used to calculate , and θb denotes 

a weight for block b, which is a propositional inverse of the ĉb L0 norm. L0 norm of ĉb 

corresponds to the number of nonzero coefficients of block b after the hard thresholding.

Nonlocal means smoothing: Nonlocal means (NLM) smoothing is defined on the basis of 

voxels with similar neighborhoods (small 3D volumetric patches) that tend to have similar 

posterior probability values (Buades et al., 2005). The NLM estimator of the smoothed 

posterior probability at voxel ν is defined as
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(3.1.10)

and Ω represents the search volume, w(ν, ν′) represent the similarity weights for any two 

3D patches Nν and  centered around voxels ν and ν′, and h2 denotes the bandwidth, 

which determines the extent of the smoothing.

We use the PRI-NLM3D method to obtain ℘̂s(ν), providing an sPPM for each clinical, 

genetic and demographic variable. The PRI-NLM3D method combines and extends the 

above steps. We implemented smoothing using an Oracle-based 3D-DCT to find the pre-

smoothed PPM of each of the clinical and genetic variables and then applied the rotational 

invariant NLM to derive the sPPM, ℘̂s(ν), for each variable (Manjón et al., 2012). We used 

the extended version DCT filter which is an Oracle-based DCT filter. It only has one 

parameter τ, and as recommended by Manjon et al (2012), we use τ = 2.7 * σ where σ is the 

estimated from the data as the standard deviation of random noise. The approach is similar 

to Discrete cosine transforms and wavelet thresholding methods of (Mallat, 1999). 

Additionally, we assume noise follows a Rician distribution (Nowak, 1999). The procedure 

is computationally inexpensive, with computation times of less than one minute when 

implemented using the PPMs that resulted from the cocaine study, for each of the 24 maps 

consisting of close to 300,000 voxels.

3.1.3 Bayesian false discovery rate controls for identification of significant 
voxels—The primary objective of this type of integrative analysis is to identify brain 

regions that exhibit strong evidence of differential activation patterns in the presence or 

absence of genetic and clinical and demographic factors. After implementing the Bayesian 

model averaging and smoothing steps, we obtain a smoothed posterior probability map for 

each variable spanning the entire brain region. Owing to the high-dimensional nature of the 

these neuroimaging phenotypes, the process for delineating significant voxels requires 

hundreds of thousands of tests, thereby running the risk of detecting thousands of false 

positive findings by random chance alone, in the absence of adequate multiplicity 

corrections. The false discovery rate (FDR), or the expected proportion of false positives 

voxels among all voxels deemed significant, can be controlled in this context through the 

specification of a threshold for the Bayesian posterior p-value (sometimes referred to as a q-

value), (Storey, 2003). The generation of sPPMs from the aforementioned modeling steps 

admits a straightforward and computationally efficient strategy to implement FDR controls. 

Specifically, we assume that all voxels for which the resulting sPPM exceeds a given 

threshold ϕ, ℘̂s(ν) > ϕ, characterize locations for which the imaging phenotype is 

significantly affected by changes in a given genetic variant. Considering the cocaine study, 

let χϕ = {ν : ℘̂s(ν) > ϕ} represents the set of all significant voxels for a given genetic 

variant. The significant threshold ϕ can be set to control the Bayesian FDR (Morris et al., 

2008; Baladandayuthapani et al., 2010). Suppose that ϕδ denotes the threshold value that 

controls the overall average FDR at level δ. Posterior inference using ϕδ implies that given 

the available evidence, we expect only 100δ% of the total number of voxels that are declared 
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significant to represent false-positive locations for which the imaging phenotype is truly 

unaffected by a given covariate. For all sPPMs, we sort ℘̂κ = ℘̂s(νκ) in ascending order to 

yield ℘̂(κ), κ = 1, . . . , ν. Assume κ* is a count of the number of voxels, with sPPM 

exceeding the threshold. Then, ϕδ = ℘̂(ξ), where . We 

use χϕδ; to denote the final set of voxel locations that yield evidence of an effect that 

significantly impacts the FA based on the average Bayesian FDR control at level δ. Note that 

ϕ may also be specified in consideration of the utility/loss functions such as relative cost of a 

false-positive versus a false-negative error (Müller et al., 2004).

