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Abstract

The purpose of this work is to develop a framework for single-subject analysis of diffusion tensor 

imaging (DTI) data. This framework is termed Tract Orientation and Angular Dispersion 

Deviation Indicator (TOADDI) because it is capable of testing whether an individual tract as 

represented by the major eigenvector of the diffusion tensor and its corresponding angular 

dispersion are significantly different from a group of tracts on a voxel-by-voxel basis. This work 

develops two complementary statistical tests based on the elliptical cone of uncertainty, which is a 

model of uncertainty or dispersion of the major eigenvector of the diffusion tensor. The orientation 

deviation test examines whether the major eigenvector from a single subject is within the average 

elliptical cone of uncertainty formed by a collection of elliptical cones of uncertainty. The shape 

deviation test is based on the two-tailed Wilcoxon-Mann-Whitney two-sample test between the 

normalized shape measures (area and circumference) of the elliptical cones of uncertainty of the 

single subject against a group of controls. The False Discovery Rate (FDR) and False Non-

discovery Rate (FNR) were incorporated in the orientation deviation test. The shape deviation test 

uses FDR only. TOADDI was found to be numerically accurate and statistically effective. Clinical 

data from two Traumatic Brain Injury (TBI) patients and one non-TBI subject were tested against 

the data obtained from a group of 45 non-TBI controls to illustrate the application of the proposed 

framework in single-subject analysis. The frontal portion of the superior longitudinal fasciculus 
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seemed to be implicated in both tests (orientation and shape) as significantly different from that of 

the control group. The TBI patients and the single non-TBI subject were well separated under the 

shape deviation test at the chosen FDR level of 0.0005. TOADDI is a simple but novel 

geometrically based statistical framework for analyzing DTI data. TOADDI may be found useful 

in single-subject, graph-theoretic and group analyses of DTI data or DTI-based tractography 

techniques.

Graphical abstract
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elliptical cone of uncertainty; DTI; FDR; FNR; exact Wilcoxon-Mann-Whitney p-value 
computation

1. INTRODUCTION

Diffusion Tensor Imaging (DTI) (Basser et al., 1994a, b; Pierpaoli et al., 1996) is an 

important and noninvasive magnetic resonance imaging (MRI) technique used in clinical 

and research studies of brain white matter architecture. Many aspects of DTI have been 

studied extensively, from the diffusion tensor model itself (Basser, 2002; Basser et al., 

1994b; Basser and Pajevic, 2003; Koay and Özarslan, 2013; Stejskal, 1965) and its higher-

order generalizations (Anderson, 2005; Descoteaux et al., 2007; Descoteaux et al., 2011; 

Jian et al., 2007; Liu et al., 2004; Özarslan and Mareci, 2003), to optimal experimental 

designs (Cook et al., 2007; Deriche et al., 2009; Dubois et al., 2006; Jones et al., 1999; Koay 

et al., 2011; Koay et al., 2012) and its inverse problem at various levels of complexity 

(Andersson, 2008; Basser et al., 1994a; Chang et al., 2005; Chang et al., 2012; Koay et al., 

2006; Mangin et al., 2002; Maximov et al., 2011; Veraart et al., 2013; Wang et al., 2004). 

DTI continues to inspire new analyses, developments, refinements and extensions (Caruyer 

et al., 2013; Hutchinson et al., 2012; Koay, 2009; Koay, 2014; Koay et al., 2011; Koay et al., 

2009a; Koay et al., 2012; Koay et al., 2009b; Wu et al., 2004). Uncertainty quantification 

(Anderson, 2001; Behrens et al., 2003; Beltrachini et al., 2013; Chang et al., 2007; Jeong 

and Anderson, 2008; Jones, 2003; Jones and Pierpaoli, 2005; Koay et al., 2007; Koay et al., 

2008; Lazar and Alexander, 2003, 2005; Lazar et al., 2005; Poonawalla and Zhou, 2004) in 

DTI is another important area of research with wide-ranging implications to tractography 

(Barbieri et al., 2011; Basser et al., 2000; Conturo et al., 1999; Mori et al., 1999; Pajevic et 

al., 2002; Poupon et al., 2000; Poupon et al., 2001) and data analyses (longitudinal, single-

subject, group or graph-theoretic, e.g., (Rubinov and Sporns, 2010)).
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The purpose of this work is to develop a statistical and computational framework for testing 

whether an individual principal direction (i.e., major eigenvector of a diffusion tensor) and 

its corresponding elliptical cone of uncertainty (COU, see Methods for a brief review)(Koay 

et al., 2007; Koay et al., 2008) are different from a control group of diffusion-tensor-derived 

major eigenvectors and their corresponding elliptical COUs. Two key motivations behind 

the work are the pursuit of personalized or precision medicine for individual patients and to 

address the current inadequacy of group analysis of DTI data in clinical TBI studies.

TBI presents unique challenges to diagnosis due to the heterogeneity of injury source and 

manifestation across subjects, and mild TBI (mTBI) in particular is challenging due to the 

subtle imaging findings. Because of the varying degrees of severity of the injuries and the 

spatial heterogeneity of the affected regions not only in an individual TBI patient but also 

across TBI patients, there is a clear need to develop diagnostic methods that are effective on 

an individual basis. Since no two clinical TBI cases are alike, it may not be appropriate to 

group TBI data for voxel-wise analyses. The key concern is that the averaging effect of the 

group analysis may smooth out salient anomalies in a single patient and cause them to 

appear as normal variations within the averaged TBI data, i.e., it is very unlikely to build up 

a statistical group difference at a single voxel if there is rarely a lesion from more than one 

patient in a voxel.

This framework builds upon as well as extends the capability of our previously proposed 

uncertainty quantification framework for DTI (Koay et al., 2007; Koay et al., 2008). Our 

work on an analytical error propagation framework (Koay et al., 2007; Koay et al., 2008) for 

DTI is a culmination of prior works by others (Anderson, 2001; Jeong and Anderson, 2008; 

Jeong et al., 2005; Lazar and Alexander, 2003, 2005; Lazar et al., 2005) and our group 

(Koay and Basser, 2006; Koay et al., 2006). In brief, three independent studies adopted a 

perturbation-based error analysis (Anderson, 2001; Basser, 1997; Chang et al., 2007) to 

study uncertainty in fiber orientation and in tensor-derived quantities. These studies 

developed their respective error analyses from the linear model of the diffusion tensor. Our 

prior experience with signal and noise characterization in MRI (Koay and Basser, 2006) 

together with the observations made by Jones et al.(Jones and Basser, 2004) on the effects of 

noise on tensor-derived quantities led to the adoption of the nonlinear least squares model of 

the diffusion tensor as the model of choice (Koay et al., 2006) for error propagation (Koay et 

al., 2007). The most notable difference between the perturbation-based error analysis of 

Basser (Basser, 1997) or Chang et. al. (Chang et al., 2007) and our error propagation 

framework is that the former did not incorporate the elliptical COU into the formulation 

while such a feature is inherent in our framework (Koay et al., 2007). It is important to note 

that many studies (Basser, 1997; Behrens et al., 2003; Chang et al., 2007; Jones, 2003; 

Parker et al., 2003; Polders et al., 2011) have adopted the circular COU for modeling the 

uncertainty in the major eigenvector of the diffusion tensor even though converging and 

empirical evidence showed that the uncertainty of the major eigenvector is generally 

elliptical (Jeong et al., 2005; Lazar and Alexander, 2005; Lazar et al., 2005). The key reason 

for the lack of such an important feature (the elliptical COU) in DTI error analysis in the 

works of Basser and Chang is due to the absence of the covariance matrix of the major 

eigenvector in their formulations, which was recently demonstrated to be obtained from 
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perturbation analysis through a simple reformulation; see (Koay et al., 2008) for the 

connection between our analytical error propagation framework and the reformulated 

perturbation-based error analysis.

