
Kernel Regression Estimation of Fiber Orientation Mixtures in 
Diffusion MRI

Ryan P. Cabeen1, Mark E. Bastin2, and David H. Laidlaw1

1Department of Computer Science, Brown University, Providence, RI, USA

2Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK

Abstract

We present and evaluate a method for kernel regression estimation of fiber orientations and 

associated volume fractions for diffusion MR tractography and population-based atlas construction 

in clinical imaging studies of brain white matter. This is a model-based image processing 

technique in which representative fiber models are estimated from collections of component fiber 

models in model-valued image data. This extends prior work in nonparametric image processing 

and multi-compartment processing to provide computational tools for image interpolation, 

smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-

compartment processing, this approach is based on directional measures of divergence and 

includes data-adaptive extensions for model selection and bilateral filtering. This is useful for 

reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks 

model, and our framework’s data-adaptive extensions are potentially useful for general multi-

compartment image processing. We experimentally evaluate our approach with both synthetic data 

from computational phantoms and in vivo clinical data from human subjects. With synthetic data 

experiments, we evaluate performance based on errors in fiber orientation, volume fraction, 

compartment count, and tractography-based connectivity. With in vivo data experiments, we first 

show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, 

including mean length, volume, streamline count, and mean volume fraction. We then demonstrate 

the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In 

comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known 

fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and 

complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III.
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1. Introduction

Diffusion MR imaging provides an in-vivo probe of tissue microstructure that enjoys 

numerous applications to neuroscience and clinical studies. This is due to its unique ability 

to image local patterns of water molecule diffusion, which reflect physical properties of 

biological tissue [1]. These patterns enable the quantification of brain white matter 

microstructure, as diffusion exhibits anisotropy due to the geometry of neuronal axon 

projections [2]. This is useful for making local measurements of fiber orientations through 

diffusion modeling [3] and more global fiber bundle reconstructions through tractography 

[4] [5]. In addition, atlas-based reconstructions can reveal population-wide features of 

anatomy and serve as a reference for comparing individuals [6]. Both tractography and 

population-based atlasing are applications that depend on a number of basic image 

processing tasks, including interpolation, smoothing, and fusion [7]. For tractography, 

interpolation is needed when determining fiber orientations off the voxel grid, and 

smoothing is needed to control errors due to noise and other image artifacts. For atlas 

construction, interpolation is needed to resample images into a common space, and fusion is 

needed to derive a composite image from a population. This paper develops and evaluates 

methods for performing these tasks with support for multiple distinct fibers, which are 

important for resolving complex sub-voxel fiber configurations due to crossings and partial 

volume effects [8].

In particular, the goal of this work is to develop and evaluate methods for model-based 

image processing that are useful for interpolation, smoothing, and fusion tasks with the 

multi-compartment ball-and-sticks diffusion model. For this, we derive a kernel regression 

framework for estimating fiber orientation mixtures, which represent multiple fiber 

orientations per voxel and associated volume fractions. In contrast to signal-based image 

processing, this approach estimates fiber models from a collection of fiber models contained 

in volumetric parametric maps. This is accomplished by extending a kernel regression image 

processing framework for vector-valued images [9] and building on prior work on model-

based diffusion MRI processing [10] [11]. We show how this formulation generalizes a 

variety of tasks and allows for simple data-adaptive extensions for bilateral filtering and 

model-selection, which may be generally useful for parametric model-based image 

processing. Our experimental evaluation first characterizes performance with computational 

phantoms, and then explores applications to quantitative tractography-based analysis of fiber 

bundles and multi-fiber atlas construction.

The rest of the paper is organized as follows. In Secs. 2 and 3, we discuss related work and 

background material. In Sec. 4, we describe our proposed model-based estimator, outline 

optimization techniques, and describe its application to streamline tractography. In Sec. 5, 

we describe experimental evaluation of our approach with computational phantoms and in 
vivo clinical data. The synthetic data experiments evaluate the performance of our method in 

relation to fiber orientations, volume fractions, compartment count, and tractography-based 

connectivity. The in vivo data experiments first measure the scan-rescan reproducibility and 

reliability of fiber bundles metrics in individual subjects. We then build a multi-fiber 

tractography atlas from 80 healthy subjects to study population-wide properties of white 

matter. In Secs. 6 and 7, we discuss our results and conclude.
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2. Related work

In this section, we briefly review related work and outline the distinguishing features of the 

present approach.

This paper examines a model-based approach for diffusion MRI processing. This contrasts 

with signal-based approaches that apply filters to the vector-valued diffusion-weighted 

MRIs, while accounting for factors such as the gradients strengths, directions, and Rician 

noise [12]. Model-based approaches instead operate on lower-dimensional mathematical 

representations of the diffusion signal [7]. Previous work has developed such approaches for 

single diffusion tensors [13] and orientation distribution functions (ODFs) [14, 15]. We 

differ by considering multi-compartment models, which are a parametric alternative to 

ODFs with the advantage of compartment-specific measures and isotropic diffusion 

modeling. However, two notable challenges for processing multi-compartment models are 

model selection (to determine the number of compartments) and compartment matching (to 

solve the combinatorial problem of finding corresponding compartments among some set of 

voxels) [16].

The approach is related to some prior work on multi-fiber model-based image processing. 

Yap et al. proposed an approach for multi-fiber atlas construction with fiber orientations 

extracted from ODF peaks [17], which dealt with similar computational problems but was 

not designed for parameteric models. The present work differs by considering atlas 

construction with the ball-and-sticks diffusion model and by relaxing some assumptions on 

fiber correspondence and fiber count. The prior work of Taquet et al. [10] first explored the 

idea of parametric model-based interpolation of multi-tensors and its application to 

tractography and atlas construction, developing a rich framework for multi-tensor processing 

based on Gaussian mixture simplification [18]. Our work differs by considering directional 

measures of divergence that are compatible with the ball-and-sticks model. This is necessary 

because the Burg matrix divergence employed by the full multi-tensor framework is not 

well-defined for the anisotropic stick compartments, so we instead develop a divergence 

measure based on the directional Watson distribution to serve the same purpose. We also 

differ by incorporating data-adaptive extensions to support both bilateral filtering and model 

selection, in contrast to previous work that employed only spatial kernel weights and local-

maximum model selection. Some of the methods presented here have been explored in 

previous conference work [11] [19], but those included neither the full data-adaptive kernel 

regression estimator nor the full experimental results presented here.

