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Abstract

Accurate automated tissue segmentation of premature neonatal magnetic resonance images is a 

crucial task for quantification of brain injury and its impact on early postnatal growth and later 

cognitive development. In such studies it is common for scans to be acquired shortly after birth or 

later during the hospital stay and therefore occur at arbitrary gestational ages during a period of 

rapid developmental change. It is important to be able to segment any of these scans with 

comparable accuracy. Previous work on brain tissue segmentation in premature neonates has 

focused on segmentation at specific ages. Here we look at solving the more general problem using 

adaptations of age specific atlas based methods and evaluate this using a unique manually traced 

database of high resolution images spanning 20 gestational weeks of development. We examine 

the complimentary strengths of age specific atlas-based Expectation-Maximization approaches and 

patch-based methods for this problem and explore the development of two new hybrid techniques, 

patch-based augmentation of Expectation-Maximization with weighted fusion and a spatial 

variability constrained patch search. The former approach seeks to combine the advantages of both 

atlas- and patch-based methods by learning from the performance of the two techniques across the 

brain anatomy at different developmental ages, while the latter technique aims to use anatomical 

variability maps learnt from atlas training data to locally constrain the patch-based search range. 

The proposed approaches were evaluated using leave-one-out cross-validation. Compared with the 
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conventional age specific atlas-based segmentation and direct patch based segmentation, both new 

approaches demonstrate improved accuracy in the automated labeling of cortical gray matter, 

white matter, ventricles and sulcal cortical-spinal fluid regions, while maintaining comparable 

results in deep gray matter.
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Segmentation; MRI; Atlas-based; Patch-based; Expectation-Maximization; Premature Neonates; 
Spatio-temporal

1. Introduction

In the past decades, magnetic resonance (MR) imaging has been an essential tool to study 

human brain anatomy of all developmental stages: fetal [53, 54, 17], neonatal [26, 39, 11, 

51], children [16, 35, 52], adolescents [16, 35, 52, 15] and adults [18]. These studies often 

rely on delineation of different tissue classes to characterize the brain anatomy as a critical 

step before any analysis. However, manual delineation of tissues is both time consuming and 

difficult to reproduce, especially for studies using a large cohort [2, 25, 51]. Thus, an 

automatic tissue labeling technique is crucial for allowing detailed and reproducible 

evaluation of the brain morphometry [26, 25, 36, 43].

Significance

One particular group of subjects - premature neonates - have attracted a great deal of interest 

both clinically and in research [26, 30, 2, 43, 44, 38]. Premature neonates are classed as 

babies who are born at less than 37 gestational weeks (GW) [26, 24, 46]. Even though the 

preterm birth rate in the United States has declined by 11% since 2006, the rate still remains 

high at 11.38% in 2013 [24]. Growing evidence shows that preterm infants are often at a 

higher risk of anatomical abnormalities and accompanying neuro-cognitive deficits, such as 

cerebral palsy [38], periventricular leukomalacia (PVL) [56], ventriculomegaly [28] and 

severe intraventricular hemorrhage (IVH) with periventricular hemorrhagic infarction (PHI) 

[56]. Furthermore, evidence indicates adverse neuro-developmental outcomes later in life 

[46], including neuromotor function [61], behavioral disorders [28], cognitive impairment 

[38, 56]. Therefore, efforts are being made to better characterize early brain development 

[55, 26] and to diagnose neuro-developmental abnormalities as early as possible [28, 7, 32]. 

MR imaging and subsequent analysis of the premature neonatal brain structure provides us 

with a promising route to providing specific markers of brain injury.

Previous Work on Brain Tissue Segmentation

In the past decades, various approaches have been proposed for automated tissue labeling of 

brain MR images [64, 41, 65, 20]. Significant efforts have been made in developing atlas-

based approach [12, 43, 44]. In such methods, an atlas of neonatal brain anatomy is 

generated from manual or semi-automated labeling and used as prior knowledge for 

automated tissue labeling. One of the most powerful and commonly used approaches is the 

atlas-based Expectation-Maximization (EM) tissue labeling method [60, 33, 4, 9]. In such 

approaches, a spatial atlas was constructed from a set of manually delineated MR scans and 
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used to provide the essential spatial information in an EM algorithm, which is based on the 

voxel intensity clustering of MRI[60, 33, 4]. The conventional EM-based tissue labeling 

approach is based on a Gaussian Mixture Model (GMM) of the observed MRI intensities, 

where the intensity values of each tissue class are assumed to have a Gaussian distribution, 

whose parameters can be estimated based on the Maximum Likelihood Estimator (MLE) 

using the EM algorithm [50]. The EM algorithm is dependent on a priori information from a 

spatial prior, due to overlap in MR intensity ranges of different tissue classes [9]. One 

unique example in T1-weighted premature neonatal brain MRI is the similar intensity level 

exhibited by the myelinated white matter and gray matter. Here, without a spatial prior, the 

EM algorithm will be unable to label the tissues based on MR intensity alone. A second 

strength of the atlas-based EM approaches is that they can directly incorporate an MRI 

intensity inhomogeneity model to account for scanner or developmentally induced variation 

of tissue intensity across the imaged field of view [34].

However, errors in aligning new images to the atlas can induce errors that may be correlated 

with changes of interest in the anatomies being studied (e.g. increasing complexity with age 

or the occurrence of lesions and blood clots). To reduce such errors, multi-atlas label fusion 

algorithms were proposed [1, 3, 48]. Label fusion strategies such as Majority Voting (VM) 

and the STAPLE algorithm [59] have been extensively investigated. However, such 

approaches still rely heavily on having manually delineated atlas subjects that closely match 

the subjects being studied. These methods can be limited in cases of more extreme 

developmental variations and often pose challenging registration problems when mapping 

between individual and atlas. Wang et al. [57] improved on the conventional multi-atlas 

label fusion techniques with iteratively updated tissue probability maps, with validation only 

on term-born infants in the first year of life without prematurity. However, such direct label 

fusion methods are difficult to apply in cases of imaging rapid brain growth at random 

developmental stages. For example, to segment a 29 GW scan, a label fusion approach 

would require multiple pre-segmented examples around that gestational age with the same 

tissue contrast. It is not practical to obtain such set of manual segmentations matching any 

gestational age to be segmented. A second limitation of this approach is that it required 

multiple MR contrasts, for which it is difficult to ensure consistent quality during multiple 

acquisitions due to the high probability of motion during unsedated clinical studies.

Alternative studies suggested a patch-based approach, in which local patch-based searches 

can provide accurate labeling of tissues where local MRI intensity alone contains adequate 

information to predict the underlying tissue label [47, 14, 13]. A patch-based approach 

makes use of local similarities between images which were previously developed for non-

local image de-noising problems [8, 31]. The key advantage of this method is that it does not 

require a fine scale mapping from atlas to subject [47], and therefore would demonstrate 

better performance than the conventional atlas-based methods when the subject’s anatomy 

deviates greatly from the anatomies captured in the atlas and this deviation can be 

recognized with only MR intensity patterns. However, the patch-based approach cannot 

handle the cases where tissue classification is highly dependent on the spatial location of the 

voxel, not simply on intensity. For instance, even with carefully defined local search range, 

it can be challenging to differentiate myelinated white matter and cortical grey matter in T1-
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weighted MRI data of developing neonates. Therefore, it is difficult to use the conventional 

patch-based technique alone to produce anatomically correct automated tissue labelings.

Introducing patch-based approaches into other segmentation frameworks, for example, 

probabilistic approaches, has also been proposed and studied. A probabilistic patch-based 

label fusion model for multi-atlas segmentation was first proposed by Bai et al. [6] and 

evaluated on cardiac MR images. Wu et al. [63] and Asman et al. [5] further developed such 

approach for the adult brain MRI and thyroid segmentation task. Initial attempts to apply 

such method on neonatal brain MRIs have been made. Wang et al. [58] evaluated a patch-

driven level sets approach on normal neonatal T1w images over a small age range (41.5 ± 

1.7 GWs) after normal term births, and for only GM and WM classes. No evaluation on 

premature neonatal brain was provided, and thus, could not show any age independence for 

their segmentation accuracy.

Studies also aimed to achieve a more detailed automatic labeling of brain tissues and 

regions. Gousia et al.[19] evaluated and compared an atlas-based and a label fusion-based 

approach to automatically segment neonatal brain MR images at term age into 50 regions. 

Makropoulos et al. [37] further pushed ahead to a wider age range using an Expectation-

Maximization (EM)-based framework and showed promising results. However, brain 

parcellation remains a different problem than tissue segmentation and they did not evaluate 

the methods against manual labeling in scans at any gestational ages.