The covariance matrix of the major eigenvector of the diffusion tensor provides the 

necessary information to construct the elliptical COU and related scalar measures such as 

the normalized areal and circumferential measures of the elliptical COU (Koay et al., 2008). 

While it is relatively easy to visualize or quantify a single elliptical COU within a voxel, it is 

nontrivial to test whether an individual major eigenvector or the boundary points of its 

elliptical cone is within the mean elliptical cone of uncertainty formed by a collection of 

elliptical COUs. This inclusion-exclusion test is a multivariate and geometric problem and is 

highly relevant to each phase of data analysis, from exploratory investigation to testing of 

hypotheses. While it is not hard to test the shape characteristics of an individual elliptical 

COU against those of a collection of elliptical COUs, the main obstacle is in the 

normalization of a family of elliptical COUs. This problem is solved through a novel 

utilization of the tensor normalization technique proposed by Zhang et. al. (Zhang et al., 

2006). While there are several published approaches to performing voxel-based analysis for 

DTI (Schwarz et al., 2014; Smith et al., 2006; Zhang et al., 2006), it is not the intent of this 

work to compare relative merits of these approaches. Challenges of voxel-based analysis 

have been extensively studied by (Ashburner and Friston, 2000) and one of the key 

challenges is registration errors, which may cause unnecessary deformations or distortions 

that do not appear in the original image. One of the ways to minimize the registration errors 

in statistical inference is to through skeletonization as suggested in Tract-Based Spatial 

Statistics (TBSS) of (Smith et al., 2006) and our approach is to focus only on voxels within 

the white matter region that satisfy further criteria such as goodness of fit.

To the best of our knowledge, no proposed framework addresses the problems raised above. 

We propose a novel and conceptually simple statistical and computational pipeline to 

address these problems. Particular attention is paid to the antipodally symmetric nature of 

the elliptical cones in order to develop an unbiased orientation of the elliptical COUs. The 

inverse Gnomonic projection (Coxeter, 1989; Koay et al., 2008) of the elliptical COU onto 

the unit sphere is used to ensure the tests are well-defined.

The proposed framework, which we termed it as Tract Orientation and Angular Dispersion 

Deviation Indicator (TOADDI), is capable detecting a statistically and orientationally 

significant deviation of a principal diffusion direction as compared to those from a group of 

controls on a voxel-by-voxel basis. It can also detect any statistically significant deviation in 

the shape characteristics such as the normalized areal measure and the normalized 

circumferential measure of the elliptical cone as compared to those from the control group. 

While it would beyond the scope of this paper, which focuses mainly on the proposed 

methodological framework, to pursue a thorough investigation of all the available clinical 

TBI cases acquired at the National Intrepid Center of Excellence (NICoE), and in the 

interest of expediting the process of translational research in clinical TBI studies, we believe 

it would be beneficial to illustrate the application of the proposed framework on a few 

clinical TBI cases with complete details of the processing pipeline provided.
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Here, we present two key contributions of the present work. First, this work incorporates the 

methods of False Discovery Rate (FDR) (Benjamini and Hochberg, 1995; Benjamini and 

Yekutieli, 2001; Yekutieli and Benjamini, 1999), popularized by Genovese et. al. (Genovese 

et al., 2002) within the context of neuroimaging to control the proportion of false positives 

in multiple comparison problems, and False Non-discovery Rate (FNR) (Genovese and 

Wasserman, 2002) within the proposed generalized multivariate test for testing orientation 

differences. Second, this work shows how differences in shape characteristics - such as area 

and circumference - of the elliptical cones between a single subject and a control group can 

be tested using the nonparametric test of Wilcoxon-Mann-Whitney (WMW) (Mann and 

Whitney, 1947; Wilcoxon, 1945).

Finally, we should mention that the proposed methodology is not a new tissue model at the 

neuronal level, e.g., (Zhang et al., 2012). While the angular dispersion of the major 

eigenvector may be affected by the underlying microstructure as well as noise, the 

geometrical characteristics of the angular dispersion may only be a gross representation of 

an admixture of the underlying biophysical processes. Further investigation is needed to find 

out whether the angular dispersion of the major eigenvector corresponds well with the 

underlying biophysical processes at the neuronal level. A comparison with some of the 

existing tissues models would be very interesting. This comparative study is being planned 

but it is beyond the scope of this work.

2. METHODS

2.1 Brief Review of the Elliptical COU in DTI

The elliptical COU quantifies the uncertainty of all three eigenvectors of the diffusion 

tensor. It is based on propagating errors from the noisy diffusion-weighted signals through 

the nonlinear least squares estimation model (Koay et al., 2006; Koay et al., 2007; Koay et 

al., 2008). The first order approximation of the uncertainty in any eigenvector of interest of 

the diffusion tensor is in a form of an ellipse around that eigenvector, see Figure 1A. 

Specifically, the ellipse on the u–v plane, which is the plane of Gnonomic projection, is 

orthogonal to the eigenvector of interest and the orientation of this eigenvector is pointing 

exactly at the center of the ellipse. Without loss of generality, the major eigenvector will be 

used throughout this work. We should mention that the framework is applicable to other 

eigenvectors as well.

