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Abstract

In systems neuroscience, the term “connectivity” has been defined in numerous ways, according to the partic-
ular empirical modality from which it is derived. Due to large differences in the phenomena measured by these
modalities, the assumptions necessary to make inferences about axonal connections, and the limitations accompa-
nying each, brain connectivity remains an elusive concept. Despite this, only a handful of studies have directly
compared connectivity as inferred from multiple modalities, and there remains much ambiguity over what the term
is actually referring to as a biological construct. Here, we perform a direct comparison based on the high-resolution
and high-contrast Enhanced Nathan Klein Institute (NKI) Rockland Sample neuroimaging dataset, and the Co-
CoMac database of tract tracing studies. We compare four types of commonly-used primate connectivity analyses:
tract tracing experiments, compiled in CoCoMac; group-wise correlation of cortical thickness; tractographic net-
works computed from diffusion-weighted MRI (DWI); and correlational networks obtained from resting-state BOLD
(fMRI). We find generally poor correspondence between all four modalities, in terms of correlated edge weights,
binarized comparisons of thresholded networks, and clustering patterns. fMRI and DWI had the best agreement,
followed by DWI and CoCoMac, while other comparisons showed striking divergence. Networks had the best corre-
spondence for local ipsilateral and homotopic contralateral connections, and the worst correspondence for long-range
and heterotopic contralateral connections. K-means clustering highlighted the lowest cross-modal and cross-species
consensus in lateral and medial temporal lobe, anterior cingulate, and the temporoparietal junction. Comparing the
NKI results to those of the lower resolution/contrast International Consortium for Brain Imaging (ICBM) dataset,
we find that the relative pattern of intermodal relationships is preserved, but the correspondence between human
imaging connectomes is substantially better for NKI. These findings caution against using “connectivity” as an
umbrella term for results derived from single empirical modalities, and suggest that any interpretation of these
results should account for (and ideally help explain) the lack of multimodal correspondence.
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1. Introduction

Characterizing the connectivity of the human brain has been a pursuit of neuroscientists since the basic concepts
of axon and synapse were proposed over a century ago. Recent technological advances in both microcircuitry5

analysis and noninvasive imaging have given new impetus to the study of connectivity. This emerging discipline,
now popularly referred to as “connectomics”, ranges from single synapses, to local microcircuitry, to whole-brain
networks comprised of anatomically distinct brain regions (reviewed in Behrens and Sporns, 2012). In the latter case,
studies have been traditionally confined to tract tracing experiments in nonhuman primates, in which a histological
tracer substance is injected in vivo and transported along axonal fibres in either anterograde or retrograde directions,10

labelling the set of regions that the injected site projects to, or receives projections from, respectively. The literature
covering such experiments is expansive, but has been systematically collated into a single database called CoCoMac
(Stephan et al., 2001; Kötter, 2004; Bakker et al., 2012). While histological tract tracing remains the gold standard
for connectivity in the monkey brain, its applicability to human anatomy relies upon an assumption of homology
which becomes increasingly problematic for regions with more phylogenetic divergence, such as the frontal and15

parietal lobes (Zilles et al., 1988; Rilling and Seligman, 2002; Rilling et al., 2008; Petrides et al., 2012). As a
consequence, direct evidence for human connectivity remains elusive.

The advent of high-resolution neuroimaging techniques such as magnetic resonance imaging (MRI), however,
has provided researchers with a variety of noninvasive tools with which to investigate the human connectome in
an indirect way. Diffusion-weighted imaging (DWI) detects the isotropy of molecular diffusion in brain tissue,20

which carries information about the orientation and microstructure of white matter (WM) fibres. This approach is
the basis of probabilistic tractography, in which multiple tracts originating in a specific seed point are generated by
sampling the distribution of orientations within each subsequent voxel, until a predefined target mask is encountered.
Tract counts obtained between pairs of regions of interest (ROIs), representing the likelihood of a WM path between
them, can then be compiled into a connectome. Both histological and DWI-based tract tracing have been qualified25

as structural connectivity (SC; Büchel and Friston, 1997). Functional connectivity (FC), on the other hand, refers
to the temporal coherence of brain activation, measured by some functional metric such as the blood oxygen-level
dependent (BOLD) signal, the basis of functional MRI (fMRI). FC is derived using a purely statistical approach,
demonstrating associations between pairs of spatially distinct brain regions, with respect to the signals they generate.
It does not typically provide information about causal relationships between regions; i.e., the existence of an30

axonal projection between them which could transmit action potentials and thus cause the functional association.
Connectivity has also been inferred from group-wise correlations of imaging signals and brain morphology. This has
been used, for instance, to investigate the correlative structure of grey matter (GM) density (Mechelli et al., 2005),
cortical thickness (Lerch et al., 2006), and fluorodeoxyglucose (18F) positron emission tomography (FDG-PET;
Friston et al., 1993). Such associations have been posited to arise from mutually trophic influences in the brain35

(Mechelli et al., 2005) – including but not exclusive to those mediated by direct anatomical connections – as well
as genetic factors which govern the coordinated growth of neural tissue in an individual.

The use of any of these modalities to derive or infer connectivity has its own set of limitations. (1.) For
CoCoMac, this includes the strong assumption of interspecies homologies, and the large variation in scope and
parcellation schemes used in tract tracing studies (Stephan et al., 2000; Kötter and Wanke, 2005). Moreover, as40

connectivity derived from this database depends exclusively on the available tract tracing literature, its information
is incomplete, particularly for contralateral connections. (2.) Probabilistic DWI tractography is biased by the
diffusion environment of a particular seed or target point, as well as the distance between them (Dauguet et al.,
2007; Mukherjee et al., 2008). As a tract sequentially samples the DWI evidence, it accumulates error, and as a
consequence will be biased both by the distance between seed and target points, and the complexity of the WM45

encountered along the path. For example, the presence of crossing, kissing, or fanning fibres along the streamline
(i.e., where the orientation of a single WM fibre has less certainty) will result in a lower probability of that streamline
reaching a target. (3.) Resting state (intrinsic) BOLD connectivity (iFC) has been shown to be highly susceptible
to both physiological noise and motion artifacts, which create systematic spurious correlations (Power et al., 2012).
More conceptually, as functional correlations between brain regions are not sufficient to demonstrate anatomical50
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connectivity, the interpretation of such associations is ambiguous. (4.) Group-wise correlations in GM morphology
provide valuable information about the coordination of growth or atrophy of GM tissue, which may reflect both
environmental and genetic processes. However, the degree to which this represents either SC or FC is unclear, and
thus would benefit from a comparison to both types of information. Given these limitations, there is a clear need to
compare and contrast the connectomes derived from each of these modalities, in a way that might provide insight55

into these limitations.

The use of alternative terminology for connectivity has led to a confusion over what the term "connectivity"
actually refers to, in a given context. While qualifying the term (e.g., as functional, structural, or effective) can
reduce this ambiguity, the term is frequently presented in an unqualified way to represent a wide array of meanings.
These can range from simple Pearson or partial correlations in functional time series or structural morphology, beta60

weights in general linear models, group-wise contrasts in DWI-derived measures such as fractional anisotropy or
tract-based spatial statistics (TBSS; Smith et al., 2007), streamline counts in DWI-based probabilistic tractography,
causal predictions derived from approaches such as structural equation modelling (SEM; McIntosh and Gonzalez-
Lima, 1994), Granger causality (Roebroeck et al., 2005), or dynamic causal modelling (DCM; Daunizeau et al.,
2011), disconnections caused by lesions or surgical resection, meta-analytic modelling of functional co-activations65

(MACM; Eickhoff et al., 2010), and actual tract tracing experiments in non-human primates or other animal models.
Moreover, connectivity methods typically employ a variety of processing and pre-processing steps which can have
a substantial impact on the results and how they are interpreted. For example, in an attempt to remove motion
artifacts and physiological noise from the BOLD signal, it is common to regress out the global tissue signal. This
processing step transforms a primarily positive distribution of correlation coefficients to a balance of positive and70

negative ones (Murphy et al., 2009; Schölvinck et al., 2010; Fox et al., 2009). The interpretation of either distribution
is clearly different, yet both are referred to as functional connectivity. Thus, while each of these approaches yield
unique and scientifically valuable information about how the brain is connected (or disconnected), they each result
in quite distinct, and even contradictory, estimates of this phenomenon.

In this article, we start with two main assumptions. The first is that the term "connectivity" refers to a real,75

physical property of the brain: namely, a summary metric of physical axonal projections originating in a source
region A, terminating on synaptic junctions in a (spatially remote) target region B, and mediating the transmission
of information (via action potentials) from A to B. To distinguish this property from other commonly employed
(and thus meaning-laden) references to connectivity, we will hereafter refer to it as physical connectivity (however,
we note that the terms "connectivity", "physical connectivity", and "effective connectivity" ought to be considered80

synonymous). The second is that all of the varied approaches to measuring and modelling connectivity (for instance,
those described above) have the ultimate goal of approximating physical connectivity. These assumptions are
motivated by the observation that, where connectivity findings are related to biological, behavioural, or pathological
phenomena, they are typically interpreted in physical terms (e.g., related to lesion results, known networks in animal
models, or putative effective networks in humans). It is our position that such a strict and physically meaningful85

definition of connectivity is necessary to resolve the ambiguity which frequently accompanies interpretations of
connectivity findings, as well as providing a common reference point against which to base comparisons of these
findings. On the basis of these two assumptions, we propose that the ultimate goal of any connectomics approach
is the ability to model physical connectivity; or, put differently, the ability to make causal inferences about pairs
of brain regions, which would be highly informative about the ways in which brain networks process information,90

and how this breaks down in particular neurological disorders.

While the methods outlined above provide us with a number of distinct windows into physical connectivity,
each is limited in the extent to which it can support inferences about it, and each is likely to produce its own
unique set of false positives and false negatives. Despite this, it is common – typically due to data availability or a
desire for simplicity – to draw conclusions about physical connectivity based solely on observations obtained from a95

single methodology. It is important to understand, however, how these separate lines of evidence agree (signifying
corroboration) and how they disagree (signifying either contradiction or complementarity). For example, evidence
of both a physical connection and covariance in functional time series provides stronger support for an inference
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of physical connectivity between two regions than either finding considered in isolation. In the present study, we
therefore characterized the similarities and differences between connectomes derived from four modalities: (1.) the100

CoCoMac database; (2.) resting state BOLD; (3.) DWI; and (4.) cortical thickness correlations. We compared both
weighted and binarized versions of the networks, and used k-means and hierarchical clustering techniques (Bellec
et al., 2010; Kelly et al., 2012b) to compare the ways in which these networks form stable clusters, establishing a
“consensus” clustering which incorporates evidence from all four modalities. Additionally, we contrasted the results
of state-of-the-art neuroimaging data with high spatial, temporal, and angular resolution, with those of an older,105

lower-resolution dataset, to assess the degree to which intermodal correspondence is affected by these improved
techniques. Finally, for the human imaging modalities only, we considered results derived from a functionally-
derived, higher granularity parcellation scheme (the Cambridge parcellation; Urchs et al., 2015), in order to assess
the degree to which correspondence is dependent on the choice of parcellation.

