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Abstract

Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue 

types in the brain. Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of 

medium-to-large white matter bundles. However, smaller fiber bundles connecting very small 

cortical or sub-cortical regions cannot be traced accurately in images with large voxel sizes. Yet, 

the ability to trace such fiber bundles is critical for several applications such as deep brain 

stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction 

scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) 

images, which is effective in reducing acquisition time while improving the signal-to-noise ratio 

(SNR). The proposed method called compressed-sensing super resolution reconstruction (CS-

SRR), uses multiple overlapping thick-slice dMRI volumes that are under-sampled in q-space to 

reconstruct diffusion signal with complex orientations. The proposed method combines the twin 

concepts of compressed sensing and super-resolution to model the diffusion signal (at a given b-

value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal 

correlation in neighboring voxels. A computationally efficient algorithm based on the alternating 

direction method of multipliers (ADMM) is introduced for solving the CS-SRR problem. The 

performance of the proposed method is quantitatively evaluated on several in-vivo human data 

sets including a true SRR scenario. Our experimental results demonstrate that the proposed 

method can be used for reconstructing sub-millimeter super resolution dMRI data with very good 

data fidelity in clinically feasible acquisition time.
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1. Introduction

Diffusion-weighted Magnetic Resonance Imaging (dMRI) is a key technique for studying 

the neural architecture and connectivity of the brain. It utilizes multiple 3-dimensional 

diffusion-weighted images to probe the water diffusivity along various directions. Its 

importance has been proven in clinical settings for investigating several brain disorders such 

as Alzheimer's disease, schizophrenia, mild traumatic brain injury etc. [1, 2]. However, low 

signal-to-noise ratio (SNR) and acquisition time limits the typically spatial resolution of 

dMRI to the order of 2 × 2 × 2 mm3. Consequently, dMRI has been mainly used to study 

medium-to-large white matter structures. Further, partial volume effects (PVE) which occur 

at the interface of different tissue types (gray-white, gray-CSF (cerebrospinal fluid) and 

white-CSF) can have significant effect on the measured diffusion properties and can lead to 

erroneous inferences [3, 4]. While some of the effects of CSF contamination can be removed 

using free-water modeling [5], yet large voxel sizes can lead to erroneous results in 

tractography. Consequently, increasing the spatial resolution of dMRI is imperative for 

investigation of small white-matter fascicles originating in small cortical and sub-cortical 

gray matter structures (such as, substantia nigra or sub-thalamic nucleus).

Reducing the voxel size of dMRI is challenging because the SNR is directly proportional to 

the voxel size if the readout time is fixed, see [6, page 163]. Although SNR could be 

enhanced by averaging multiple acquisitions, the increase in SNR is proportional to the 

square root of the number of averages. For example, reducing the voxel size from 2 × 2 × 2 

mm3 to 1 × 1 × 1 mm3 requires 64 averages to obtain equivalent SNR, which makes it 

impractical to use such an “averaging” scheme in current clinical setting. Recently, several 

methods have been proposed to obtain high-resolution (HR) dMRI data. These methods can 

be classified into two categories based on their acquisition strategies. The first group of 

methods obtain high spatial resolution using a single low-resolution image via intelligent 

interpolation. These type of methods have been widely used for natural images [7] and more 

recently for MRI [8, 9] and dMRI [10, 11]. Though, these methods preserve and enhance 

certain anatomical details, their performance still largely depends on the original image 

resolution, as pointed out in the work of [11].

The second group of methods use the concept of super-resolution to obtain high resolution 

data from multiple LR image volumes acquired according to specific sampling schemes. A 

HR image is estimated by intelligently fusing the LR images. This type of method was 

initially studied in [12] for reconstruction of HR images using multiple LR stereo images. It 

has since been applied to obtain HR anatomical MRI images [13, 14, 15] by employing sub-

pixel-shifted scans along the slice-select dimension. In the field of diffusion MRI, it was 

first proposed in [16] to obtain high resolution diffusion tensor images. The authors in [17] 

used acquisition from three orthogonal directions to perform super-resolution, while the 

authors in [18] use a generalized version with arbitrary slice acquisition direction to obtain 

HR images. However, in most these methods, super-resolution was applied independently to 

each individual diffusion weighted volume and the correlation between diffusion signals in 

q-space was not taken into account during the reconstruction process. As a result, each of the 

LR images were either acquired or interpolated on the same set of diffusion gradients prior 

to obtaining the complete dMRI volume. Further, all of the LR volumes have to be corrected 
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for EPI (echo-planar imaging) distortions, which are different for different slice-select 

directions. This requires accurate non-rigid registrations and blip-up blip-down acquisitions 

as in [19] for correcting the distortions, making the acquisition time significantly long. To 

address this problem, more recently, [20] introduced a method that used the diffusion tensor 

imaging (DTI) technique to model the diffusion signal in q-space. It was extended in [21, 

22] to allow the LR images to be acquired along different sets of gradients in q-space. 

Though this approach does reduce acquisition time and is robust to motion, a very simplistic 

diffusion tensor model is not appropriate for modeling more complex diffusion phenomena 

(crossing fibers). The proposed work is a generalization of this technique with no parametric 

model assumed about the diffusion signal and thus recovers the true underlying signal in its 

most general form (for a given b-value). A preliminary version of this paper has been 

accepted for publication in the conference on Information Processing in Medical Imaging 

(IPMI) 2015.

Our contributions

In this paper, we propose to combine the concepts of compressed sensing and super-

resolution to reconstruct very high resolution diffusion data. In particular, we focus on a 

specific q-space sampling scheme known as high angular resolution diffusion imaging 

(HARDI) which uses several diffusion measurements at a single b-value shell [23, 24]. The 

proposed CS-SRR method reconstructs a HR image using multiple LR data sets which are 

also under-sampled in q-space. As illustrated in Figure 1, given three thick-slice data sets 

that are sub-pixel-shifted along the slice-select dimension and have N1, N2 and N3 gradient 

directions, respectively, we reconstruct a thin-slice high resolution dMRI data set that has N1 

+ N2 + N3 gradients. Being a non-parametric method, the proposed approach is capable of 

resolving crossing of multiple fiber-bundles in the reconstructed high resolution image.