3. Background

Our work focuses on image analysis with multi-fiber ball-and-sticks diffusion models, which 

falls into the multi-compartment class of diffusion models [20]. This is a multi-tensor 

constrained to include an isotropic ”ball” compartment and a number of completely 

anisotropic ”stick” compartments. These constraints allow the model to achieve good 

performance for single shell gradients with low b-value acquisitions at intermediate field 

strengths [21], which are common in clinical applications. The ball compartment can 

account for isotropic diffusion, and the volume fractions associated with each compartment 
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can account for partial volume effects and mixtures of bundles at crossings. There is also 

evidence that the volume fraction maps provide a quantitative measure for clinical studies 

[22]. With this model, the predicted diffusion-weighted signal S is given by:

(1)

for a particular gradient encoding direction g⃗, b-value b, and baseline signal S0. This 

includes N fiber compartments with fiber orientations ‖vj‖ = 1, fiber volume fraction 0 ≤ fj ≤ 

1, , and shared diffusivity d > 0. It’s important to note that there is no sign 

associated with fiber orientations, so there is an equivalence vj ~ −vj. We use the following 

parameterization to denote a fiber orientation mixture M with N compartments: 

. In our experiments, we fit the model to the diffusion signal with the 

Bayesian approach of Behrens et al. implemented in the FSL software library [23].

4. Methods

In this section, we present our model-based kernel regression estimator for fiber orientation 

mixtures, followed by a description of extensions for data-adaptive processing. We then 

outline the necessary optimization routines and practical implementation details. Finally, we 

describe how this can be applied to deterministic streamline tractography.

4.1. Kernel Regression Estimation

We now formulate our approach for kernel regression estimation of fiber orientation 

mixtures, which is the main contribution of the paper. This builds on the prior work of 

Takeda et al. on kernel regression image processing for scalar and vector data [9] and prior 

multi-compartment processing [11] [18]. The general idea of kernel regression, however, has 

also been proposed in several other contexts as the moving average, kernel smoothers, etc. 

[24]. The simplest of such is the Nadaraya-Watson estimator (NWE) [25], which we focus 

on here. Given a collection of data  and a desired regression function ŷ(x0) 

evaluated at point x0, the NWE assumes a product kernel density distribution for observed 

data and takes the regression function to be the conditional expectation ŷ = E(y|x0). This can 

be simply expressed by the following least-squares problem:

(2)

(3)

with a kernel function K and bandwidth parameter h. In practice, larger values of h produce 

a smoother estimate. The kernel K can be chosen from a variety of options, but we use the 

standard Gaussian. The advantage of this approach is that it makes few assumptions about 

the structure of the data and consequently generalizes well to a number of tasks. In 
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particular, Takeda et al. [9] presented a general framework for image processing based on 

this approach, showing it can be used for interpolation, smoothing, and fusion. The goal here 

is to further extend this approach to model-based estimation of fiber orientation mixtures.

The primary limitation of the standard kernel regression approach is the assumption of 

vector-valued images, for which the Euclidean distance ‖x − y‖ is a reasonable measure of 

discrepancy. This assumption breaks down for diffusion model-valued image data due to 

various constraints and the non-Euclidean geometry of the models, e.g. fiber volume 

fractions and orientations. This issue can be addressed by instead considering a model-based 

measure of discrepancy  and by performing optimization over the constrained space of 

models. Given an input position p0 and local neighborhood of data  with 

, we formulate this extended estimator M̂ (p0) as follows:

(4)

(5)

given a positional bandwidth parameter hp. We denote the neighborhood size here as C, and 

in practice, we choose a neighborhood sufficiently large to include three standard deviations 

of the Gaussian kernel, e.g. a 7×7×7 window of 1 mm3 voxels for hp = 1 mm. We define the 

model-based discrepancy  for fiber mixtures as follows:

(6)

given a single fiber distance :

(7)

The above definition of  is a matching-based distance that accounts for the combinatorial 

structure of the model by minimizing the sum-squared distances across all possible matching 

functions π between compartments in M and those in M̂. This formulation happens to allow 

efficient optimization and makes no assumptions on compartment ordering or total count. 

Both  and  also have interesting relationships to statistical measures of divergence, 

which are discussed in the appendix.

4.2. Data-adaptive Extension: Model Selection

The estimator puts no constraints on the complexity of the estimated model, so some 

mechanism is needed to perform model selection. One solution is to choose a fixed number 

of compartments; however, this can overestimate in some areas and underestimate in others. 

Data-driven approaches can instead use the fiber counts from the local neighborhood to 

estimate the model complexity, e.g. the local-maximum estimator used in prior work [18]. 
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Another more conservative data-driven approach is to use the average fiber count (rounded 

to the nearest integer). We propose another data-driven approach that works by extending the 

estimator in Eq. 4 to include a regularization term for the number of compartments N:

(8)

given a regularization parameter λ. The goal of this approach is to choose the fiber count that 

best supports the fiber orientation data in the local neighborhood, rather than just the counts. 

In later experiments, we compare these different model selection approaches to assess their 

strengths and weaknesses.

4.3. Data-adaptive Extension: Bilateral Filtering

In addition to performing model selection, the estimator can be simply modified to allow for 

bilateral filtering. The goal here is to avoid blurring interesting features at boundaries of 

anatomical structures. This issue has been studied for standard kernel regression estimators, 

and one solution is to include additional weights that reflect similarity between data values 

[9] [26]. We include this idea by adding a data-adaptive factor as follows:

(9)

(10)

(11)

given a bandwidth parameter hm and a reference model M0.

This can be optimized with the same routines as Eq. 8; however, it is more computationally 

costly because the adaptive kernel weights Km cannot be precomputed like the spatial kernel 

weights Kp. For voxelwise smoothing, the reference can be the original input model; for 

tractography, it can be the model from the previous step in tracking; for interpolation, it can 

be the estimate without the bilateral factor Km.

4.4. Optimization

Next, we describe optimization routines for the proposed estimator and outline some 

practical issues for implementation.