2. Methods110

2.1. Subjects and data

Subjects were obtained from the Enhanced Nathan Klein Institute Rockland Sample (NKI), which is freely
available (Nooner et al., 2012). This cohort is the first public release, comprised of 181 participants. After excluding
seven subjects on the basis of extreme age (<10 or >80), we analyzed data for 174 subjects aged 10-80 years, and
data collection received ethics approval through both the Nathan Klein Institute and Montclair State University.115

Written informed consent was obtained from all participants, and in the case of minors, also from their legal
guardians. All imaging data was acquired from the same scanner (Siemens Magnetom TrioTim, 3.0T). T1-weighted
images were obtained using a MPRAGE sequence (TR = 1900 ms; TE = 2.52 ms; voxel size = 1 mm isotropic).
Resting state fMRI was performed in three ways: standard (TR = 2500 ms; TE = 30 ms; voxel size = 3 mm
isotropic; duration = 5 min); high temporal resolution multiplexed (TR = 645 ms; TE = 30 ms; voxel size = 3 mm120

isotropic; duration = 10 min); and high spatial resolution multiplexed (TR = 1400 ms; TE = 30 ms; voxel size = 2
mm isotropic; duration = 10 min). DWI was collected with a high spatial and angular resolution (TR = 2400 ms;
TE = 85 ms; voxel size = 2 mm isotropic; b = 1500 s/mm2; 137 gradient directions). Only subjects who passed
quality control on all modalities were included in the analyses: specifically, 89 subjects were used for comparison
and 92 subjects were rejected for age, data quality, or missing data. Of the subjects used for analysis, age ranged125

from 11-77 years, with 36 males and 53 females. This same set of subjects was used to perform all subsequent
analyses.

To investigate the stability of results across independent cohorts and scanning parameters, we performed an
identical analysis with subjects from the International Consortium for Brain Mapping (ICBM) cohort (Mazziotta
et al., 2001), comprised of 96 individuals; 47 male, aged 19-85 years. The protocol was approved by the Research130

Ethics Committee of the Montreal Neurological Institute and Hospital, and each subject provided informed consent.
No subjects had a history of neurological or psychiatric disorders. For this cohort, T1-weighted images were obtained
using a Siemens Sonata 1.5T MR scanner, with a 3D gradient echo sequence (TR=22 ms; TE=9.2 ms; voxel size
= 1 mm isotropic). DW images were obtained from the same Siemens scanner as for the T1 images, using a
single-shot echo planar sequence, with sensitivity encoding and a parallel imaging factor of 2.0. 60 axial slices were135

acquired with a thickness of 2.5 mm and no interslice gap (TR = 8000 ms; TE = 94 ms; b=1000 s/mm2; 30 gradient
directions). Three repetitions of the sequence were collected in order to achieve a sufficient signal to noise ratio. 138
volumes of resting-state BOLD signals were recorded on the same scanner using a 2D echoplanar BOLD MOSAIC
sequence (TR=2000 ms; TE=50 ms; voxel size = 4 mm isotropic; duration = 4.6 min).

CoCoMac data was obtained from ∼ 300 tract tracing studies, and ∼ 150 articles describing brain atlases140

(Bakker et al., 2012). Data was entered manually, according to rules designed to facilitate their standardization for
use as metadata (Stephan et al., 2001; Kötter, 2004).
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2.2. Cortical parcellations

Cortical ROIs were based on the Regional Map (RM) defined by Kötter and Wanke (2005), which were selected
using structural, functional, and topographic criteria with the express purpose of maximizing homology across145

primate species, including humans. The RM parcellation consists of 80 cortical regions (see Table 1 and Figure
1) which were hand-drawn on the macaque F99 template surface (Van Essen, 2002, 2004) under supervision of its
creator, Rolf Kötter (Bezgin et al., 2012, 2008). Using Caret software, the parcellation was then transformed onto
the PALS human template (Van Essen, 2005) by means of a landmark-based deformation defined by a set of major
sulci and gyri, along with functional activation patterns, considered homologous between the two species (Van Essen150

and Dierker, 2007). The latter was transformed to the ICBM population template surface (Lyttelton et al., 2007),
for the cortical thickness analysis, and projected into volumetric space along the surface normals (Bojak et al.,
2011), using ModelGUI software (http://www.modelgui.org), for the fMRI analysis (σN=3 mm, σT=1.67 mm);
and in-house scripts, for the DWI analysis.

In addition to the RM parcellation, we used a second, functionally-derived parcellation scheme as a means of155

assessing the effect of granularity and parcel derivation on the cross-modal correspondence. This so-called "Cam-
bridge parcellation" was derived as follows (Urchs et al., 2015). Resting-state fMRI data were obtained from the
Cambridge sample of approximately 200 young healthy adults, as part of the 1000 Functional Connectomes Project
(Liu et al., 2009). Parcellations were derived using a method called bootstrap analysis of stable clusters (BASC;
Bellec et al., 2010), across multiple scales (7, 12, 20, 36, 64, 122, 197, 325, and 444), determined using a data-driven160

method called MSTEPS (Bellec, 2013). For the current study, we utilized the 122-region (per hemisphere) parcel-
lation. An important difference between the original Cambridge and RM parcellations was that functional parcels
were composed of voxels which were not necessarily spatially contiguous, often including homotopic regions in both
brain hemispheres. To facilitate the comparison between the two parcellation approaches, the functional parcels
were further subdivided into spatially contiguous subparcels that spanned only one hemisphere. This volumetric165

parcellation was then transferred to the ICBM-152 asymmetric template surface using ModelGUI software; specif-
ically, the mode of all non-zero voxel values within a 10 mm radius of a given vertex was assigned to that vertex.
Since only regions which overlapped with the cortical surface are comparable to cortical thickness estimates, all
subcortical regions were excluded in this process. The final number of regions was thus 168 (84 per hemisphere).
The final surface-based Cambridge parcellation (right hemisphere) is shown in Figure 1.170

2.3. Terminology

In this study, the graph theoretical term “edges” is used to refer to inferred connectivity and “vertices” is used
to refer to individual ROIs. An edge is associated with a “weight”, which refers to the strength of the relationship
between the ROIs it connects; the assignment of edge weights is described in the proceeding sections.

2.4. CoCoMac network175

Projections between RM regions were compiled from all CoCoMac literature entries using the Objective Re-
lational Transformation method (ORT; Stephan et al., 2000), which integrates multiple source brain maps – of
different scales and covering different parts of the brain – using relations based upon textual statements in the
literature (“containing”, “contained by”, “identical to” “disjoint from”, etc.). Weights for these projections were
obtained using the relative density values, as reported in the literature, which represent the density of tracer sub-180

stance found in a labelled site. Where experimental evidence existed, density values range from 0 (no label) to 3
(dense label); where label was present but no density information was provided in the article, we have here assigned
a value of 2, presuming this to be the “expected value” for a label of unknown density. To make the CoCoMac
database comparable with the imaging-based networks, which are undirected, we made it undirected by assigning:
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Figure 1: Cortical parcellations. At top, the 80-region Regional Map (RM) parcellation (right hemisphere
only), shown on the macaque F99 template surface (A,B, and C), and on the human ICBM-152 template surface
(D, E, and F). A list of abbreviations is provided in Table 1. Adapted with permission from Bezgin et al. (2012).
The bottom row shows the 168-region functionally-derived Cambridge parcellation (G,H, and I), used to perform
complementary human-only comparisons, on the same surface.

(1.) the sum of density values over both directions, if evidence existed for both; or (2.) the density value for the185

known direction, if there was experimental evidence for one direction but not the other. This approach was taken
under the assumption that a bidirectional projection is likely to result in stronger associational coupling than a
unidirectional one. This resulted in an 80x80 matrix Rcocomac.

2.5. Cortical thickness network

Cortical thickness was computed using the CIVET pipeline (Zijdenbos et al., 2002). Briefly, this involves an190

initial N3 correction for field non-uniformities (Sled et al., 1998), linear and nonlinear registration to the MNI152
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Table 1: Regional Map Parcellation Names

Abbreviation Lobe Full name
A1 Temporal Primary auditory cortex
A2 Temporal Secondary auditory cortex
Ia Temporal Anterior insula
Ip Temporal Posterior insula

Amyg Limbic Amygdala
CCa Limbic Anterior cingulate cortex
CCp Limbic Posterior cingulate cortex
CCr Limbic Retrosplenial cingulate cortex
CCs Limbic Subgenual cingulate cortex
FEF Frontal Frontal eye field
HC Limbic Hippocampus
M1 Frontal Primary motor cortex

PFCcl Frontal Centrolateral prefrontal cortex
PFCdl Frontal Dorsolateral prefrontal cortex
PFCdm Frontal Dorsomedial prefrontal cortex
PFCm Frontal Medial prefrontal cortex
PFCoi Frontal Intermediate orbital prefrontal cortex
PFCol Frontal Orbitolateral prefrontal cortex
PFCom Frontal Orbitomedial prefrontal cortex
PFCvl Frontal Ventrolateral prefrontal cortex
PFCpol Frontal Polar prefrontal cortex
PHC Limbic Parahippocampal cortex

PMCdl Frontal Dorsolateral premotor cortex
PMCm Frontal Medial (supplementary) premotor cortex
PMCvl Frontal Ventrolateral premotor cortex

S1 Parietal Primary somatosensory cortex
S2 Parietal Secondary somatosensory cortex
PCi Parietal Inferior parietal cortex
PCip Parietal Cortex of the intraparietal sulcus
PCm Parietal Medial parietal cortex
PCs Parietal Superior parietal cortex
TCc Occipital Central temporal cortex
TCi Occipital Inferior temporal cortex
TCs Temporal Superior temporal cortex
TCpol Temporal Polar temporal cortex
TCv Temporal Ventral temporal cortex
V1 Occipital Primary visual cortex
V2 Occipital Secondary visual cortex

VACd Occipital Anterior visual cortex, dorsal part
VACv Occipital Anterior visual cortex, ventral part

population template (Mazziotta et al., 2001), tissue classification with partial-volume estimation (Tohka et al.,
2004), and the approximation of GM/WM and GM/CSF boundaries using the Constrained Laplacian Anatomic
Segmentation using Proximity (CLASP) algorithm (MacDonald et al., 2000; Kim et al., 2005). This results in
surface meshes with 40,962 vertices per hemisphere, which are subsequently coregistered to a population average195

surface template, such that each vertex is in correspondence across all subjects (Lyttelton et al., 2007). Quality
control was performed by evaluating each subject visually, using ModelGUI software (http://www.modelgui.org);
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45 subjects were rejected on the basis of having substantial issues, due variously to: (1) motion artifacts, (2) masking
errors, (3) misclassification of white matter leading to modelling failure, or (4) failure of the normalization step.
The severity of these issues was ranked on a scale of 0 (no obvious issues), 1 (minor issues), 2 (at least one major200

issue), or 3 (severe issues). All subjects with scores of 2 or 3 were excluded from the analysis. Thickness values were
smoothed with a 5 mm Gaussian kernel, corrected for the effects of age and sex, and then averaged for each ROI in
the RM parcellation. Correlations were computed across all individuals for each pair of ROIs, resulting in an 80x80
correlation matrix Rthickness, which was then thresholded for family-wise error (FWE) using a false discovery rate
(FDR; Benjamini and Hochberg, 1995) of q < 0.05.205

2.6. DWI network

The diffusion-weighted images (DWI) were converted to 4D volumes, and cleaned of motion and other artifacts
using DTIPrep (Oguz et al., 2014). DTIPrep corrects artifacts where possible, and excludes directions from the data
when correction is not possible. Where artifact rejection resulted in fewer than 110 retained directions, the dataset
was excluded from the analysis. Of the subjects which passed quality control for other modalities, two additional210

subjects were excluded on this basis (see Figure S7). The cleaned 4D diffusion volumes were then structurally
unwarped: the T1 volume was linearly registered to the average B0 volume; the average B0 volume was non-
linearly registered to the overlayed T1 volume; and the non-linear transform was applied to each gradient volume.
The average B0 for the cleaned unwarped diffusion data was then linearly registered to the T1 volume in stereotaxic
space, and the resultant transform applied to the gradient volumes, and the rotational component to the directional215

vectors. This yielded a cleaned unwarped 4D diffusion volume in stereotaxic space. The scaling component was then
removed from the transform, inverted, and applied to the diffusion gradients to produce a cleaned unwarped 4D
diffusion volume at native scale. Both 4D diffusion volumes were then processed with FSL’s bedpostx to determine
the distribution of diffusion directions at each voxel. Probabilistic tractography was then performed using FSL’s
probtrackx package (Behrens et al., 2007), with WM as a seed mask, surrounding voxels (including subcortical GM)220

as a stop mask, and cortical and subcortical GM as a target mask. Each WM voxel was seeded from 10,000 random
positions. Tractography was performed using the bedpostx results for the stereotaxic diffusion volume with options
to produce a distance-bias corrected estimate of the number of connections between any two voxels in the target
mask; tractography was performed using the bedpostx results for the native-scale diffusion volume with options to
produce the average length of the connections between any two voxels in the target mask. These results were then225

compiled for both atlases (RM and Cambridge) to produce the total number of connections between pairs of ROIs,
and the average length of those connections. An additional correction for ROI size was performed by dividing these
distance-corrected values by the product of the surface areas of the two ROIs:

T adj2
A,B =

(
T adj1

A,B

SAA · SAB

)0.1

(1)

where T adj1
A,B denotes the distance-corrected tract count, T adj2

A,B the distance- and size-corrected tract count, and
SAA the surface area of ROI A. As the resulting distribution remained highly skewed, an exponential transformation230

of 0.1 was applied to produce a more normal distribution. Finally, adjusted matrices for each subject were averaged
across the group to obtain a single 80x80 matrix Rdwi.