4 Application to neuroimaging-genetic data in cocaine addiction study

In this section, we present the results of our integrative analysis of the neuroimaging-genetic 

data obtained from the cocaine addiction study. The iBANG method described in Section 3 

was used to identify regions of brain that exhibit strong evidence for differential diffusion 

patterns among the candidate genetic variants and demographic variables. Before model 

fitting, each patient’s scan was registered to a common brain. Voxels contributing FA values 

that exceed 0.2 were used in the analysis to capture white matter regions of brain. This 

resulted in a total of 293,318 voxels for downstream analyses. The analysis involved the 

three sequential components as described in the methods section. Implementation of step 1 

used the BMS package in statistical software R (see Section S1 of the supplementary 

materials for more details). Step 2 was implemented using the MRI Denoising Matlab 

toolbox (Manjón et al., 2012). Multiplicity correction was used thereafter to control the rate 

of false positives at 10%. The elapsed time for analysis of one voxel was 3.894 seconds. For 

ease of exposition, our results are summarized in the following order. In section 4.1, we 

present the number of voxels for which a significant association with FA was identified for 

each genetic variant and demographic feature. In Section 4.2, we summarize the results for 

the brain regions of interest (ROIs), defined by a well-established white matter atlas. We also 

provide results obtained from two-sided hierarchical clustering of the ROIs and genetic 

variants. In Section 4.3, we report the dominant magnitude and directions of the effect on FA 

alteration for significant genetic variants and demographic feature whithin each the ROI.

4.1 Genetic variants and clinical and demographic features associated with FA

Table 3 presents the resultant numbers of voxels for which statistically significant 

differential expression of mean FA was evident between the factor levels of each candidate 

genetic variant or clinical/demographic feature.

Genetic variants associated with FA: Our study suggests that the impact of GAD1a on 

diffusion in the white matter of the brain was extensive in comparison to the other 20 genetic 

variants. A total of 5217 voxel locations were found to be significantly associated with 

GAD1a, nearly 4 times more than the second most influential genetic variant, HTR2A.

Figure 2 depicts the multi-slice sagittal views of the neuroanatomic locations of significant 
regions (SRs) in the white matter of the brain that were impacted by GAD1a and GAD1b 

respectively. In addition, 1207 voxels were identified as significant for GAD1b. In Section 

S5 of supplementary materials, Figure S9 displays more anatomic locations of SRs for 
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GAD1a. Both GAD1a and GAD1b code for glutamic acid decarboxylase (GAD), a rate-

limiting enzyme in synthesis of GABA in inhibitory interneurons. GABA is the major 

inhibitory neurotransmitter in the brain, GABAergic neurotransmission plays a critical role 

in drug-reward and drug- seeking behavior (Hyman and Malenka, 2001). Expression of the 

GAD1 gene is highly regulated by neuronal activity in the prefrontal cortex of the brain in 

cocaine users (Enoch et al., 2012). SRs were also evident in more than 1000 voxels for each 

of the following genetic variants: HTR2A, a 5-HT receptor subtype; and SLC6A4b, a 

mediator of reuptake of 5-HT; TH involved in the synthesis of dopamine; SLC6A3b, a 

mediator of reuptake of dopamine; and ADRA1A, a norepinephrine postsynaptic receptor. In 

Section S5 of supplementary materials, each row of Figure 10 displays the anatomic 

locations of SRs for one of these genetic variants.