The estimator in Eq. 8 involves an optimization problem in which the weighted sum of 

model-based distances must be minimized, subject to a regularization term for model 

selection. Substitution of dm and df gives a simpler form:
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(12)

given the kernel weights ki in Eq. 10. This is equivalent to solving the weighted axial DP-

means clustering problem [27], which is similar to the k-means algorithm with two 

extensions. First, clustering is performed with axial variables [28], which are equivalent to 

fiber orientations. Second, the number of clusters is estimated from the data as in the DP-

means algorithm, a name derived from its relation to Dirichlet Process mixture models [29]. 

An iterative algorithm for solving this is presented in Algo. 1, and further discussion is in the 

appendix.

The full procedure for using the estimator is summarized in Fig. 1 and detailed in Algo. 2. 

This process proceeds by first collecting fiber models in a local neighborhood of the point of 

estimation, then kernel weights are computed by the product of spatial and data-adaptive 

factors. These weights are normalized to sum to one and then distributed among the fiber 

compartments of each model. The above clustering problem is then solved to estimate the 

output number of compartments, fiber orientations, and volume fractions. A summary of the 

algorithms parameters is shown in Table 1.

There are also some practical issues to note when implementing this. First, the procedure is 

only guaranteed to find a local minima, which depends on the starting conditions. This can 

be helped by performing several random restarts and taking the solution with the overall 

minimum, e.g. 10 restarts with shuffling in our implementation. There may be some rare 

configurations where the minimum is not well-defined, e.g. strictly orthogonal fibers. If this 

occurs, the known model with highest weight can be chosen; however, we check for this 

condition and never encountered it in practice. Finally, the kernel weights must be 

normalized by their total sum, as this ensures the total volume fraction of the fiber 

compartments is conserved and the estimated model volume fractions also sum to one.

4.5. Tractography

We applied the above estimator to deterministic tractography using a generalization of the 

standard streamline approach to account for multiple fibers. In the standard approach, a fiber 

trajectory is considered a 3D space curve whose tangent vector is equated with the fiber 

orientation of the voxelwise diffusion models. This process proceeds by evolving a solution 

to a differential equation with some initial condition at a given seed position. Typically, 

some geometric criteria are also used to stop and exclude fibers, including angle threshold 

and minimum and maximum length [30].

This approach must be adapted when multiple orientations are present [16], and we use the 

following modifications. During tracking, one of the N possible fiber compartments must be 

chosen for the next step, so we choose the fiber with the smallest angular difference to the 

previous step, among those below a given angle threshold. We also incorporate additional 

volume fraction termination criteria, where tracking is stopped if the volume fraction of the 

chosen fiber compartment is below a given threshold. Finally, we use the proposed model-
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based estimator for interpolation and smoothing during tracking. We also retain the volume 

fraction parameter during tracking in order to estimate statistics across fiber bundles.

5. Experiments and Results

This section describes the evaluation of our method with four experiments, including a 

discussion of the datasets, experimental design, evaluation metrics, and results in each 

experiment. Two synthetic data experiments were conducted with computational phantoms 

to assess the ability of clustering-based optimization to match compartments and also to 

measure performance of our proposed model selection and bilateral filtering extensions. Two 

in vivo data experiments were conducted with clinical scans to assess the practical benefits 

of our approach in modeling human brain white matter fiber bundles. The first investigated 

scan-rescan reliability of quantitative fiber bundle metrics, and the second investigated 

population-level features of white matter by constructing a multi-fiber tractography atlas 

from 80 subjects.

All statistical analysis was performed using R 3.1.1 and ggplot2 [31]. Unless stated 

otherwise, the estimation parameters were hp = 1.5 mm, hm = 0.5, λ = 0.99, and the kernel 

support radius was 5 voxels. All experiments fit two-fiber compartment ball-and-sticks 

diffusion models with the Markov-Chain Monte-Carlo procedure implemented in FSL 

XFIBRES [20].

5.1. Datasets and Preprocessing

Synthetic datasets—We generated datasets from two types of computational phantoms, 

which were defined and synthesized with the ball-and-sticks diffusion model as follows.

The first type of phantom represents a complex boundary between fiber bundles for voxel-

based analysis. The phantom included two fibers per voxel and represented two adjacent and 

perpendicular bundles with a fixed volume fraction of 0.4 with a third bundle that crosses 

both with a volume fraction varied between 0.2 and 0.4. This left an isotropic volume 

fraction of 0.2 to 0.4, depending on the condition. Diffusion-weighted images were 

synthesized with with S0 = 10000, d = 0.0017 mm2/s, 1 mm3 voxels, and dimensions 

30×30×5.

The second phantom represents a more complex set of bundles for both voxel-based and 

connectivity-based analysis. This included three bundles with a crossing and branching 

structure. Diffusion-weighted images were synthesized with S0 = 10000, d = 0.0017 mm2/s, 

1 mm3 voxels, and dimensions 71×71×15, as described in Leemans et al. [32].

All images were synthesized with seven baseline volumes, 64 diffusion-weighted volumes 

with b-value 1000 s/mm2 to match the clinical imaging data. Rician noise was introduced by 

adding Gaussian noise with standard deviation σsynth to the complex signal and taking the 

modulus, using Camino [33]. Noise level is reported by the signal-to-noise ratio in decibels, 

S NR(dB) = 20 log10(S0/σsynth).
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Human brain datasets—Clinical data included diffusion-weighed volumes acquired 

from healthy volunteers with a GE 1.5T scanner with a voxel size of 2mm3 and image size 

128×128 and 72 slices. For each volunteer, a total of 71 volumes were acquired, with seven 

T2-weighted volumes (b-value = 0 s/mm2) and 64 diffusion-weighted volumes with distinct 

gradient encoding directions (b-value = 1000 s/mm2). 80 volunteers were scanned with ages 

ranging between 25 and 65 years and roughly equal numbers between sexes. An additional 

five volunteers were scanned with three repetitions each to assess scan-rescan 

reproducibility and reliability. The noise level was estimated to be 22.05 dB using two 

manually drawn regions-of-interest and the Rician corrected method in [34], 

.