2.7. fMRI network

For the present analyses, we used the high temporal resolution (TR=645ms) multiband fMRI data of the NKI
sample. The datasets were preprocessed using the Neuroimaging Analysis Kit, version “ammo” 0.7.1 (NIAK; Bellec235
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et al., 2011), under CentOS release 5.5 with Octave version 3.6.2 and the Minc toolkit version 0.3.18. All analyses
were executed using the Pipeline System for Octave and Matlab version 1.0.2 (PSOM; Bellec et al., 2012). The
parameters of a rigid body motion were first estimated at each time frame of the fMRI dataset, using the median
of the run as a target. This target fMRI volume was coregistered with a T1 scan of the same individual. The
rigid-body transform, fMRI-to-T1 transform and T1-to-stereotaxic transform were all combined, and the functional240

volumes were resampled in the MNI space at a 3 mm isotropic resolution. The “scrubbing” method of Power
et al. (2012) was used to remove the volumes with excessive motion (frame displacement greater than 0.5). The
following nuisance parameters were regressed out from the time series at each voxel: slow time drifts (basis of
discrete cosines with a 0.01 Hz high-pass cut-off), average signals in conservative masks of the white matter and the
lateral ventricles as well as the first principal components (95% energy) of the six rigid-body motion parameters and245

their squares (Giove et al., 2009). Manual individual review of the raw fMRI volume, fMRI-T1 and T1-stereotaxic
coregistration lead to the identification of a major issue (i.e. signal loss in large portions of the fMRI volumes) in
one subject, and minor issues in another set of 44 subjects (i.e., one or multiple issues amongst bad coregistration
of the central sulcus, cingulate gyrus, lateral ventricles, temporal lobes, hippocampus, parieto-occipital sulcus, or
bad brain masking). This preprocessing quality control process is documented at https://github.com/SIMEXP/250

niak_manual/raw/master/qc_manual_v1.0/qc_manual_niak.pdf. For this first-pass quality control, since we
were aiming for the best possible quality data, we rejected all subjects with either major or minor issues (45 total).
Of the remaining 126 subjects, an average of 65.3 of 900 frames per subject, or 7%, were scrubbed due to the presence
of motion artifacts. As a second-pass quality control, we rejected subjects with less than 450 frames retained (see
Figure S7). This threshold corresponds to ∼ 5 min of signal, which is sufficient to produce stable correlations255

(Van Dijk et al., 2010). This resulted in two further subjects being rejected from subsequent analysis. Finally, as
an alternative preprocessing step, a correction for global signal fluctuations was implemented by regressing out the
first principal component of the time series of all voxels falling into a brain mask segmented from functional images,
as described in Carbonell et al. (2011). For each subject, correlations were computed between the average time
series for each pair of RM regions. The final 80x80 matrices, Rfmri and Rfmri−gsr, were obtained by computing the260

average correlation coefficients across subjects.

2.8. Default mode network

We defined the default mode network (DMN) to roughly match those regions selected by Greicius et al. (2009).
The ROIs included in this network were: medial parietal cortex (PCm), posterior cingulate cortex (CCp), ret-
rospenial cingulate cortex (CCr), ventral temporal cortex (TCv), parahippocampal gyrus (PHC), hippocampus265

(HC), medial prefrontal cortex (PFCm). Notably, this network includes only medial regions, and thus excludes the
temporoparietal junction, although this region is also commonly considered a component of the DMN.

2.9. Resampling

Resampling of the neuroimaging data was performed in order to cross-validate all findings from the analyses
described below. This allows us to assess the degree of variance in connectivity scores obtained from different270

subsamples of the cohort and, conversely, the relative stability of individual modalities and the correspondence
between them. After quality control of all three modalities, 89 subjects were used to generate samples. This
consisted of generating 500 random subsamples, without replacement, of size B = N

2 (where N is the number
of subjects). This was done for each neuroimaging modality and connectivity matrices were computed for each
subsample, as described in the preceding sections. For the thickness network, we generated group-wise correlations275

for each subsample. For the fMRI and DWI networks, we obtained the average of subject-wise correlations and
tract counts, respectively, across the subsample. This approach was applied to all comparisons described below.
Rcocomac was not resampled, as it is based upon a single connectivity matrix.
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2.10. Weighted comparison

To compare connectivity matrices for each modality we first correlated each with one another, to obtain six280

Spearman rank coefficients representing each pairwise correlation. The Spearman rank coefficient was used since,
for the CoCoMac database, the distribution was too skewed to justify a Pearson approach. In the case of Rcocomac,
only edges for which experimental evidence existed were used to compute this coefficient. We performed the same
analysis on: (1.) intra- and interhemispheric connections; (2.) ipsilateral connections within each lobe only; and
(3.) connections with low (14-110 mm), medium (110-160 mm), and high (160-270mm) WM projection distances285

(these ranges were chosen to partition the edges into three groups of equal size). Projection distance was computed
from the DWI tracts, using the probtrackx tool, as described above (Behrens et al., 2007). Finally, in order to get
a measure of the within-modality reliability for each of the human imaging modalities, we performed a split-half
analysis, wherein one half of the sample was compared to the other, using this same weighted comparison. This
analysis was performed for 250 random split-half assignments.290

2.11. Weight-thresholded binarized comparison

Since the assignment of edge weight in each modality may not have a good correspondence, we next compared
binarized versions of these matrices, assigning either one or zero to each element, and thresholding at a density
of 58%, corresponding to the maximal density of Rcocomac (i.e., considering only non-zero edges). In some cases
(for example, the human-only comparison illustrated in Figure 6), analyses were also performed at all other of the295

six possible densities of Rcocomac. Comparisons were performed by obtaining an accuracy score for each pair of
modalities [f, g], where accuracy is equal to the ratio of all matches to all possible ROI pairs [i, j], Npairs:

Φh =

∑Npairs

i=1
∑Npairs

j=i+1

(
TP

(ij)
h + TN

(ij)
h

)
Npairs

(2)

where h denotes a comparison between two matrices, TP (ij) denotes a true positive (R(ij)
f = R

(ij)
g = 1), and

TN (ij) denotes a true negative (R(ij)
f = R

(ij)
g = 0). Notably, "truth" in this context refers to a case where two

matrices agree. However, any two random matrices will agree by chance, at a rate determined by their densities.300

To account for this random agreement, we further define an adjusted accuracy score ACC, by normalizing between
the value expected by random chance, Φrand, and 1:

ACC = Φ− Φrand

1− Φrand
(3)

The derivation of Φrand is given in the Supplemental Material. The resulting value varies from 0 to 1, where 1
indicates perfect agreement, and 0 indicates agreement no better than that expected by chance. For comparisons
involving Rcocomac, only edges for which experimental evidence existed were used to compute ACC.305

To obtain a score integrating information across all modalities, we derived the “correspondence index”, CI,
which is similarly the ratio of matches for each ROI pair [i, j] across all M modalities, to the total number of
comparisons, H = M(M − 1)/2 = 6:

CI(ij) = 1
H

H∑
h=1

(TP (ij)
h − TN (ij)

h ) (4)
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Where edges in Rcocomac had no experimental evidence, only the other three modalities were used to compute
CI. Note that the matrix obtained from the difference TP (ij)

h − TN (ij)
h will have a value of +1 for a true positive,310

-1 for a true negative, and 0 for a false positive or false negative; thus the sign of CI indicates the type of agreement
and the magnitude indicates the degree of intermodal correspondence. The inverse of the absolute value of this
score (1− |CI|) represents the degree of intermodal disagreement.

As for the weighted comparison, the same 250 split-half assignments were used to test within-modality reliability
for each of the human imaging modalities, using these weight-threshold binary comparisons.315

2.12. K-means and hierarchical clustering

Clustering approaches can be applied to network graphs in order to obtain groups of vertices which are max-
imally connected. Connectivity matrices for each modality were considered “similarity” matrices for the purpose
of hierarchical and k-means clustering. Following Bellec et al. (2010) and Kelly et al. (2012b), each matrix was
clustered into k = 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 partitions, across all subsamples. For hierarchical clustering,320

we used the NIAK library (Bellec et al., 2011, 2012) and Ward’s criterion (Ward, 1963). For k-means cluster-
ing, we used the kmeans function from MATLAB R2014a ( c©The MathWorks, Inc., 2014). For each subsample b,
each modality m, and each partition size k, we computed an adjacency matrix A(m,b,k), such that each element
a

(m,b,k)
ij = 1 if ROIs i and j were in the same cluster, and 0 otherwise. A within-modality stability matrix S(m),

describing the proportion of subsamples in which a pair of ROIs was in the same cluster within a modality, was325

then constructed for each as:

S(m,k) = 1
B

B∑
b=1

A(m,b,k) (5)

where B is the total number of subsamples.

Similarly, a cross-modality consensus matrix C, describing the proportion of subsamples in which ROIs i and j
were in the same cluster across modalities, was constructed as the average agreement between each pair of modalities:

C(k) = 1
H

1
B

B∑
b=1

H∑
h=1

A(h,b,k) (6)

where h represents one of six pairwise comparisons between modalities, and A(h,b,k) is the adjacency matrix330

such that each element a(h,b,k)
ij = 1 if ROI i from one modality is in the same cluster as ROI j from the other,

and 0 otherwise. This formulation allows us to quantify the degree to which similarity information from all four
modalities converge on a specific clustering solution (see Bellec et al., 2010).

Since it was not subsampled, the same instance of Rcocomac was clustered 500 times. For hierarchical clustering,
because this matrix contained only six possible integer values, and was highly skewed towards higher values, the335

clustering routine encountered a high number of ambiguous choices; i.e., cases where the similarity of two possible
clusters was identical. In these cases, the choice was made pseudorandomly; thus, the hierarchical stability matrix
of Rcocomac largely captured algorithmic (rather than population) stability (see Discussion).
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Finally, to determine the efficacy of a given clustering solution, we defined a stability contrast σ (Bellec et al.,
2010), which quantifies the within-cluster stability of an ROI i relative to its maximal stability within the other340

clusters (between-cluster stability). Values of σ can range from -1 (greater between- than within-cluster stability)
to +1 (greater within- than between-cluster stability).

2.13. Signal-to-noise

The signal-to-noise ratio (SNR) provides a measure of how well a target signal (e.g., a connectivity score) can
be distinguished from its noise component. When comparing connectivity inferred from multiple modalities, it is345

informative to assess the degree to which intermodal correspondence is associated with SNR; in other words, how
does the variability of a connectivity score relate to the degree to which it corresponds across modalities? For each
human-derived modality m and ROI i, we assessed SNR with respect to the variance in connectivity scores across
subsamples, as the ratio of the mean score µm to its standard deviation σm:

SNR(i)
m = µ

(i)
m

σ
(i)
m

SNR for a given ROI pair [i, j] was then computed as the average of SNRi
m and SNRj

m.350

For the CoCoMac database, there is no straightforward means of determining a SNR. Instead, a measure of data
completeness, DC was determined by enumerating the experimental injection or labelled sites from which values
were determined for each ROI. These values indicate the amount of evidence supporting an inference of connectivity
for each RM region (for a detailed description, see Bezgin et al., 2012). Similar to the SNR for human modalities,
the average of DCi

m and DCj
m was used to represent the SNR for each ROI pair.355

SNR scores for each modality, and the mean across modalities, were compared to the CI score, using a Spearman
rank correlation. This allowed us to assess the degree to which correspondence could be explained by the amount
of noise in the connectivity measures used to compute it.