Challenges of Tissue Labeling in Premature Neonatal Imaging

One of the key challenges in automated analysis of premature neonatal MR data is the rapid 

anatomical changes with age [36, 43]. The age-dependent differences that can be observed 

in MR scans include the size and shape of the brain due to brain growth, as well as the 

changes in MR intensity contrast caused by brain maturation [21]. Previous work on 

neonatal brain tissue segmentation mainly focused on segmentation at specific ages, for 

example, the NeoBrainS12 challenge [29]. In our work, an additional dimension of time is 

incorporated into the atlas and a spatio-temporal atlas can be constructed from a set of 

manually delineated MRIs covering the age range of interest as in [21, 23, 36]. For each new 

MR scan to be segmented, an age-matched anatomy can be synthesized from the spatio-

temporal atlas and used to provide the essential spatial prior in the EM algorithm.

Another key challenge in automated delineation of brain tissues in premature neonatal MRIs 

is the increasing inter-subject variation with age or the occurrence of blood clots and 

associated tissue abnormalities. Although the addition of a parametrized spatio-temporal 

atlas can provide a more age-specific and thus accurate tissue prior [21], the method can still 

fail to accurately segment the MRI anatomies that exhibit large anatomical variations that 

are not well captured by an average tissue atlas derived from a training dataset [50]. 

Especially in clinical studies of brain injuries occurring from preterm birth, it is a challenge 

to completely capture a model of all possible variations within a new subject using a finite 

training dataset. If the individual MRI to be segmented differs from all atlas subjects, then 

the accuracy of the prior is dependent on the estimation of a non-rigid mapping to align the 

new individual anatomy to the atlas prior [36]. However, this problem cannot be simply 

solved using a finer scale alignment of the subject and atlas MRI intensities. A very fine 
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scale mapping may resolve normal geometric differences between the average prior and the 

subject, but may also incorrectly adapt and distort fundamental pathological differences that 

should be preserved and labeled. For example, when regional tissue contrast is modified by 

brain injury, fine scale registration may simply remove or shrink these differences so that 

they better match the atlas prior anatomy, rather than preserving the geometry of the 

differences, such as lesions, damaged tissues or regions of high contrast blood clot and their 

location in the surrounding normal anatomy. This problem becomes particularly challenging 

in the premature neonates, because of the extreme shape variation in normal tissue 

boundaries (e.g. ventricle size and shape as in Fig. 1) that must be aligned to the statistical 

average, and the significant variation in local tissue integrity and intensity (e.g. abnormal 

white matter intensity as in Fig. 1) that need to be preserved for segmentation. Cardoso et al. 

proposed an adaptive MAP-EM-based segmentation algorithm especially for such cases in 

preterm neonates and showed satisfactory results in cases of ventriculomegaly [10]. 

However, the age range covered by their dataset was limited to 35.7 to 44.3 GWs (40.4 ± 

1.74 GWs) which corresponds to the time when the premature neonates are recovering from 

earlier injuries, and did not provide an evaluation on cases of with more severe anatomical 

variations in images acquired shortly after birth.

Proposed Approach And Contributions

In this work, we propose two different approaches that integrate and make the best use of 

both an accurate parameterized atlas prior and a patch-based local search in the EM 

segmentation framework. The first approach i) learns the location of greatest errors in the 

atlas-based tissue segmentation based on training data, and ii) adapts the priors in these 

locations to make use of priors derived from a local patch-based dictionary search of the 

atlas data. The second approach a) learns the amount of spatial variability at each location 

from carefully aligned atlas training data, and b) uses it to guide the patch-based local search 

carried out at each voxel. Both hybrid approaches aim to provide a more robust prior that is 

derived from both an anatomical atlas average and a local tissue match for the EM 

segmentation. This allows a balance between the accuracy of mapping between subject 

anatomy and atlas, and the intensity similarity assumptions for patch searches in different 

regions of the brain. The proposed approaches can be generalized as a patch-based 

augmentation of EM (PBAEM) via weighted fusion (WF) or spatial variability search (SVS) 

with specific application to parametric atlas-based segmentation. The proposed approaches 

were evaluated on a set of 32 MR brain scans of premature neonates with ages ranging from 

27.3 to 46.4 gestational weeks (GW) using leave-one-out cross-validation. We show that 

such methods can produce more accurate automated tissue labeling, especially in cases of 

large inter-subject anatomical variation, compared to either the conventional atlas-based and 

patch-based approaches. This work is a significant development on our preliminary 

methodology presented at SPIE Medical Imaging 2014 [36] by adding adapted weighting for 

PBAEM-WF and a newly proposed PBAEM-SVS approach.

The contributions of this work are threefold.

• We propose novel methods to achieve automatic segmentation of premature 

neonatal MRIs with higher accuracy and age consistency at any given age than 

conventional atlas- and patch- based methods after premature birth, instead of a 
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single target age. This is especially important in the clinical settings since clinical 

neonatal MR studies may be acquired at any random time point based on diagnostic 

needs.

• Our work presents the most extensive quantitative validation against whole brain 

manual tissue labelings of different algorithms over the largest age range in 

premature neonatal MRI studies.

• The atlas in this work, constructed from 32 manually traced scans, is the most 

complete premature neonatal brain tissue atlas constructed from manual labeling 

and covers the widest age range among published datasets of 27.2 to 46.4 GWs.

In the next sections, we describe both approaches in detail and their validation on a set of 

premature neonatal brain MR images with a high level of anatomical variation.

2. Methods

2.1. Overview

In this section, we first briefly review the EM-based automatic tissue segmentation 

framework and define the “running prior” which is the focus of our work. Next, we 

introduce the process to synthesize atlas-based tissue probabilities from the spatio-temporal 

atlas, followed by the computation of patch-based tissue probability. Then we demonstrate 

how we spatially adapt the tissue probability prior using both the atlas- and patch-based 

tissue probability. Finally, we summarize the entire PBAEM framework.

2.2. Preliminaries & EM-based Tissue Segmentation Algorithm

Let v be the voxel index, x = [x[1], x[2], x[3]]T be the voxel coordinates of voxel v, Iv ≡ I(x) 

be the intensity of voxel v, and ℐv ≡ ln Iv be the log-transformed intensity. Following [23], 

we model the log-transformed intensity ℐ instead of the original intensity I with GMM to 

increase robustness to outliers and achieve better performance. K is the number of tissue 

classes we aim to segment the image into, and k ∈ [1,K] is the current tissue class. μk and 

are the mean and variance of tissue class k in the log-transformed space of the GMM model. 

 is the Gaussian probability density of log-transformed intensity ℐv at voxel v 

given mean μk and variance . ℘(k) stands for the prior tissue probability of class k and 

p(ℐv |k) is the posterior tissue probability of class k given the log-transformed voxel intensity 

ℐv. The EM algorithm consists of an initialization step and an iterative process to estimate 

the GMM parameters. To distinguish the priors using in different steps, the initialization 

prior is denoted as ℘init(k). The prior which is used in the iterations is referred to as the 

“running prior” and denoted as ℘run(k). The superscript of (0) indicates the variable values 

in the initialization step, and superscript (t) indicates the variable values at the t-th iteration 

of EM.

In addition, to account for MRI signal variations (i.e. bias fields), a polynomial model of the 

bias field is integrated in the EM iterative framework [23, 34]. The degree of the polynomial 

model gradually increases from zero to three upon EM convergence [23]. We assume a 

standard multiplicative bias model [34] and correct for the bias field based on current 
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estimate of the GMM in each iteration [23, 34]. The log-transformed bias field at t-th 

iteration at voxel v is denoted as ℬv. Thus, the bias-corrected log-transformed MR intensity 

 at voxel v is given by:

(1)

Given the definitions above, the EM-based tissue segmentation algorithm can be expressed 

by Algorithm 1. Prior(k) generally represents the tissue probability prior of tissue class k 

from any source. Experimentally, we omit the neighborhood constraint on  to obtain 

superior performance in older subjects. The initialization prior and running prior are the 

focus of our work and are explained in details in the following subsections.

Algorithm 1

EM-based Segmentation Algorithm

2.3. Atlas-based Estimation of Tissue Probability

In this subsection, we first explain the construction of a spatio-temporal atlas, followed by 

the steps to synthesize age-specific atlas-based tissue probability. Here we define three 

spaces (Figure 2): the space of spatio-temporal atlas is referred to as the reference (REF) 
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space; the space of synthesized age-matched anatomy is referred to as the age-specific (AS) 

space; and the space of the new subject to be segmented is denoted as the subject (SUBJ) 

space. For the remainder of the paper, the MR intensity images I and tissue probability maps 

P will be denoted in accordance to the following rule: the superscript indicates the source of 

the image, and the subscript indicates the space which the image is in. The subscript of 

transformation T indicates the two spaces between which the transformation applies.