The proposed method uses spatial and q-space regularization techniques for reconstructing 

HR diffusion data. Additionally, we incorporate a-priori knowledge about the tissue type 

(gray, white or CSF) from a high-resolution T1-weighted image to adaptively reconstruct the 

HR diffusion data. Compressed sensing reconstruction from under-sampled data in q-space 

is achieved by means of a sparsifying basis of spherical ridgelets [25], whereas sparsity and 

smoothness in the spatial domain is incorporated by means of total-variation(TV) 

regularization. We design a convex cost functional and introduce an efficient optimization 

algorithm based on ADMM for solving the CS-SRR problem. We quantitatively evaluate the 

performance of our method by comparing short and long range fiber connectivity as well as 

the estimated diffusion measures such as fractional anisotropy (FA) and mean diffusivity or 

trace. The performance is evaluated for a synthetic scenario using the human-connectome-

project (HCP) data set and in a true SRR scenario, whereby quantitative comparison is made 

between high resolution data obtained using the proposed CS-SRR method and that obtained 

directly from the MR scanner (from repeated scans). We should note that, to the best of our 

knowledge, this is a first instance of combining compressed sensing and super-resolution to 

reconstruct the HR diffusion signal without any modeling assumptions of the diffusion 

process. The proposed acquisition and reconstruction scheme allows to reduce the scan time 

significantly (up-to 3 times) compared to the standard super-resolution reconstruction, which 
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would require at-least 3 times more measurements than the proposed method. We thus 

expect the proposed method to be of great utility for future neuroimaging studies.

2. Background

In this section, we provide a brief background on diffusion-weighted MRI, spherical 

ridgelets and the compressed sensing technique, which will be used subsequently in the 

proposed CS-SRR algorithm.

2.1. Diffusion-weighted Imaging

Diffusion MRI is a favorite research tool for investigating the neural architecture and the 

connectivity of the brain. The ensemble average diffusion propagator (EAP) is usually 

estimated from the diffusion measurements to describe the average displacement of water 

molecules within a voxel during the sampling period, which provides important structural 

information about the underlying tissue. In the narrow pulse setting (for single pulse field 

gradient experiment), the diffusion signal S(q) is related to the EAP P(r) via the Fourier 

transform given by [26]

with  being the normalized diffusion signal and S(q), S(0) being the 

diffusion signal along the gradient direction q and at the origin, respectively. The vector q in 

q-space is an experimentally controlled parameter with  where γ is the 

gyromagnetic ratio and δ is the duration of the diffusion sensitizing gradient whose 

magnitude and orientation are determined by the vector G.

Various of methods have being devised to estimate the EAP from E(q) measured at different 

points in q-space [27, 28, 29, 30, 31, 32]. A classical method is Diffusion Tensor Imaging 

(DTI) [33] which models E(q) using a Gaussian function with a single fiber orientation. 

Consequently, it cannot model complex fiber architectures such as crossings and kissing 

fibers. To resolve this issue, High Angular Resolution Diffusion Imaging (HARDI) 

technique was introduced, which involves acquiring diffusion signal on a single q-shell 

along several gradient directions [34]. This technique requires a lot less time and 

measurements than those that estimate the entire EAP. Various estimation methods [23, 24, 

35, 36, 37] have been proposed for analyzing the HARDI data to resolve complex angular 

structures. These methods are subsequently used in tractography algorithms [38, 39] to study 

brain connectivity.

In this paper, we focus on the HARDI scheme and introduce a method that uses a set of LR 

dMRI acquired on the same q-shell to recover high spatial resolution dMRI data. For this 

purpose, we use the spherical ridgelet functions introduced in [37] to model the diffusion 

signal in q-space at each voxel. Spherical ridgelets form a basis for representing 

functions on a unit sphere. In particular, it has been demonstrated that diffusion signals over 

a single b-shell can be sparsely represented in this basis [37]. This allows the use of the 

theory of compressed sensing (CS) for accurate reconstruction of HARDI data from sparse 
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samples. In the following, we provide the principal concepts behind spherical ridgelets and 

compressed sensing.

2.2. Spherical ridgelets

Spherical ridgelets are constructed following the fundamental principles of wavelet theory. 

For  and ρ ∈ (0, 1), let κ(x) = exp{–ρx(x + 1)} be a Gaussian function. Further, we let

for j = 0, 1, 2 . . .. The spherical ridgelets with their energy spread around the great circle 

supported by a unit vector  is given by

(1)

where Pn denotes the Legendre polynomial of order n, κ−1(n) = 0, ∀n and

To construct a finite over-complete dictionary, we follow the method in [25, 40] and restrict 

the values for the resolution index j to a finite set {−1, 0, 1}. For each resolution index j, the 

set of all possible orientations  are discretized to a set of Mj = (2j+1m0 + 1)2 directions 

on the unit sphere with m0 being the smallest spherical order resulting in k0(m0) ≤ ε for some 

predefined 0 ≤ ε < < 1 (e.g. ε = 10−6). To this end, for each j, a total of Mj orientations 

 are chosen so that the set of over-complete spherical ridgelets are given by

The spherical ridgelet basis functions have been shown to provide a sparse representation of 

the dMRI signal. In particular, it was shown in [25] that a suitable implementation of 

spherical ridgelets can be used for reliable reconstruction of HARDI signals from as few as 

16 diffusion encoded scans. Moreover, in the Sparse Reconstruction Challenge for Diffusion 

MRI (SPARC) held during the workshop on Computational Diffusion MRI (CDMRI) 2014, 

the spherical ridgelets based method was one of the best methods in reconstructing HARDI 

signals acquired from a physical phantom, see http://projects.iq.harvard.edu/sparcdmri/

results for more details. However, the work in [25] did not incorporate an isotropic basis 

function to sparsely represent nearly isotropic signal as in the cortical gray matter or CSF 

areas. Consequently, we expanded the basis of spherical ridgelets with an isotropic function. 

Thus, the set of functions that is used to represent the diffusion signal is
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where ψiso denotes a constant function on the unit sphere. For convenience, we denote the 

functions in Ψ as ψ1, ψ2, . . . , ψM with ψ1 = ψiso.

