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Abstract

The properties utilized by visual object perception in the mid- and high-level ventral visual 

pathway are poorly understood. To better establish and explore possible models of these 

properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using 

functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This 

approach to imaging necessitates a search through a broad space of stimulus properties using a 

limited number of samples. To more quickly identify the complex visual features underlying 

human cortical object perception, we implemented a new functional magnetic resonance imaging 

protocol in which visual stimuli are selected in real-time based on BOLD responses to recently 

shown images. Two variations of this protocol were developed, one relying on natural object 

stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on 

the complex visual properties of the objects. During fMRI scanning, we continuously controlled 

stimulus selection in the context of a real-time search through these image spaces in order to 

maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported 

the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our 

objective is to present more detailed methods and explore the technical and biological factors 

influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged 

more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-

time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was 

acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results 

indicate that real-time fMRI methods may provide a valuable platform for continuing study of 

localized neural selectivity, both for visual object representation and beyond.
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1. Introduction

How do humans visually recognize objects? Broadly speaking, it is held that the primate 

ventral occipito-temporal pathway of the human brain implements a feedforward 

architecture in which the features of representation progressively increase in complexity as 

information moves up the hierarchy (Felleman and Essen, 1991; Riesenhuber and Poggio, 

1999). In almost all such models, the top layers of the hierarchy are construed as high-level 

object representations that correspond to and allow the assignment of category-level or 

semantic labels. Critically, there is also the presupposition that while early levels along the 

pathway encode information about edge locations and orientations (Hubel and Wiesel, 1968) 

and information about textures (Freeman et al., 2013), one or more levels, between what we 

think of as early vision and high-level vision, encode intermediate visual features. Such 

features, while less complex than entire objects, nonetheless capture important — and 

possibly compositional — object-level visual properties (Ullman et al., 2002). Remarkably, 

for all of the interest in biological vision, the nature of these presumed intermediate features 

remains frustratingly elusive. To help address this knowledge gap, we introduce new 

methods that leverage human fMRI to explore the intermediate properties encoded in 

regions of human visual cortex.

Any study investigating the visual properties employed in cortical object perception faces 

multiple challenges. First, the number of candidate properties present in real-world objects is 

large. Second, these properties are carried by millions to billions of potential stimulus 

images. Third, feature and image space can be parameterized by an uncountable number of 

potential models. Fourth, the time available in a given human fMRI experiment is limited. 

Scanning time for an individual subject is limited to several hours across several days. Fifth, 

during a given scan session, the slow evolution of the blood-flow dependent fMRI signal 

necessarily limits the frequency of single stimulus display trials to one every 8 to 10 

seconds; more frequent displays produce an overlay of hemodynamic responses difficult to 

recover without carefully tuned pre-processing or careful dissociation of temporally adjacent 

stimuli. Moreover, even with these considerations, the neural data recovered will be noiser 

and less amenable to use on a trial-by-trial basis. As such, assuming a minimum of 8 

seconds to display each trial, at most several hundred stimuli can be displayed to a subject 

per an hour.

Here we suggest that dynamic stimulus selection, that is, choosing new images to present 

based on a subject’s neural responses to recently shown images, enables a more effective 

investigation of visual feature coding. Our methods build on the dynamic selection of stimuli 

in studies of object vision in primate neurophysiology. For example, Tanaka (2003) explored 

the minimal visual stimulus sufficient to drive a given cortical neuron at a level equivalent to 

the complete object. He found that individual neurons in area TE were selective for a wide 
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variety of simple patterns and that these patterns bore some resemblance to image features 

embedded within the objects initially used to elicit a response. Tanaka hypothesized that this 

pattern-specific selectivity has a columnar structure that maps out a high-dimensional feature 

space for representing visual objects. In more recent neurophysiological work, Yamane et al. 

(2008) and Hung et al. (2012) used a search procedure somewhat different from Tanaka and 

a highly-constrained, parameterized stimulus space to identify the contour selectivity of 

individual neurons in primate IT. They found that most contour-selective neurons in IT 

encoded a subset of the parameter space. Moreover, each 2D contour within this space 

mapped to specific 3D surface properties meaning that collections of these contour-selective 

units would be sufficient to capture the 3D appearance of an object or part.

At the same time, there has been recent interest in real-time human neuroimaging. For 

example, Shibata et al. (2011) used neurofeedback from visual areas V1 and V2 to control 

the size of a circular stimulus displayed to subjects and Ward et al. (2011) explored real-time 

mapping of the early visual field using Kalman filtering. Most recently, Sato et al. (2013) 

have developed a toolbox (“FRIEND”) that implements neural feedback applications in 

fMRI, applying classification and connectivity analyses to study the encoding of emotion. 

These studies support the idea of incorporating real-time analysis and feedback into 

neuroimaging work to expanding fields, such as the study of object perception.