In the conventional task of tissue labeling for adult brain images, a spatial atlas is 

constructed from multiple manually traced training datasets and provides essential spatial 

information to distinguish tissue classes with similar intensity levels. However, at this stage 

of life, premature neonates experience rapid anatomical changes due to brain development. 

Therefore, the intensity and location of tissue classes can be highly dependent on age. To 

incorporate temporal information in the atlas, we use a parameterized spatio-temporal atlas 

approach as proposed by [21]. After a symmetric groupwise alignment of all atlas datasets, 

we bring all the individual anatomy to a common space via a set of displacement fields that 

capture the difference of individual anatomical locations of each point from the average 

anatomy. These displacement fields are denoted as TREF2SUBJ. Temporal models of global 

linear transformation parameters and local displacement fields, MR intensity and tissue 

probably are fitted to this data. To obtain the atlas-based estimation of the tissue probability 

for a new subject MR scan, firstly, we synthesize an age-matched global and local 

displacement field TREF2AS, MR intensity template  and a tissue probability map 

 from the spatio-temporal atlas to correspond to the new scan. Note that here 

TREF2AS essentially is the composition of a global linear transformation and a local 

deformation field: TREF2AS = T̃
REF2AS ∘ T̂

REF2AS where T̃
REF2AS is the global linear 

transformation and T̂
REF2AS is the local warp field. Secondly,  is used to bring 

 and  from the reference space to the AS space as  and 

(equivalent for P):

(2)

Thirdly, the MR image of the new subject  is linearly registered to the age-specific 

MR  using 12 parameters (including translation, rotation, scaling and skewness) 

followed by a non-rigid registration to obtain TAS2SUBJ as in previous fetal brain 

segmentation [49, 21]. In this step, a mask is used to exclude the non-brain portions in the 

MR scan such as neck, nose etc. Also note that here we have: TAS2SUBJ = T̃
AS2SUBJ ∘ 

T ̂
AS2SUBJ. Based on the inverse of the estimated spatial transformation , we map the 

age-specific MR template and age-specific tissue probability map into the space of the new 

subject MRI. We denote this subject-space age-specific MR template as  and the 

subject-space age-specific tissue probability map as .
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(3)

which is equivalent for P. In fact,  is the resulting atlas-based estimation of tissue 

probability for the new subject scan. In the atlas-based segmentation approach [23], 

is used as a source of spatially varying priors in the EM algorithm. Thus, in the EM 

segmentation algorithm with only an atlas-based prior , Eq. 2 in Algorithm 1 should 

be replaced with:

(4)

and Eq. 9 in Algorithm 1 is replaced with:

(5)

2.4. Patch-based Estimation of Tissue Probability

Following the framework of previous patch-based segmentation approaches [47, 14, 13], for 

a given location in the subject anatomy, we carry out a local search of a reference dictionary 

image for feasible matches to the observed region of subject anatomy to be labeled. Unlike 

patch-based segmentation of adults [47, 14, 13], we do not simply search a labelled subject 

anatomy textbook matching the subject, instead we search the age-specific estimate for that 

scan generated from the atlas data subjects. This is important in studies of rapidly 

developing brain anatomy where a single age representative matched atlas subject may not 

exist for a new MRI study, and it is more appropriate to search a model based representative 

average template synthesized for that age. This search is carried out across the aligned age-

specific MR template (i.e. ) within a given search distance of the voxel to be 

labelled. The search range is assigned as a ratio of estimated total tissue volume to avoid any 

bias in search neighborhood size due to brain volume differences across ages. In order to 

eliminate differences in global contrast between  and , we run a first-round 

atlas-based age-specific EM segmentation to obtain the bias-corrected MR image. We 

further scale its intensity so that the mean intensities within the brain between  and 

 are the same. A weight w(u, v) between the patch to be labeled Hv centered at voxel 

v in  and each patch  in the search neighborhood N(v) centered at voxel u in 

 is computed as [47, 14, 13]:

(6)

where n is the number of voxels in a 3-D patch; ε is the standard deviation of the noise and β 

is the smoothing parameter. In this manner, the computed weight of each sample is only 

driven by the similarity of the intensity between the two patches in the MR to be segmented 
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and the subject-space age-specific MR. Unlike a direct patch labeling scheme as in previous 

patch-based approaches[47, 14, 13], the proposed approach extracts the best tissue 

probability estimate for each class k from the dictionary image  instead of the best 

label estimate for use in the EM optimization. A patch-based tissue probability for each 

possible patch is computed by a fusion of weighted tissue probabilities of patches within the 

defined search neighborhood [47, 14, 13]:

(7)

where  is the computed patch-based tissue probability (unnormalized) of class 

k given voxel intensity Iv. Figure 3 illustrates the patch-based local search.

In order to ensure we have a probability estimate at each voxel, such that 

, we normalize the estimates at each voxel:

(8)

where  is the normalized patch-based tissue probability of class k given voxel 

intensity Iv. Using this definition, voxels with similar surrounding neighborhoods are 

considered to have similar tissue probabilities [13].

To reduce computational time required for voxel by voxel patch evaluation during larger 

searches, we exclude patches centered outside the brain. Pre-computation of local image 

statistics in the reference  and subject MRI is carried out to allow a more efficient 

and accurate pre-exclusion [13] of patch matches. In our study, this pre-selection procedure 

is based on the structural similarity measure (SSIM) [13, 14].

In the EM segmentation algorithm using only a patch-based prior , Eq. 2 in 

Algorithm 1 is simply replaced by:

(9)

and Eq. 9 in Algorithm 1 is finally replaced with:

(10)

2.5. Spatially Adapted Tissue Probability Prior

In the following two subsections, we subsequently describe two proposed ways to integrate 

the atlas-based tissue probability with a local patch-based search.

Liu et al. Page 10

Neuroimage. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.5.1. Weighted Fusion (WF) of Tissue Probabilities—Using the framework 

described above, we have two alternative probabilities for tissues at each location in the 

MRI scan to be segmented. In PBAEM, we combine these two estimates into a single 

weighted tissue probability for each voxel to provide an improved initial estimate for use as 

a running prior in the EM algorithm. For the weighting to be optimal, we account for the 

“Patch Contribution” (PC) to quantify how much new information is introduced by adding 

the patch-based estimates of tissue probability as well as its accuracy and reliability. Also, 

we implement a weighting for “Voxel Label Accuracy” (VLA) to quantify the overall 

performance of each tissue prior within the EM algorithm. To capture the age-specific 

feature of the spatially varying PC and VLA map, we adopted same approach from the 

spatio-temporal atlas to construct a spatio-temporal model of both PC and VLA maps, and 

synthesize age-specific PC and VLA maps for each new subject to be segmented. In the 

following paragraphs, details of learning these weightings are given.

Age-Specific Patch Contribution (PC) Map: The contribution of the patch-based approach 

into the combined tissue probability depends on the intensity uniqueness on two levels: 

intensity structure within a patch itself and the patch similarity within the search 

neighborhood. Consider cases when a voxel has a similar MR intensity to its neighboring 

voxels or a patch has a similar structure to its neighboring patches. If the voxels or patches 

belong to the same tissue class, then a patch-based local search will yield exactly the atlas-

based tissue probability as the neighbours are structurally equivalent. If these constant 

voxels or patches belong to different tissue classes (e.g. at DGM/WM boundaries), then the 

patch-based search does not help in distinguishing the tissue. Thus, measurements that 

characterize intensity uniqueness within the patch and search neighborhood are essential to 

quantify the actual contribution of patch-based local search. We characterize the patch 

contribution per voxel in two ways: patch uniqueness (PU) and neighborhood uniqueness 

(NU). PU measures the intensity variance given image noise within the patch under 

consideration, while NU describes how much on average the intensities are different 

between the patch under consideration and all patches within its search neighborhood.