2.3. Compressed sensing

Let Eb(u) be the normalized diffusion signal at a b-shell along the direction u. Using the set 

of functions Ψ, we assume that the diffusion signal can be represented as

(2)

where only a few of the cm's are non-zero. Given the diffusion signal measured at a set of N 

diffusion-encoding orientations , one can recover the diffusion signal on the whole 

sphere by estimating the representation coefficients cm in (2). For this purpose, we let 

 denote the vector of the diffusion signal whose nth entry is equal to Eq(un) and let 

the values of ϕm for m = 1, . . . , M at the N acquisition locations be stored in a N × M matrix 

A defined as

Each column of A is scaled such that it has unit  norm. Thus the measurement s can be 

represented as

where c denotes the vector of representation coefficients and μ denotes the measurement 

noise. Since the number of measurements, N, is usually much smaller than M, it is an 

underdetermined problem to estimate c. On the other hand, the vector c has very few non-

zero entries. Thus, the representation coefficient of the signal can be estimated by solving

(3)

where ∥c∥0 denotes the number of non-zero entries of c and ε denotes the level of 

measurement noise. However, being a combinatorial problem, (3) is computationally 

intractable for most practical problems.

The theory of compressed sensing provides a mathematical foundation for accurate and 

efficient recovery of signals that can be sparsely represented in a basis [41, 42]. In recent 

years, it has been widely used in many areas of signal processing [43] and in MRI [44]. In 
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(3), if the optimal c is sufficiently sparse and if the columns of A have low coherence, then 

the solution of (3) can be robustly recovered by solving the following convex optimization 

problem [41]:

(4)

where ∥c∥1 denotes the  norm of c. From the Lagrangian multiplier method, the solution of 

(4) equals to that of

(5)

for some λ ≥ 0. This setup has been successfully used in [37, 25, 40] to reconstruct dMRI 

signals from sparse measurements. Several  minimization algorithms [45, 46, 47, 48] exist 

for solving (5).

For this particular application of estimating diffusion signals in the SRR scenario, we 

modify the method in the following two aspects to improve the performance: First, we 

restrict the representation coefficients to be nonnegative. Second, we use a weighted -

minimization algorithm so as to allow for imposing different weighting coefficients for the 

isotropic basis function for different brain tissues. For example, the diffusion signal in CSF 

areas is isotropic, hence, we impose much smaller penalty for selecting the isotropic basis 

element in such isotropic areas. Incorporating this fact, we introduce the following modified 

-minimization problem:

(6)

where all the entries of c are constrained to be nonnegative, ◦ denotes the element-wise 

multiplication and the weighting vector  has the form

with w ≥ 0 weighs the penalty for choosing an isotropic basis function. The value of w is 

larger in white and gray matters areas than in CSF areas. Equation (6) is a convex 

programming problem, hence it can be solved efficiently using various optimization 

algorithms. We provide an algorithm for solving (6) using the alternating direction method 

of multiplier (ADMM) [49] algorithm (see Appendix), which will be used as a subroutine in 

the CS-SRR algorithm described in the next section.

3. Method

3.1. Modeling

First, we present a linear model where the LR dMRI volumes are considered as down-

sampled versions of an underlying HR volume via suitable sampling operators. For this 

purpose, let Yk denote a collection of LR dMRI volumes for k = 1, . . . , K. Each Yk is a set of 
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LR dMRI volumes acquired using the same spatial sampling scheme but with different 

gradient directions. It can be considered as a matrix of size  with  and 

being the number of voxels and the number of gradient directions, respectively. We assume 

that the K sets of gradient directions for the Yk's do not overlap with each other. Moreover, 

the LR acquisition Yk's are considered as low-pass filtered versions of an underlying true HR 

volume, denoted by S, which has nx × ny × nz voxels and  gradient directions. 

The acquisition model for each of the LR scans Yk can be written as

(7)

where Dk denotes the down-sampling matrix that averages neighboring slices, Bk denotes the 

blurring operator (or point-spread function), Qk is the sub-sampling matrix in q-space and μk 

denotes the measurement noise. This model is a generalization of the image formation 

model used in [13, 17] where Qk's were assumed to have the same value in all Yk's enforcing 

each set of LR dMRI volumes to have the same gradient directions. In the proposed model 

(7), the Yk's are allowed to have different sets of gradient directions by using different Qk's, 

which reduces the total acquisition time.

We further use the spherical ridgelets to model the diffusion signal at each voxel of S. 

Hence, S can be written as S = VAT with A being the basis matrix introduced in Section 2.3 

and each row vector of V being the representation coefficients at the corresponding voxel. 

Each row of V is sparse, so is the whole matrix V.

Following (6), we estimate S by solving

(8)

where W is a weighting matrix to adjust the penalty for selecting the isotropic element in A 

at each voxel based on using prior information regarding the tissue type (gray, white or 

CSF). The quadratic term in (8) corresponds to the assumption that the noise components in 

Yk's follow Gaussian distributions which is usually assumed in SRR methods, see e.g. [17, 

21]. For other type of distributions, such as Rician distribution, the quadratic term can be 

replaced by the corresponding log-likelihood functions as was done in [50]. However, the 

Gaussian assumption is valid for high SNR (SNR>5) [21, 51]. Moreover, using a quadratic 

term in (8) usually leads to computationally efficient algorithms which is preferred in 

solving large scale optimization problems.

We note that the -norm regularization in (8) is carried out at each individual voxel. 

Therefore, the correlation between the diffusion signal at neighboring voxels is not 

considered. This prior knowledge can be incorporated in the CS-SRR method by adding a 

spatial-regularization term which is described in the next section.
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3.2. Total-variation (TV) regularization

Let sr(un) denote the diffusion signal along the direction un at the voxel indexed by r ∈ Ω 

with Ω being the set of coordinates of all voxels. The diffusion signal at all voxels along the 

gradient un forms a 3D image volume denoted by Sn. Due to the correlation of diffusion 

signal in neighboring voxels, Sn can be assumed to have a spatially smooth structure. Taking 

advantage of this information helps in improving the performance of the CS-SRR method. A 

standard technique to achieve this is using the TV semi-norm of Sn defined as

where N(r) denotes the set of neighbors of r. In this paper, we follow a standard way to 

define N(r) with r = [i, j, k] as

For a collection of image volumes , the TV semi-norm of S is defined as the sum 

of the TV semi-norm of each individual volume Sn:

By adding this regularization term in (8), the optimization problem can be rewritten as

(9)

where the positive parameters λ1, λ2 determine the relative importance of the data fitting 

terms versus the sparsity and the TV regularization terms. Next, we introduce an efficient 

algorithm for solving (8) based on the alternating direction method of multipliers (ADMM) 

algorithm [49].