3. Results

3.1. The networks360

Of all possible ROI pairs in Rcocomac, 32.7% lack experimental data to confirm either their existence or lack
thereof. The majority of these unknown connections are contralateral (58.7% versus 6.9% for ipsilateral connections).
57.6% of possible connections are experimentally confirmed to exist, while only 9.7% are confirmed not to exist.
Ipsilaterally, CoCoMac is 80.8% connected, while contralaterally it is only 33.8% connected, excepting unknown
connections. Matrices for all networks are shown in Figure 2A, where the unknown CoCoMac edges are shown in365

white. Qualitatively, these matrices have a number of similarities – particularly in the prominence of homotopic
connections (the off-diagonal in the upper-right quadrant), which is strongest for Rthickness and Rfmri; as well as the
similar contralateral structure of Rcocomac and Rdwi (if we count the unknowns as nonexistent). This similarity in
ipsilateral and contralateral structure is also evident from the superior aspect 3D renderings shown in Figure 2B,
as well as the coronal sectional renderings shown in Figure 2C. In this illustration, vertices have been scaled by370

their distance-weighted betweenness centrality. Notably, all such “hub” vertices are distributed more symmetrically
for Rcocomac and Rdwi, with anterior and posterior cingulate cortex being prominent hubs. Figure 2D illustrates
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the edge weight distribution of each network. While the three imaging modalities produce networks with normally
distributed values, Rcocomac is highly right-skewed, due to its predominance of high density connection weights and
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Figure 2: Cortical networks for each modality, derived from the NKI dataset, thresholded at the maximal
CoCoMac density of 58%. A. Normalized connectivity matrices, coloured by edge weight. Note that the colour
scale is from 0 to 1, and that blue here indicates low or zero connectivity, as opposed to the fMRI convention of blue
representing negative covariance. For Rcocomac, white signifies that no tract tracing evidence exists in the CoCoMac
database for that ROI pair. B. The networks rendered as 3D graphs, from the superior aspect. The darkness and
opacity of an edge signifies its weight, while the size of a vertex signifies its distance-weighted betweenness centrality
(a measure of hubbiness) in the network. C. The same networks rendered on 2D coronal sections, which are shown
in the 3D renderings. Sections are located at +13 mm (blue) and -53 mm (red) in MNI stereotaxic space. As for B,
edge weight is signified by the darkness, opacity, and size of the line, while distance-weighted betweenness centrality
is signified by the vertex size. ROI labels are provided in the leftmost section (see Table 1 for a complete list).
D. Histogram of edge weights for each modality; note the highly skewed distribution of Rcocomac. E. Histogram of
edge lengths for each modality, using the centroids of RM regions in (human) MNI coordinate space. F. The ratio
of contralateral to ipsilateral connections for each modality.

scarcity of low-density weights. Figure 2E shows the distribution of edge lengths for each network; Rthickness and375

Rfmri have longer edges on average, which is likely due to their having a greater number of contralateral connections.
Accordingly, the ratio of contralateral to ipsilateral connections is low for Rcocomac (∼ 0.2), intermediate for Rdwi
(∼ 0.3), and high for Rthickness and Rfmri (∼ 0.5; see Figure 2F). These patterns were virtually unchanged when
computed for a reduced subset of the NKI dataset, which included only subjects in the age range 18-40 (77 total),
indicating that the larger age range did not have a substantial effect on the connectivity results.380

3.2. Weighted comparison

Directly correlating network edge weights between modalities provides a set of simple pairwise comparisons.
Correlations between the four weighted networks are shown in Figure 3A. For the NKI dataset, correlation was
highest between Rdwi and Rfmri (r = 0.64, r2 = 0.41), and lowest between Rcocomac and both Rthickness (r = 0.23,
r2 = 0.05) and Rfmri (r = 0.27, r2 = 0.07). By comparison, the ICBM dataset had a very similar pattern, but385

generally lower correlations - this difference was most prominent between the imaging modalities, and was actually
reversed for Rcocomac/Rdwi. When grouping NKI correlations by edge distance (Figure 3B), correlations between
the three imaging modalities was highest for short (<110 mm) and medium-length (110-160 mm) connections,
and decreased for long (>160 mm) connections. This pattern was similar for ICBM (Figure S1). Figure 3C
shows NKI correlations obtained within lobes, ipsilaterally. This results in a general substantial increase in most390

correlation values, including comparisons for Rcocomac. The correlations were heterogeneous, with higher association
between the imaging modalities in frontal, parietal, and occipital lobes, and for comparisons involving Rcocomac
most markedly in the parietal lobe. Correlations were generally comparable between ipsilateral and contralateral
connections, with the exception of the Rthickness and Rfmri comparison (Figure 3D); this was again similar for the
ICBM dataset (Figure S1).395

Figure 6A shows intermodal correlations for human-only modalities, obtained from both parcellation schemes,
as well as a comparison between fMRI with and without global signal correction (GSR). For all comparisons,
connectivity estimates for RM had a higher agreement than for the functionally-derived Cambridge parcellation.
Additionally, for both parcellations, fMRI estimates produced with GSR had worse correspondence than without.
fMRI estimates with and without GSR themselves had an agreement (r2) of 0.65 to 0.70, indicating unshared400

variance of at least 30%. It is also notable that Rthickness had a particularly poor within-modality reliability for
weighted comparisons, having an r2 of less that 0.6, when evaluated using split-half comparisons (Figure S8).
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Figure 3: Weighted comparisons. A. R2 values for correlations between each pair of modalities. Results for
the ICBM dataset are shown in lighter colours and for the NKI dataset in darker colours (as labelled). Error bars
show standard deviation across subsamples. All other panels show the NKI results only, with the same colour
coding: B. R2 values for correlations on edges having low, medium, and high axonal distance, measured by DWI
tractography. C. R2 values for correlations of ipsilateral edges within lobes. D. R2 values for correlations for right
and left ipsilateral connections and contralateral connections.

3.3. Binarized comparison

A major limitation of correlative comparisons is the different ways in which edge weights are derived from each
modality. Even given the (strong) assumption that these relationships are monotonic (i.e., they are ordered the405

same), it is still possible that they are nonlinear, and thus poorly captured through a correlation. Of particular
concern is the non-Gaussian, highly skewed distribution of Rcocomac (Figure 2D). To address this, we performed a
second comparison by binarizing each network to match the maximal density of Rcocomac (58%). Figure 4A shows
the accuracy (ACC, i.e., the degree to which one network matches the other) for each cross-modal comparison. In
general, ACC was fairly poor for both NKI and ICBM datasets (note that the value of ACC varies on the range410

[0,1], signifying a continuum from random chance to perfect agreement). ACC was higher for NKI, for comparisons
between the human imaging modalities, and for ICBM, for comparisons involving Rcocomac. Notably, relative ACC
for comparisons involving Rcocomac were improved from the correlative approach, for both datasets – ACC between
Rcocomac and Rdwi was particularly improved. For the imaging comparisons, the patten of ACC was comparable
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Figure 4: Binarized comparisons. A. Accuracy (ACC) for comparisons between each pair of modalities. Note
that ACC varies from 0 to 1, such that ACC = 0 represents the level of agreement expected by random chance,
and ACC = 1 represents perfect agreement. Results for the ICBM dataset are shown in lighter colours and for
the NKI dataset in darker colours (as labelled). Error bars show the standard deviation across the subsample.
Because ACC is normalized between that expected by random chance (0) and perfect agreement (1), its value
indicates how much better the agreement between each pair of modalities is from chance. All other panels show the
NKI results only: B. The correspondence index (CI), which measures cross-modal agreement. Positive CI (red)
measures the degree to which all modalities agree that an edge exists, and negative CI (blue) that it does not exist.
Disagreement (grey) is the absolute inverse of this value. CI is also shown for low, medium, and high edge distance,
for ipsilateral connections, and for heterotopic and homotopic contralateral connections. C. Positive and negative
CI and disagreement, shown from the superior aspect as a 3D graph (top) and as horizontal 2D sections (bottom; 0
mm in MNI stereotaxic coordinates, with ±10 mm clipping bounds; superimposed on the ICBM-152 linear template
image). Edge darkness and opacity signify the strength of each index, and the size of the vertex signifies the sum
for that ROI. D. Mean CI painted on the ICBM template surface. Lateral, superior, and cingulate ROIs show a
higher mean positive CI (red), while medial frontal and temporal gyri show a higher mean negative CI.
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to that of the correlative results, with Rdwi and Rfmri having the best agreement.415

Figure 4B shows the correspondence index (CI) across all modalities for the NKI dataset, which measures the
degree to which the evidence agrees across all modalities. Overall, positive CI (how well modalities agree that an
edge exists) was higher than negative CI (how well they agree an edge does not exist), but cross-modal disagreement
predominated (mean inverse CI = 0.63, mean positive CI = 0.25, mean negative CI = 0.11). Positive CI was
highest for short connections (0.49), while negative CI was highest for long connections (0.25). Ipsilaterally, CI420

was mainly positive, while for heterotopic contralateral connections positive and negative CI were roughly equal.
For homotopic connections, mean positive CI was 0.65, with zero negative CI (indicating perfect agreement on the
existence of a connection for 65% of homotopic pairs). This measure is shown geometrically in Figure 4C, both as
a superior aspect 3D rendering and as horizontal 2D sections. Qualitatively, the pattern of positive CI resembled
a largely symmetric lattice, including edges between locally proximal regions, as well as most homotopic regions.425

Negative CI was largely confined to long-range, medial, anteroposterior edges. Inverse CI (disagreement) had no
distinct regularity or geometric pattern; edges were generally long-range and diffuse throughout the geometry of the
brain, and included both contralateral and ipsilateral connections. Figure 4D shows the mean CI per ROI. Lateral
temporal lobe and the temporoparietal junction had the highest positive CI, with CCa, CCp, and dorsolateral PFC
having moderately high values. HP and CCs had the highest negative CI, while medial PFC, medial temporal lobe,430

V1, and Ia had the lowest correspondence. These distributions were very similar for the ICBM dataset (Figure S1).

It is instructive to examine the CI in specific components of the connectome, for instance by looking only at
the DMN, a set of regions which are most likely to be engaged in the resting state (Greicius et al., 2009). Notably,
for the NKI dataset, none of the human modalities matched the structure of the CoCoMac-derived DMN well
(Figure 5). All three imaging networks failed to find connections between PFCm and PHC, TCv, and CCr, which435

were dense connections in CoCoMac. The fMRI network was comprised mainly of strong homotopic connections,
including one between the left and right CCr, which does not exist according to CoCoMac. The DWI network
lacked a core set of contralateral connections involving PHC and TCv. Like fMRI, the cortical thickness network
had edges between left and right CCr, and like DWI, it lacked most connectivity for HC, PHC, and TCv. These
differences are summarized by the CI, as shown in Figure 5 (top left). Figure S2 shows an alternative visualization440

within the DMN; specifically, connectivity estimates for each modality rendered on the ICBM surface for the left
PCm.