Clinical and demographic features associated with FA: Diffusion in the white matter of 

the brain as measured by FA was significantly impacted by cocaine abuse to the extent of 

3100 voxels. Figure 3 depicts the neuroanatomic regions for which significant differences in 

the mean FA were evident between cocaine users and healthy controls. In Section S5, Figure 

S11 of supplementary materials more anatomic locations of SRs for cocaine abuse is 

displayed. In addition, both demographic variables (age and gender) significantly impacted 

at least 1000 voxels.

We evaluated the partial effects of cocaine consumption in the presence of the of other 

independent variables, consisting of gene variants and demographic features. Our study 

confirms previous studies that have found that numerous anatomical brain regions involved 

in the induction and long-term sensitization to cocaine are impacted by the consumption of 

the substance (Stein and Fuller, 1993; Hammer and Cooke, 1994; Hadfield, 1995). Several 

imaging studies have demonstrated that cocaine consumption leads to alterations in neuronal 

activity in the prefrontal cortex (Beyer and Steketee, 1999; Jentsch and Taylor, 1999; 

Vanderschuren and Kalivas, 2000).

4.2 Cluster analysis of ROIs, genetic variants, and clinical and demographic features

We further refined our inference using the white matter atlas developed by the Johns 

Hopkins University (JHU) (Wakana et al., 2004). The atlas enabled us to map the locations 

of significant voxels into the 48 white matter regions of interest (ROIs) detailed in Table 4.

Cluster analyses: Two-sided hierarchical clustering of ROIs and genetic variants, and 

clinical/demographic features was implemented using counts of significant voxels obtained 

within each ROI as defined by the JHU atlas, with the aim of better understanding functional 

interdependencies among genes and regions of the brain. Ward’s method was used to 

minimize the total within-cluster variance (Szekely and Rizzo, 2005). Figure 4 presents the 

results of the cluster analysis, which resulted in four clusters among genetic-demographic 

features and three clusters of JHU ROIs. Table 5 reports cluster assignments among the 

white matter ROIs (top) and genetic variants (bottom). Genetic variants belonging to the 

same genes predominately clustered together, such as SLC6A4b and SLC6A4a in cluster 

one, and GAD1a and GAD1b in cluster three.
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4.3 Magnitude and direction of FA alteration in ROIs

Figures 5 and 6 depict the extent and nature of FA alterations among the candidate genetic 

variants and clinical and demographic features considered within each ROI of the JHU white 

matter atlas. In Figure 5, we plot the proportion of significant voxels with positive regression 

coefficients. Green represents FA enhancement; yellow characterizes the absence of FA 

enhancement. In Figure 6, red depicts the proportion of voxels with negative regression 

coefficients, suggesting that these features are predominately associated with FA attenuation. 

In both Figures, white represents the absence of significant voxels in that particular brain 

region-by-feature combination. Figure 5 suggests that both GAD1a and GAD1b are 

associated with FA enhancement in most regions defined by the JHU white matter atlas; 

whereas Figure 6 demonstrates an association with FA diminishment in cocaine users.

4.4 Comparison of Bayesian model averaging versus full model

We also compared our Bayesian model averaging (BMA) based inference to a full Bayesian 

model (Full) fit with no model averaging – to determine the necessities/gains of accounting 

the uncertainty inherent in the model selection process. To this end, we undertook several, 

more formal comparisons to describe the extent of relative differences between BMA and 

Full model inferences on the basis of several metrics such as goodness-of-fit measures, 

predictive performance, significant voxels, and point estimation of the regression 

coefficients.