Diffusion-weighted MRI data was preprocessed using FSL [23] as follows. First, the 

diffusion-weighted MRIs were corrected for motion and eddy current artifacts by affine 

registration to the first T2-weighted volume using FSL FLIRT with the mutual information 

cost function. The gradient encoding directions were rotated to account for the alignment 

[35], and non-brain tissue was removed using FSL BET.

The 3×5 scan-rescan volumes were used for assessing reproducibility and reliability in the 

third experiment. For the fourth experiment, a diffusion tensor atlas was constructed from 

the other 80 subjects. This was done by first fitting single tensor models using FSL DTIFIT 

and then constructing a population-specific template by deformable tensor registration using 

DTI-TK [36] [37]. The resulting deformation fields were retained for creation of the multi-

fiber atlas, and the single tensor atlas was retained for comparison.

5.2. Synthetic Data Experiment with Boundary Phantom

Design—The first experiment was conducted with the boundary phantom (shown in Fig. 3) 

and was designed to test the fiber matching and bilateral filtering features. For this, we 

defined two regions of interest: an “on-boundary” two-voxel window, and the remaining 

“off-boundary” voxels. The proposed estimator was compared to a so called “rank-based” 

estimator, which is meant to serve as a point of comparison to evaluate compartment 

matching. This rank-based method sorts fibers in each model based on their volume fraction, 

and then each compartment is processed independently as if it were a multi-channel volume. 

We hypothesized that this rank-based approach would introduce greater angular errors than 

our approach. To test performance relative to previous work, we also compared the bilateral 

estimator (Eq. 9) to one with only spatial weights (Eq. 4), which we will refer to as “linear”. 

We hypothesized that the bilateral factor would have lower error at the boundary between 

bundles. In each condition, we introduced noise and measured deviation from the ground 

truth with evaluation metrics similar to Ramirez-Manzanares et al. [38]. For this, fibers were 

matched to the ground truth, and the total angular error and volume fraction error was 

computed in each voxel and averaged within each region of interest. SNR was varied from 

15 to 25, the data-adaptive bandwidth parameter hm was varied from 0.1 to 1.0, and crossing 

bundle volume fraction was varied from 0.2 to 0.4. Each condition was repeated 20 times to 

obtain the sample mean and uncertainty. To exclude effects related to model selection, the 

number of fiber compartments was assumed to be known and fixed at two; however, the next 

experiment investigates performance of the model selection component.
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Results—Results are shown in Figs. 4 and 5. We found isotropic and fiber volume fraction 

error was similarly lowered in all methods; however the rank-based method had slightly 

lower error on-boundary. We found rank-based orientation error to be significantly higher 

than the other methods in all cases. We found both linear and rank-based to introduce 

significant orientation error at the boundary, exceeding that of noise for SNR > 20. Bilateral 

filtering significantly reduced the error on-boundary with a negligible increase elsewhere. 

Upon varying the adaptive bandwidth, we found error had a local minima with good overall 

performance from 0.3 to 0.5, depending on the SNR. Upon varying the crossing bundle 

fraction, we found rank-based estimation to introduce very high orientation error when the 

bundle volume fractions were within 0.05.

5.3. Synthetic Data Experiment with Bundle Phantom

Design—The second experiment was conducted with the bundle phantom (shown in Fig. 6) 

and was designed to test the model selection methods and to assess performance in 

connectivity mapping. The adaptive model selection (Eq. 8) technique was compared with 

the following alternatives: “fixed” (always two fibers), “mean” (rounded local average 

number of fibers), “max” (local maximum of fiber count, like [18]). We tested both voxel-

wise errors and tractography-based connectivity errors. Voxel-wise conditions measured 

orientation error, volume fraction error, and also “missing” and “extra” fibers error [38]. We 

also tested connectivity measures derived from deterministic streamline tractography. For 

this, we manually delineated volumetric masks representing ”white matter” along bundle 

trajectories and ”gray matter” regions at bundle endpoints. These gray matter masks were 

used to seed deterministic tractography, and the resulting tracks were then compared to the 

manually delineated ground truth. For each bundle, we assessed performance by measuring 

the valid fiber rate (fraction of seeds that reach their intented target) and the Dice overlap 

coefficient D(A, B) = 2 vol(A ∩ B)/(vol(A) + vol(B)), given bundle mask A and ground truth 

B [39]. Tractography was performed with 5 seeds per voxel, step size 0.5 mm, 45° angle 

threshold. Noise was varied from 15 to 25, and the regularization parameter was varied 

across seven levels, which are listed in Fig. 8. Tractography was performed with nearest-

neighbor interpolation as a baseline, and rank-based esimation was also performed in all 

conditions for comparison. We hypothesized that mean selection would be most conservative 

and adaptive selection would improve connectivity mapping and help control extra fiber 

error while not significantly increasing missing fiber error. All conditions were repeated 

twenty times to measure the sample mean and uncertainty.

Results—Results are shown in Figs. 6, 7, and 8. We found similar results for isotropic 

volume fraction as Exp. 1. Volume fraction error was significantly higher in fixed and max 

selection, with linear and adaptive performing best. Orientation error was reduced in all 

conditions with adaptive selection performing best by a small margin. Fixed and max 

selection showed very high extra fiber error with linear and adaptive performing best. Fixed 

and max selection had the lowest missing fiber error, with adaptive selection being slightly 

higher. For tractography-based measures, rank-based estimation performed poorly, nearest 

and linear selection were better and comparable to each other. We found adaptive, max, and 

fixed to perform very well, with adaptive performing slightly better in most cases. Upon 

varying the regularization parameter, we found orientation error, fraction error, and 

Cabeen et al. Page 10

Neuroimage. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tractography performance to be rather stable, but the extra and missing fiber error varied 

somewhat. This variation, however, was small compared to the errors introduced with max 

and fixed selection. After inspecting the results, we found max and fixed selection to be 

sensitive to noise and problems in model fitting, resulting in over-estimated model 

complexity such as “fiber splitting”, shown in Fig. 7.