Figure 6B shows normalized ACC, across network densities, for all human modalities, both parcellation schemes,
and fMRI with and without GSR. ACC followed the same pattern as correlation (Figure 6A), and this was generally
consistent across densities. Interestingly, Rfmri and Rfmri−gsr had similar agreement with both Rdwi and Rthickness445

at low density (∼ 23%), but this became increasingly worse at higher densities. Also following the correlative
results, ACC was consistently worse for estimates produced using the Cambridge parcellation than for RM, and CI
was also generally worse for Cambridge (albeit moderately) as well (Figure 6C). Finally, ACC between Rfmri and
Rfmri−gsr was comparably high for both parcellations (0.6 to 0.7), which also concords with the correlative findings.
As for the weighted comparisons, Rthickness had a remarkably poor within-modality reliability for split-half binarized450

comparisons, with an ACC of approximately 0.6 at low density, reducing to 0.43 at the maximal CoCoMac density
of 58% (Figure S8).

3.4. Clustering

K-means and hierarchical clustering allow us to compare the ways in which networks form stable clusters on the
basis of their edge weights. Figure 7A shows the stability matrices for k-means clustering of each modality, which455

quantifies the probability, based on 500 subsamples, of any two ROIs being clustered together at k = 12 partitions.
The consensus matrix is also shown (far right), which represents the likelihood of two ROIs being clustered together
across modalities. The matrices are shown both in their original ordering (first row), and ordered according to the
consensus clustering solution for k = 12 partitions (second row). Figure 7B shows the 12 partitions derived from
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Figure 5: The default mode network (DMN). A. At right, networks for the RM parcellation are shown for
each of the four modalities. Darker, larger, and more opaque edges signify stronger edge weights. At top left, the
CI is shown, as a measure of correspondence across these four modalities. Red edges signify stronger positive CI,
while blue edges signify stronger negative CI; smaller, more transparent edges are ones with more disagreement.
ROI labels are given in Table 1. The cortical surface at bottom left is shown for orientation. B. Renderings of the
DMN network for the human modalities using comparable regions of the Cambridge parcellation. At left, fMRI
networks derived with and without a GSR step are shown.

the consensus clustering solution, painted on the ICBM template cortical surface. These images allow a number460

of qualitative observations. Homotopic connections were among the most stable, which likely accounts for the
interhemispheric symmetry of the partitions. Ipsilateral and contralateral clustering patterns were nearly identical
to one another for both Rfmri and Rthickness, while clustering was much more stable ipsilaterally than contralaterally
for Rcocomac, and Rdwi was intermediate in this respect. As shown in Figure 7C, Rfmri, Rdwi, and Rcocomac had
comparable stability across all partition sizes (measured by mean stability contrast, σ, which measures the ratio of465

within-cluster to between-cluster connectivity), whereas Rthickness was substantially less stable across subsamples.

For the consensus clustering solution at k = 12, the partitions were mostly spatially contiguous, and apart from
the dorsolateral PFC (orange and turquoise) and occipital cortex (dark blue and yellow) all were symmetric across
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Figure 6: Summary of comparisons for human modalities only. A. Weighted (correlative) comparisons of
connectivity estimates for the Regional Map (RM) and Cambridge parcellations (lighter bars, as labelled), where
GSR refers to global signal regression corrected fMRI. B. Mean (over subsamples), normalized ACC shown across
all CoCoMac densities, for RM and Cambridge parcellations. The colour coding is the same as for (A). Errors bars
show the standard deviation across subsamples. C. Mean CI for both parcellations (as labelled), derived at the
maximal CoCoMac density of 58%. Means are displayed for all edges (total), and also divided by distance and
hemisphere.

hemispheres. The only noncontiguous partition (lighter orange) was comprised of posterior insula, temporal pole,
and medial temporal lobe. These ROIs also had very low mean stability contrast for the consensus clustering (Figure470

7D), along with orbitofrontal cortex, cingulate cortex, precuneus, lateral temporal lobe, and the temporoparietal
junction. Figure S4 shows the partitioning solutions for each individual modality, which gives more insight into
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their correspondence. In general, some of the poor consensus can be attributed to the separation of clusters by
hemisphere for Rdwi and Rcocomac, but not for Rfmri and Rthickness. However, a large degree of divergence was also
observed ipsilaterally, and all four modalities give rise to distinct solutions. The clustering pattern at k = 12 can be475

further elucidated by considering different levels of partitioning sizes. Figure S6 shows solutions for k = 8, 12, and
16. Most of the divergent, modality-specific clustering patterns were already present at k = 8, and these patterns
tended to further subdivide with increasing k. Generally, this subdivision was symmetric across hemispheres, but
in some cases – particularly for Rfmri – the new partitions were asymmetric.

Figure S5 shows the same results for the hierarchical clustering approach. The consensus solutions for both480

methods had substantial overlap (compare Figure 7B and S5B), but also exhibited a number of distinct differences.
For instance, the stability of Rcocomac was very poor under hierarchical clustering, while Rfmri was greatly improved,
and Rthickness showed an improvement with increased values of k. Only Rdwi appeared similarly stable under both
approaches. Interestingly, stability contrast for the consensus clustering was substantially higher for hierarchical
versus k-means, specifically in precuneus, posterior cingulate, and primary somatosensory cortex (Figure 7D and485

S5D), while the k-means consensus was better for medial and left lateral prefrontal cortex.

3.5. Signal-to-noise

Signal-to-noise ratio SNR for the three human modalities is shown in Figure 8, for both ICBM and NKI datasets,
along with data completeness DC for CoCoMac. Notably, SNR was higher for NKI than for ICBM, for all three
modalities, providing a quantitative indication of the improved data quality of the NKI dataset. Nonetheless, the490

overall pattern of SNR was similar across datasets for the same modalities, and differed substantially between
modalities. The relationship of normalized SNR and DC to the correspondence index CI was analyzed by the
Spearman rank coefficient ρ. SNR for all three human modalities were significantly correlated with CI, while DC
for CoCoMac showed no relationship (ρ = 0.29,0.26, 0.32, and 0.01 for DWI, fMRI, Thickness, and CoCoMac,
respectively). Figure 8 also shows the normalized SNR, averaged for each ROI, as a distribution on the ICBM495

template surface. This distribution bears a remarkable qualitative resemblance to the distribution of mean CI
(Figure 4D).

4. Discussion

The assignment of weights to edges is a critical step in inferring connectivity from empirical evidence. When
constructing a graph by assigning weights to edges, and treating this graph as a representation of a physical500

network which transmits information, we are implicitly assuming that edge weight informs us about the efficacy of
information transfer. This assumption, however, is rarely tested. Here, we compared cortical connectomes from four
different modalities, using both weighted and binarized measures of edge strength. As a general finding, and given
the assumption that all connectivity methods are attempting to model the same underlying physical connectivity,
correspondence between all four modalities was poor. This highlights the difficulty of drawing conclusions about505

the physical connectivity of the human brain based upon any one neuroimaging modality. On the other hand, if
we consider the degree of difference between the aspects of physical connectivity modelled by each modality, we
do find a relatively impressive correspondence, in particular between the DWI (structural) and fMRI (functional)
approaches, which achieve approximately 40% shared variance. When we consider binarized networks, CoCoMac
and DWI also show a relatively good correspondence. Moreover, the use of higher resolution data (NKI) appears to510

substantially increase the degree of correspondence between all three human imaging (but not CoCoMac) modalities.
Because we have both species and modality differences, along with a variety of methodological issues associated
with each modality, the task of disentangling these results is a difficult one. Nonetheless, the present comparisons
have a number of important features which can be used to better characterize what inferences can – and cannot – be
drawn from the evidence of each modality. In what follows, we discuss the specific results of weighted and binarized515
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Figure 7: K-means clustering results at k = 12 partitions. A. Stability matrices for each modality (how
frequently ROI pairs cluster together, within modalities) and the consensus matrix (far right; how frequently ROI
pairs cluster together, between modalities). Matrices are shown in their original order (top), and ordered by the
consensus clustering (bottom), where the 12 clusters are outlined in pink. B. Consensus clusters at k = 12, painted
on the ICBM template cortical surface. C. The mean stability contrast (σ) for each modality, at different values
of k. The dashed pink line shows k = 12, which was used here. D. ROI-wise σ, painted on the ICBM template
cortical surface. Higher σ (red) indicates an ROI is more strongly clustered within its assigned cluster than between
other clusters.

comparisons and hierarchical clustering, and finally consider the strengths and limitations of each modality, which
may account for their agreement, or lack thereof.
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Figure 8: Signal-to-noise ratio (SNR) and data completeness (DC). A. Top row shows SNR averaged over
ROI pairs, for each human imaging modality derived from the enhanced NKI dataset. Second row shows the same
for the ICBM dataset; notably, all values are smaller for ICBM, but patterns are constant across datasets for each
modality. B. At top, DC is shown for the CoCoMac network; i.e., the average number of injections and labelled
sites for each ROI pair. At bottom is the Spearman rank coefficients for SNR/DC versus the correspondence index
CI, obtained across all modalities. Notably, significant correlations were found for the human imaging modalities,
but not for CoCoMac. C. Average SNR, normalized for each modality, plotted on the ICBM template surface. The
distribution bears a resemblance to the distribution of mean CI, shown in Figure 4C.

4.1. Correspondence across modalities

For both weighted and binarized comparisons, we find more divergence than convergence between the modali-
ties, with Rfmri/Rdwi having the best agreement in both cases. This degree of correspondence (i.e., between DWI520

and fMRI) is comparable to that reported by earlier intermodal comparisons (Honey et al., 2009). Interestingly,
in studies which compared functional and structural connectivity for generative models (i.e., where the underlying
structure is known a priori), average correlations in the range of 0.6-0.7 (Honey et al., 2009; Messé et al., 2015) were
achieved. This indicates that the empirical correspondence observed here is likely about as high as can be expected.
For both comparative approaches, correspondence was highest for shorter, ipsilateral, and homotopic contralat-525

eral connections (Figure 3B and Figure 4B), with the latter having a positive CI of 0.65, indicating cross-modal
agreement for 65% of these edges. These findings largely agree with those of Honey et al. (2009), who compared
DWI-based SC, and fMRI iFC. Positive CI was distributed in a regular, lattice-like set of edges, along with most
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homotopic contralateral edges (Figure 4C), indicating that local and homotopic connections have the best agreement
across all modalities. Negative CI was distributed mainly along longer, medial edges, both ipsi- and contralaterally,530

while disagreement appeared to be highest for long heterotopic contralateral and anteroposterior ipsilateral edges
(Figure 4C). Interestingly, the distribution of mean positive CI across ROIs was highest in heteromodal regions
(Figure 4D), while S1, V1, medial temporal, and medial frontal regions had relatively poor correspondence. The
distribution of positive CI bears a striking resemblance to that of individual variability in fMRI iFC, as well as
the degree of evolutionary cortical surface expansion between the macaque and human cortex (Figure 3 of Mueller535

et al., 2013). The reasons for this resemblance are not immediately obvious, since one might expect regions with
a greater degree of evolutionary divergence to have a worse correspondence, particularly with CoCoMac. However,
our evidence suggests that local ipsilateral connectivity and homotopic contralateral connectivity (i.e., those most
likely to form network modules) are largely preserved across species, and stable across modalities, while longer,
heterotopic contralateral and anteroposterior connections (i.e., those most likely to act as intermodule connections)540

have the worst stability. This pattern suggests that regions of cortex that are less locally interconnected, and/or
have more long-range connections, are less likely to have good correspondence across species and modalities.