Specifically, we compared BMA and Full model inference using two goodness-of-fit 

metrics: (i) approximate Deviance information criterion (aDIC), and (ii) Bayesian 

information criterion (BIC), which are indicative of the (relative) fit of our models to the 

observed data. Using both metrics we found that the BMA-based methods consistently 

outperformed the full model (see Section S2 of the supplementary materials for more 

details). We further evaluated the predictive performance of our models using log predictive 

scores (LPS). We evaluated the predictive performance of LPS considering four different 

test-training scenarios by splitting the sample to test and train sets of {33%, 25%, 20%, 

10%}. In all scenarios, the BMA-based LPS scores are lower than the Full model, thus 

indicating better predictive performance (see Section S3 of the the supplementary materials 

for more details). Finally, we compared the regression coefficient estimates of BMA and 

Full model the entire white matter of the brain for significant factors: cocaine abuse, GAD1a, 

and GAD1b. Results depicted the disadvantage of using full Bayesian model since the range 

of coefficients were very narrow with most of the values close to zero. As a result BMA 

detects much larger number of significant voxels as compared to full model, which we 

conjecture is due to this over-shrinkage of the estimates (see Section S4 of the the 

supplementary materials for more details.)

5 Discussion

This article presents iBANG, a general method for the integrative Bayesian analysis of 

voxel-wise neuroimaging and genetic data. The key features of our modeling strategy are to 

allow for the quantification of model uncertainty via Bayesian model averaging, account for 

spatial correlation via local smoothing, and explicitly control for multiplicity via Bayesian 
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false discovery rate procedures. In addition, by decoupling the model fitting and inference, 

we are able to scale our methods to conduct voxel-wise analyses of the entire white matter of 

the brain with multiple genetic variables. Although our methods are motivated by a specific 

neuroimaging-genetic study in cocaine addiction –our methods are general and applicable to 

any voxel-wise imaging modality.

We exemplify our methods using neuroimaging-genetic data from a cocaine addiction study. 

We analyze the integrity of the white matter of the brain and demonstrate the possible effect 

of candidate genetic variants and demographic factors on white matter impairment in users 

of cocaine. Results of this analysis showed that gene polymorphisms associated with the 

synthesis of GABA, serotonin, and dopamine and the function of the corresponding 

receptors were associated with brain FA in cocaine-dependent subjects. At least some 

previous preclinical and clinical studies have found a relationship between cocaine use and 

GAD1. A study by (Enoch et al., 2012) showed that GAD1 and GAD2 expression levels in 

postmortem brains were related to cocaine use. In addition, our findings of reduced white 

matter FA in cocaine users are consistent with previous studies (Beyer and Steketee, 1999; 

Jentsch and Taylor, 1999; Vanderschuren and Kalivas, 2000; Lim et al., 2002; Moeller et al., 

2005). However, our methods showed evidence of FA diminishment in most brain regions of 

interest, which is an interesting finding that is worthy of further investigation.

To identify significant regions of the brain associated with genetic variables, we applied 

voxel-wise FDR correction to the smoothed posterior probability maps (sPPMs) for each 

genetic covariate of interest, independently. Another alternate and interesting approach, as 

pointed out by one of the reviewers, is to use the notion of a “topological FDR” (Chumbley 

and Friston, 2009) wherein topological boundaries of activation are identified around local 

inflection points i.e. a priori clustering of voxels (e.g via spatial volumes) into discrete sets 

and treated as the units of inference. As argued by the authors, this topological perspective 

refines the interpretation as well as inference, and allows for more rigorous control of a 

smaller multiple comparison problem. In a classical (frequentist) and single covariate (one 

treatment) settings, the authors propose an approach that combines the FDR procedure on p-

values obtained from SPM with Random Field Theory (RFT) to find regional (defined by 

topological property) activation of the underlying signal. We take a different tack in this 

article. From a Bayesian viewpoint, the sPPMs inherently account for the spatial structure in 

the data (as opposed to raw PPMs) and thus define contiguous region of activation. Our main 

motivation for doing this is to allow our methods to scale to large datasets as well as provide 

principled statistical inference while accounting for various sources of variability induced by 

model selection and spatial heterogeneity. Extending our FDR approach to a more global 

topological level, while no doubt interesting, is a non-trivial one, for the following reasons: 

(i) the approach must accommodate two hierarchical levels of multiplicity – within and 

across genetic covariate maps; (ii) requires prior null and alternative hypotheses 

specifications at each level and (iii) in a DTI context, this would also require a more precise 

definition of a topological feature. We leave these tasks for future consideration.