3.3. Optimization algorithm

The optimization problem (9) typically involves high dimensional optimization variables. A 

suitable implementation of the ADMM algorithm distributes the computational cost and 

decomposes the optimization into a sequence of simpler problems. First, we note that (9) can 

be equivalently written as

(10)
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where Z is an auxiliary variable that equals to S, and the augmented terms 

 with ρ1, ρ2 ≥ 0 do not change the optimal value. Let Λ1, Λ2 be 

the multipliers for S–VAT = 0 and S–Z = 0, respectively. Then, each iteration of the ADMM 

algorithm consists of several steps of alternately minimizing the augmented Lagrangian

over S, V, Z and one step of updating Λ1, Λ2. More specifically, let Vt, St, Zt and 

denote the values of these variables at iteration t. Then, iteration (t + 1) consists of two steps 

of estimating {Vt+1, Zt+1} and Ht+1 by solving

(11)

(12)

and one step of updating the multipliers as

A typical stopping criteria is to check if  and  have “stopped changing”, i.e. 

 and  for some user defined choice of ε1, ε2.

We point out some important notes for the above iterative algorithm: (1) Problem (11) can 

be decomposed into two independent optimization problems to solve V and Z. The update 

for Vt is obtained by solving an -minimization problem with non-negative constraints 

using the algorithm in appendix. In particular, the solution for each voxel can be obtained 

independently (in parallel). (2) The update for Zt is a standard TV denoising problem, which 

can be efficiently solved using [52]. (3) Problem (12) is a least-squared problem which 

needs a matrix inversion to compute the closed-form solution. In particular, we note that 

[Q1, . . . , QK] is a permutation matrix since the sets of gradient directions for the LR Yk's are 

not overlapping. Let  for k = 1, . . . , K. Hence, the update procedure for each 

are independent with each other. The value of  at iteration (t + 1) is the solution of the 

least-squares problem

which is given by
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We note that the down-sampling operator DkBk determines the dimension of matrices to be 

inverted in the above equation. In this particular situation where Dk and Bk down-samples 

and blurs the image along the z direction, we only need to invert a matrix of size nz × nz, 

which can be easily done on a standard workstation. We also note that in a more general 

situation when the matrix size is too large, an alternative method is to use the steepest 

descent iterative method [17].

4. Experiments

We tested the performance of the proposed method using three experiments. In the first one, 

we artificially generated (by slice averaging and blurring) thick-slice acquisitions based on 

the high resolution data set from the Human Connectome Project (HCP) [53]. The second 

and the third experiments consisted of actual validation setups where data was acquired from 

a healthy human subject using a 3T Siemens clinical scanner. We compared the recovered 

CS-SRR result with the corresponding gold-standard (GS) HR data and the LR data using 

the following metrics:

• Percentage of FA di erence: Whole brain multi-tensor tractography [38] was 

computed on the GS and the reconstructed data, and several fiber bundles were 

extracted. The average fractional anisotropy (FA) and trace for tensors along the 

fiber bundles were computed. The percentage of FA difference was computed 

using |FACS–SRR–FAGS|/FAGS. The percentage of Trace difference was defined in 

an analogous fashion.

• Error in long-range fiber connectivity using tractography: Tractography is a useful 

tool to study brain connectivity and network layout. Any reconstruction method 

should be able to produce similar white matter tracts as one would expect from the 

actual ground truth data. In our experiments, we used the multi-tensor tractography 

algorithm of [38] to trace fiber bundles for the GS and the CS-SRR data sets. For 

quantitative comparison between the obtained tracts, we use the following 

comparison metric based on the probability distribution function (pdf) of the 

physical coordinates of the tracts. In particular, let px, py and pz be the pdf of the x, 

y, z coordinates of the fiber tracts obtained from the GS data set. Let  and 

be the corresponding pdfs for the CS-SRR data set. Then, the similarity between 

two fiber bundles can be computed using the following:

which is the average Bhattacharyya coefficient between the three pairs of marginal 

pdfs and takes value in the interval [0, 1]. A value of 1 indicates exact match 

between the fiber bundles, whereas a value of 0 indicates complete mismatch 
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between the two set of tracts. We note that a similar metric was also used in [54] to 

compare fiber bundles.

4.1. Evaluation on HCP data

In this experiment, we used HCP data, which has spatial resolution of 1.25 × 1.25 × 1.25 

mm3 with 90 gradient directions at b = 2000 s/mm2. To construct LR images, we first 

artificially blurred the DWI volumes along the slice direction using a Gaussian kernel with 

full width at half maximum (FWHM) of 1.25 mm. Then the data was down-sampled by 

averaging three contiguous slices to obtain a single thick-slice volume with spatial 

resolution of 1.25 × 1.25 × 3.75 mm3. Similarly, two additional LR volumes were obtained 

so that all the three LR volumes were slice-shifted in physical space (see Figure 1). The 

thick-slice volumes were also sub-sampled in q-space so that each set had 30 unique 

gradient directions. We also obtained a segmentation of the brain into three tissue types, 

namely, gray, white and CSF, from the T1-weighted (T1w) MR images using the method in 

[55]. This tissue classification was used as a prior to set w = 10−4 in CSF and w = 1 in gray 

and white matter areas. The regularization parameter was λ1 = 0.01. The auxiliary parameter 

was set to ρ1 = 1. Since the measurement model is known perfectly in this example, we did 

not use any total-variation denoising term in the algorithm by setting the parameter λ2 = 0. 

Hence, the reconstruction results manifest the effectiveness of the spherical ridgelets and the 

 regularization terms.

Figures 2a and 2b show a coronal slice of the diffusion-weighted image along the same 

gradient direction in the GS and SRR data sets, respectively. To quantitatively assess the 

difference between the two data sets, we computed the root-mean-square error (RMSE) 

between the two data sets with the RMSE in the i-th voxel being defined as

where  and  denote the diffusion-weighted signal in the i-th voxel of the SRR and 

GS data volumes, respectively. RMSE reflects the average difference of the diffusion signal 

along each gradient directions. Figure 2c shows the RMSE in the same coronal slice. We 

note that RMSE is below 1% in most of the brain regions.