5.4. In vivo Data Experiment for Individual Subjects

Design—The third experiment tested the reproducibility and reliability of quantitative 

tractography metrics obtained with the proposed method in in vivo human brain data. For 

this, we extracted fiber bundles from the scan-rescan dataset, including the following 

structures: anterior thalamic radiation (atr), cingulum bundle (cing), inferior longitudinal 

fasciculus (ilf), and uncincate fasciculus (unc) in each hemisphere. Fiber bundles were 

selected from whole-brain streamline tractography using a multiple region-of-interest 

approach guided by anatomical references [40] [41]. For each bundle, three masks (two 

inclusion, one exclusion) were manually delineated in the population specific atlas with 

ITK-SNAP [42] and then deformed to each subject. Tractography was performed with the 

following methods: nearest-neighbor interpolation, rank-based estimation with fixed 

selection, linear estimation with fixed selection, linear estimation with max selection, and 

our proposed adaptive kernel-based estimation. Tracking parameters included two seeds per 

voxel, and angle threshold 45°, step size 1.0 mm, minimum volume fraction 0.1, and 

minimum length 10 mm.

We computed four metrics for each bundle: the mean length, mean volume fraction, total 

volume, and streamline count. Reproducibility and reliability were measured with the 

coefficient of variation (CV) and the intra-class correlation coefficient (ICC). The CV was 

measured by σs/μs and averaged across subjects, given the within-subject mean μs and 

standard deviation σs. A lower CV score indicates higher reproducibility and has units that 

are normalized to allow comparison across bundle metrics. The ICC was measured by 

, given the between-subjects variance  and within-subjects variance . A 

larger ICC indicates more variance between subjects than within subjects. This takes a 

maximum value of one, and values above 0.75 indicate high reliability. The implementation 

used the R ’ICC’ package [43].

Results—Results are shown in Fig. 9. We found that linear and adaptive kernel-based 

estimation generally had lower or roughly equal scan-rescan error (CV) compared to other 

methods. With adaptive estimation, bundle length had a CV of 3.56%, streamline count had 

a CV of 10.37%, total volume had a CV of 8.01%, and mean volume fraction had a CV of 

2.3%. We found that linear and adaptive estimation had the highest reliability (ICC) in all 

cases. With adaptive estimation, total volume had an ICC of 0.88, fiber count had an ICC of 

0.88, bundle length had an ICC of 0.84, and mean volume fraction had an ICC of 0.72. 

Mean volume fraction had good and similar performance across all methods. We also found 

that given the same number of seed points, linear and adaptive estimation both had a much 

greater number of surviving streamlines than either nearest-neighbor or rank-based 

estimation.
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5.5. In vivo Data Experiment for Atlas Construction

Design—The fourth experiment examined the construction of a multi-fiber tractography 

atlas with the 80 subject population. For this, we used the deformation fields computed with 

DTI-TK to resample the multi-fiber models to diffusion atlas space. Interpolation was 

performed using our approach, and fibers were reoriented by the local Jacobian and 

normalized to unit length, i.e. Jv/‖Jv‖ given Jacobian J and fiber orientation v. Multi-fiber 

fusion was then performed with our method to produce an average volume to represent the 

population. For comparison, standard single tensor tractography was performed in the 

diffusion tensor atlas with a minimum fractional anisotropy of 0.15. The single tensor atlas 

was created with the deformable registration algorithm in DTI-TK using finite strain tensor 

reorientation and the deviatoric tensor similarity metric. [36] [37]. In both atlases, major 

fiber bundles were manually delineated from whole brain tractography. For the multi-fiber 

atlas, the corpus callosum and superior longitudinal fasciculus I, I, and III were interactively 

tracked and manually delineated with guidance from atlas-space averaged Freesurfer gray 

matter labels. The lateral projections of the corpus callosum were selected based on left and 

right lobular regions. The superior longitudinal fasciculus I, II, and III were delineated by 

selecting connections between parietal cortex and superior, middle, and inferior subdivisions 

of frontal cortex, respectively.

Results—Visualizations of the results are shown in Figs. 10 and 11. We found the multi-

fiber atlas to include nearly all features of the major bundles in the single tensor atlas. In 

addition, the multi-fiber atlas included more complete anatomical features of several 

bundles. In particular, the arcuate fasciculus included projections to inferior frontal gray 

matter, and the corpus callosum included lateral projections connecting the left and right 

hemispheres of frontal gray matter. We also found reconstructions of the three portions of 

the superior longitudinal fasciculus [44], which included crossings with numerous other 

bundles. We found the superior longitudinal fasciculus I crossed the corona radiata and 

superior projections of the corpus callosum. The superior longitudinal fasciculus II was 

found to cross the frontal lateral projections of the corpus callosum. Slice-based 

visualizations in Fig. 11 show examples of other crossings found in the multi-fiber atlas, 

including an axial slice of the brainstem and a sagittal slice of the corona radiata.

6. Discussion

In two synthetic data experiments, we evaluated the major features of our approach, 

including compartment matching, model selection, and bilateral filtering. To assess 

performance in compartment matching, we compared our method to the “rank-based” 

method, which matches solely based on volume fractions. The first experiment showed how 

our approach can avoid large errors that occur with the rank-based estimator when crossing 

bundles have similar volume fraction. The second experiment showed how this problem 

arises during tractography, and how clustering-based matching can avoid the invalid 

connections of the rank-based approach. We also showed how orientation blurring can occur 

at bundle boundaries when using kernel weights derived only from spatial information. The 

first experiment showed how the bilateral filtering extension can reduce this effect by 

incorporating the structure of the data into the kernel weights. We also evaluated the 
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proposed data-adaptive approach for model selection and compared it with previously 

proposed alternatives. We found “max” selection to always out-perform “fixed” selection 

and good performance in some cases; however, we found that both fixed and max selection 

can overestimate the number of fibers in even low noise conditions. These extra fibers give 

rise to compartment splitting, which both reduces the expected volume fraction and 

introduces orientation errors that are visible in tractography. We found the data-adaptive 

approach to reduce this effect, with only a small increase in missing fiber error. In general, 

these synthetic data experiments also showed our approach to significantly reduce noise-

induced errors in fiber orientation and volume fraction and to improve connectivity 

mapping.

In the first in vivo data experiment, we examined the practical benefit of our approach for 

fiber bundle modeling in individual subjects. We found our approach provided reliable and 

reproducible results for quantitative fiber bundle metrics, including mean length, mean 

volume fraction, total volume, and streamline count. Among the measures, mean length and 

mean volume fraction performed best. Streamline count and total volume are perhaps less 

reliable due to their dependence on the pose and sampling resolution of the voxel grid. 