There are several possible extensions and generalizations of our iBANG models to more 

general settings. In this work, we considered full MCMC-based posterior sampling 

approaches to estimate the exact model probabilities for each (genetic) covariate at each 
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voxel location. Another approximate approach based on Savage-Dickey Bayes factors has 

been recently proposed by (Rosa et al., 2012). In their approach, first the largest (full) model 

is computed and subsequently, a post-hoc approach is used to calculate the model evidence 

for any (reduced) submodel by using a generalization of the Savage-Dickey density ratio 

(Dickey, 1971). The benefit of this approach is a reduction in computational time, since a 

potentially huge space of the nested sub-models can be explored using single model fit.

Another natural advancement is to incorporate spatial correlation in the Bayesian model 

averaging in the first step of the model fitting. We eschew this step because of computational 

constraints and so avoid evaluating and storing large covariance matrices. However, the use 

of lower dimensional projections of these matrices, such as principal component analysis 

(PCA) or independent component analysis (ICA) could potentially circumvent these issues. 

Our implementation is currently limited to one imaging parameter (FA, in this case). In 

future extensions, one could simultaneously consider multiple imaging parameters, such as 

mean diffusivity, axial diffusivity, and radial diffusivity. We leave these tasks for future 

work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Statistical framework for integrative Bayesian analysis of 

neuroimaging-genetic data.

• Delineate significant brain regions associated with genetic variants.

• Fast computational schemes scalable to voxel-wise model fitting and 

inference.

• Cocaine consumption is associated with fractional anisotropy (FA) 

reduction.

• Gene polymorphisms associated with GABAergic were associated with 

FA.
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Figure 1. 
Schematic representation of iBANG model and analysis

Azadeh et al. Page 22

Neuroimage. Author manuscript; available in PMC 2017 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Multi-slice sagittal views displaying significant regions1associated with GAD1a and GAD1b 

respectively from the top to the bottom panel. The SRs, depicted in red, characterize 

locations for which alteration of mean FA was evident from statistical analysis.

1In the significant voxels, the adjacent voxels equal to or greater than 20 were grouped and named as significant regions (SRs) to limit 
noisy images while plotting the sagittal views so that all significant voxels might not be displayed. Significant voxels were groupedc in 
SPM software using MarsBaR tool. Then multi-slice sagittal views were generated using MRIcroN software. (Same strategy is used in 
Figure 3.)
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Figure 3. 
Multi-slice sagittal views displaying significant regions associated with cocaine 

consumption. The SRs, depicted in red, characterize locations for which alteration of the 

mean FA was evident from statistical analysis.
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Figure 4. 
Two-sided hierarchical clustering2of the neuroimaging-genetic findings based on the John 

Hopkins University white matter atlas. Green indicates an increased number of significant 

voxels for the ROI of the brain and genetic variant combination. The analysis resulted in 

four genetic variant clusters, denoted as genetic variant cluster I, genetic variant cluster II, 

genetic variant cluster III, and genetic variant cluster IV; and three clusters of brain ROIs 

defined by the JHU atlas, which are denoted as brain cluster I, brain cluster II, and brain 

cluster III. The individual cluster elements are tabulated in Table 5.

2The bivariate cluster of the neuroimaging-genetic data considering the number of significant voxels was formulated using gplots 
software package in R.
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Figure 5. 
The magnitude of FA enhancement as measured by the proportion of significant voxels with 

positive regression coefficients. The color key represents the extent of FA alteration. Green 

indicates the highest enhancement; yellow indicates no enhancement of FA value. White 

indicates absence of significant voxels for the specific combination of brain ROIs or genetic 

variants and demographic feature.
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Figure 6. 
The magnitude of FA diminishment as measured by the proportion of significant voxels with 

negative regression coefficients. The color key represents the extent of FA alteration. Red 

indicates the highest diminishment; yellow indicates no diminishment of FA value. White 

indicates absence of significant voxels for the specific combination of brain ROIs and 

genetic variants or demographic feature.
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Table 1

Characteristics (mean and range) of study population of cocaine users and controls.