The Gnomonic projection (Coxeter, 1989) maps a point, s, on the unit sphere to a point, p, 

on the u–v plane that is tangent to the sphere at z=1 on the z-axis, see Figure 1A. The 

inverse Gnomonic projection maps p to s. Measures such as the area and the circumference 

of the ellipse are unbounded when the ellipse is lying on the u–v plane. However, these 

measures can be normalized by computing the equivalence of these measures on the surface 

of the unit sphere through the inverse Gnomonic projection as proposed in (Koay et al., 

2008), see Figure 1B. Similarly, the visualization of the uncertainty of the eigenvector on the 

surface of the unit sphere as shown in Figure 1C is more convenient because such an 

approach avoids the issue of overlapping cones from the neighboring voxels as shown in 

Figure 2 of (Jones, 2003). Note that the elliptical cone is antipodally symmetric because the 

eigenvectors are axial vectors.
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From the covariance matrix of the major eigenvector as determined through the analytical 

error propagation framework (see Appendix A), it can be shown (Koay et al., 2008) that the 

approximate 1 − α confidence region formed by the elliptical COU of the major eigenvector, 

q1(γ̂), can be characterized by the major and minor axes of the ellipse in vectorial 

representation, which are given by  and , where 

(ω1,c1) and (ω2,c2) are respectively the major and medium eigenvalue-eigenvector pairs of 

the covariance matrix of the major eigenvector of the diffusion tensor, F(2,n − 7;α) is the 

upper α quantile for the F distribution with 2 and n − 7 degrees of freedom and n is the 

number of diffusion-weighted measurements. Note that the minor eigenvalue-eigenvector 

pair of the covariance matrix of the major eigenvector is (0,q1(γ̂)) and γ̂ is an estimated 

parameter vector composed of the natural logarithm of the non-diffusion weighted signal 

and the vectorized diffusion tensor elements as defined in Appendix A and (Koay et al., 

2006). Formulating the uncertainty in the major eigenvector in a form of an elliptical cone is 

ideal for visualization and computation of scalar measures such as the areal and 

circumferential measures. However, this formulation is cumbersome for the analysis to be 

proposed this work.

Even though the above formulation is in fact derived from a multivariate test (Koay et al., 

2008), which is in a form of an inequality

[1]

where  is the pseudoinverse of the covariance matrix of the major eigenvector and the 

covariance matrix of the major eigenvector, Σq1 (γ̂) is derived from the error propagation 

framework (Koay et al., 2007; Koay et al., 2008), the importance of this multivariate test 

was not fully emphasized in our earlier work (Koay et al., 2008). For completeness, 

Appendix A contains a step-by-step guide on the computation of the covariance matrix of 

the major eigenvector.

2.2 Novel FDR-FNR-based Orientation Deviation Indicator

Given a collection of N elliptical COUs, which in turn depends a collection of covariance 

matrices of the major eigenvector, , an orientation deviation test can be 

constructed from Eq.[1] by replacing the pseudoinverse of the covariance matrix of the 

major eigenvector with the pseudoinverse of the mean covariance matrix of the major 

eigenvector and q1(γ̂) by a mean major eigenvector. This is our proposed generalized 

multivariate test for orientation differences.

In general, there are several approaches for averaging covariance matrices such as the 

geometric mean approach based on the Riemannian distance of symmetric positive definite 

(SPD) matrices proposed by Moakher (Moakher, 2006), the arithmetic mean approach or the 

mean dyadics approach (Koay et al., 2007). Unfortunately, the 3×3 covariance matrix of the 

major eigenvector as generated from the propagation of errors is rank deficient, i.e., its 

matrix rank is two rather than three hence the matrix is not SPD. This deficiency excludes 

the use of the geometric mean approach of Moakher because this approach requires the 
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covariance matrices to be SPD. Thus, we are left with the arithmetic mean approach and the 

mean dyadics approach.

Preliminary analysis by simulation, see the Results section, shows that the arithmetic mean 

approach performs better than the mean dyadics approach in terms of the relative errors in 

estimating the areal and circumferential measures of the elliptical COU. Based on this 

preliminary analysis, we adopted the arithmetic mean approach throughout this work.

The arithmetic mean approach is simply the matrix sum of the covariance matrices divided 

the number of covariance matrices, and due to the specific property of this type of 

covariance matrices, the mean major eigenvector is obtained from the minor eigenvector of 

the mean covariance matrix. In summary, our proposed generalized multivariate test, which 

is quite similar to Eq.[1] in expression but different in interpretation, is expressed as follows:

[2]

where  is the pseudoinverse of the mean covariance matrix, q̅ is the mean major 

eigenvector and m is the average degrees of freedom, which is the arithmetic mean of the 

degrees of freedom associated with the collection of elliptical COUs. The key conceptual 

difference between Eq.[1] and Eq.[2] is the replacement of α with p. For a given test vector, 

q1, Eq.[2] can be used to determine the p-value, denoted by p, of the test.

By replacing the mean vector, q̅, and the pseudoinverse of the mean covariance matrix, , 

of the control group with those of the single subject and the test vector, q1, with the mean 

vector of the control group, we would be able to compute the Type II error and the power of 

the proposed statistical test as well as the False Non-Discovery Rate (FNR) (Genovese and 

Wasserman, 2002), see Figure 2. For the sake of completeness, we rewrite Eq.[2] for this 

particular test as

[3]

Note that r is used instead of p is to avoid confusion but their meaning is similar. In short, 

Eq.[2] is a test of a single subject's eigenvector with respect to the mean eigenvector and the 

covariance matrix of the control group and Eq.[3] is a test of the control group's eigenvector 

with respect to the eigenvector and the covariance matrix of the single subject. Finally, 

while the framework is described within the context of single subject analysis, its 

generalization to group analysis should not pose any problem to interested readers.

2.3 Novel Nonparametric Angular Dispersion (Shape) Deviation Indicator

Shape characteristics of the elliptical COU we adopted here are the normalized areal 

measure and the normalized circumferential measure as proposed and derived in our earlier 

work (Koay et al., 2008). Differences between a single subject and a control group can then 

be tested as a one-against-many (or several-against-many) test based on the well-known 

nonparametric Wilcoxon-Mann-Whitney (WMW) test (Mann and Whitney, 1947; 

Wilcoxon, 1945), see Appendix B.
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We would like to point out that a one-against-many test may require a lot more controls to 

reveal statistically significant outcomes than a several-against-many test. For example, there 

is only one single WMW U statistic, as defined in (Sachs, 1984), which is the first element 

with U=0, that has a probability less than 0.05 in a 1-against-45 test. It should be pointed out 

that we used the WMW U test as a two-tailed test. In the Results section, we used 4 

independent samples as obtained from 4 separate sessions from each TBI patient to test them 

against a group of 45 controls. We also used 3 independent samples as obtained from 3 

separate sessions from one non-TBI patient to test against the same control group. It also 

should be quite obvious that the WMW U statistic and its cumulative probability mass 

function can be used to estimate the number of controls needed perform a single-against-

many or several-against-many test. A detail of the implementation of the computation of the 

exact p-value of the WMW U statistic is further explored in the Discussion section and 

Figures 5 and 6.

3. RESULTS

We implemented the proposed framework in Java and performed several tests to evaluate 

the numerical accuracy of the proposed method and its implementation. The application of 

the inclusion-exclusion test as presented in Appendix C is useful for evaluating the accuracy 

of statistical models in representing the experimental data distributed on the sphere and for 

single-subject analyses. As an example, we utilized the inclusion-exclusion test to evaluate 

the fidelity of the 1 − α confidence region formed by an average (expected) elliptical COU 

of the major eigenvector of some specific tensor through Monte Carlo simulation. We also 

performed a simulation test to compare the relative merits of the two averaging methods, the 

arithmetic mean and the mean dyadics methods, for averaging a collection of covariance 

matrices of the major eigenvector. Finally, we illustrated the proposed methodology with 

clinical data.