While past work has evaluated length-based measures [45], it is less clear how volume 

fraction can be used as an index of white matter [22] [46]. The results provide evidence that 

fiber bundle volume fraction may be a clinically useful measure in terms of reproducibility; 

however, it remains unclear exactly how this measure relates to others, such as fractional 

anisotropy, fiber orientation dispersion, and apparent fiber density [47] [48]. The scan-rescan 

results can also serve as a reference for gauging the significance of group differences of fiber 

bundle metrics in clinical imaging studies.

In the second in vivo data experiment, we examined an application to multi-fiber atlas 

construction, using our approach for interpolation during image resampling and fusion. We 

found the resulting atlas to include complex fiber bundle features not found in single tensor 

atlases [36]. In particular, the results included atlas-based reconstructions of the superior 

longitudinal fasciculus I, II, and III, all of which compare favorably to prior work on single 

subject reconstructions, post-mortem dissection, and tracing studies in non-human primates 

[44] [49] [50]. This method is potentially useful for constructing population-specific brain 

atlases, where it can be used to examine population-wide features of anatomy or serve as a 

reference for mapping bundles in individual subjects.

The software implementation consisted of custom Java code with experiments run on a Sun 

Grid Engine to allow for parallelized processing of simulation and human subject data. The 

fusion algorithm ran on a single Intel 2.8 GHz Core i5 processor and took 30 minutes for the 

80 subject population. The primary computational bottleneck of this step was main memory 

usage, which required 6GB total. If applied to a larger population or with a higher sampling 

resolution, this issue could be addressed by decomposing the co-registered volumes into a 

number of overlapping blocks, performing fusion of each block, and then reconstructing the 

full atlas from the results.

There are a number of limitations and interesting open issues to note. First, we make use of 

tensor-based registration; however, some work has found multi-compartment registration to 
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be beneficial [18] [51] [52]. Note, however, that dm is more of a divergence than a strict 

distance as it is not symmetric, so this may not be suitable for registration, where inverse-

consistency is desirable. Second, it may be beneficial to investigate applications to other 

parametric diffusion models. The bilateral filtering and adaptive model selection techniques 

could be similarly applied to the full multi-tensor framework by substitution of df. The 

kernel regression framework could also be applied to models that incorporate 

microstructural information, such as NODDI [53] and ball-and-rackets [54]. This could be 

accomplished either by extending the proposed divergence measure to include variable 

Watson κ parameters or perhaps by a more general formulation with a Bingham divergence. 

Finally, there is a variety of applications to which this approach could be applied and further 

evaluated. Here we looked at fiber bundle mapping, but this could also be useful for brain 

network construction and visualization for surgical planning and guidance.

The approach is also related to more general image processing with orientation data, which 

touch research areas outside of MRI. Early approaches in directional statistics examined 

methods for dealing with axial data, a term more common in the statistics literature that 

applies equally well to fiber orientations [55]. In computer vision and graphics, filtering [56] 

[57] [58] [59], anisotropic diffusion [60] and bilateral filtering [61] have been developed for 

orientation fields, e.g. in analyzing fingerprints, hair, or textures. In the diffusion MRI 

literature, methods for fiber orientation regularization have also been proposed using 

Markov random fields [62], variational methods [63], and cohelicity [64]. The present work 

may have applications to those other areas, but this paper is limited to applications to 

neuroimaging with diffusion MRI and the ball-and-sticks model.

7. Conclusion

In this paper, we presented and evaluated a model-based kernel regression framework for 

estimating fiber orientation mixtures from model-valued image data. This framework 

generally supports image interpolation, smoothing, and fusion with the ball-and-sticks 

diffusion model and is compatible with scanner protocols with standard clinical field 

strengths, single shells, and low b-values. The kernel regression formulation also allows for 

simple and efficient data-adaptive extensions for model selection and bilateral filtering, and 

these general design of these components may potentially be applied to image processing 

with other multi-compartment parametric models. We experimentally evaluated our 

approach with synthetic data from computational phantoms and in vivo clinical data from 

human subjects. First, we showed our approach can address issues related to compartment 

matching and model selection, and can avoid orientation blurring at bundle boundaries and 

fiber splitting due to noise. The evaluation showed significant reductions in noise-induced 

orientation and volume fraction errors and improved reliability in connectivity mapping. 

Through in vivo data experiments, we tested the practical value of our approach in analyzing 

individual subjects, showing improved scan-rescan reproducibility and reliability of 

quantitative fiber bundle metrics. We then demonstrated the creation of a multi-fiber 

tractography atlas from a population of 80 human subjects. In comparison to single tensor 

atlasing, our results show more complete features of known fiber bundles and include 

reconstructions of lateral projections of the corpus callosum and complex fronto-parietal 

connections of the superior longitudinal fasciculus. This atlas-based approach could be used 
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to either study population-wide features of anatomy or to aid fiber bundle mapping in 

individual subjects.

Acknowledgments

We would like to thank the anonymous reviewers for their constructive comments. This work was supported by the 
Brown Institute for Brain Science Graduate Research Award 2014, NIH/NINDS grant R01 NS052470, NIH/NIMH 
grant R01 MH085604, and NIH grant R01 EB004155.

Appendix

In the above analysis, we employ  (Eq. 7) as a measure of discrepancy between fiber 

orientations. This turns out to have some useful geometric and statistical properties. For 

example, given an orientation v, consider the mapping ϕ(v) = vvT, also known as the 

Veronese-Whitney embedding, the dyadic product, or Knutsson mapping [65] [66] [67]. 

This can be imagined to take points on the sphere to a higher dimensional sphere and to fold 

its antipodes to give ϕ(v) = ϕ(−v). The Euclidean distance under this mapping is then 

equivalent to  up to a scalar factor:  The 

extrinsic mean is then given by μ = ∑i wiϕ(vi), which must be projected to the nearest 

orientation by argminv ‖ϕ(v)−μ‖2. This can be solved in closed form by finding the principal 

eigenvector of μ [66]. This formulation also has a statistical interpretation, as  is equivalent 

to the Bregman divergence between Watson distributions of equal dispersion [68] [27], and 

the weighted average is equivalent to the maximum likelihood estimate of the direction of a 

Watson distribution [69]. These results support prior work suggesting a relationship between 

extrinsic means and maximum likelihood estimates for data in ℝℙn [70].