Control group(N=19) Cocaine group(N=39)

Sex (% male) 63 74

Age (years) 32.69 (21 – 48.8) 40.38 (22.7 – 54.8)

Education (years) 14.16 (11 – 18) 12.85 (10 – 16)

Lifetime cocaine use (years) 0 13.83 (2 – 30)

Cocaine use (days per prior month) 0 14.77 (2 – 30)

Ethnicity (% African American) 84 51
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Table 3

Number of significant voxel locations identified for each variable using iBANG analysis, sorted in decreasing 

order. Bayesian FDRs set to δ = 0.1 for each variable. The top (bottom) panel shows the genetic variants and 

demographic variables.

Genetic variants Description Number of significant voxels

GAD1a glutamate decarboxylase 1 (brain, 67kDa) 5217

HTR2A 5-hydroxytryptamine (serotonin) receptor 2A, G protein-coupled 1413

TH tyrosine hydroxylase 1332

GAD1b glutamate decarboxylase 1 (brain, 67kDa) 1207

SLC6A4b solute carrier family 6 (neurotransmitter transporter), member 4 1125

ADRA1A adrenoceptor alpha 1A 1036

SLC6A3b solute carrier family 6 (neurotransmitter transporter), member 3 1017

ADRA1D adrenoceptor alpha 1D 813

HT2CR 5-hydroxytryptamine (serotonin) receptor 2C, G protein-coupled 805

COMT catechol-O-methyltransferase 721

HT1A tryptophan hydroxylase 1 688

CHRNA5 cholinergic receptor, nicotinic, alpha 5 (neuronal) 670

TPH1 tryptophan hydroxylase 1 666

SLC6A4a solute carrier family 6 (neurotransmitter transporter), member 4 654

DRD2b dopamine receptor D2 611

SLC6A3a solute carrier family 6 (neurotransmitter transporter), member 3 476

DRD2a dopamine receptor D2 439

DBH dopamine beta-hydroxylase (dopamine beta-monooxygenase) 413

BDNF brain-derived neurotrophic factor 392

TPH2 tryptophan hydroxylase 2 366

MAOB monoamine oxidase B 359

Demographics

Cocaine abuse Cocaine user=1 vs Control=0 3100

Age 1127

Gender 1086
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Table 4

Regions of white matter defined by the Johns Hopkins University atlas

ROI Description

1 Middle cerebellar peduncle

2 Pontine crossing tract

3 Genu of corpus callosum

4 Body of corpus callosum

5 Splenium of corpus callosum

6 Fornix

7 Corticospinal tract R

8 Corticospinal tract L

9 Medial lemniscus R

10 Medial lemniscus L

11 Inferior cerebellar peduncle R

12 Inferior cerebellar peduncle L

13 Superior cerebellar peduncle R

14 Superior cerebellar peduncle L

15 Cerebral peduncle R

16 Cerebral peduncle L

17 Anterior limb of internal capsule R

18 Anterior limb of internal capsule L

19 Posterior limb of internal capsule R

20 Posterior limb of internal capsule L

21 Retrolenticular part of internal capsule R

22 Retrolenticular part of internal capsule L

23 Anterior corona radiate R

24 Anterior corona radiate L

25 Superior corona radiate R

26 Superior corona radiate L

27 Posterior corona radiate R

28 Posterior corona radiate L

29 Posterior thalamic radiation include optic radiation R

30 Posterior thalamic radiation include optic radiation L

31 Sagittal stratum include inferior longitudinal fasciculus and inferior fronto occipital fasciculus R

32 Sagittal stratum include inferior longitudinal fasciculus and inferior fronto occipital fasciculus L

33 External capsule R

34 External capsule L

35 Cingulum cingulated gyrus R

36 Cingulum cingulated gyrus L

37 Cingulum hippocampus R

38 Cingulum hippocampus L

39 Fornix cres Stria terminalis cannot be resolved with current resolution R
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ROI Description