3.1 Testing Statistical Accuracy of the Elliptical COU

The accuracy of the statistical framework depends directly on the validity of the elliptical 

COU as a measure of uncertainty of the major eigenvector. The inclusion-exclusion test 

developed in Appendix C provides the needed tool to quantify the fidelity of the elliptical 

COU as a model of dispersion for the major eigenvector. We carried out Monte Carlo 

simulation similar to that used in (Pierpaoli and Basser, 1996) to evaluate the fidelity of the 

elliptical COU. Specifically, we used a known tensor,

which has a fractional anisotropy (FA) of 0.4181, a known non-diffusion weighted signal of 

1000 (arbitrary unit), and a DTI protocol based on the Sparse and Optimal Acquisition 

(SOA) 9×9 square design (Koay et al., 2012) (9 shells with 9 diffusion gradient directions on 

each shell) to generate noiseless diffusion-weighted signals and added Gaussian noise to 

these noiseless signals in quadrature (Henkelman, 1985; Koay and Basser, 2006) to obtain 

Rician-distributed noisy diffusion-weighted signals in this simulation study. The maximum 

b-value of 1500 s/mm2 was applied to the outermost shell and the shells are equi-spaced in 
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b-values. Rician-distributed noisy diffusion-weighted signals were generated from the 

diffusion tensor model with the above simulation parameters at a signal-to-noise ratio (SNR) 

of 20 (arbitrary unit). The SNR is defined conventionally as the non-diffusion weighted 

signal over the Gaussian noise standard deviation. Therefore, the expected variance, which is 

needed to constructed the average (or expected) 95% confidence region of the major 

eigenvector of the diffusion tensor is taken to be (1000/ SNR)2 ; Appendix IX of (Koay et 

al., 2007) outlines the construction of average covariance matrices for different quantities of 

interest.

The number of Monte Carlo trials was 20000. In each trial, a set of Rician-distributed 

diffusion-weighted signals was generated (Pierpaoli and Basser, 1996) and fitted with a 

diffusion tensor. We used the constrained nonlinear least squares estimation method for 

estimating the diffusion tensor (Koay et al., 2006). Figure 3 shows the estimated 

eigenvectors from these Monte Carlo trials as points on the unit sphere. The expected 95% 

confidence region of the major eigenvector is shown as a closed curve in white. The percent 

of eigenvectors within the expected confidence region as determined by the proposed 

inclusion-exclusion test was 95.08%, which was in very good agreement with the expected 

95% used in this simulation study. The same simulation was repeated 500 times to quantify 

the confidence interval of the estimated percent of eigenvectors within the expected 

confidence region for different levels of SNR. The 99% confidence intervals of the percent 

of eigenvectors within the expected confidence region for SNRs of 15, 20, 25 and 30 were 

found to be (94.12%, 95.14%), (94.55%, 95.59%), (94.77%, 95.75%) and (94.88%, 

95.84%), respectively.

3.2 Testing Relative Merits of Methods for Averaging Covariance Matrices of the Major 
Eigenvector

Adopting the same DTI protocol as in the previous simulation study, we investigated the 

relative merits of two different averaging approaches, the arithmetic mean and the mean 

dyadics methods, for computing the average covariance matrices of the major eigenvector of 

the diffusion tensor. Since the number of Monte Carlo trials used the previous simulation 

study is equivalent to the number of samples used in computing the average covariance 

matrix of the major eigenvector, it should no longer be set at 20000 but at a number that is 

closer to the actual number of samples used in real experiments. Therefore, the number of 

samples (or Monte Carlo trials) in this simulation test was set at 45 because the sample size 

of our controls, which will be discussed next, was 45. The same simulation was repeated 

500 times for different SNR levels to quantify the location and dispersion of the following 3 

measures:

1. The Frobenius norm of the matrix difference between the averaged covariance 

matrix of the major eigenvector by means of either the arithmetic mean or mean 

dyadics methods and the expected covariance matrix of the major eigenvector as 

computed from the error propagation framework. Note that the lower the value of 

the Frobenious norm, the closer the averaged matrix to the expected matrix.
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2. The relative error in estimating the areal and circumferential measures of the 

elliptical COU with respect to the ground truths, which were computed from the 

error propagation framework.

Table 1 shows the quantitative results of this simulation study. The numerical value quoted 

between the plus minus symbol is the standard deviation of the measurements. The results 

show clearly the arithmetic mean approach is uniformly better than the mean dyadics in 

computing the average covariance matrix of the major eigenvector.

3.3 Illustration with Clinical Data

We illustrate the application of the proposed framework by testing the data of two TBI 

patients and one single non-TBI subject against a control group of forty five non-TBI 

subjects. The TBI patients were volunteers in the National Capital Neuroimaging 

Consortium (NCNC) Neuroimaging Core project. Patient I and Patient II were 24 and 39 

years old respectively at the time of their first scans. Subjects in this study were recruited 

and scanned between Aug. 2009 and May 2015. Non-TBI subjects (45 for the control group 

with mean age of 32.1±8.1 years and 1 for the non-TBI single subject who was 22 years old) 

consisted of active-duty service members or dependents with no diagnosis of TBI and no 

history of other major neurologic disorders. The non-TBI subject population was a sample 

of convenience, comprised of any subject who met the eligibility requirements and without 

attempting to match for age, gender, education, etc. All scans were conducted with approval 

and according to the guidelines of the Walter Reed National Military Medical Center 

(WRNMMC) Institutional Review Board (IRB).

Each TBI patient was scanned in four separate occasions within a 3-year period. While some 

of the non-TBI subjects were scanned multiple times, we used only one session from each of 

the non-TBI subjects as our control group. Note that the single non-TBI subject used in this 

study is not part of the control group (N=45).

The diffusion-weighted images were collected as part of a larger protocol that included high-

resolution anatomical images, functional MRI, spectroscopy, and Gd-perfusion. All MRI 

images were acquired on a 3T scanner (GE MR750, Milwaukee WI) with a 32-channel head 

coil. The diffusion-weighted images had the following parameters: TR≈10s, TE≈85ms, 2 

mm3 resolution, 49 diffusion-weighted gradient directions at b=1000 s/mm2 and 6 b=0 

s/mm2 images, approximately 65 slices with data matrix of 128×128. A field map was 

collected, and cardiac gating was used to minimize cardiac motion artifacts.