It is noteworthy that the binarized comparison improves considerably (approximately 10%) when considering
human modalities only (Figure 6). This is not very surprising, given the very different nature of the CoCoMac
data, the fact that it is derived from a very different primate species, and the observation that CoCoMac compares545

poorly with the two correlational modalities (see Figure 4). It is unclear, however, whether this improvement in
correspondence is attributable to neuroimaging methods converging on a "true" human connectome, or simply that
they are affected by similar biases. The correlational modalities, for instance, are likely to both capture brain
symmetry for different reasons (one functional and one morphological). The propensity to find short connections
may also result in improved correspondence, again for different reasons (a distance bias in DWI, and smoothing550

effects for fMRI and cortical thickness). However, it is likely that much of the improvement reflects a real convergence
on the same underlying connectivity pattern, which is reduced by comparison to CoCoMac both because of actual
species differences and the difficulty of matching homologous regions (discussed in more detail below). Future studies
which focus more directly on comparisons between estimates of human connectivity will likely better elucidate these
issues.555

4.2. Correspondence across datasets

At the time of writing, the MRI techniques utilized to obtain the NKI dataset are state-of-the-art, including a
3T scanner and novel acquisition sequences that produce high temporal and spatial resolution fMRI, high angular
resolution DWI, and good T1 contrast for cortical thickness analysis. In contrast, the ICBM dataset is rather
outdated, using a 1.5T scanner and yielding - by today’s standards - images with low spatial, temporal, and560

angular resolution. Contrasting these two datasets allows us to assess the impact of improved MRI techniques
on the intermodal correspondence of connectivity analyses. Overall, the pattern of both correlative and binary
comparisons was consistent across datasets, indicating a stability to the relative degree of intermodal correspondence.
We also observed a marked increase for NKI in both intermodal correlations and binary correspondence for the
human imaging modalities, but not for comparisons with Rcocomac (Figures 3B and S5). The reasons for this565

poorer correspondence are not clear; speculatively, it may be that the NKI dataset better captures real interspecies
divergence. There are, on the other hand, several possible explanations for the observed improvements. Notably,
increased angular resolution for DWI allows a more well-defined orientation distribution function, which can improve
the ability of tractographic algorithms to find pathways through highly isotropic tissue (i.e., containing crossing,
kissing, or fanning fibres). Increasing temporal resolution for rs-fMRI allows a more temporally precise analysis of570

regional coupling strength, which improves the ratio of signal-to-noise in correlational analyses. Additionally,
increased field strength allows a better T1-weighted contrast, which improves the ability of cortical thickness
algorithms to perform tissue classification and detect cortical boundaries. These results argue in favour of the
benefit of applying state-of-the-art imaging techniques to datasets intended for use in analyzing connectivity using
one or more modalities. However, they also demonstrate that, despite these improvements, there remains a good575
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deal of disagreement between connectomes derived from these modalities, which is elaborated upon below.

4.3. Signal-to-noise

The signal-to-noise ratio (SNR) reflects the degree to which a salient signal can be isolated from the noise present
in an observed distribution. In the present study, we evaluated this quantity as the degree to which connectivity
estimates obtained from subsamples exceeded variance across them. This allowed us to evaluate how well cross-580

modal correspondence could be predicted by the stability of the estimates. For CoCoMac, SNR was modelled as
the number of studies contributing to information about a particular connection, referred to as data completeness
(DC). In contrast to the human modalities, DC did not significantly predict CI (Figure 8B). We found that the
SNR of each of the human imaging modalities predicted the CI, with Pearson coefficients between 0.3 and 0.4. This
relationship suggests that the stronger and more stable a correlative or structural relationship, the more likely it is585

to correspond across functional and structural modalities. This finding is in accordance with a similar observation
by Honey et al. (2009), that edges with structural connectivity, determined by DWI tractography, had less RS-FC
variability both across and within sessions.

Interestingly, fMRI exhibited a much higher SNR than either DWI or thickness. This highlights the degree to
which these modalities differ in their connectivity estimates. fMRI, based on BOLD time series over time, gives590

rise to relatively stable patterns of covariance, whereas cortical thickness, which captures morphological patterns
over much longer time scales, and is likely influenced by multiple factors, including genetics and life experience.
Cortical thickness is also a noisy measure, and results from various approaches have been shown to have substantial
disagreement (Martinez et al., 2015). Probabilistic DWI tractography, on the other hand, attempts to sample a
complex diffusion space, and even at the dense sampling rate utilized here, appears to have a much higher degree of595

variance than fMRI activity. The spatial distribution of the SNR effect, obtained by averaging coefficients for each
region, is also shown as a surface rendering in Figure 8C. Notably, this pattern shows a strong similarity with the
surface rendering of mean CI plotted in Figure 4D, indicating that the correlation between SNR and cross-modal
correspondence is also reflected in a similar spatial distribution. Finally, when comparing between the NKI and
ICBM datasets, we found a significantly higher SNR for all three modalities (Figure 8A) for NKI. This observation600

reinforces the idea that the improved cross-modal correspondence we observe for the NKI dataset is attributable to
an improved signal quality in this higher-quality data set.

4.4. K-means and hierarchical clustering

Both k-means and hierarchical clustering approaches allow a network graph to be partitioned into distinct
subsets, based upon some distance measure. In the present case, we considered edge weights to confer similarity605

(the inverse of distance), and computed clustering solutions for each modality, across 500 subsamples, to determine
the reliability with which each pair of ROIs was clustered together. We further computed a “consensus” clustering,
which determined how reliably ROI pairs appeared in the same cluster across modalities, thus arriving at a set of
partitions derived from the integrated evidence of all four modalities. For k-means, we found that Rfmri, Rdwi, and
Rcocomac had similar levels of stability across subsamples (∼ 0.5 − 0.6 for k > 6), while Rthickness had relatively610

poor stability (∼ 0.2). In contrast, hierarchical clustering resulted in disparate levels of stability for each modality,
with the general trend Rfmri > Rdwi > Rthickness > Rcocomac. Rcocomac in particular performed very poorly
using hierarchical clustering, which suggests that this approach is not ideal for such a comparison. The discrepancy
between methods highlights the degree to which a solution is dependent upon the choice of algorithm. Notably, such
algorithmic dependency has been previously characterized for fMRI data specifically, for both a coarse parcellation615

(Marrelec et al., 2015) and a voxel-wise approach (Thirion et al., 2014). In both studies, hierarchical clustering
performed well, while k-means was less accurate or unstable; this was also likely the case here. For Rcocomac in the
present study, the discrepancy between hierarchical and k-means solutions is possibly due to the particular means by
which distance measures are used to form clusters in the two approaches. Hierarchical clustering attempts to make
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binary decisions about pairs of regions, based upon their distance measure (in this case, using the Ward criterion).620

Because Rcocomac is a discrete matrix (i.e., comprised of integer values), and highly skewed towards maximal values,
this approach results in a high number of arbitrary decisions made on pairs with identical distances, which must be
resolved in a pseudorandom way. As a result, the multiple runs on Rcocomac produce highly varying results. This
ambiguity is likely avoided to some extent by the k-means approach, in which regions are added to a cluster on the
basis of their distance from a centroid for that cluster. In other words, this approach attempts to assign borders625

which maximize differences between sets of regions, which reduces the number of arbitrary decisions that must be
made about individual pairs of regions. To address this issue, future studies might evaluate alternative formulations
of edge weighting for the CoCoMac database (see CoCoMac network, below).

The consensus clustering solution for k-means, shown in Figure 7B, provides a set of spatially contiguous,
hemispherically symmetric clusters. Figure 7D shows the stability of this clustering solution across subsamples.630

Together, these results reinforce the higher correspondence of local connectivity, and also highlights regions of cortex
where modalities disagree most strongly; specifically, CCa, CCp, orbitofrontal cortex, the temporal lobe, and the
temporoparietal junction. This pattern contrasts somewhat with that of mean positive CI (Figure 4D), which
reflects the very different aspects of connectivity assessed by these methodologies. In particular, CI is a binarized
comparison, while hierarchical clustering uses edge weights as continuous values to determine how ROIs cluster635

together. The disagreement of lateral temporal lobe, for instance, is due to its being separated by hemisphere for
Rcocomac and Rdwi, but not for Rfmri and Rthickness. This discrepancy is likely due to homotopic connectivity; the
latter modalities produce high weights for homotopic connections, which drive their clustering behaviour but are
reduced to a binary score in the CI calculation, equivalent to weaker but more prevalent local edges. The poor
clustering of medial temporal lobe, on the other hand, agrees with the mean CI result, and suggests that this part of640

cortex has the least consistent connectivity structure. Cross-modal comparisons using clustering methods have been
previously reported for limited regions of cortex. Kelly et al. (2012b), for instance, focusing on the human insula,
demonstrated a convergence of clustering solutions across partitioning sizes, for both resting state and task-evoked
fMRI, as well as covariance in GM density. In the present study, we do find a qualitative similarity between Rfmri
and Rthickness solutions (see Figure S6).645

It is interesting to examine how partitioning compares across different choices of k. From Figure 7C it is
clear that there is no peak, or optimal k at which the data can be clustered; in other words, past k = 8, further
subdivision of partitions neither adds nor subtracts from the stability of the solution. To better assess how k affects
the partitioning solution, Figure S6 illustrates solutions for k = 8, 12, and 16. Notably, the idiosyncratic clustering
behaviour of each modality is largely already apparently at the k = 8 solution. For instance, the splitting of medial650

temporal lobe and visual cortex is apparent for Rcocomac at this level, rather than occurring at a higher parcellation,
which would indicate it arises from forcing a subdivision in a way unnatural to the data. On the other hand, for
most modalities clear instances of splits which impose hemispheric asymmetry, or "unnatural" seeming parcels can
be found, mostly in regions exhibiting poor mean stability contrast (Figure 7C). This highlights a limitation of the
present approach. The use of a coarse parcellation scheme such as RM to perform such clustering, while providing655

an informative perspective on the relationship between clustering behaviour for different modalities, would likely
benefit from a complementary analysis with a focus on voxel- or vertex-wise clustering. Future studies could
also provide a more comprehensive characterization of the behaviour of various clustering approaches, parcellation
schemes, and cluster sizes in assessing multimodal connectivity.

4.5. CoCoMac network660

The CoCoMac database provides us with a very useful set of metadata which facilitates comparisons between
histologically confirmed anatomical connectivity of rhesus macaques, and methods which indirectly predict con-
nectivity of the human brain. This potential is limited, however, by a number of factors. Notably, the use of
parcellation schemes with different naming schemes and spatial scales results in the difficult issue of how individ-
ual schemes should be mapped together (Bakker et al., 2012). While this issue has been addressed with textual665
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(Stephan et al., 2000) and spatial (Bezgin et al., 2008) approaches, it remains a significant source of uncertainty.
Another issue is the number of ROI pairs for which no experimental data has been entered into the database; these
consist primarily of contralateral pairs, 58.7% of which are missing information. Where possible (e.g., correlative
comparisons and the computation of CI), we treated these edges as missing data, but for thresholding purposes
unknown edges were treated as nonexistent, which is undoubtedly a factor in its much smaller ratio of contralateral-670

to-ipsilateral connections, compared to the other modalities (Figure 2F). The nature of this sampling bias could be
very informative for future applications of CoCoMac data. Notably, due to the sheer size of literature relating to
tract tracing experiments, and its continued growth, not all the evidence has yet been entered into the database.
Another explanation is that a large majority of tracing studies – particularly early ones – focused exclusively on
ipsilateral connectivity, often even neglecting to specify the hemisphere in which they were performed. At present,675

of 43,746 labelled sites entered in CoCoMac, only 2,691 (5.8%) are contralateral (personal correspondence). A third
possibility is that many contralateral connections were not investigated because there was simply no evidence to
suggest their existence, and thus motivate an experiment. However, while signal-to-noise in the human imaging
modalities was related to cross-modal correspondence, the quantity (or completeness) of data in CoCoMac was not
found to have such a relationship (see Supplemental Figure 5). Thus, where information does exist for CoCoMac,680

its quantity does not appear to have an effect upon the degree of its correspondence with human imaging data.