40 Fornix cres Stria terminalis cannot be resolved with current resolution L

41 Superior longitudinal fasciculus R

42 Superior longitudinal fasciculus L

43 Superior fronto occipital fasciculus could be a part of anterior internal capsule R

44 Superior fronto occipital fasciculus could be a part of anterior internal capsule L

45 Uncinate fasciculus R

46 Uncinate fasciculus L

47 Tapetum R

48 Tapetum L
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Table 5

Two-sided hierarchical clustering of the neuroimaging-genetic data: the top panel lists the brain ROIs and the 

bottom panel lists the genetic variants in each cluster based on two-sided hierarchical clustering of the 

neuroimaging-genetic data in Figure 4.

Clusters of brain regions of interest based on two-sided hierarchical clustering of the neuroimaging-genetic data

brain cluster I brain cluster II brain cluster III

4.Body of corpus callosum 3.Genu of corpus callosum 1.Middle cerebellar peduncle

5.Splenium of corpus callosum 7.Corticospinal tract R 2.Pontine crossing tract

11.Inferior cerebellar peduncle R 12.Inferior cerebellar peduncle L 6.Fornix

17.Anterior limb of internal capsule R 13.Superior cerebellar peduncle R 8.Corticospinal tract L

18.Anterior limb of internal capsule L 14.Superior cerebellar peduncle L 9.Medial lemniscus R

23.Anterior corona radiate R 19.Posterior limb of internal capsule 
R

10.Medial lemniscus L

30.Posterior thalamic radiation L 24.Anterior corona radiate L 15.Cerebral peduncle R

31.Sagittal stratum R 25.Superior corona radiate R 16.Cerebral peduncle L

32.Sagittal stratum L 26.Superior corona radiate L 20.Posterior limb of internal capsule L

33.External capsule R 28.Posterior corona radiate L 21.Retrolenticular part of internal capsule R

34.External capsule L 22.Retrolenticular part of internal capsule L

35.Cingulum cingulated gyrus R 27.Posterior corona radiate R

36.Cingulum cingulated gyrus L 29.Posterior thalamic radiation R

37.Cingulum hippocampus R 39.Fornix cres Stria terminalis R

38.Cingulum hippocampus L 43.Superior fronto occipital fasciculus R

40.Fornix cres Stria terminalis L 44.Superior fronto occipital fasciculus L

41.Superior longitudinal fasciculus R 46.Uncinate fasciculus L

42.Superior longitudinal fasciculus L 47.Tapetum R

45.Uncinate fasciculus R 48.Tapetum L

Genetic variants clusters based on two-sided hierarchical clustering of the neuroimaging-genetic data

genetic variant cluster I genetic variant cluster II genetic variant cluster III genetic variant 
cluster IV

DRD2a MAOB HTR2A ADRA1D

COMT HTR2C TPH2 SLC6A3a

SLC6A4b DRD2b BDNF TPH1

SLC6A4a CHRNA5 TH

GAD1b

SLC6A3b

DBH

HTR1A

GAD1a

ADRA1A

Neuroimage. Author manuscript; available in PMC 2017 January 15.