Here we derive PU as an example: The measured MR intensity of a voxel can be seen as its 

true value plus additive noise. The probability of two voxels’ (v and v′) actual intensities Īv 

and Īv′ being the same given their measured intensities Iv and Iv′ and image noise variance σ2 

is:

(11)

The probability of n voxels in a patch Hv centered at voxel v having the same true intensities 

as voxel v is:
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(12)

The n-th root is taken to eliminate any bias caused by the different number of voxels in a 

patch, especially in patches at brain boundary. Therefore, the patch uniqueness, which is the 

probability of n voxels in a patch having different intensities as the center voxel, is defined 

as:

(13)

In the same manner, we define neighborhood uniqueness NU as:

(14)

where N is the number of patches within the search neighborhood of voxel i.

The patch contribution (PC) at each voxel is then computed as the product of PU and NU:

(15)

To eliminate the intensity variation across the image as well as between subjects, all 

computations is conducted on bias-corrected MRIs which are also globally intensity 

normalized to match the intensity of the age specific atlas MRI values. To construct a spatio-

temporal model of PC maps across the age range, we follow the approach used for temporal 

modeling of tissue probabilities [21]. LogOdds representation of probabilities [21, 42] is 

adopted to ensure that the resulting model estimates of PC values are in the range of valid 

probabilities. The probabilities are then modeled in the LogOdds space using a polynomial 

model of designated degree [21].

Age-Specific Voxel Label Accuracy (VLA) Map: From the perspective of the overall 

performances of the two tissue probabilities used as running priors in the EM labeling, we 

use our training data to learn where each estimate provides a more useful EM prior. To do 

this we evaluate the results of EM segmentation using the two different priors on the training 

data. Then we evaluate overall performance of each at every voxel using a leave-one-out 

cross-validation against the manual tracing for each subject in the training dataset. From this 

we create an overall Voxel Label Accuracy (VLA) map for both the atlas- and patch-based 

tissue probabilities. The VLA of each voxel is defined as follows:
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(16)

where V LAa(v) and V LAp(v) are the VLA of voxel i of atlas- and patch- based tissue 

probability respectively; ca(v) and cp(v) are the number of scans that are labeled correctly 

via EM segmentation using atlas- and patch-based priors respectively; t(v) is the total 

number of scans segmented at voxel i. We follow the same approach to construct a temporal 

model of VLA maps in the LogOdds space and synthesize age-specific VLA maps for each 

new subject scan. These two maps allow us to quantify of the accuracy level of two tissue 

probabilities for each voxel in the MR image to be segmented.

Spatially Weighted Tissue Probability: For tissue class k given voxel intensity Iv for voxel 

i, the combined tissue probability is the weighted average of atlas-based tissue probability 

Pa(k | Iv) and the patch-based tissue probability Pp(k | Iv):

(17)

2.5.2. Spatial Variability Search (SVS)—A single spatio-temporal atlas can only 

capture the average age-dependent changes in anatomy over time. However, scans of 

subjects at the similar ages exhibit individual variability, especially in the depth and location 

of cortical foldings that cannot be accounted for easily without also loosing abnormal 

features such as lesions and blood clots. In PBAEM, the purpose of introducing in the patch-

based local search is to reduce the segmentation error caused by residual differences 

between the age specific atlas and the individual to be segmented. An alternative way of 

examining the problem of combining methods is directly in terms of this spatial variability: 

If there is no individual variability in the location of an anatomical point after global linear 

registration, the patch search range should be over few (or zero) neighbors and should 

therefore return the same probability as a direct age specific atlas prior. If we know that 

individual anatomies are varied in their spatial configuration at a given location then we 

would expect to use a wider patch search range. Thus, an alternative approach to combining 

the atlas and patch priors is by learning how to adapt the patch search range for given 

locations and ages. We can again do this from the atlas data by constructing an accurately 

aligned set of subjects (using the careful manual segmentations) and modeling how spatial 

variation in the positioning of anatomical locations varies with age.

Temporal Modeling of Variability: We define the minimum deformation space of the 

average anatomy as reference space. The groupwise alignment of the atlas data is 

constructed such that the the mean displacement around each point is zero. In constructing a 

spatio temporal atlas of these displacements as in [21] we create an average growth 

trajectory that can be used to synthesize an average estimate of location of each point for 

any given age. Here we consider the residual variability in the displacements across the atlas 

group around the average displacement trajectory as capturing information about individual 

anatomical variability.
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For each subject in the atlas, for voxel v with voxel coordinate x, we can calculate the 

absolute difference R̂
v between the age specific displacement field for that age TREF2AS(x) 

and the actual field TREF2SUBJ(x) that was estimated to map that individual to the average 

anatomy:

(18)

Then we follow the same approach of temporal modeling as in [21], but fit a linear model to 

the residual displacement R̂(x) between the age specific displacements and the actual 

displacements for each subject. This model then allows us to synthesize an age-specific error 

map in addition to the mean shape, intensity and tissue probability maps used in EM 

segmentation. We define this age-matched error map as the variability map, which captures 

the inter-subject variation for the given age, and denote its value with voxel coordinates x by 

R(x).

Constraining the Patch Search Range: This locally learnt age-specific variability map can 

then be used to define the patch-based local search range. Essentially, for each voxel, the 

variability in three image axis directions gives us a 3D ellipsoid centered at the voxel under 

investigation. This ellipsoid defines the search range for its center voxel. Noted that the 

synthesized age-specific variability map is in the reference space. Therefore, we first 

transform the voxel location in the new subject space into the reference space.

For voxel v in , transformation of its spatial location xSUBJ to the reference anatomy 

space is done in two steps. Firstly, we transform the voxel coordinates from the new subject 

space to the AS space:

(19)

Then we transform the voxel coordinates from the AS space into the reference space:

(20)

After transforming voxel locations, we determine that, in the reference space, voxel v′ with 

fractional coordinate x′REF is in the search range of voxel v with fractional coordinate xREF 

if the following inequality is satisfied:

(21)

where a is the search range threshold that can be adjusted experimentally for the best 

performance (Figure 4).

In this way, in regions with less variation, such as DGM and internal WM away from the 

cortex, a spatial variability-defined search range is restricted. In extreme cases, when 
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variability is minimal, no search will be conducted and the patch-based tissue probability 

will be the same as the atlas-based tissue probability at that voxel. Conversely, points in the 

cortex at later gestational ages will have high between-subject variability and the search is 

required to include a certain fraction of expected locations of the cortex after global linear 

registration. Thus, the range will be larger.

2.6. Patch-based Augmentation of EM (PBAEM) Framework

In the proposed approach, we combine the desirable properties of both atlas- and patch-

based approaches to provide an improved prior with which to initiate EM labeling of a new 

MRI scan. Experimentally, we found that best automated tissue labeling performance was 

achieved using patch-based tissue probability as the initialization prior and the combined 

tissue probability as the running prior in the EM algorithm. Therefore, in the initialization 

step, Eq. 2 in Algorithm 1 should be replaced with:

(22)

In the iterations, Eq. 9 in Algorithm 1 should be replaced with:

(23)

3. Experiments and Validation

MR Imaging Protocol & Image Preprocessing

Premature neonatal imaging was performed by our collaborators at University of British 

Columbia in Vancouver, Canada using a 1.5T Siemens scanner with a dedicated neonatal 

head coil. For each scan, a T1-weighted image was acquired using a 3D FLASH sequence 

with imaging parameters TR = 36ms, TE = 9.2ms and a voxel resolution of 1.04 × 1.04 × 

1mm3. Then, to create a reference atlas and test set, each MR image was manually 

segmented into six cerebral tissue regions: gray matter (GM), white matter (WM), ventricles 

(VENT), deep gray matter (DGM), sulcal CSF (sCSF) and non-brain background region 

(BG) using the rview segmentation tool (http://rview.colin-studholme.net). The resulting 

tissue label maps were used to create the spatio-temporal atlas and also served as reference 

segmentation for accuracy mapping and validation.

Population

The test dataset used for validation consists of 32 T1-weighted brain MR scans of premature 

neonatal brains. The birth ages range from 24.9 to 31.4 GWs (27.9 ± 2.3 GWs), and the ages 

at scan range from 27.3 to 46.4 GWs (35.0 ± 5.6 GWs). The male to female ratio of 32 

training subjects is 16/16. Our dataset is one of the most long-standing manually-traced 

premature neonatal brain MRI dataset dating back to 2008 [46].

3.1. Atlas Registration and Model Construction

To create an accurately aligned set of images in the common reference space REF a 

symmetric demons registration was employed to form a minimum distance shape average 
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between all the brain anatomies. This was used to align the data driven by a multi-channel 

alignment of manually labeled tissue maps and also manually labeled lobe regions marked 

on each of the atlas subject MRI scans used rather than the MRI values alone to provide 

improved accuracy and anatomical consistency. These transformation were then used to 

bring each of the subject MRI scans into the REF space. To build the parameteric atlas over 

the large developmental range, instead of a quadratic model used previously [21, 36], 

different degrees of temporal fitting were tested on the age range and a third order model 

was employed for each of the components.