To compare the tractography results, we traced all fiber bundles using whole-brain 

tractography [38] for the GS and the reconstructed data sets, respectively. Next, we 

extracted the cingulum bundle (CB), the corticospinal tract (CST), the superior longitudinal 

fasiculus II (SLF-II) and a sub-part of the corpus callosum called caudal middle frontal 

bundle (CC-CMF), respectively, using the white matter query language (WMQL) [56] 

which uses Freesurfer cortical parcellations. The four pairs of fiber bundles are shown in 

Figure 3a to 3d where the red and yellows tracts are results from the GS and CS-SRR data 

sets, respectively. The comparison metrics between the fiber bundles is summarized in Table 

1. The fiber-bundle overlap measure is very close to one, indicating a significant overlap 

between the fiber bundles obtained using the GS and CS-SRR data. Further, the estimated 

average FA and trace are very similar for both data sets. The percentage error for FA and 
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trace are within the typical range of variations from different acquisitions [57]. We also note 

that CC-CMF has higher trace error and lower fiber-bundler overlap compared with other 

fiber bundles, which may be caused by the downsampling operator that mixes the voxels in 

corpus callous and the CSF areas. However, in the true scenarios in the following examples, 

the tractography results for the fibers bundles in corpus callosum turn out to have better 

performance than in this example.

An important goal of this work is to demonstrate the advantage of using high-resolution 

DWI image in studying small white-matter fascicles. For this purpose, we also generated a 

low-resolution DWI volume by averaging every 2 × 2 × 2 neighboring voxels from the GS 

data to obtain LR dMRI data with isotropic voxel size of 2.53 mm3. Figure 4a-4c shows the 

single-tensor glyphs color coded by the direction of the dominant eigenvector of the 

diffusion tensors for the GS, LR and SRR data sets in the same brain region from a coronal 

slice. The glyphs were estimated on the same spacial resolution by using trilinear 

interpolation methods. The background of the glyphs is the corresponding T1w image. As 

pointed out in the rectangular area in Figure 4b, due to partial-volume effects, the LR image 

was not able to capture the fine curvature of the fiber bundles near the gray matter areas. 

Figure 4d-4f show the tractography results for tracts originating from the sub-thalamic 

nucleus with fibers being color-coded by orientation. As pointed out by the arrow in Figure 

4e, most of the green fibers are missing in the LR image, though the number of seeds in each 

voxel of the LR image is 8 times higher than the HR images. On the other hand, the tracts 

obtained from the GS and CS-SRR data are very similar.

A significant advantage of the proposed method is that the acquisition time is reduced by 

using subsampled thick-slice acquisitions. In the above experiment, we have shown that 

using 30 diffusion gradients for each of the thick-slice acquisitions provides satisfying 

results that are similar to the gold-standard data. From a practical viewpoint, it is interesting 

and important to investigate the performance limit in reducing the number of samples. To 

this end, we have tested our method in 4 additional scenarios where we use 10, 15, 20 and 

25 gradient directions for each thick-slice acquisition. In order to create these thick-slice 

data sets with measurements uniformly spread over the sphere for each LR image, we used 

spherical harmonics of order 8 to interpolate the signal on a dense grid followed by 

subsampling along the desired gradient directions. Each of the four sets of gradient 

directions were chosen so that they were quasi-uniformly distributed on the hemisphere. 

Following the same procedure as in the previous experiment, we reconstructed the HR 

images using the proposed algorithm, computed the whole-brain tractography results and 

extracted the CB, CST, SLF-II and CC-CMF tractography results using WMQL [56]. For 

comparison, we also computed the normalized FA error, normalized trace error and the 

fiber-bundle overlap compared to the gold standard results. In particular, the normalized FA 

error was defined as |FAGS – FACS–SRR|/FAGS where FAGS and FACS–SRR are the FA 

values of the GS and the CS-SRR tractography results, respectively.

Figure 5a, 5b and 5c show the normalized difference in FA, trace and fiber-bundle overlap 

for the four sets of tractography results versus the number of gradient directions used for the 

thick-slice images. The normalized FA error and Trace error monotonically decrease with 

increasing number of gradient directions. In particular, using 20 gradient directions, the 
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normalized FA error for all tracts was about 0.08 and the normalized trace error was about 

0.04 which are similar to typical range of variations expected with different scans of varying 

spatial resolutions. On the other hand, the fiber-bundle overlap in Figure 5c monotonically 

increases with increasing number of samples. For only 10 gradient directions, the fiber-

bundle overlap for all the tracts was about 0.9 or higher.

For qualitative assessment of the reconstruction algorithm in different brain regions, Figures 

6a, 6b and 6c illustrate the FA images of a coronal slice in the GS data set and the SRR data 

sets obtained using 30 and 10 gradient directions respectively. The three images show 

similar values in most white-matter areas. As indicated by the yellow arrows in Figure 6c, 

the SRR result obtained using only 10 gradient directions slightly underestimates the FA 

value in regions near the cortical areas. Figures 6d to 6f are the corresponding trace images 

in the same slices. The three images have similar values in all brain regions though the SRR 

results are smoother than the GS result. Though the differences in FA and trace images may 

not seem to be as significant as the results shown in Figure 5, it should not be surprising 

since the tractography results were obtained using a multi-tensor model which typically 

needs more measurements than the single-tensor model in order to resolve crossing fibers.

4.2. True CS-SRR scenario using clinical 3T scanner

The second experiment was based on a data set acquired on a 3T Siemens Trio clinical 

scanner (maximum gradient strength of 40 mT/m). We acquired three overlapping thick-

slice scans with spatial resolution of 1.2 × 1.2 × 3.6 mm3. The DWI volumes were sub-pixel 

shifted by 1.2 mm along the slice-select direction. Each LR DWI had a set of 30 unique 

gradient directions with b = 1000 and TE = 89, TR = 6300 ms. For comparison, we also 

acquired 9 acquisitions (with 90 gradient directions each) of the same subject with a spatial 

resolution of 1.2 × 1.2 × 1.2 mm3, which was used as the “gold standard” data. Due to time 

limitations, these high resolution scans had partial brain coverage (it took more than 1.5 

hours to obtain these 9 scans). The average of these 9 scans (after motion correction) was 

considered as the gold standard. We also acquired a high resolution b0 and T1w image to 

obtain tissue classification for prior-information used in our algorithm. To ensure that the 