The first phase of the DTIPrep (Oguz et al., 2014) quality control process was used to 

preprocess the imaging data. It was used to convert images from DICOM format to the 

NifTi format (http://nifti.nimh.nih.gov/), to check for slice-wise intensity artifacts, venetian 

blind noise, to average the non-diffusion weighted images and to remove diffusion 

measurements and the corresponding gradient directions that affected by artifacts. The data 

were then corrected for B0 distortion (Jezzard and Clare, 1999) and eddy currents with FSL 

(Jenkinson et al., 2012) using the measured field map. Data from gradient directions with 

excessive artifact as determined by DTIPrep were then omitted from the analysis. The 

summary statistics of the numbers of DWI measurements after DTIPrep is shown in Table 2. 
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Two-sample tests of the numbers of DWI measurements after DTIPrep between the control 

group and TBI Patient I or the control group and TBI Patient II or the control group and the 

single non-TBI subject did not show any statistical significance, see the last column in Table 

2. Therefore, it is unlikely the number of DWI measurements could be an nuisance effect. 

The Brain Extraction Tool (BET) in FSL (Jenkinson et al., 2012) was used prior to the 

estimation of the diffusion tensor. The diffusion tensor was estimated with the constrained 

nonlinear least squares method (Koay et al., 2006) as implemented in the HI-SPEED 

software packets (Koay, 2009. URL: http://sites.google.com/site/hispeedpackets/). The 

quality of the fit of the tensor to the data was evaluated using the reduced chi-square (χ2) 

statistic (Koay et al., 2006; Walker et al., 2011). The covariance matrix of the major 

eigenvector of the diffusion tensor was computed using our previously published analytical 

error propagation framework (Koay et al., 2007; Koay et al., 2008). Diffusion Tensor 

Imaging Toolkit (DTI-TK, http://dti-tk.sourceforge.net/) (Zhang et al., 2006), which is 

capable of preserving principal orientation of the diffusion tensor upon normalization, was 

used to normalize not only the diffusion tensors but also the covariance matrices of the 

major vector of the diffusion tensor of the control group and to construct an average tensor 

template with data matrix size of 256×256×128 at 1×1×1 mm3 isotropic resampled 

resolution. The diffusion tensor data of TBI patients were then warped by DTI-TK to match 

the average template; the resultant displacement field map was then used to warp the 

covariance matrices of the major vector of the diffusion tensor of TBI patients to the space 

of the average tensor template. Finally, the elliptical cones of uncertainty of the major 

vectors were constructed from the warped covariance matrices of the major vectors of the 

diffusion tensors.

It should be noted that only those voxels from the average tensor template that had the 

following characteristics were considered for subsequent analysis:

a. fractional anisotropy (FA) above 0.275,

b. mean diffusivity above 2.5×10−4 mm2/s, and

c. reduced χ2 statistic below or equal to a prescribed threshold. The χ2 cumulative 

distribution function (CDF) evaluated at this prescribed threshold is 0.95, see 

Appendix D for details.

The threshold value of FA at 0.275 was selected to ensure that the region of interest is 

mainly brain white matter. Furthermore, the voxel-wise averaged covariance matrix of the 

control group was set to null if more than 10 out of the 45 controls had a reduced χ2 statistic 

above the prescribed threshold. Otherwise, the voxel-wise averaged covariance matrix of the 

control group was computed from only those that had a reduced χ2 statistic below or equal to 

the prescribed threshold. The voxel-wise averaged covariance matrix of the individual 

subject was computed differently; it was set to null if at least one (out of four sessions) had a 

reduced χ2 statistic above the prescribed threshold.

3.4 Novel FDR-FNR-based Orientation and Nonparametric Shape Deviation Results

The FDR and FNR values were set at 1.0×10−10 to ensure the effect size is large, i.e., the 

observed differences are likely to remain significant when the sample size increases. The 
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results of the FDR-FNR-based Orientation Deviation Indicator based on the clinical data of 

two TBI patients and one non-TBI subject against the chosen group of 45 controls are shown 

in Figures 4A, 4B and 4C, respectively. The results shown in Figures 4A–C have been 

treated with cluster thresholding (Jenkinson et al., 2012) because of spatial smoothing, i.e,. 

image interpolation during image registration and tensor normalization. As such, the 

effective spatial resolution at which statistical inference can be made is generally larger than 

the acquired or resampled resolution. Therefore, only cluster of sufficient size (128 voxels) 

are shown in Figure 4. In the case of the Shape Deviation Indicator, the FDR was set at 

0.0005 and the results for the two TBI patients are shown in Figures 4D and 4E. Similarly, 

cluster thresholding was applied to the results shown in Figures 4D–E. Interestingly, the 

Shape Deviation Indicator of the single non-TBI subject did not have any voxel that was 

statistically significant at this FDR threshold. Note that no statistically significant voxel was 

found before the application of cluster thresholding.

4. DISCUSSION

To the best of our knowledge, there are no clinical studies that uses the elliptical cones of 

uncertainty or its scalar measures (area and circumference of the elliptical cone) to 

characterize statistical features of fiber orientation. The goal of this work is to show how 

descriptive geometric measures could be utilized to detect changes in orientation or shape of 

the tracts as modeled by the elliptical cones of uncertainty in single-subject or group 

analyses. The salient features of the proposed framework are rigorous statistical 

quantification of orientation or shape deviation on a per-voxel basis, the incorporation of 

FDR and FNR methods for controlling the proportions of false positives and false negatives 

for an orientation deviation test and a nonparametric approach to testing shape deviation of 

the elliptical cones of uncertainty. Furthermore, a new implementation of computing the 

exact p-value of the WMW U statistic is presented.

Although the conceptual foundations of the proposed framework are simple and 

geometrically intuitive, the implementation is not trivial. It is made more complex by having 

to imbed it into a processing pipeline. The framework was developed and incorporated into 

our existing data analytics software tools, HI-SPEED software packets (Koay, 2009. URL: 

http://sites.google.com/site/hispeedpackets/). The whole processing pipeline was built on 

software tools not only from our group but also from other researchers who made their 

software tools publicly available, e.g., DTIPrep (Oguz et al., 2014) and DTI-TK (Zhang et 

al., 2006). In particular, the normalization of the covariance matrices of the major 

eigenvectors was made possible through a novel utilization of the tensor deformation tool 

within DTI-TK.

Ideally, any quantitative feature of interest that is to be used in a statistical test should be as 

statistically independent as possible from other features that might used by an image 

registration technique to drive the registration process because if this precautionary step can 

be carried out successfully it would remove image registration as a confound in any 

statistical analysis. However, it is almost an impossible feat in practice. Image registration is 

a real confound in practice and the problem of fully teasing apart this confound from any 
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statistical analysis remains open and may not be tractable. Admittedly, the current 

framework is also not immune to the effects of this particular confound.

The most interesting preliminary biological finding from our clinical data is that the frontal 

portion of the superior longitudinal fasciculus seemed to be implicated in both tests 

(orientation and shape) as being significantly different from that of the control group. 

Another interesting result is that the Shape Deviation Indicator was able to separate the TBI 

patients from the single non-TBI subject at the chosen FDR level. The most puzzling result 

of this pilot study is that statistically significant voxels were found in the non-TBI subject 

under the orientation deviation test. Based on this preliminary test, we learned that the 

proposed orientation deviation test may be more sensitive to orientation changes in white 

matter tracts and perhaps at the cost of encountering more false positives. A follow-up study 

is planned to include more clinical data in single-subject analysis and to gain further insights 

from results across multiple single subjects.