A second limitation of CoCoMac is the fact that it is based on rhesus macaques, and thus for any comparison
with human connectivity it is difficult to differentiate species and modality differences. This question of homology is
a well-known issue and has been the subject of numerous lines of research (reviewed in Passingham, 2009; Petrides
et al., 2012). Human and macaque surfaces were coregistered by identifying homologous morphological landmarks685

and warping between them (Van Essen and Dierker, 2007). In this process, heteromodal regions (particularly
the temporoparietal junction and dorsolateral prefrontal cortex) were expanded to a greater degree than unimodal
regions, raising the possibility that these regions evolved novel connectivity patterns to subserve the unique cognitive
functions of humans. To investigate this question, Mantini et al. (2013) compared BOLD iFC in rhesus macaques and
humans, finding a topological correspondence between sensorimotor and associative networks, but a discrepancy in690

the functional activation of these networks, particularly in associative regions. This evidence suggests that functional
networks are preserved between macaques and humans, while the patterns with which they are activated can differ.
The authors additionally found two lateralized frontoparietal networks in human subjects, which had no equivalent in
the macaques, indicating some evolutionary divergence in network topologies, as well. This divergence may account
in part for the disagreement in long, ipsilateral anterioposterior edges observed in the present study. In a separate695

approach, Margulies et al. (2009), seeding in different parts of the human precuneus, found a correspondence between
BOLD iFC and the distribution of injected or labelled sites in a number of independent macaque tracing studies.
Similarly, Kelly et al. (2010), using RS-fMRI data-driven clustering to define their ROIs in human subjects, found a
qualitative correspondence between iFC of humans and previously acquired macaque tract tracing findings (Petrides
and Pandya, 2009), such that iFC strength corresponded to the spatial extent of labelled cells. These results suggest700

that, at least for specific ROIs, macaque and human connectivity are comparable. However, while in the present
study both clustering results (Figure S6) and precuneus connectivity (Figure S5) for Rcocomac and Rfmri do have a
qualitative correspondence across much of cortex, we found a generally poor quantitative agreement between them.
Interestingly, we also found that correspondence is not uniform across the cortex. Indeed, the precuneus, prefrontal
cortex, and lateral temporal lobe, investigated by Margulies et al. (2009) and Kelly et al. (2010), are amongst ROIs705

with the best positive correspondence between Rcocomac and the other modalities, including Rfmri.

For CoCoMac, we have the most direct evidence of physical connection strength in the form of relative label
density (see the CoCoMac Data Entry Manual, http://www.cocomac.org). However, the assignment of label density
is based upon the translation from a qualitative (or loosely quantitative) assessment obtained from individual
articles, to an integer range of 0 to 3. Since each study had its own variation of scope, parcellation schemes, and710

experimental protocols, the degree to which density values correspond across literature entries is highly uncertain.
For instance, a study with a very limited scope is likely to have been formulated to maximize label density in the
target ROI, while for an experiment of larger scope, this density might be much sparser relative to other ROIs.
Since, in this study, a substantial majority of CoCoMac connections have been assigned maximal densities, this issue
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highlights an important limitation of our approach. Additionally, as many articles do not provide any information715

about label density, a further assumption must be made regarding the assignment of edge weights for connections
which are present, but whose density is unknown. We decided to assign assume an “expected value” of 2 for these
edges, but given the skewed distribution of CoCoMac, a value of 3 might have also been assigned, which would
undoubtedly have altered the resulting network. Recently, Markov et al. (2012, 2013) have helped address this
issue by performing systematic tracing experiments in which label density was quantified as the fraction of all720

labelled neurons (FLN) in a given experiment. Considering only ipsilateral ROIs, these authors also report a high
connection density (66%), and a lognormal (i.e., skewed) distribution of FLN values, which corresponds here to the
distributions of both Rcocomac and the untransformed Rdwi. Such data has a promising role as a more meaningful
weighting scheme constraining anatomical macaque networks. Indeed, a recent study (Miranda-Dominguez et al.,
2014) compared human and macaque connectivity using FLN data from the Markov et al. study. The authors725

report a better correspondence between macaque anatomical and human RS-fMRI connectivity than is found in the
current study (r2 = 0.417 for whole brain ipsilateral connections, versus r2 = X here). Correspondence improved
slightly (r2 = 0.293) when only the top 15% of connections were considered. These findings suggest that such
refined tracing measurements can indeed improve inter-species correspondence, although it remains to be seen how
the inclusion of contralateral FLN values might affect this picture.730

4.6. Cortical thickness network

Correlations in cortical thickness have potential for inferring connectivity at the group level, by quantifying the
degree to which neural morphology (i.e., GM growth and atrophy) is coordinated across the cortex. Numerous lines
of evidence support the idea that GM morphology is affected by activity-dependent processes (reviewed in Draganski
and May, 2008). Accordingly, brain regions which are strongly connected are likely to have more similar activation735

patterns, and corresponding patterns of GM morphology. Due to this, correlations in cortical thickness might be
expected to resemble FC. Because both are correlational, they may also be influenced by indirect connections and
common driving inputs (i.e., parallel processing streams). Rthickness was indeed most closely related toRfmri, in terms
of its contralateral connectivity, strong homotopic connections, edge weight distribution (Figure 2), and clustering
behaviour (Figure S6). However, in general Rthickness had a relatively poor quantitative correspondence (either740

correlational or binary) with any of the other modalities. This is mainly attributable to longer and contralateral
edges, while its best correspondence occurred for short connections – especially local ipsilateral connections.

The poor correspondence of Rthickness may result from a number of limitations for this approach. Notably,
when evaluated within-modality using split-half analysis, Rthickness showed a poor reliability for both weighted and
binarized comparisons (Figure S8), which indicates that there is a good deal of random variation in the correlative745

structure of individual samples themselves, and can partially account for the lack of cross-modal correspondence.
The estimation of cortical thickness is a complex problem, based upon a series of processing steps which each come
with their own set of assumptions relating the T1-weighted intensity profile to the underlying tissue (Sled et al.,
1998; MacDonald et al., 2000; Kim et al., 2005). It is therefore important to consider how these various assumptions
might influence our results. In particular, the use of global intensities to segment images into tissue classes and750

determine the final position of cortical boundary surfaces depends on an assumption that the composition of each
tissue class is uniform across the cortex, which is unlikely to be true. Tissue contrast will be poorer, for instance,
where GM and WM are mixed, such as in M1, which contains a disproportionately high amount of myelinated fibres
(Geyer et al., 2011). Similarly, cortical regions with more convoluted (within subject) or variable (between subjects)
morphology are less likely to support a good approximation or between-subjects correspondence, respectively. All of755

these factors can potentially affect correlations; interestingly, regions for which Rthickness has poor correspondence
include M1, medial prefrontal cortex (which has a high degree of gyrification and individual variation; Zilles et al.,
1988), medial temporal gyrus and insula (which have poor tissue contrast), and medial occipital lobe (whose
highly convoluted geometry is difficult to model). This possibility suggests that improvements to cortical thickness
estimation software may be reflected in a better correspondence between Rthickness and the other modalities.760
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The inference connecting morphological correlations to connectivity is also confounded by other possible sources
of correlation. For instance, GM morphology is known to have a strong genetic influence (Baaré et al., 2001;
Thompson et al., 2001; Wright et al., 2002), which is independent of environmental influence and is likely to
produce covariance which cannot be explained by the activity-dependence hypothesis. Additionally, correlations
due to indirect influences, such as mutual source ROIs or parallel contralateral signalling pathways, are also likely765

to produce correlations in the absence of direct anatomical connections. Because the brain is generally symmetric
across hemispheres, we can expect a high degree of correlation in morphology between homotopic regions, regardless
of whether these are directly connected or not. Indeed, the lower degree of interhemispheric connectivity found in
either Rcocomac or Rdwi may account for many of the false positives which contribute to lower weighted or binary
comparisons here, as well as decreasing the clustering consensus. While statistical methods exist to address this770

issue, such as partial correlation (Smith et al., 2011), these typically have the disadvantage of being too conservative
to discover a whole-brain connectome which is as densely connected as is implied by the macaque tracing evidence.
This further supports the idea that modalities must be combined to properly exploit their complementarity and
isolate those edges for whose existence multiple lines of evidence agree.

4.7. DWI network775

DWI probabilistic tractography is a powerful technique for indirectly observing anatomical connectivity in the
human brain. In this study we used a computationally intensive approach (seeding 10,000 times in each WM voxel)
in order to address the bias imposed by long distances and regions of uncertainty (i.e., crossing, kissing, or branching
fibres). As a result, we obtained a connectivity matrix of higher density than has typically been reported for similar
studies (e.g., Honey et al., 2009; Gong et al., 2012). Rdwi had the best correlative and binary correspondence to780

Rfmri, sharing 41% of its variance. Qualitatively, Rdwi is highly symmetric across hemispheres, with a higher pro-
portion of ipsilateral than contralateral connectivity, and high distance-weighted betweenness centrality in cingulate
regions, similar to that of Rcocomac. For both Rfmri and Rthickness, which have higher contralateral connectivity,
correspondence was much better for short, ipsilateral connections. Gong et al. (2012), who also compared DWI
and cortical thickness networks, report a similar convergence for ipsilateral, and divergence for contralateral con-785

nections. While the present approach cannot completely rule out the influence of methodological distance bias on
this pattern, it is tempting to speculate that the imbalance between ispi- and contralateral connections is real, and
that the even ratio found for Rfmri and Rthickness is a result of parallel processing streams, subcortical modulation,
and (in the case of Rthickness) common genetic influences. Markov et al. (2012, 2013) observe that connectivity is
indeed stronger for short connections, and that long-distance connections serve more as a means of connecting local790

brain clusters, having evolved more recently as a result of cortical expansion. This hypothesis also suggests that the
human brain, which has expanded even further than that of the macaque, should have an even higher proportion
of such weak, long-range edges. While, due to its inherent biases, the use of probabilistic tractography to estimate
edge weight from DWI data is problematic, it may nonetheless be inadvertently capturing real systematic bias
towards stronger, shorter connections. Interestingly, Goulas et al. (2014) recently published a similar comparison of795

CoCoMac and DWI-based connectivity measures, using the same Regional Map parcellation as was utilized here.
Comparing networks of similar density to the present study, the authors found significant correspondence between
species on several topological measures. The geometric distribution of this correspondence (cf. Fig. 3 of that study)
bears a qualitative resemblance to the average CI (i.e., across all modalities; Fig. 4D), as reported here.

The clustering results for Rdwi provide an interesting insight into its connectome (Figure S4). Specifically, inferior800

regions (medial and lateral temporal lobe and medial PFC) had poor interhemispheric symmetry, which likely
contributed to the poor consensus clustering in these regions (Figure 7D). Both medial temporal lobe and medial
PFC had a low mean CI, implying that these areas also have the worst binary correspondence (Figure 4D). This
pattern is also evident when specifically considering only DMN regions (Figure 5). While there was general consensus
for most superior ROIs in this network, there was much disagreement about inferior connections. In particular, Rdwi805

disagreed with all other modalities (including Rcocomac) in failing to detect a number of contralateral connections
between inferior DMN regions. This disagreement may highlight a major limitation of DWI tractography, which is
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the difficulty to navigate through, or terminate tracts in, regions of high uncertainty, such as those proximal to the
corpus collosum. Despite the general improvement conferred by improved resolution in the NKI data acquisition,
and the more computationally intensive methods used here, these results suggest that some fundamental issues in810

probabilistic tractography still remain. Further investigation of the behaviour of tractography algorithms in these
particular regions may help resolve these issues.

4.8. fMRI network

Resting state fMRI captures functional synchrony in the absence of any overt task condition, which is proposed
to represent “intrinsic” activations occurring in the absence of salient sensory input (reviewed in Rosazza and Minati,815

2011; Kelly et al., 2012a). While this approach involves a high degree of individual variability, it has been consistently
shown to activate regions of the DMN, which are typically suppressed in the presence of overt task demands. In
the present study, we utilized this so-called iFC to compile an average connectome across subjects, which raises
two clear issues. Firstly, while resting state fMRI typically produces both negative and positive correlations in
individuals (as it did for our data set), for the averaged network, Rfmri, no negative correlations survived averaging820

across subsamples. This suggests that negative correlations were not as robust as positive, across all subjects, and
that averaging may result in a loss of important information. While the group-wise approach was necessary for the
present comparisons, further investigations could address this limitation by individually contrasting subject-wise
connectomes from both fMRI and DWI tractography (e.g., as in Honey et al., 2009). Secondly, since no task-driven
activation patterns are included in the present analysis, it is possible that some degree of FC – particularly of825

specialized modules – is not captured in the present comparison. However, a recent study by Smith et al. (2009),
using a meta-analysis involving over 30,000 subjects, concluded that independent components derived from resting
state fMRI could be matched to a wide array of task-based activation patterns, implying that iFC is sufficient to
sample most of the brain’s functional repertoire, even in the absence of overt task demands.