Parameter and Model Selection

We experimentally searched for the best parameter settings for the patch search and 

algorithmic models. First, the temporal models using linear, quadratic and cubic fitting were 

tested. Then, in PBAEM-WF, we aimed to use the same patch search parameters for all 

tissue classes for the patch-based local search. To select the optimal parameters, a patch size 

of 3 × 3 × 3 voxels and 5×5×5 voxels, and a search neighborhood size ratio from 0.0005 to 

0.015 of the total brain volume were tested. In PBAEM-SVS, a locally defined search range 

from 1.0 to 3.0 times of variability were tested. Results of these are detailed below.

Validation

To evaluate the overall performance of the segmentation approach against the conventional 

age-specific EM, experiments were performed using a leave-one-out cross-validation, as 

dividing the 32 manually traced scans into separate training and test data would result in an 

inadequate number of scans to accurately capture the growth over the extended age range 

studied here. Each scan was segmented with the spatio-temporal atlas from the other 31 

subject scans. The oldest scan (46.4 GW) was excluded from segmentation performance 

evaluation because its age lay significantly beyond the maximum age of the remaining atlas 

subjects. Thus, the atlas constructed from the remaining younger subjects could not 

adequately represent its complex anatomy. Conversely, near the younger age limit, we have 

more scans in our atlas cohort that allows us to carry out a meaningful evaluation of the 

segmentation performance. To avoid excessive computations, the PC and VLA models were 

constructed from all training scans. Since the PC map does not depend on the spatio-

temporal atlas, the PC model used all 32 training scans. However, the VLA model could 

only be constructed from 31 training scans due to the exclusion of the oldest scan.The 

comparison of overall performance between the conventional atlas-based segmentation 

approach and PBAEM was made using 31 sets of automated and manual tissue labeling. To 

quantify the performance of the automatic segmentation, the Dice Similarity Coefficient 

(DSC), Hausdorff distance (HD) [27] and mean distance (MD) of the tissue volume between 

manual and automatic tissue labellings were used. Detailed distance measurements of GM 

and WM divided by 8 lobes (Frontal Left/Right, Temporal Left/Right, Parietal Left/Right 

and Occipital Left/Right) were also computed. To challenge the validity of proposed 

methods without using computationally expensive leave-on-out cross-validation for PC and 

VLA maps, experiments on non-atlas scans(which are not used in the atlas training dataset 

consisting of 32 scans) were conducted. We present the results in the following section.
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4. Results

In this section, we first show a collective comparison of DSC by using five different 

methods (Table 1), which will be referred to later in the section. We include the 

conventional atlas-based EM segmentation (Column 2) and direct patch-based labeling 

technique (Column 3) as baseline methods. For the direct patch-based technique, due to the 

fact that it is extremely difficult to obtain a set of manually labeled textbook images at each 

age, we adopted the age-specific average which was synthesized from the spatio-temporal 

atlas as the reference. An EM segmentation with patch-based tissue probability alone as 

prior (Column 4) was also included in the comparison as an improvement on the direct 

patch-based segmentation to provide more insight on patch-based tissue probability 

estimation. In the following subsections, we discuss in detail the results of PBAEM-WF, 

followed by results of PBAEM-SVS.

4.1. PBAEM-WF

4.1.1. Parameter and Model Selection—We first experimented with temporal models 

of atlas, PC and VLA maps. A cubic temporal model of local deformation, MR intensities 

and tissue probabilities showed superior performance over the quadratic model. While, 

quadratic and cubic temporal models of PC and VLA maps showed comparable results. For 

the sake of consistency, we adopted the cubic model for all further experiments.

Then, we experimented with different patch search parameters to achieve the optimal 

performance of the PBAEM approach. To determine parameter settings to optimize 

performance, we assessed the average DSC of PBAEM automatic labeling of all 31 testing 

scans using patch-based tissue probabilities computed with different sets of parameters. A 

patch size of 3 × 3 × 3 voxels and 5 × 5 × 5 voxels, and a search neighborhood size ratio 

from 0.0005 to 0.015 of total brain volume were explored experimentally. Figure 5 shows 

the average DSC obtained using these sets of parameters. The average DSC stabilizes 

around a search neighborhood ratio of 0.003, regardless of the patch size. We chose the 

optimal search range ratio of 0.0025 allowing for optimal performance in cortical regions 

(e.g. GM, sCSF) and WM, while limiting the decrease of DSC in DGM. A patch size of 3 ×3 

×3 voxels or 5 ×5 ×5 voxels showed comparable results in GM, WM, VENT and DGM at 

search neighborhood ratio of 0.0025. However, given the different performances on the 

sCSF class, we chose a patch size of 3 × 3 × 3 voxels to allow more improvement in sCSF. 

Therefore, the final parameters for the following experiments and results are a patch size of 

3 × 3 × 3 voxels and a search neighborhood ratio of 0.0025. This corresponds to about 9 × 9 

× 9 in younger brains and about 13 × 13 × 13 in older brains.

4.1.2. Atlas- and Patch-based Estimation of Tissue Probability—For each 

manually segmented subject, we constructed a corresponding spatio-temporal atlas using the 

other 31 scans in the dataset and synthesized A-TPM. Next, we transformed the A-TPM into 

the space of the scan to be segmented to obtain the . The first row in Figure 6 gives 

an example of s of 5 tissue classes for one scan. The patch-based tissue probability 

was computed using the following parameters: a patch size of 3 × 3 × 3 voxels and a search 

neighborhood ratio of 0.0025. The second row of Figure 6 presents an example of patch-

Liu et al. Page 17

Neuroimage. Author manuscript; available in PMC 2017 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based tissue probability map of 5 tissue classes for one scan. Compared to the atlas-based 

tissue probabilities, the less defined tissue boundaries of patch-based tissue probabilities 

would allow the EM labeling more freedom to adapt to unseen anatomies in the new subject 

to be segmented. Figures 7, 8 and 9 illustrate the complementary strengths of these two 

tissue probabilities. The patch-based prior has superior performance over the atlas-based 

prior in cases of normal inter-subject variations in GM as shown in Figure 7. This is because 

each subject’s unique cortical folding in GM cannot be fully captured by the atlas 

constructed from only a limited set of scans. Figure 8 shows a scan of a subject with 

ventriculomegaly, where the abnormally enlarged ventricles were not captured in the atlas 

constructed from healthy subjects. Therefore, the atlas-based approach fails to accurately 

estimate the tissue probability of the ventricular regions. However, the clear boundary of the 

ventricles allowed the patch-based approach to generate a more anatomically viable tissue 

probability estimation in this case. In tissue classes without clear boundaries or less variant 

inter-subject intensity differences, such as DGM as shown in Figure 9, atlas-based tissue 

probability estimation demonstrated higher accuracy than patch-based tissue probability.

4.1.3. Spatially Adapted Tissue Probability Prior Age-Specific Spatially 
Varying PC Map—The PC maps in Figure 10 demonstrate the additional information that 

is introduced by the patch-based search. In cortical regions (e.g. sCSF/GM boundaries and 

GM/WM boundaries), the uniqueness of MR intensities of different tissue regions is high. 

Therefore, the intensity-based local patch search can better distinguish between tissues. This 

is reflected in the high PC values in these regions. In contrast, at WM/DGM boundaries 

where there is low MR intensity contrast, the patch based search could not reliably separate 

WM and DGM. The lower PC values here reflects the decreased reliability and utility of the 

patch-based search. The PC has its lowest value inside uniform regions, such as inside WM 

and DGM, where the patch-based tissue probabilities, by definition, are the same as the 

atlas-based tissue probabilities. Therefore, little additional information can be introduced by 

incorporating the patch-based search.

Age-Specific Spatially Varying VLA Map: The VLA maps in Figure 11 illustrate the 

complementary strengths of atlas- and patch-based tissue probability estimates. We can see 

that at GM-WM boundaries, the patch-based tissue probabilities are more accurate (shown 

as higher intensity in the VLA map) compared to the atlas-based tissue probabilities, while 

at DGM-WM boundaries, they are less accurate. The patch-based estimates tend to be more 

accurate where there is a clear tissue boundary or the inter-subject variation is large, such as 

GM, WM, VENT and sCSF. In tissue classes like DGM whose boundary does not have high 

intensity contrast, or where little inter-subject variation is present, atlas-based estimation of 

tissue probability tends to be more accurate. VLA maps succeed in measuring these 

differences in accuracy levels on a voxel basis, allowing us to optimally combine the two 

tissue probabilities at a voxel level.