An important aspect of this work was to study existing algorithms for computing the exact 

cumulative probability mass function of the Wilcoxon-Mann-Whitney U statistic. One of the 

current state-of-the-art numerical procedure is the method proposed by Nagarajan and Keich 

(Nagarajan and Keich, 2009). However, the method of Nagarajan and Keich is difficult to 

implement because of its dependence on a custom Fast Fourier transform method developed 

by the authors themselves. We discovered that the algorithm proposed by Harding (Harding, 

1984), which is based on the method of generating functions and has the same complexity as 

that of Nagarajan and Keich, can be easily adapted with several minor modifications to 

computing the exact cumulative probability mass function of the Wilcoxon-Mann-Whitney 

U statistic in arbitrary-precision arithmetic. Interestingly, our implementation of the a 

slightly modified algorithm of Harding used only standard Java routines and was 

implemented with no more than several lines of codes, see Figure 5. Note that the algorithms 

shown in Figure 5 are based on exact executable Java codes. The Mathematica 

implementation of the same algorithm is even simpler than the Java implementation and is 

shown in Figure 6. Unfortunately, the method of generating functions cannot deal with tied 

ranks, i.e., data with ties. A different and less efficient approach has to be adopted, see 

Appendix F and online supplementary materials.

Finally, TOADDI is a new geometric and statistical framework for analyzing the elliptical 

COUs from DTI. TOADDI may be found useful in single-subject, graph-theoretic and group 

analyses of DTI data and the results from TOADDI may be included in DTI-based 

tractography techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. A step-by-step guide to constructing the covariance matrix of 

the major eigenvector of the diffusion tensor through constrained 

nonlinear least squares and to computing the normalized areal and 

circumferential measures of the elliptical cone of uncertainty

This appendix outlines the most important steps from our previous works (Koay et al., 2006; 

Koay et al., 2007; Koay et al., 2008) that lead directly to the construction the covariance 

matrix of the major eigenvector of the diffusion tensor and its related scalar measures—the 

normalized areal and circumferential measures derived from the elliptical cone of 

uncertainty.

In DTI (Basser et al., 1994b), it is assumed that the diffusion-weighted signals can be 

modeled as follows:

[A1]

where the measured signal, si, depends on some known quantities such as the diffusion 

encoding gradient vector, gi, which is of unit length and the diffusion weighting, bi, and 

some unknown quantities such as the non-diffusion weighted signal, S0, and the diffusion 

tensor, D, which is a 3×3 symmetric positive definite matrix.

The nonlinear least squares method of estimation of the diffusion tensor can be formulated 

as a minimization problem with the following nonlinear least squares (NLS) objective 

function:

[A2]

[A3]

where m denotes the number of DWI measurements, γ = [ln(S0),Dxx,Dyy,Dzz,Dxy,Dyz,Dxz]T is 

the parameter vector to be estimated,  is the model function 

evaluated at γ, ri = si − ŝi (γ) is one of the error terms of the NLS objective function, and the 

design matrix, W, is given by
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It should be noted that the minimizer of the NLS objective function, which is denoted as γ̂, 

may not necessarily produce a positive definite diffusion tensor estimate. To ensure that the 

diffusion tensor is at nonnegative definite, the subspace of the search space within the 

optimization process should not focus on the ordinary tensor elements but the Cholesky 

elements of the diffusion tensor (Koay et al., 2006; Pinheiro and Bates, 1996; Wang et al., 

2004), i.e., D = UTU and . The parameter vector for the constrained 

nonlinear least squares (CNLS) objective function, fCNLS, is ρ = [ρ1,ρ2,ρ3,ρ4,ρ5,ρ6,ρ7]T with 

ρ1 = ln(S0). Formally, fCNLS (ρ) = fNLS (γ(ρ)), 

 and the minimizer of the CNLS 

objective function is denoted by ρ̂. Although γ̂ ≠ γ(ρ̂) when the diffusion tensor estimate is 

not positive definite, we shall assume for the sake of consistency with the main text that γ̂ is 

obtained from γ(ρ̂) rather than obtained by minimizing the NLS objective function.

It can be shown that the covariance matrix of the major eigenvector of the diffusion tensor is 

given by

where the eigenvalue (or spectral) decomposition of the diffusion tensor is given by 

 with λ1 ≥ λ2 ≥ λ3, the Jacobian matrix of q1 with respect to the 

parameter vector, γ, is given by
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and the covariance matrix of the tensor elements can be expressed as a product of the 

estimate variance of the NLS fit and the inverse of the invariant Hessian matrix of the NLS 

function is given by,

Note that . R and Ŝ are diagonal matrices and their i-th diagonal 

elements are ri (γ̂) and ŝi (γ̂), respectively. "inv" denotes the invariant part of the Hessian 

matrix, see (Koay et al., 2007).

Given the multivariate test as discussed in the main text, which is given by

it can be shown (Koay et al., 2008) that its equivalent form can be expressed as 

. This inequality is geometrically an ellipsoidal region. 

Due to the unique construction of the covariance matrix of the major vector, this region is a 

degenerate ellipsoid because the length of its minor axis is zero. The minor axis is parallel to 

q1(γ̂) by design. Therefore, the spectral decomposition of Σq1 (γ̂)can be written as

The remaining two axes of the elliptical cone is of course orthogonal to q1(γ̂) and their 

lengths are  and , respectively. Therefore, 

the degenerate ellipsoid is reduced to an ellipse on the plane orthogonal to q1(γ̂), which is 

similar to that shown in Figure 1A in which q1(γ̂) is pointing along positive z axis.

The normalized areal and circumferential measures can be computed from the following 

expressions, which depend only on a and b,
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where . Further, K and Π are the complete elliptic integrals of the 

first kind and the third kind, respectively, and their definitions are stated in (Koay et al., 

2008).

Appendix B. The Wilcoxon-Mann-Whitney U Statistic

In this appendix, we give a brief review of the computation of the Wilcoxon-Mann-Whitney 

U statistic from two independent samples, x and y, and discuss the concept of the null 

probability mass distribution function of the U statistic from which the p-value of the 

Wilcoxon-Mann-Whitney U statistic can computed. The null probability mass distribution 

function is derived from the assumption that elements of x and y are equally likely to appear 

in any order.

Let x be an array with m elements and y be another array with n elements. We assume that 

every element in x or y can ordered by the order relation <. Under this order relation, it is 

assumed that the probability is zero of finding any two elements to be of the same numerical 

value. In other words, we will not discuss U statistics with tied ranks, see Appendix F on 

this topic.

Combine x and y into a single array and sort this combined array in an ascending order 

while keeping track of each element's original membership to either x or y. Assign indices 

from 1 to m + n to this sorted combined array in ascending order. Sum the indices of those 

elements originally belonged to x and let the sum be R1. Similarly, sum the indices of those 

elements originally belonged to y and let the sum be R2. The test statistic U is given by:

[B1]

where

[B2]

and

[B3]

or

[B4]

The above definition of the test statistic is consistent with the one presented in (Sachs, 

1984).