A connection can also be drawn between df and prior work using Gaussian mixture 

simplification with the Burg matrix divergence, dburg(A, B) = tr(AB−1) − log(det(AB−1)) 

− 3. While dburg cannot be directly applied to the sticks due to their low rank, it can be 

applied to sticks that are approximated by an “inflated” positive definite tensor with δ added 

to the second and third eigenvalues. If this approach is applied to a pair of stick orientations 

a and b to produce inflated tensors Ain f and Bin f, then dburg can be reduced to dburg(Ain f, 

Bin f) = (δ + 1/δ − 2) sin2(θ), given angle θ between a and b. If , then 

, so the use of Gaussian mixture simplification with inflated sticks 

is then equivalent to the “linear” and “max” conditions in the experiments. We ran a 

simulation experiment to numerically verify this and also found the ”inflated stick” Burg 

divergence implementation to take 40 times longer on average.

For multi-fiber analysis, we employ  (Eq. 6) to measure discrepancy between mixtures of 

fiber orientations, and this too has useful geometric and statistical features. The form of dm 

allows the kernel regression estimator in Eq. 8 to be algebraically reduced to the simpler 

form in Eq. 12, which is equivalent to a clustering problem. The first sum-of-squares term 

has a statistical interpretation as hard clustering with a mixture of Watsons [28], and the 

additional regularization term has a statistical interpretation as the small-variance asymptotic 

limit of a Dirichlet process mixture, as in the DP-means algorithm [29]. Taken together, 

these make up the axial DP-means clustering problem in Eq. 12. This is theoretically well-
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grounded because the Watson distribution is an exponential family, and df is the associated 

Bregman divergence [27]. The work of Jiang et al. also demonstrates that the general form 

of Algo. 1 converges, albeit to a local minima [71]. To avoid instability due to local minima, 

we use random restarts with shuffling of the order of the input and take the solution with the 

overall minimum of Eq. 12.
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Highlights

* Develops framework for tractography and atlasing with fiber orientation 

mixtures

* Includes data-adaptive extensions for model selection and bilateral filtering

* Shows improvements in fiber orientation, fraction, count, and connectivity 

metrics

* Shows improvements in reproducibility/reliability of fiber bundle metrics

* Shows reconstruction of complex fiber bundles in population atlas of 80 

subjects
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Figure 1. 
A flowchart illustrating the steps in the proposed method, detailed in Algo. 2. The input is a 

position for estimation and model-valued volumetric data. Then, kernel weights are 

computed from the product of spatial and data-adaptive factors and normalized to sum to 

one. Then, weights are distributed among the fiber compartments and multiplied by volume 

fraction. Finally, the estimated model is found by a clustering-based optimization procedure, 

detailed in Algo. 1.
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Figure 2. 
Example uses of the proposed estimator for interpolation, smoothing, and fusion tasks. 

Slices were taken from average human brain data at the junction of the corpus callosum 

(pink), corona radiata (blue), and cingulum (green). Fibers are colored according to their 

orientation, and thickness encodes volume fraction. The top panel shows interpolation at 

twice the original resolution, demonstrating continuity of both fiber orientations and volume 

fractions. The middle panel shows smoothing to reduce noise-induced angular error. The 
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bottom panel shows fusion of 80 aligned subjects to produce an atlas representing the 

population.
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Figure 3. 
The phantom used in the first experiment in Sec. 5.2. This represents a complex boundary 

between fiber bundles and includes “off-boundary” and “on-boundary” regions-of-interest.
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Figure 4. 
Qualitative results from the first experiment described in Sec. 5.2. The first panel shows the 

ground truth phantom at the boundary voxels. The second panel shows fibers fit after adding 

Rician noise at S NR = 21.5. The third and fourth panels show smoothing results using 

linear (Eq. 4) and bilateral (Eq. 9) kernel weights. The results show that both estimation 

techniques reduce noise-induced angular error; however, adaptive estimation can avoid the 

orientation blurring at the boundary voxels, due to the inclusion of the Km kernel weights.
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Figure 5. 
Results from the first experiment in Sec. 5.2. The labels on the left indicate the region where 

results were aggregated, and each plot shows either orientation or volume fraction error 

rates. The plot titles also show the volume fraction of the compartments (f1 and f2). The top 

two rows show results with SNR from 15 to 25, comparing the noisy, rank-based, linear, and 

adaptive estimation conditions (with hp = 1.5 and hm = 0.5). We see that all methods perform 

well at reducing volume fraction, with rank-based estimation performing slightly better with 

on-boundary fiber fractions. We see that rank-based estimation rates poorly in orientation 
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error, particularly in regions where bundle volume fractions are within 0.05 apart. We also 

see that linear estimation introduces high orientation error in on-boundary voxels, while 

adaptive estimation avoids this issue. By sweeping across the data-adaptive parameter hm, 

we see a local minima in orientation error occurs between 0.3 and 0.5, depending on the 

SNR.
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Figure 6. 
Results from the second experiment in Sec. 5.3 The first panel shows the phantom and 

region-of-interest, and the following three panels show tractography using nearest-neighbor, 

rank-based, and adaptive estimation (SNR = 14). We see that nearest neighbor includes early 

terminations due to high orientation error and compartment count error. We also compare to 

the rank-based approach, which creates many spurious connections due to poor matching of 

compartments in the crossing region. Adaptive estimation can improve both of these issues 

through smoothing and clustering-based compartment matching.
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Figure 7. 
Results from the second experiment in Sec. 5.3. The first panel shows the phantom and 

region-of-interest, and the following three panels show tractography results using nearest 

neighbor interpolation, local-max model selection, and adaptive model selection (Eq. 8). 

This shows how local-max selection can sometimes introduce “fiber splitting” due to noise 

(SNR 16.5 shown). Adaptive selection can reduce this effect, resulting in smoother 

streamline curves and lower orientation and volume fraction errors (see Fig. 8).
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Figure 8. 
Results from the second experiment in Sec. 5.3 using the phantom shown in Fig. 6. 