	Abstract
	1 Introduction
	2 Motivating Data
	2.1 Study population
	2.2 Brain image acquisition and processing
	2.3 Genetic data acquisition

	3 Methods
	3.1 iBANG model formulation
	3.1.1 Bayesian model averaging
	Priors
	Posterior computations
	Estimation of model parameters and posterior probabilities using MCMC

	3.1.2 Smoothing posterior probability maps by prefiltered rotationally invariant non-local means
	3D discrete cosine transform smoothing
	Nonlocal means smoothing

	3.1.3 Bayesian false discovery rate controls for identification of significant voxels


	4 Application to neuroimaging-genetic data in cocaine addiction study
	4.1 Genetic variants and clinical and demographic features associated with FA
	Genetic variants associated with FA: Our study suggests that the impact of GAD1a on diffusion in the white matter of the brain was extensive in comparison to the other 20 genetic variants. A total of 5217 voxel locations were found to be significantly associated with GAD1a, nearly 4 times more than the second most influential genetic variant, HTR2A.Figure 2 depicts the multi-slice sagittal views of the neuroanatomic locations of significant regions (SRs) in the white matter of the brain that were impacted by GAD1a and GAD1b respectively. In addition, 1207 voxels were identified as significant for GAD1b. In Section S5 of supplementary materials, Figure S9 displays more anatomic locations of SRs for GAD1a. Both GAD1a and GAD1b code for glutamic acid decarboxylase (GAD), a rate-limiting enzyme in synthesis of GABA in inhibitory interneurons. GABA is the major inhibitory neurotransmitter in the brain, GABAergic neurotransmission plays a critical role in drug-reward and drug- seeking behavior (Hyman and Malenka, 2001). Expression of the GAD1 gene is highly regulated by neuronal activity in the prefrontal cortex of the brain in cocaine users (Enoch et al., 2012). SRs were also evident in more than 1000 voxels for each of the following genetic variants: HTR2A, a 5-HT receptor subtype; and SLC6A4b, a mediator of reuptake of 5-HT; TH involved in the synthesis of dopamine; SLC6A3b, a mediator of reuptake of dopamine; and ADRA1A, a norepinephrine postsynaptic receptor. In Section S5 of supplementary materials, each row of Figure 10 displays the anatomic locations of SRs for one of these genetic variants.Clinical and demographic features associated with FA: Diffusion in the white matter of the brain as measured by FA was significantly impacted by cocaine abuse to the extent of 3100 voxels. Figure 3 depicts the neuroanatomic regions for which significant differences in the mean FA were evident between cocaine users and healthy controls. In Section S5, Figure S11 of supplementary materials more anatomic locations of SRs for cocaine abuse is displayed. In addition, both demographic variables (age and gender) significantly impacted at least 1000 voxels.We evaluated the partial effects of cocaine consumption in the presence of the of other independent variables, consisting of gene variants and demographic features. Our study confirms previous studies that have found that numerous anatomical brain regions involved in the induction and long-term sensitization to cocaine are impacted by the consumption of the substance (Stein and Fuller, 1993; Hammer and Cooke, 1994; Hadfield, 1995). Several imaging studies have demonstrated that cocaine consumption leads to alterations in neuronal activity in the prefrontal cortex (Beyer and Steketee, 1999; Jentsch and Taylor, 1999; Vanderschuren and Kalivas, 2000).
	Genetic variants associated with FA
	Clinical and demographic features associated with FA


	4.2 Cluster analysis of ROIs, genetic variants, and clinical and demographic features
	Cluster analyses: Two-sided hierarchical clustering of ROIs and genetic variants, and clinical/demographic features was implemented using counts of significant voxels obtained within each ROI as defined by the JHU atlas, with the aim of better understanding functional interdependencies among genes and regions of the brain. Ward’s method was used to minimize the total within-cluster variance (Szekely and Rizzo, 2005). Figure 4 presents the results of the cluster analysis, which resulted in four clusters among genetic-demographic features and three clusters of JHU ROIs. Table 5 reports cluster assignments among the white matter ROIs (top) and genetic variants (bottom). Genetic variants belonging to the same genes predominately clustered together, such as SLC6A4b and SLC6A4a in cluster one, and GAD1a and GAD1b in cluster three.
	Cluster analyses


	4.3 Magnitude and direction of FA alteration in ROIs
	4.4 Comparison of Bayesian model averaging versus full model

	5 Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