Under the assumption that any element of x or y is equally likely to appear in anywhere in a 

combined array of length m + n, the probability mass distribution can be found in the 

following straightforward procedure. This counting strategy is conceptually simple but is not 
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recommend as a computational tool in practice except for small sample sizes, e.g., m + n ≤ 

12. Another slightly more efficient method of counting is described in Appendix F to deal 

measurements with ties.

First, assign 1 to m + n to an array. Second, generate all the possible permutations from this 

array. Third, we perform the following steps for each permutation; assign the first m 

elements to x and the remaining n elements to y, and compute the test statistic U. Finally, 

the probability mass distribution function of the Wilcoxon-Mann-Whitney statistic at any 

value of U is simply the ratio of the number of times that specific value test statistic appears 

among all the possible permutations to the total number of permutations. It should be clear 

that the cumulative probability mass distribution function can be obtained from its 

probability mass distribution function.

The above counting strategy may be used to verify the correctness of one's algorithm that is 

based Algorithm C of Figure 5 for small sample sizes. Efficient computation of the 

cumulative probability mass distribution function of the Wilcoxon-Mann-Whitney statistic 

should of course be based on Algorithm C as shown in Figure 5 or the Mathematica 

implementation of the same algorithm as shown in Figure 6. A thorough exposition on the 

application of generating function and the theory of partitions of positive integers to the 

computation of the cumulative probability mass distribution function of the Wilcoxon-

Mann-Whitney statistic is interesting but it is beyond the scope of this paper.

Appendix C. Inclusion-exclusion Test: Numerical Implementation

To test whether a point (represented as a unit vector) on the unit sphere lies inside an 

elliptical COU of interest, it is most efficient to reorient the elliptical COU to its canonical 

position in which the center of the cone is aligned parallel with respect to the positive z-axis 

and the major and minor axes of the ellipse of the cone are aligned with the positive x and 

positive y axes, respectively, see Figure 1A and 1B. This reorientation is formed simply as a 

product of two rotation matrices. Once the necessary rotation matrix is found, it can be 

applied to the point of interest. The rotated point (or vector) of interest is then projected onto 

the u–v plane and the inclusion-exclusion test is reduced to testing whether the point is 

inside the ellipse of the u–v plane or otherwise. It should be clear that such an inclusion-

exclusion test can be determined very efficiently because it is simply an inequality test, 

which will be outlined here.

Let ac1, bc2 and q be the vectorial representation of the major axis, the minor axis and the 

center of the ellipse of an elliptical COU. Further, let x̂, ŷ and ẑ be the unit vectors along the 

positive x, y and z axes, respectively. Rotating q to be along ẑ can be accomplished by the 

following rotation matrix,

[C1]

Please refer to Appendix E for further details on the rotation representation used in this 

work. The rotated vector of the inverse Gnomonic projection of c1 + q is simply the 

normalized vector,
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[C2]

Aligning r1 in such a way that it lies on the x–z plane and with its orientation pointing in the 

positive x axis can be accomplished by another rotation, M2, about ẑ, which is given by

[C3]

where ϕ is the second component of the spherical coordinates, (θ,ϕ), of r1. Note that the 

transformation between the Cartesian coordinates and the spherical coordinates follows the 

convention commonly used in Physics: x = rsin(θ)cos(ϕ), y = rsin(θ)sin(ϕ), and z = rcos(θ).

Once the above two rotation matrices are found, the inclusion-exclusion test of a point on 

the unit sphere can be determined efficiently by rotating the point to the canonical position 

of the elliptical COU and then project the rotated point onto the canonical u–v plane of the 

elliptical COU. For example, let p be a point on the unit sphere. To test whether it is inside 

the elliptical COU of interest, we rotate p to the canonical position of the elliptical COU by

Projecting p̃ onto the canonical u–v plane can be accomplished by the Gnomonic projection:

[C5]

The first step in the inclusion-exclusion test is to test the following condition, p̃·ẑ ≤ 0. If the 

condition is true, p is not inside the elliptical COU. Otherwise, we need to test the following 

condition:

[C6]

where .

It should be clear that once the inclusion-exclusion test can carried out for a single elliptical 

COU, see Figure 2 for an example, the inclusion-exclusion test for a union of a collection of 

elliptical COUs can be performed similarly in the non-ideal case that a collection of 

elliptical COUs may not be drawn from the same distribution. In practice, it is not necessary 

to rotate the elliptical cone; it is only necessary to extract the rotation matrix, M2M1, and 

apply it to the point (or vector) of interest. One fact that should be incorporated into the 

implementation of the inclusion-exclusion test to enhance efficiency is that a point is outside 

the elliptical COU if it is not within the outer circular cone formed by the major axis of the 

elliptical COU.

The combined rotation matrix, M2M1, maps an elliptical COU to its canonical position. One 

important application of the inverse of this combined rotation matrix, , is in 

visualization. Specifically, it is more convenient to generate polygonal (graphical) 
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representations of these elliptical COUs in their canonical positions and then rotate these 

representations to their original positions. Figure 3 shows an example in which the 

confidence region (in white) was transformed by the inverse of this combined rotation 

matrix to its original position to show how well this 95% confidence region captured the 

dispersion of the estimated eigenvectors.

Appendix D. Reduced χ2 statistic

The reduced χ2 statistic is the estimated noise variance from the nonlinear least square fit 

divided by a constant (Koay et al., 2006). This constant is typically chosen to be the global 

noise variance, which is a known quantity in simulation studies (Koay et al., 2006) or an 

estimated quantity in experimental studies (Walker et al., 2011).

We express the χ2 probability density function with ν degrees of freedom as follows:

[D1]

where Γ is the Euler Gamma function. In the context of this work, the degrees of freedom is 

the difference between the number of diffusion measurements used in the fitting and the 

number of estimated parameters, which is 7 in DTI. The reduced χ2 probability density 

function with ν degrees of freedom is given by:

[D2]

We would like to derive the critical threshold based on a prescribed right-tail area of the 

reduced χ2 distribution. Let the prescribed right-tail area be α and the critical threshold be β, 

the relationship between these two quantities is given by

where  and  is the upper incomplete Gamma 

function. The change of variables from x and t above was based on this equation, t = νx / 2. 

Finally, the critical threshold, β, can be expressed as
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where Q−1(a,s) is the solution x to Q(a,x) = s.

Appendix E. Matrix representation of a rotation about an axis

The matrix representation of a rotation about an axis is due to L. Euler (Euler, 1776). Let an 

axis be represented by a unit vector n̂ = [n1 n2 n3]T, i.e., . Suppose that the 

unit vector, n̂, is pointing out of the page. The counter-clockwise rotation (as viewed by the 

reader looking at the page) about n̂ of angle Φ, which we denote as ℜ(Φ,n̂), is given by:

[E1]

where t = 1 − c, c = cos(Φ), and s = sin(Φ).