Evaluation was first performed by measuring voxel-wise orientation error, volume fraction 

error, missing fiber error, extra fiber error (lower is better). Tractography-based evaluation 

was performed to evaluate performance in connectivity mapping using the Dice coefficient 

and fraction of valid connections (higher is better). Several methods for model selection 

were compared including: fixed count, local-max selection, mean selection, and our 

proposed adaptive selection. We also included rank-based estimation and nearest neighbor 
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interpolation to serve as a baseline. The top two rows show performance across noise levels 

from SNR 15 to 25. We see that adaptive estimation provided significantly lower orientation 

error than other methods. Across all noise levels, fixed and local-max selection introduced a 

high volume fraction error and extra fiber error, due to “fiber-splitting”. Adaptive 

performance significantly reduced these errors with a slight increase in missing fiber error. 

We also varied the regularization parameter and plotted with semilog axes, x = log10(1 − λ). 

We found performance to be acceptable between λ = 0.99 and 0.9999, with a tradeoff 

between extra and missing fiber error.
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Figure 9. 
Quantitative results from the third experiment described in Sec. 5.4. Scan-rescan 

reproducibility and reliability were measured for fiber bundle metrics of eight fiber bundles. 

Reproducibility was measured with the coefficient of variation (CV), which gives a 

normalized measure of error across scans. Reliability was measured with the intra-class 

correlation (ICC), which indicates the proportion of total variation that exists between 

subjects. A lower CV and a high ICC are preferable, with an ICC above 0.75 being highly 

reliable. The top row shows reference visualizations of the bundles. The middle row shows 
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results by bundle type, with aggregation across bundle measures and hemisphere. The 

bottom row shows results by bundle measure, with aggregation across bundle type. We 

found linear and adaptive estimation to show an improvement in nearyly all cases by the 

ICC metric and improvement in most cases by the CV metric.
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Figure 10. 
Results from the fourth experiment described in Sec. 5.5, which included the construction of 

a multi-fiber atlas of 80 normal human subjects. Our proposed method was used for 

interpolation and fusion with deformation fields computed by DTI-TK. The top panel (A) 

shows a comparison of major bundles in the standard single-tensor atlas and our proposed 

the multi-fiber atlas. Bundles include the corona radiata (green), inferior longitudinal 

fasciculus (blue), inferior fronto-occipital fasciculus (orange), uncinate fasciculus (pink), 

corpus callosum (red), and the arcuate fasciculus (yellow). We found the multi-fiber atlas 
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included nearly all features found in the single tensor atlas and more complete 

reconstructions of the frontal projections of the arcuate and lateral projections of the corpus 

callosum. The bottom panels show tractography results for complex fiber bundles including 

the lateral projections of the corpus callosum (B) and fronto-parietal connections of the 

superior longitudinal fasciculus I, II, III (C). The detail view in panel B also shows a triple 

crossing inferred at the intersection of the corona radiata, superior longitudinal fasciuculus, 

and corpus callosum. The three portions of the superior longitudinal fasciculus are also 

shown in panels A and C and include crossings with the corona radiata and corpus callosum. 

These reconstructions compare favorably to related work that examined these bundles in 

single human diffusion MRI reconstructions, dissection, and tracing studies in non-human 

primates.
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Figure 11. 
Results from the fourth experiment described in Sec. 5.5, which included the construction of 

a multi-fiber atlas of 80 normal human subjects. The top row shows principal tensor 

orientations overlaid on fractional anisotropy, and the bottom row shows fibers from the 

multi-fiber atlas overlaid on total fiber volume fraction. Fiber tube thickness reflects 

fractional anisotropy and per-fiber volume fraction in the top and bottom rows, respectively. 

The left column (A) shows an axial slice of the brainstem, demonstrating crossing fibers of 

cerebellar and pyramidal tracts. The right column (B) shows a sagittal slice demonstrating 

crossing fibers of the corona radiata and superior longitudinal fasciculus I.
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Table 1

A summary parameters used for estimation, including a range of values found in our evaluation and 

experiments.

Symbol Name Description Range

hp Spatial bandwidth Specifies the size of the region used for estimation 1.0–3.0 mm

hm Data-adaptive bandwidth Specifies the sensitivity to local data structure 0.3–0.6

λ Regularization Specifies how conservative the model selection should be 0.99–0.9999

Kmax Maximum complexity Specifies an upper bound on the number of fiber compartments 2–3
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Algorithm 1

axial DP-means clustering

Input:

  : the input weights and orientations

  λ: the regularization parameter

  Kmax: a maximum number of clusters

Output:

  K̂: estimated number of clusters

  : estimated cluster weights and orientations

/* Initialize */

K̂ ← 1,

while not converged do

  /* Assign cluster labels */

  for l=1 to L do

  for k=1 to K̂ do

  

/* Optionally increment clusters */

if mink Dlk > λ & K̂ < Kmax then

K̂ ← K̂ + 1, v̂K ← vl, πl ← K̂

else

  πl ← argmink Dlk

/* Update cluster centers */

for k=1 to K̂ do

  ŵk ← ∑l wlδ(k, πl)

  

return
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Algorithm 2

fiber orientation mixture estimation

Input:

  p0: the input spatial position for estimation

  M0: the input reference model

  : the local neighborhood of C position/model pairs

  Ni: the number of fibers in the i-th local model

  fij: the volume fraction of the j-th fiber of the i-th local model

  vij: the fiber orientation of the j-th fiber of the i-th local model

  hpos: the spatial positional bandwidth

  hdir : the bilateral data-adaptive bandwidth

  λ: the model complexity regularization parameter

  Kmax: the maximum number of fiber compartments

Output:

  K̂: estimated number of fiber compartments

  : estimated model

/* Compute sum-normalized model weights */

Ksum ← 0

for i=1 to C do

  

  

  Ksum ← Ksum + ki

for i=1 to C do

  ki ← ki/Ksum

/* Compute fiber weights */

L ← 0, Fsum ← 0

for i=1 to C do

  for j=1 to Ni do

  wL ← ki * fij, vL ← vij

  L ← L + 1, Fsum ← Fsum + fij

/* Optimize by clustering with Algo. 1 */

for k=1 to K̂ do

  f̂k ← ŵk * Fsum

return
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