We found that Rfmri was highly symmetric across hemispheres, with very robust interhemispheric connectivity,830

a pattern that is well characterized in the literature (reviewed in Rosazza and Minati, 2011). As discussed above,
however, a correlation in the activity of a pair of ROIs is not sufficient to support an inference about an effec-
tive connection between them, as it may arise from unconnected parallel pathways with common inputs, indirect
connections with a third region (such as the thalamus), or temporal blurring inherent in the BOLD signal. There
is some evidence that such mechanisms are indeed a factor. In humans, contralateral FC has been investigated835

in patients entirely lacking collosal fibres due to collosectomy, who showed only partial reductions in iFC (Uddin
et al., 2008). Patients with agenesis of the corpus callosum (AgCC) have also been found to have reduced func-
tional connectivity, measured by magnetoencepalography (MEG; Hinkley et al., 2012), but only in selective cortical
regions; whereas a second, fMRI-based study of AgCC patients found similar iFC and clustering patterns to those
of normal controls (Tyszka et al., 2011). While this evidence indicates that transcallosal connections have some840

relationship to interhemispheric FC, it also suggests that a high proportion of this FC is not necessarily mediated
by direct anatomical connections. Contrasting Rfmri with other modalities (particularly Rdwi and Rcocomac) is thus
an important step towards properly constraining a connectome for the human brain.

For fMRI, the issue of whether to perform global signal regression (GSR) is presently being debated in the
neuroimaging community. The intention of GSR is to remove non-neuronal noise (i.e., physiological noise or motion845

artifacts), and thereby facilitate the detection of the neuronal signals of interest (Fox et al., 2009; Power et al., 2014).
However, this preprocessing step may also introduce spurious negative correlations (Murphy et al., 2009), and could
be removing important neuronal signals (Schölvinck et al., 2010; Fox et al., 2009). To assess the impact of GSR
on the degree to which fMRI correlations correspond to other modalities, we performed GSR as an additional pre-
processing step. Notably, our GSR approach differed from traditional approaches, as it involved regressing out the850

principal component most strongly correlated with the global signal, rather than that signal itself. This approach
has been demonstrated not to produce spurious correlations (Carbonell et al., 2011). As shown in Figure 6, this GSR
approach resulted in a substantial decrease in both weighted and binary agreement (ACC) with all three human
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modalities, and for both the RM and Cambridge parcellations. The reasons for this decreased correspondence are
not readily clear; while this result could indicate that GSR results in a worse representation of the underlying855

physical connectivity structure, it does not constitute definitive proof. An alternative possibility is that failing to
remove GSR results in systematic non-neural correlations corresponding to DWI or structural covariance estimates
which may themselves be partially artifactual or bias-driven.

Directly comparing fMRI connectivity estimates with and without GSR shows relatively moderate correlative
agreement (mean r2 = 0.7, leaving 30% unshared variance), considering they are derived from identical empirical860

signals (Figure 6A). Interestingly, when plotted across densities, it becomes clear that fMRI with GSR produces
better binary correspondence at lower densities (see Figure 6B), which indicates that only at higher densities –
with the involvement of less significant edges – do connectivity estimates produced by the GSR approach deviate
substantially. This correspondence worsens for longer-distance connections, suggesting that longer edges are more
altered by GSR preprocessing. These results appear to disagree with Fox et al. (2009), who found a tiny improvement865

of GSR over no GSR (r = 0.36 versus r = 0.32), comparing fMRI with DWI-based SC. However, since the SC
(actually obtained from Honey et al. (2009)) was quite sparse in this study, the relative similarity in correspondence
actually agrees with the binary correspondence found here for low density. Further insight is provided by the
DMN renderings of the Cambridge parcellation networks (Figure 5B), which illustrate that the two preprocessing
approaches produce networks with a similar general structure, but altered relative weights – with GSR producing870

stronger anteroposterior connectivity, and no GSR producing stronger local connectivity. These differences between
weaker edges help illustrate the general trend of worse correspondence at higher densities for GSR-corrected fMRI,
although the precise reason for such differences remains an open question.

4.9. Cortical parcellation

The cross-modal, cross-species comparison represented in this study is an ambitious project, given the plethora875

of issues associated with each modality, as well as more general model considerations. One of the larger difficulties
is the choice of parcellation, both in terms of its interspecies correspondence and its particular granularity. We
chose to use the Regional Map for two main reasons. Firstly, it was explicitly designed on the basis of widely-
used cytoarchitectonic, gross anatomical, and functional criteria, in order to minimize cross-species discrepancies
in ontology (Kötter and Wanke, 2005). Secondly, it has already been mapped across studies in the CoCoMac880

database, and therefore provides a convenient link between the monkey and human data. However, the granularity
of this parcellation is relatively large (areas are on average ∼ 1600 mm2) and its parcels are variable (the standard
deviation of these areas is ∼ 1330 mm2). Moreover, while the structural and functional landmark-based deformation
of Van Essen (2004) is a good first approximation, cortical landmarks can be notoriously variable across humans
(Amunts and Zilles, 2012), and this method makes an assumption of linear mapping between landmarks which may885

not reflect reality – especially for prefrontal regions (Petrides and Pandya, 2009).

Our choice of parcellation is therefore likely to have a substantial impact on the connectivity/covariance matrices
we have obtained. To assess this further, we performed an additional comparison using the functionally-derived
Cambridge template. While this parcellation has the disadvantage of not having a correspondence to the CoCo-
Mac connectivity data, it also has a number of advantages: it is derived by voxel-wise clustering of resting-state890

fMRI across a large population, and thus reflects the natural (data-driven) separation of cortex based upon fMRI
activations; and it has roughly twice as many regions, resulting in a much higher granularity. Interestingly, the
use of this alternative parcellation resulted in a decrease of both correlative and binary correspondence (Figure
6), with Rdwi/Rfmri (no GSR) having the best agreement (r2 = 0.27). This reduced correspondence was some-
what unexpected, but may reflect the loss of smoothness inherent in decreasing parcel size. Alternately, increasing895

the number of parcels likely also increases the proportion of regional pairs with conflicting connectivity estimates.
Notably, Honey et al. (2009) found a similar decrease in correspondence between RS-fMRI and DWI connectivity
estimates (from r = 0.66 to r = 0.36; or r = 0.82 to r = 0.48 when considering a much sparser version which
excluded absent SC), for 66 and 998 regions, respectively.
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It is notable that under our current analysis we do not find strong resting-state functional covariance between900

PFCm and the more posterior CCp and CCr, despite this being a robust finding in RS-fMRI studies of the DMN
(reviewed in van den Heuvel and Hulshoff Pol, 2010). While Rdwi shows strong connectivity between these regions,
Rfmri connects more strongly to PFCpol (Figure 5). To investigate this discrepancy, we compared voxel-wise
correlations across the brain for both the PFCm and CCp. As shown in Figure S3, we found significant voxel-
wise anteroposterior correlations for both seed regions, but the strongest correlations occurred in the local vicinity905

of the seed region. This pattern was similar when ROIs were obtained from the functionally-derived Cambridge
parcellation, and when using the standard (2500 ms) instead of short TR (645 ms) NKI images. When considering
only the ROI-wise correlations that were used for our prior comparisons, we found that the strongest connectivity
between CCr and prefrontal cortex was for region PFCpol, rather than PFCm. This was not the case with the
GSR-corrected Cambridge parcellation, however – in this case, strong connectivity was found with both PFCm and910

PFCpol (Figure 5B). These considerations imply that correspondence across modalities depends to some extent on
the granularity and specific border placement of the parcellation used, along with whether global regression was
performed or not. The degree of scale dependence is thus an important question in the design of connectivity-based
analyses, and we expect that emerging developments in multi-scale connectivity analysis can be adapted to the
other modalities evaluated here – including the CoCoMac database – in order to address it.915

4.10. Preprocessing

The present approach necessitated a series of specific preprocessing decisions, each of which is likely to have
a nontrivial effect upon the resulting connectivity networks. For fMRI, the removal of motion and physiological
artifacts, along with scanner artifacts, has produced many alternative techniques, each with its own set of caveats.
While we did evaluate one of these options (GSR, above), the adoption of other pre-processing approaches (e.g.,920

FIX; Salimi-Khorshidi et al., 2014) may have significant effects upon the correspondence with other modalities. For
similar reasons as for fMRI, global signal regression is also an issue for structural covariance analyses, and remains
largely unaddressed. DWI-based tractography methods are likewise subject to preprocessing conundrums. It is not
certain, for instance, how or whether one might better correct tract counts for distance or anisotropy bias. The
specific tractography algorithm used will also have a substantial impact on the resulting inferred networks (Bastiani925

et al., 2012). For these modalities, we chose not to explore the many possible pre-processing choices, but selected
approaches which seemed most parsimonious according to our own standards. It is, however, important to note
that our choices do not necessarily reflect consensus in the field. A useful extension of this study will be to assess
the degree to which these preprocessing decisions affect cross-modal and cross-species correspondence.

4.11. Conclusions930

The reasons for poor correspondence between connectomes derived from different imaging or experimental
modalities are numerous, and include a number of methodological considerations – as highlighted above – as well as
more conceptual ones. As an example of the latter, it is quite likely that differences between functional correlations
and anatomical connections occur as a result of sequential activation by common input streams, which predict a
temporal order that is not detected in the BOLD signal, or in the even more temporally blurred morphological935

covariance. This can be addressed by methods such as partial correlation, which attempts to quantify covariance
after first factoring out the effect of competing ROIs (e.g., Smith et al., 2011), or by attempting to incorporate
structural information in the statistical computation (an excellent Bayesian approach to this problem has recently
been published by Hinne et al., 2013). BOLD acquisition methods which increase temporal resolution might also
help temporally distinguish activation sequences (for instance, by facilitating temporal independent component940

analysis; Smith et al., 2012); indeed, this may partially account for the increased correspondence of Rfmri with Rdwi
and Rthickness observed here for the NKI dataset. Ultimately, however, it is likely that more complex and nonlinear
modelling approaches, which directly incorporate structural connectivity and functional activation or morphological
change (e.g., Bojak et al., 2011), will be necessary to definitively construct a whole-brain human connectome from
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neuroimaging data. The inclusion of EEG/MEG, which provide the temporal resolution that is not available from945

fMRI, will likely be indispensible in such approaches.

The present findings build upon similar cross-species comparisons reported in at least two other recent studies,
one which compared CoCoMac to DWI tractography (Goulas et al., 2014), and another which compared macaque
tractography to resting-state fMRI (Miranda-Dominguez et al., 2014). Here, we report a direct, whole-cortex
comparison between macaque tract tracing evidence and connectivity inferred from multiple imaging modalities950

from a population of human subjects. This characterization serves a number of functions. Firstly, it cautions
against equating the results of connectivity analyses drawn from different unimodal approaches. In other words,
“connectivity” should not be used as an umbrella term; rather it should be understood as a phenomenon that cannot
be directly observed, but only approximated in fundamentally different ways by a number of distinct methodologies.
Secondly, it proposes a way by which to better understand and quantify the limitations peculiar to each modality,955

and by this means assess the efficacy of novel methodologies which attempt to address these limitations. Finally,
it suggests that multimodal evidence for connectivity can be integrated in a manner which allows us to assign
confidence levels to our inferences about particular connections, and thus get closer to an accurate representation
of the effective human connectome.
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