Patch-based Augmented Prior: Figure 6 compares the spatially adapted tissue probability 

(bottom row) with the atlas- (top row) and patch-based (middle row) tissue probability map 

of 5 tissue classes of one subject. We show that the patch-based augmentation of atlas-based 

tissue probabilities takes advantage of the complimentary strengths of both the atlas-based 
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and the patch-based methods, improving accuracy in GM, WM, VENT and sCSF compared 

to atlas-based TP and in DGM compared to patch-based TP.

4.1.4. Comparison with Conventional Segmentation Techniques—Average DSCs 

for 5 tissue classes of the 31 scans were computed and compared among using atlas-, patch-

based and PBAEM prior in the EM algorithm and a baseline direct patch-based 

segmentation. Column 2 and 5 in Table 1 shows the comparison of average DSCs between 

the conventional atlas-based EM segmentation and the PBAEM approach. On average, the 

PBAEM approach significantly (p < 0.05) improved the segmentation accuracy in GM, 

WM, VENT and sCSF compared to the conventional atlas-based EM segmentation. 

Although we see a significant (p < 0.05) decrease in accuracy in the DGM, the amount of 

decrease is less that 1%. This was due to the fact that our PBAEM-based method improves 

the automated segmentation for tissues with high boundary contrast and large inter-subject 

intensity variation. However, the boundaries of DGM are less distinguishable and inter-

subject intensities less variant than GM, WM, VENT and sCSF.

Figure 12 plots individual DSCs with age of five tissue classes. For most subjects, we can 

see an significant improvement in DSC in GM (26/31), WM (15/31), VENT (23/31) and 

sCSF (31/31). In addition, a trend of decreasing segmentation accuracy with age is shown in 

WM, while for GM, VENT, sCSF and DGM, comparable segmentation accuracy is obtained 

regardless of age. This may reflect the fact that white matter myelineation and increasing 

level of cortical folding makes older scans more difficult to segment.

Figure 13 gives an example of the improved automated labeling at GM-WM boundaries 

compared to the conventional atlas-based EM method. Figure 14 illustrates that our 

proposed PBAEM approach produced a more anatomically correct automated labeling for 

the ventricular regions compared to the atlas-based EM segmentation approach.

Column 4 and 5 in Table 1 shows the comparison of average DSCs using EM with patch-

based prior alone and with the fully optimized PBAEM prior. It is clear that the 

segmentation accuracy improved in most tissue classes using PBAEM compared to only 

using the patch-based prior except for sCSF where is minimally reduced.

4.1.5. Application to Unseen Abnormal Cases—To further test the robustness of our 

proposed algorithm when applied to unseen abnormal cases that are significantly different 

from those in the atlas, we constructed a spatio-temporal atlas using all 32 atlas subjects and 

applied our method on a non-atlas subject with severe ventriculomegaly and Grade 2 

intraventricular hemorrhage (IVH). Figure 15 illustrates the comparison of the performances 

between PBAEM and the conventional atlas-based approach. As a result of this scan’s 

anatomy drastically varying from the spatio-temporal atlas constructed from healthy 

subjects, the atlas-based approach failed to generate an acceptable automated tissue labeling, 

as seen in the middle row of Figure 15. In particular, the abnormally enlarged ventricular 

regions were not captured. The bottom row of Figure 15 shows the ability of our proposed 

PBAEM approach to adapt to the unseen anatomies which greatly differed from the atlas. 

The abnormal ventricular regions were more accurately contoured and the blood clot was 
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partially labeled as non-brain background (BG) based on its abnormal intensity at its 

location.

4.2. PBAEM-SVS

4.2.1. Patch Search Range Threshold Selection—Experiments were conducted 

using different search ranges of from 1.5 to 3.0 times of variability at each voxel. The 

average and standard deviation of DSC of 31 subjects are compared, as shown in Figure 16. 

We can see that the segmentation performance improves with increasing search range until 

an optimal threshold, and then decreases. When the patch search range is smaller than the 

optimum, it is not large enough to cover most potential matching voxels. However, when the 

search range is too broad, the tissue probabilities of the best matches will be diluted by the 

non-matches. In order to balance the performances of all tissue classes, a threshold of 2.0 

was used in the remaining experiments.

4.2.2. Age-Specific Variability Map—Synthesized age-specific variability maps at four 

different gestational ages are shown and compared in Figure 17 to visualize the age effect on 

variability in neonatal brain MRIs. We can clearly see that the variability at cortical regions 

dramatically grows with age, especially at major cortical gyrifications (red arrows).

4.2.3. Patch-based Tissue Probability with Locally Constrained Search—Using 

the threshold of search range chosen above, patch-based tissue probability was computed for 

each voxel in the scan being studied. Figure 18 shows the comparison of GM tissue 

probability between the atlas-based, patch-based using a global search range as in PBAEM-

WF and using a locally defined search range as in PBAEM-SVS. Compared to atlas-based 

tissue probability, the SVS patch-based tissue probability demonstrates higher accuracy at 

cortical GM (pointed by yellow arrows). Compared to a patch-based tissue probability using 

a globally defined search range, SVS patch-based tissue probability shows superior accuracy 

in the region of the Hippocampus (red arrow) and sharper tissue probability boundaries in 

GM as a whole.

Figure 19 shows the improvement in estimating the tissue probability in regions with less 

variation. Since the variability is low in DGM, the SVS range is also small. Thus, in such 

regions, the patch-augmented tissue probability is dominated by the atlas-based tissue 

probability of its closest neighbor and will not be further diluted. This illustrates one of the 

major advantages of a locally constrained patch-based search that implicitly combines the 

atlas and patch priors by simply modifying the search range.

4.2.4. Comparison with PABEM-WF—The final automated tissue segmentations were 

compared between PBAEM-SVS and all other four methods. Column 5 and 6 in Table 1 

compares the average DSC of 31 subjects between PBAEM-WF and PBAEM-SVS. We can 

see that the segmentation accuracy is significantly (p < 0.05) improved using PBAEM-SVS, 

especially in cortical GM. However, in GM and VENT, the standard deviations are slightly 

higher than using PBAEM-WF, these differences are minimal. Compared to the baseline 

atlas-based EM segmentation (Column 2 in Table 1), we see significantly (p < 0.05) 
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improved DSC in GM, WM, VENT and sCSF, while maintain comparable accuracy in 

DGM.

Figure 20 gives an example of improvement in automatic labeling of GM when using 

PBAEM-SVS compared to PBAEM-WF. In the corpus callosum (blue arrows), due to WM 

myelination, the intensity is similar to cortical GM in its neighborhood. If the search range is 

too big, it will be more likely to be labeled as cortical GM instead of WM as in PBAEM-

WF. However, using PBAEM-SVS, we are able to learn that the variability in corpus 

callosum is low, and thus, the patch-based search will be conducted more locally to avoid 

mislabeling.

Figure 21 provides a visualization of improvement of PBAEM-SVS compared to atlas-based 

segmentation and PBAEM-WF with different ages. Improvements are seen especially in 

later weeks of development, where segmentation errors were relatively larger using both 

atlas-based approach and PBAEM-WF. PBAEM-SVS helps to reduce inconsistency of 

segmentation accuracy across ages. However, in WM, we still see some decreasing DSC 

values at later ages that may be driven by WM myelination effects inducing local loss of 

WM contrast with its neighbors.

4.2.5. Application to Unseen Abnormal Cases—We further tested PBAEM-SVS on 

the abnormal scan with IVH. Figure 22 shows an example when the blood clot was 

mislabeled as brainstem (BS) by PBAEM-WF while was correctly labeled as BG by 

PBAEM-SVS. This is because, in PBAEM-SVS, the approach employed a smaller search 

range at the hemorrhage site (inside WM) than the globally defined search range in 

PBAEM-WF which captures more tissues. Therefore, the patch-based search was correctly 

limited in the BS region and gave a more accurate patch-based tissue probability estimate. 

However, this led to some increase in errors in the ventricles as subjects with such 

ventricular variability were not included in the atlas and therefore the shape variance was 

not learned. The next step in the work will be to add a range of such manually segmented 

subjects to the atlas data.