LR DWI's were in the same spatial co-ordinate system, we first down-sampled the whole-

brain b0 image to produce, three thick-slice volumes which were considered as the reference 

images. These images were only used for spatial normalization and not in the actual 

reconstruction algorithm. Then, the three acquired thick-slice LR DWI scans were registered 

to the corresponding reference volumes. The T1w was registered to the whole-brain b0 image 

using a nonlinear transformation. The registered T1w image was then segmented into 

different tissue types using the method of [55]. We set the FWHM of the blurring kernel to 

1.2 mm, λ1 = 0.005, λ2 = 0.05, ρ1 = ρ2 = 1 and w = 0.01 in CSF area and w = 1 in gray and 

white matters. These parameters were learned using exhaustive search experiments based on 

one slice of the image so that the reconstruction error was small compared with the gold-

standard. For computing quantitative metrics, we registered the reconstructed whole-brain 

data to the partial-brain GS data set.

Figures 7a and 7b shows a coronal slice along the same gradient direction with thick-slice 

and the SRR data set respectively. Clearly, Figure 7b shows better finer details than the 
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acquired thick-slice data set. The reconstructed whole-brain SRR data set was registered to a 

partial-brain field of view for quantitative comparisons with the GS data set. Figures 7c and 

7d show a coronal slice of the partial-brain GS and SRR data set, respectively. Figure 7d is 

smoother than Figure 7c due to the combined effects of image registration,  regularization 

and total-variation denoising. As shown in (7e), the RMSE is lower in the CSF areas while it 

is slightly higher near the image boundary, which may be caused by imperfect alignments 

between the two data sets. In most white and gray-matter areas, the RMSE is about 0.02 or 

less implying that the SRR reconstruction is close to the GS data set.

For more detailed comparisons, we first obtained the tractography results from the 

reconstructed (CS-SRR) and GS partial-brain data sets using the method in [38]. Since 

whole-brain FreeSurfer cortical parcellation was not available, we could not employ WMQL 

for specific fiber bundle extraction. Consequently, we used manually selected ROI's to 

extract fiber bundles in the corpus callosum (CC) and the corticospinal tract (CST), 

respectively. The extracted fiber bundles are shown in Figure 8a and 8b, respectively. 

Quantitative comparison metrics for the two pairs of fiber bundles are shown in Table 2. We 

note that the difference between FA and Trace obtained from both the data sets is similar to 

those reported for test-retest reliability studies. The Hellinger distance between the tracts 

indicates a significant overlap between the fiber bundles.

To demonstrate the difference between HR and LR images, we also generated a LR image 

by averaging every 2 × 2 × 2 neighboring voxel in the GS data set to obtain a LR dMRI data 

set with isotropic voxel size of 2.43 mm3. Figure 9 shows the single tensor glyphs color 

coded by direction for the GS, LR and the CS-SRR data sets in the same brain region from a 

coronal slice. The background of the glyphs is the corresponding T1w image. As pointed out 

in the rectangular region in Figure 9b, due to partial-volume effects, the LR image was not 

able to capture the correct fiber orientations near the gray matter areas. Figure 9c is similar 

to Figure 9a, indicating that the proposed method was able to correctly reconstruct the fiber 

orientations near gray-matter areas.

4.3. A whole-brain true CS-SRR scenario

The third experiment was based on whole-brain data sets acquired using a 3T scanner with a 

maximum magnetic gradient at 300 mT/m (the MGH connectome scanner). The strong 

magnetic gradients allowed us to acquire high in-plane resolution thick-slice DWI volumes 

with a voxel size of 0.9 × 0.9×2.7 mm3 and TE/TR = 84/7600 ms. Each LR DWI had a set of 

20 unique gradient directions at b = 2000 s/mm2. We also acquired one acquisition of 

isotropic LR DWI with a spatial resolution of 1.83 mm3 and with 60 gradient directions at b 

= 2000 s/mm2, which is the spatial typical resolution for many clinical neuroimaging 

studies. High-resolution T1w and a T2w images with 0.9 mm3 isotropic voxels were also 

acquired. For this experiment, we set the FWHM of the blurring kernel to 0.9 mm, λ1 = λ2 = 

0.02, ρ1 = ρ2 = 1, and w = 0.01 in CSF area and w = 1 in gray and white matters.

Figures 10a to 10i show coronal, sagittal and axial slices from the isotropic LR, the thick-

slice and the SRR dMRI data sets respectively. Due to the larger voxel size, the isotropic LR 

dMRI volume has higher SNR than the thick-slice and the SRR data sets. The SRR result 
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increases the spatial resolution of the thick-slice data set and also decreases the noise level 

due to the regularization terms.

Whole brain tractography was computed for the LR data set (with 1.83 mm3 isotropic 

voxels) and the CS-SRR data set (with 0.93 mm3 isotropic voxels) using the multi-tensor 

tractography algorithm [38]. The number of seeds for the LR isotropic data was set to eight 

times higher than that for the CS-SRR data (for proper comparison). Figure 11a to 11d show 

the cingulum bundle (CB), the corticospinal tract (CST), the superior longitudinal fasiculus 

II (SLF-II) and the caudal middle bundle of the corpus callosum (CC-CMF) of the LR and 

CS-SRR data sets in red and yellow, respectively. The comparison metrics between the fiber 

bundles are summarized in Table 3. The FA and trace for all the bundles have similar 

values. We note that the fiber-bundle overlap for the CC-CMF is lower than the values of 

the other bundles which was caused by the fact that LR tractography failed in detecting 

some fibers as indicated by the arrow in Figure 11d.