For completeness, we outline a physically motivated derivation of Eq.[E1] through the 

equation of the counter-clockwise constant precession (with angular velocity, Ω) of a time-

dependent vector, r(t), around an axis, n̂, i.e., Ω̂ = n̂. Let , constant precession 

in this context is given by , which implies that (1)  and . The equation of 

precession is usually given in vector notation,

[E2]

Equation [E2] can be expressed in matrix notation as a linear homogeneous system of 

differential equations with constant coefficients as

[E3]

Suppose that during the period from 0 to τ, the vector, r(t), moves from r(0) to r(τ). Since 

 and ω is a constant, the angle swept out by the precession during this period is 

. The solution to Eq.[E3] can be solved formally and expressed in 

matrix exponential form (Hirsch and Smale, 1974), which is given by,
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By expanding the matrix exponential in series representation, it can be shown that

[E4]

where I is the 3×3 identity matrix. exp(ΦN) is a proper rotation matrix, i.e., exp(ΦN)

[exp(ΦN)]T = exp(ΦN)exp(ΦN)T = exp(ΦN)exp(−ΦN) = I and det(exp(ΦN)) = exp(Φtr(N)) 

= exp(0) = + 1, see page 171 of (Bellman, 1970) for the derivation of the Jacobi identity, i.e., 

det(exp(M)) = exp(tr(M)) for some square matrix M. Note that det(·) and tr(·) denote the 

matrix determinant and the matrix trace, respectively. Finally, Eq.[E1] follows directly from 

Eq.[E4].

Appendix F. Treatment of ties in the Wilcoxon-Mann-Whitney test

The treatment of ties in computing the Wilcoxon-Mann-Whitney U statistic can be 

accomplished by assigning the average of those ranks that share the same numerical value, 

e.g., see (Lehmann and D'Abrera, 2006). For example, if the second and the third elements 

in the combined ordered array are the same in numerical value their ranks should be 

assigned the average value of their of ranks, which is (2+3)/2=2.5. Once tied ranks have 

been assigned, the Wilcoxon-Mann-Whitney U statistic can be computed without any 

modification as described in Appendix B. Since the null probability mass distribution 

function of the Wilcoxon-Mann-Whitney U statistic with tied ranks is different from that of 

the Wilcoxon-Mann-Whitney U statistic without tied ranks, it has to be computed afresh. 

Herein, we describe another counting strategy for the purposes of computing the null 

probability mass distribution function of the Wilcoxon-Mann-Whitney U statistic with tied 

ranks.

Let x be an array with m elements and y be another array with n elements. Without loss of 

generality, let's assume that m ≤ n. Combine x and y into a single array with m + n elements 

and compute the ranks of this combined array. Given m + n tied ranks, we can generate all 

the combinations with m elements chosen from m + n tied ranks. The total number of 

combinations is the binomial coefficient, . For each combination of m elements, 

compute the Wilcoxon-Mann-Whitney U statistic. The probability mass distribution 

function of the Wilcoxon-Mann-Whitney statistic at any value of U is simply the ratio of the 

number of times that specific value test statistic appears among all the possible combinations 

to the total number of combinations.
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Figure 1. 
(A) The Gnomonic projection maps a point, s, on the unit sphere to a point, p, on the u–v 

plane in which the line connecting both points also passes through the center of the unit 

sphere. The u–v plane is tangent to the unit sphere at (0,0,1). The inverse Gnomonic 

projection is the inverse of the Gnomonic projection. (B) An ellipse on the u–v plane and its 

inverse Gnomonic projection on the unit sphere. (C) The elliptical cone of uncertainty with 

its center aligned along the z-axis.
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Figure 2. 
Given two distinct centers of the elliptical COUs, one of the control group (red) and the 

other of an individual subject (blue), two scenarios may occur if the size or the orientation of 

the elliptical COU of the individual subject varies differently. In both cases (A and B), the 

center of an individual subject is deemed to be significantly different in a statistical sense 

from the center of the control group. However, the first scenario (A) has a lower Type II 

error than the second scenario (B) because the center of the control group is also deemed 

significantly different from that of the individual subject. In (B), the center of the control 

group is not significantly different from that of the individual subject in the second scenario 

because it is located within the confidence cone of the individual subject.
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Figure 3. 
A collection of 20000 estimated eigenvectors produced from the constrained nonlinear least 

squares estimation of the diffusion tensor. The expected 95% confidence region from our 

previous proposed error propagation framework is shown in white. The percent of 

eigenvectors within the expected confidence region was 95.08% as determined by the 

inclusion-exclusion test.
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Figure 4. 
Results of statistically significant deviation in orientation shown in (A) red, (B) blue and (C) 

yellow for TBI patient I, TBI patient II and single non-TBI subject, respectively. Results of 

statistically significant deviation in shape of the elliptical COU shown in (D) red and (E) 

blue for TBI patient I and TBI patient II, respectively. No voxel was found to be statistically 

significant under the shape deviation test for the non-TBI subject (F).
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Figure 5. 
The algorithm for computing exact p-value of the two-sample Wilcoxon-Mann-Whitney U 

statistic in arbitrary and high precision is shown in Algorithm C. This algorithm depends on 

the Binomial function and the Binomial function in turns depends on the Factorial function. 

Both of the auxiliary functions are listed as Algorithms A and B. The above algorithms are 

based on exact Java codes and can be executed once they are placed within a Java class. By 

definition, the U statistic is derived from a two-tailed test. It should be clear that the p-value 

can also be represented in rational representation by a slight modification of Algorithm C 

once a class for representing the rational numbers has been created. It should be noted that 

the Java static method CPMF returns an array of p-values. Note that the array indexing in 

Java begins at 0. For example, the probability that the U statistic is less than or equal to Uc is 

simply the Uc
th element of the returned array. The last element of the array is always unity.
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Figure 6. 
The Mathematica® implementation of the same algorithm for computing exact p-value of 

the two-sample Wilcoxon-Mann-Whitney U statistic as presented in Algorithm C of Figure 

5. If higher precision is desired, the number of significant digits can be increased by 

changing "20" to a larger integer on the last statement, e.g., replace "N[f,20] " with "N[f,30] 

" if 30 significant digits is desired.
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Table 2

Summary statistic of the number of DWI measurements after the DWI images were processed by DTIPrep. 

The data in the last column is the p-values of the two-sample test based on the Wilcoxon-Mann-Whitney 

method of the numbers of DWI measurements between the control group and TBI Patient I, TBI Patient II and 

Non-TBI subject, respectively. Note that the computation of the exact p-value of the WMW U statistic with 

tied ranks was based on the method described in Appendix F.

summary
statistic Max. Min. Mean ± SD Two-sample

p-value via WMW
subject

Controls 49 43 47.73 ± 1.48 ---

TBI Patient I 49 44 47.00 ± 2.16 U=70, p=0.4822

TBI Patient II 49 42 46.75 ± 3.20 U=77, p=0.5998

Non-TBI subject 49 48 48.33 ± 0.58 U=58. p=0.7628
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