4.3. Distance Evaluation

Based on comparison of DSC in Table 1, we see that PBAEM-SVS shows the most superior 

segmentation performance. Here we further computed and compared the average HD and 

MD (Table 2) between PBAEM-SVS and conventional atlas-based EM technique to show 

its superiority. We can see that in most cases, PBAEM-SVS provided better performance 

than the conventional age-specific atlas-based approach. The majority of the large errors we 

observe occurred outside brain tissue, e.g. around skull due to partial volume effect. This 

could be solved with a more accurate skull stripping or masking in the future.

We also computed distance measurements of cortical GM by individual lobes (Table 3). We 

see that both methods achieved consistent results across different lobes and PABEM-SVS 

showed significant superiority in all lobes of the cortex. We also noted that segmentation 

accuracy in the occipital lobes was improved by using PBAEM-SVS over conventional age-

specific atlas-based method.
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5. Discussion and Conclusion

In this work, we propose two hybrid approaches that augment the conventional model-based 

EM segmentation technique for labeling rapidly developing brain anatomy. The proposed 

methods combine the strengths in both atlas- and patch-based approaches in order to obtain 

more accurate automated labeling of brain tissues. We introduce the patch-based tissue 

probability estimates as a representation of any new subject’s own anatomy within the atlas-

based EM segmentation framework. In particular, we adapt the patch-based segmentation 

approach to use the parametric average estimate synthesized from the atlas as the patch-

based dictionary images. Critically, this allows us to use atlases constructed with a relatively 

sparse distribution of manually segmented scans over a large developmental range. A series 

of experiments with challenging examples of MRI from a range of clinical cases of 

premature birth showed a superior performance of the proposed PBAEM framework over 

either the conventional atlas-based segmentation approach or the local patch-based methods. 

Successful application of PBAEM to the non-atlas abnormal cases demonstrates the validity 

of PC and VLA maps and also further highlighted its ability to adapt to the new unseen 

anatomies that are not captured in the atlas.

One of the limitations of these basic experiments is that we have not used all the subject-

related information that is available. For example, in the current work, the birth age of the 

atlas subjects ranges from 24.9 to 31.4 GWs. Previous studies have shown that neonates 

born very prematurely (VPT) (less than 30 GW) [62, 40] and with low body weights (LBW) 

[40] may suffer from more severe neuro-developmental abnormalities compared to infants 

born less prematurely. Thus, incorporating such information into the model could allow us 

to further adjust the local patch-based search for the very premature neonates. Moreover, the 

age-at-scan of the atlas subjects are not evenly distributed within the whole age range from 

27.2 to 46.4 GW, with particularly less density between 39 to 46 GW. Although the 

algorithm still produced anatomically valid automated tissue segmentations for that age 

range, we believe that the labeling accuracy in GM and WM could be improved further if 

more scans between 39 and 46 GW were included in the atlas to capture cortical variability.

Future work would also include improving the methods of combining tissue probabilities 

from different sources. The proposed approach has introduced priors and constraints from 

the sources other than the atlas itself into the conventional atlas-based EM automatic 

segmentation framework. A potential direction would be to incorporate priors acquired from 

other geometric models, such as the laminar structure model of the developing human fetal 

brain [22] and topological information as proposed by Rajchl et al. [45] for further 

improvement of the segmentation accuracy at earlier gestational ages and in fetuses. Another 

direction for advancement of PBAEM-SVS is to better learn and adapt the search range in 

cases of abnormalities, such as ventriculomegaly (Figure 22). Due to the fact that these 

abnormal features are not captured in the spatio-temporal atlas, using the variability map 

derived from the atlas, we could not automatically assign a larger search range in abnormal 

regions.

Another future direction is to carry out more extensive validation, especially on larger cross-

scanner cross-acquisition datasets. Such validation is not included in this paper due to 
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unavailability of any public dataset that fits the criterion. For example, due to the significant 

differences in tracing protocols, especially in cortical GM (see Appendix), we have not 

attempted the Neo-BrainS12 challenge [29]. We are currently building a premature neonatal 

brain MRI database with consistent manual tracing on scans acquired using scanners from 

different vendors in different sites with different MR acquisition parameters. Such database 

will enable us to conduct a more extensive validation of the proposed methods in the future. 

In addition, we can extend our validation to a full leave-one-out cross-validation on PC and 

VLA maps when computational resources become available. Alternatively, when more atlas 

training data becomes available, we can extend the validation to a leave-N-out cross-

validation.

In terms of applications of our method, these automated tissue segmentation results on 

premature neonatal scans covering the full range of clinical ages provide a basis for a range 

of morphometric analyses of brain growth. In particular, they enable the study of local 

anatomical variations using deformation based or surface based morphometry that have so 

far not been able to be applied to large scale studies of the brain after premature birth. Such 

techniques for local anatomical mapping in premature neonates may reveal markers that are 

specific to given functional deficits later in life, that can help direct early cognitive 

interventions soon after birth.
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Appendix

In this section, we demonstrate the difference between tracing protocols between 

NeoBrainS12 [29] and ours. We tested on one 30W coronal scan from the NeoBrainS12 

training dataset for which their tracing is available for comparison. Figure 23 below shows 

the differences between their manual labeling protocols and our segmentation. In particular 

in our tracing protocol we ensure that cortical GM is segmented over the whole brain 

surface. These are significant regions missing from the NeoBrainS12 data that would result 

in an invalid comparison of our method aimed at accurate cortical labeling. Both our manual 

tracing protocol and our automated segmentation detect this cortical ribbon in the 

NeoBrainS12 data even though it is missing from the NeoBrainS12 reference segmentation.
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Highlights

• Hybrid methods for age consistent segmentation in premature neonates are 

proposed.

• Approaches combine atlas- and patch-based methods for age-specific tissue 

labeling.

• Validation against manual tracing over a large age range was conducted.

• Results show significant improvement compared to conventional age-specific 

methods.
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Figure 1. 
Comparison between the age-specific average image warped into subject space (upper row) 

and the subject MR image (lower row). Red arrow: difference in ventricle size and shape. 

Blue arrow: abnormal white matter intensity.
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Figure 2. 
Illustration of synthesizing atlas-based tissue probability from the spatio-temporal atlas.
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Figure 3. 
Illustration of patch-based local search adapted for using with spatio-temporal atlas. (a) For 

the patch Hv centered at voxel v, the local search is conducted within the search 

neighborhood N(v) in  and weight w(u, v) between each possible pair of patches is 

computed. (b) Tissue probability of each possible patch within N(u) is extracted from the 

 and used to compute the patch-based tissue probability of voxel v.
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Figure 4. 
Illustration of transforming voxel locations from SUBJ space to REF space and determining 

whether voxels lie in the search range (blue elipsoid) in the REF space. Blue cross: voxel to 

be labeled; Green cross: voxel inside the search range of voxel to be labeled; Red cross: 

voxel outside the search range of voxel to be labeled.
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Figure 5. 
Average DSC of GM, WM, VENT, DGM and sCSF using PBAEM-WF automated 

segmentation with different sets of patch search parameters. Patch size of 3 × 3 × 3 voxels or 

5 × 5 × 5 voxels is indicated by solid or dashed line. Neighborhood ratios correspond to 

fraction of total brain volume. An optimal patch size of 3 × 3 × 3 and a search range of 

0.0025 were chosen for optimal performances in cortical regions.
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Figure 6. 
Examples of running priors. From left to right: Raw MR image (column 1), atlas-based 

( ) (column 2), patch-based (column 3) and PBAEM (column 4) tissue probability 

map of, from top to bottom, GM, WM, VENT, DGM and sCSF of one subject as an 

example. Tissue probability on a scale 0 – 100. Red arrows: PBAEM tissue probability is 

more accurate than the atlas-based one; Blue arrows: PBAEM tissue probability is more 

accurate than the patch-based one.
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Figure 7. 

Raw MR image overlaid (top row) with atlas-based tissue probability map ( ) 

(middle row) and patch-based (bottom row) tissue probability map of GM in one subject. 

Here tissue probability is scaled by 100. Yellow arrows point where patch-based TP is more 

accurate than atlas-based one.
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Figure 8. 

Raw MR image overlaid (top row) with atlas-based tissue probability map ( ) 

(middle row) and patch-based (bottom row) tissue probability map of VENT in one subject 

with ventriculomegaly. Here tissue probability is scaled by 100. Yellow arrows point where 

patch-based TP is more accurate than atlas-based one.
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Figure 9. 

Raw MR image overlaid (top row) with atlas-based tissue probability map ( ) 

(middle row) and patch-based (bottom row) tissue probability map of DGM in one subject. 

Here tissue probability is scaled by 100. Yellow arrows point where patch-based TP is less 

accurate than atlas-based one.
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Figure 10. 
Age-specific Patch Contribution (PC) map (green) overlaid over raw MR image (grayscale). 