To further demonstrate that the proposed scheme recovers important spatial details of the 

anatomy, which cannot be obtained by simply interpolating the low-resolution data, we 

show some results from interpolated data in Figures 12c and 12h. We created a high-

resolution dMRI data set by interpolating the acquired isotropic LR data set into a small-

voxel volume with voxel size reduced to 0.9 × 0.9 × 0.9 mm3 using the trilinear 

interpolation method. Figures 12b to 12e show the color-coded DTI images of the LR, the 

interpolated-HR, the thick-slice and the CS-SRR data sets for the pons and parietal region as 

indicated by the rectangle in Figure 12a. Though the interpolated HR DTI is much smoother 

(as expected) than the other two images due to interpolation, it is still very similar to the LR 

image as no new “information” is available about the fine structures in the LR data. A 

similar result was also reported in [11]. On the other hand, the CS-SRR result shows clear 

demarcation between the fine laminar oriented structure (indicated by the left arrow in 

Figure 12e) in the pons and the cerebellum (indicated by the middle and right arrow in 

Figure 12e). Similar observations have also been reported for the pons area in [58]. These 

features are missed in the LR and the interpolated-HR images as seen in Figures 12b and 

12c. On the other hand, these features are revealed in the thick-slice images shown in Figure 

12d. This observation shows that thick-slice acquisitions with high in-plane resolution helps 

to reconstruct structures that are aligned inferior-superior. Figures 12g to 12j are the color-

coded DTI images of the four data sets for the region shown in Figure 12f. The yellow 

arrows in Figure 12j point out some structures recovered in the CS-SRR data sets that are 

not seen in the other three data sets, including the acquired thick-slice images. This result 

demonstrates the capability of our algorithm in recovering fine structures from the 

overlapping thick-slice acquisitions.

Figure 13b and 13c show the single-tensor glyph results color coded by orientations of the 

LR and CS-SRR results for the rectangle region in Figure 13a. As seen in the rectangular 

region in Figure 13c, the CS-SRR data shows details of the fiber orientation near a sulci 

which is completely missing from the LR resolution images.
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5. Discussion and conclusion

In this work, we demonstrated using several in-vivo human experiments that improving the 

spatial resolution for dMRI data is critical for determining accurate tracing of white matter 

fibers as well as gray matter topography. We combined the twin concepts of compressed 

sensing and super-resolution to propose a practical diffusion acquisition and reconstruction 

scheme that allows for obtaining very high spatial resolution dMRI data. In particular, we 

showed the ability of the proposed method to obtain high resolution dMRI data with 

isotropic voxels of size 0.93 mm3 along 60 directions using three overlapping thick-slice 

acquisitions with anisotropic voxels of size 0.9 × 0.9 × 2.7 mm3 along 20 directions. Note 

that, the proposed method is not limited to this spatial resolution and can be used to obtain 

even higher spatial resolution if an MRI scanner can afford to acquire such data with 

reasonable SNR. The proposed technique is independent of scanner type and can be 

implemented on any clinical scanner. Further, an important contribution of this work is the 

ability to obtain such high resolution scans within a clinically feasible scan time. For 

example, from our experiments, we can conclude that a total of 60 gradient directions on a 

single b-shell is enough to obtain very high spatial resolution images. This is in contrast to 

standard techniques which would require several hours of scanning to obtain equivalent 

results. Moreover, if one uses the standard super-resolution setting, the scan time would still 

be at-least 3 times longer than the one for the proposed method. Thus, the proposed CS-SRR 

method allows for obtaining very high resolution scans in about the same time as a standard 

dMRI scan. Note that, the acquisition time can be further reduced by a straightforward use 

of multi-band (or multi-slice) acquisition sequences [59, 60].

Before we conclude, we note some practical points regarding thick-slice acquisitions. Since 

diffusion images are usually acquired using echo planar imaging (EPI), overlapping thick-

slice acquisitions not only improve SNR but also provide some extra information about the 

underlying tissue than a thin-slice acquisition. For example, figure 14a and 14b illustrate the 

magnetization of three contiguous slices (in red, black and blue) for thin-slice acquisitions 

and overlapping thick-slice acquisitions, respectively. Since the slice selection is usually not 

perfect (its a sinc function), the signal contribution from the tissue near the edge and 

between two slices is usually very small. On the other hand, overlapping measurements have 

signal contribution from all regions of the tissue, which is not obtained in non-overlapping 

thin-slice images. In this aspect, thick-slice acquisitions may have some added value.

We also note some limitations of the proposed method. In particular, large motion between 

the shifted LR acquisitions can result in very little or no overlap between contiguous 

regions. Thus, if large head motion is expected, it might be better to acquire several 

overlapping acquisitions (and not just 3) to ensure good data reconstruction quality. Our 

future work will focus on this aspect of the algorithm. We should however note that, 

problems related to large head motion is a limitation not just of the proposed method, but 

any technique that uses super-resolution reconstruction.

In the proposed method, one has to set parameters such as λ1, λ2, which are related to SNR 

of the LR scans. For example, higher noise would require more spatial regularization and 

consequently higher λ2. Automatically determining these parameters based on the estimated 
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noise in the data is part of our future work. We should note that small differences in these 

parameter settings will not significantly change the results. Hence, the parameter settings in 

this paper can be applied to any other data sets acquired using similar setups. Moreover, the 

total-variation denoising method was used in this paper to regularize the spatial smoothness 

of the data mainly due to its simplicity in implementation. Though it provides satisfactory 

results in the experiments done in this paper, other advanced methods such as [61] can be 

expected to provide more robust performance when pursuing higher resolutions.
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Appendix

We present an algorithm for solving (6) using the alternating direction method of multipliers 

(ADMM) for a given basis matrix A, a positive weighting vector w and λ > 0. First, we 

introduce an auxiliary variable z and rewrite (6) as follows

(13)

where  with Ind+(·) be an indicator function defined as

The ADMM algorithm is an iterative procedure to solve (13) with each iteration consists of 

three steps of updating c, z and a dual variable p based on their values in the previous step. 

In particular, let

denote the augmented Lagrangian for some ρ > 0. Then, starting from an arbitrary c0, z0 and 

p0 for iteration t = 0, the (t + 1)th iteration consists three steps of updating c, z and p given 

by

(14)

(15)
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(16)

In particular, the update equation (14) equals to

which has a closed-form expression given by

where diag(w) denotes a diagonal matrix with w as the diagonal elements. The update 

equation (15) is equal to

and the mth element of zt+1 is given by

A stopping criteria is to check if pt has reached a stationary point, i.e.  for 

some given εp > 0.
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Highlights

• High---resolution dMRI is reconstructed using multiple thick---slice 

acquisitions.

• Our approach combines super---resolution reconstruction and compressed 

sensing.

• The total acquisition time and noise can be simultaneously reduced.