PC values are on a scale of 0–100%. Red arrows: high PC values in cortical regions at 

sCSF/GM and GM/WM boundaries. Blue arrow: low PC values at WM/DGM boundary and 

inside WM, DGM.
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Figure 11. 
Comparison between Voxel Label Accuracy (VLA) maps resulting from EM segmentation 

using atlas-based (top row) and patch-based (bottom row) tissue probabilities as running 

priors. VLA values are on a scale of 0–100%. Red arrows: patch-based tissue probabilities is 

more accurate at sCSF/GM and GM/WM boundaries; Blue arrows: atlas-based tissue 

probabilities is more accurate at DGM/WM boundaries.
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Figure 12. 
DSCs of five tissue classes of 31 individual scans plotted with age.
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Figure 13. 
Improvements of GM and WM segmentation in a subject where the cortex is significantly 

more folded than the age-specific average template. Top row: manual segmentation; Middle 

row: atlas-based automatic segmentation (DSC: GM 0.7580, WM 0.8882); Bottom row: 

PBAEM (DSC: GM 0.8477 with improvement of 0.0897, WM 0.9151 with improvement of 

0.0269). Red arrows: GM-WM boundaries where PBAEM was proved to generate more 

accurate labeling than atlas-based approach.
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Figure 14. 
Improvements of VENT segmentation in a subject where VENT is significantly larger than 

the age-specific average template. Top row: manual segmentation; Middle row: atlas-based 

automatic segmentation (DSC: VENT: 0.9191); Bottom row: PBAEM (DSC: VENT 0.9364 

with improvement of 0.0173).Red arrows: VENT boundaries where PBAEM was found to 

generate more accurate labeling than the atlas-based approach.
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Figure 15. 
Labeling of abnormal anatomy not represented in the atlas. Comparison of manual labeling 

(top row), conventional atlas-based (middle row) and PBAEM (bottom row) automated 

labeling in a case of severe ventriculomegaly and Grade 2 IVH. Red arrows: PBAEM 

approach produced a more valid and accurate labeling of the enlarged VENT; Yellow 

arrows: IVH was partially labeled as BG. DSC: Atlas-based: GM 0.88, WM 0.90, VENT 

0.64, DGM 0.82, sCSF 0.80; PBAEM: GM 0.88, WM 0.93,VENT 0.83, DGM 0.84, SCSF 
0.82.
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Figure 16. 
Average (left) and standard deviation (right) of DSC of 31 subjects using different search 

range threshold.
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Figure 17. 
Age-specific variability maps shown as 2D ellipses overlying on average MR image in REF 

space. 1st row: 30.0 GW; 2nd row: 35.0 GW; 3rd row: 40.0 GW; 4th row: 45.0 GW. Red 

arrows: dramatic variability range change with age.
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Figure 18. 
Comparison of GM tissue probabilities between atlas-based, patch-based with globally and 

locally set search ranges. Red arrows: SVS patch-based TP better than patch-based with 

global search range; Yellow arrows: SVS patch-based TP superior to the atlas-based TP.
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Figure 19. 
Comparison of DGM tissue probabilities between atlas-based, patch-based with globally and 

locally set search ranges. Red arrows: SVS patch-based TP superior to the patch-based TP 

with global search range.
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Figure 20. 
Improvements of GM and WM segmentation in a subject where the cortex is significantly 

more folded than the age-specific average template. Top row: manual segmentation; Middle 

row: PBAEM-WF (DSC: GM 0.8946, WM 0.9153); Bottom row: PBAEM-WF (DSC: GM 

0.9171 with improvement of 0.0225, WM 0.9330 with improvement of 0.0177). Red arrows: 

Cortical GM-WM boundaries where PBAEM-SVS was proved to generate more accurate 

labeling than PBAEM-WF approach; Blue arrows: corpus callosum
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Figure 21. 
DSCs of five tissue classes of 31 individual scans plotted with age. Comparison is shown 

between segmentation performances of conventional atlas-based EM approach, PBAEM-

WF and PBAEM-SVS.
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Figure 22. 
Comparison of PBAEM-WF and PBAEM-SVS on an abnormal scan with IVH. Red arrow: 

IVH mislabeled as BS by using PBAEM-WF while correctly labeled as BG by using 

PBAEM-SVS; Yellow arrows: mislabeled VENT as WM by PBAEM-SVS while correctly 

labeled by PBAEM-WF. DSC: Atlas-based: GM 0.84, WM 0.91, VENT 0.81, DGM 0.94, 

sCSF 0.76; PBAEM: GM 0.84, WM 0.91, VENT 0.84, DGM 0.93, sCSF 0.83.
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Figure 23. 
Comparison of segmentation protocols between NeoBrainS12 [29] (top row) and ours 

(bottom row). Red arrow: cortical GM where two tracing protocols differ.
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Table 2

Comparison of average HDs and MDs of 31 subjects between PBAEM-SVS and atlas-based EM technique. 

Lowest HDs and MDs are bold.

Tissue Class
EM w/Atlas-based Prior PBAEM-SVS

MD HD MD HD

GM 0.17 ± 0.04 5.58 ± 1.11 0.13* ± 0.03 5.79 ± 1.19

WM 0.12 ± 0.10 5.67 ± 2.15 0.09* ± 0.06 5.64 ± 1.89

VENT 0.35 ± 0.30 23.61 ± 6.24 0.23* ± 0.15 19.78* ± 6.10

sCSF 0.31 ± 0.09 9.45 ± 1.90 0.26* ± 0.06 9.60 ± 1.88

DGM 0.08* ± 0.03 5.13 ± 9.62 0.09 ± 0.03 3.94 ± 0.89

*
indicates statistical significance with P < 0.05 from pair-wise two-tailed t-test between the two methods.
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Table 3

Comparison of average HDs and MDs of 8 lobes of cortical GM from 31 subjects between PBAEM-SVS and 

atlas-based EM technique. Lowest HDs and MDs are bold.

Lobe
EM w/ Atlas-based Prior PBAEM-SVS

MD HD MD HD

Frontal R 0.15 ± 0.04 4.25 ± 1.34 0.12* ± 0.03 4.38 ± 1.43

Frontal L 0.15 ± 0.04 4.43 ± 1.41 0.12* ± 0.03 4.43 ± 1.47

Temporal R 0.17 ± 0.04 4.16 ± 0.91 0.14* ± 0.04 4.05 ± 0.99

Temporal L 0.17 ± 0.05 4.00 ± 0.90 0.14* ± 0.04 3.91 ± 1.04

Parietal R 0.17 ± 0.07 4.40* ± 1.10 0.13* ± 0.06 4.90 ± 1.20

Parietal L 0.15 ± 0.05 3.95 ± 1.21 0.11* ± 0.03 4.24 ± 1.28

Occipital R 0.22 ± 0.07 4.20 ± 1.15 0.16* ± 0.06 4.07 ± 1.31

Occipital L 0.19 ± 0.06 3.93 ± 1.19 0.13* ± 0.04 3.70 ± 1.35

*
indicates statistical significance with P < 0.05 from pair-wise two-tailed t-test between the two methods.
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Table 4

Comparison of average HDs and MDs of 8 lobes of WM from 31 subjects between PBAEM-SVS and atlas-

based EM technique. Lowest HDs and MDs are bold.

Lobe
EM w/ Atlas-based Prior PBAEM-SVS

MD HD MD HD

Frontal R 0.10 ± 0.07 4.28 ± 1.78 0.08* ± 0.05 4.25 ± 1.58

Frontal L 0.09 ± 0.06 4.10 ± 1.06 0.08* ± 0.04 3.95 ± 0.94

Temporal R 0.12 ± 0.09 4.15 ± 1.69 0.10* ± 0.06 4.05 ± 1.42

Temporal L 0.12 ± 0.09 4.01 ± 1.22 0.10* ± 0.06 3.87 ± 1.13

Parietal R 0.13 ± 0.12 3.46 ± 1.32 0.09* ± 0.07 3.52 ± 1.58

Parietal L 0.12 ± 0.12 3.68 ± 1.20 0.09* ± 0.07 3.53 ± 1.50

Occipital R 0.18 ± 0.17 3.95* ± 1.34 0.13* ± 0.10 4.33 ± 1.56

Occipital L 0.19 ± 0.22 4.11 ± 2.28 0.13* ± 0.13 4.16 ± 1.90

*
indicates statistical significance with P < 0.05 from pair-wise two-tailed t-test between the two methods.
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