• The proposed method can accurately recover complex and small tissue 

structures.
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Figure 1. 
An illustration of the proposed CS-SRR scheme: a high-resolution image is reconstructed 

using three overlapping thick-slice volumes with down-sampled diffusion directions.
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Figure 2. 
(a), (b) shows a coronal slice of an arbitrarily chosen gradient direction in the GS and SRR 

dMRI data sets respectively. (c) shows the RMSE between the GS and SRR data sets 

computed for all gradient directions of the same slice. Note that the error is less than 3% in 

most of the white and gray matter regions.
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Figure 3. 
(a), (b) (c) and (d) are the tractography results for the cingulum bundle (CB), the 

corticospinal tract (CST), the superior longitudinal fasciculus II (SLF-II) and the corpus 

callosum caudal middle frontal (CC-CMF) bundle (with red and yellow tracts obtained using 

the GS data set (with 90 directions) and CS-SRR data set (using 30 directions for thick-slice 

acquisitions), respectively. The comparison metrics for the fiber bundles are shown in Table 

1.
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Figure 4. 
(a), (b) and (c) show the single tensor glyphs for the GS data set (1.253 mm3 isotropic 

voxels), LR data set (2.53 mm3 isotropic voxels) and the CS-SRR HCP data sets (1.253 mm3 

isotropic voxels), respectively. The rectangle in (b) shows the partial-volume effects in the 

LR image where the orientations of the glyphs are not estimated correctly. (d), (e) and (f) are 

the fiber tracts, color-coded with tract orientation for the three data sets with seeds in sub-

thalamic nucleus. The arrow points out some missing fiber tracts in the LR image.
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Figure 5. 
(a), (b) and (c) show the percentage of FA difference, percentage of Trace difference and 

fiber-bundle overlapping for the reconstructed CB, CST, SLF-II and CC-CMF bundles 

versus the number of gradient directions in the thick-slice acquisitions.

Ning et al. Page 28

Neuroimage. Author manuscript; available in PMC 2017 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
(a), (b) and (c) show the FA image of a coronal slice of the diffusion-weighted image in the 

GS data set, the SRR results using 30 and 10 gradient directions, respectively. (d), (e) and (f) 

show the corresponding Trace image for the same slice with the unit of Trace being μm2/ms.
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Figure 7. 
(a) is a coronal slice of a thick-slice dMRI volume. (b) is the corresponding slice from the 

SRR dMRI volume. (c) and (d) are the partial-brain coronal slice of the same diffusion-

weighted dMRI volume in the GS and the SRR data sets, respectively. (e) shows the RMSE 

between the GS and SRR dMRI volumes.
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Figure 8. 
(a), (b) are the tractography results with manually selected seeds in corpus callosum (CC) 

and the corticospinal tract (CST) (with red and yellow tracts obtained using the GS and CS-

SRR data sets (both with 1.23 mm3 isotropic voxels), respectively). The comparison metrics 

for the fiber bundles are shown in Table 2.
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Figure 9. 
(a), (b) and (c) show the single tensor glyphs colored coded by fiber orientation for the GS 

data set (1.23 mm3 isotropic voxels with 90 gradient directions), LR data set (2.43 mm3 

isotropic voxels with 90 gradient directions), and CS-SRR data sets (1.23 mm3 isotropic 

voxels with 90 gradient directions), respectively. The rectangle in (b) points out the partial-

volume effects in the LR image where the directions of the glyphs are not estimated 

correctly (shown by different colors from the GS glyphs).
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Figure 10. 
First row: coronal slices, Second row: Sagittal slices, Third row: Axial slices, show raw 

dMRI data obtained from the isotropic LR, the thick-slice and the SRR dMRI data sets 

respectively.
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Figure 11. 
(a), (b) (c) and (d) are the tractography results for the cingulum bundle (CB), the 

corticospinal tract (CST), the superior longitudinal fasciculus II (SLF-II) and the corpus 

callosum caudal middle frontal (CC-CMF) bundle (with red and yellow tracts obtained using 

the LR data set (with 1.83 mm3 isotropic voxels) and CS-SRR data set (with 0.93 mm3 

isotropic voxels), respectively. The arrow in (d) points out some fiber bundles (yellow) that 

were missing in the LR results (red). The comparison metrics for the fiber bundles are 

shown in Table 3.
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Figure 12. 
(b) to (e) are the colored DTI images for the LR (with 1.83 mm3 isotropic voxels), the 

interpolated-HR, the thick-slice and the CS-SRR data sets (with 0.93 mm3 isotropic voxels), 

respectively, for the rectangle region in the T1w image in (a). (g) and (j) are colored DIT 

images from the four data sets for the rectangle region in (f), respectively. The yellow 

arrows in (e) point out the fine details in the CS-SRR results while these details are missing 

in the LR and the interpolated-HR results. The yellow arrows in (j) point out some structures 

in white matters of the CS-SRR data sets while these structures are not shown in the other 

three data sets.
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Figure 13. 
(b) and (c) are the single-tensor glyphs with color-coded by orientations for the LR data set 

(with 1.83 mm3 isotropic voxels) and the CS-SRR data set (with 0.93 mm3 isotropic voxels), 

respectively, for the rectangle region in the T1w image in (a). The glyphs in (b) and (c) have 

the same size and are interpolated to the same spacing. The rectangle in (c) shows the glyphs 

in a gray-matter region that were missing in the LR results shown in (b).
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Figure 14. 
(a) and (b) are illustrations for the magnetizations for three contiguous slices (in red, black 

and blue) for thin-slice acquisitions and overlapping thick-slice acquisitions, respectively.
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Table 1

Comparison metrics for the fiber bundles in Figure 3.

FA difference Trace difference Fiber-bundle overlap

CB 2.8% 1.8% 0.97

CST 4.0% 1.2% 0.98

SLF-II 3.6% 1.6% 0.95

CC-CMF 3.1% 3.2% 0.95
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Table 2

Comparison metrics for the fiber bundles in Figure 8.

FA difference Trace difference Fiber-bundle overlap

CC 1.6% 9.1% 0.96

CST 3.2% 10% 0.94
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Table 3

Comparison metrics for the fiber bundles in Figure 11.

FA difference Trace difference Fiber-bundle overlap

CB 1.2% 1.7% 0.94

CST 1.4% 4.1% 0.92

SLF-II 5.6% 1.8% 0.92

CC-CMF 0.5% 1.1% 0.85
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