Here we explore new methods for the real-time analysis of fMRI data and the dynamic 

selection of stimuli. More specifically, our procedure selects new images to display based on 

the neural responses to previously-presented images as measured in pre-selected brain 

regions. Our overall objective is to maximize localized neural activity and to identify the 

associated complex featural selectivity within image spaces that are organized on the basis 

of insights from earlier studies in object perception (Leeds et al., 2013; Williams and 

Simons, 2000). We employ two sets of objects and their corresponding spaces — real-world 

objects organized based on similarities computed by the SIFT computer vision method 

(Lowe, 2004) and synthetic “Fribble” objects (Williams and Simons, 2000) organized based 

on morphs in the shapes of their component appendages (see Fig. 5 below).

In previously published results, we reported the nature of the cortical selectivities uncovered 

by this novel approach (Leeds et al., 2014). Here we study the technical and biological 

factors influencing the performance of our real-time stimulus search, as well as the behavior 

of our search across subjects and stimulus sets. In particular, using synthetic stimuli, we 

found that searches exhibited some convergence onto a small number of preferred visual 

features and consistency across repeated searches for a given brain region within an 

individual subject. In contrast, using real-world object stimuli, we found only weak 

convergence and consistency, possibly as a result of the visual diversity of the real-world 

stimuli included in this image space. More generally, we observe that our methods are robust 

to undesired actions from subjects (e.g., head motions) and program flaws (e.g., stimulus 

selection delays), suggesting that our methods offer an important first-step in developing 

effective methods for real-time human neuroimaging.
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2. Material and methods

2.1. Stimulus selection method

Our study is unique in that it relies on the dynamic selection of stimuli in a parameterized 

stimulus space, choosing new images to display based on the BOLD responses to previous 

images within a given pre-selected brain region. More specifically, we automatically choose 

the next stimulus to be shown by considering a space of visual properties and probing 

locations in this space (corresponding to stimuli with particular visual properties) in order to 

efficiently identify those locations that are likely — based on prior neural responses to other 

stimuli in this space — to elicit maximal activity from the brain region under study. As 

discussed in Secs. 2.8.3 and 2.9.3, we employed two somewhat different representational 

spaces, one based on SIFT features derived from real-world images, and one based on 

synthetic “Fribble” objects (see Fig. 5). SIFT was used for the first group of ten subjects, 

while Fribbles were used for the second group of ten subjects. For both groups, each 

stimulus i that could be displayed is assigned a point in space pi based on its visual 

properties. The measured response of a given brain region to this stimulus ri is understood 

as:

(1)

That is, a function f of the stimulus’ visual properties as encoded by its location in the 

representational space plus a noise term η, drawn from a zero-centered Gaussian 

distribution. The process of displaying an image, recording the ensuing cortical activity via 

fMRI, and isolating the response of the brain region of interest using the preprocessing 

program we model as performing an evaluation under noise of the function describing the 

region’s response. For simplicity’s sake, we perform stimulus selection assuming our chosen 

brain region has a selectivity function f that reaches a maximum at a certain point in the 

representational space and falls off with increasing Euclidean distance from this point. Our 

assumption is consistent with prior work in primate neurophysiology, such as Tanaka (2003), 
Hung et al. (2012), and Yamane et al. (2008), in which stimuli were progressively adapted to 

maximize response of a single neural unit to converge on the single (complex) visual 

selectivity presumed to be associated with the unit. We also note that our assumption is 

consistent with recent work in human fMRI that finds that selectivity for object categories is 

organized in a smooth gradient across cortex whereby the amount of neural “real estate” 

apportioned to shared features across visually-similar categories is minimized Huth et al. 

(2012). Under these assumptions, we use a modified version of the simplex simulated 

annealing Matlab code available from Donckels (2012), implementing the algorithm from 
Cardoso et al. (1996). This method seeks to identify new points (corresponding to stimuli) 

that evoke the highest responses from the selected cortical region. An idealized example of 

what a search run might look like based on this algorithm is shown in Fig. 1b. The results of 

our study indicate our assumption of a single peak in cortical response is not always 

accurate. Nonetheless, the simplex simulated annealing method achieves convergence for 

several real-time stimulus searches.

For each of four distinct stimulus classes — mammals, human-forms, cars, and containers 

for real-world objects and four classes distinguished by core body shape and appendage 
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orientation for Fribble objects (described further in Sec. 2.3 and in Leeds et al. (2014)) — 

we performed searches in each of two scan sessions. To probe the consistency of our search 

results across different initial simplex settings, we began the search within each session at a 

distinct point in the relevant stimulus representational space. In the first session, the starting 

position was set to the origin for a given stimulus class, as specific stimulus examplars were 

distributed in each space relatively evenly around the origin. In the second scan session, the 

starting position was manually selected to be in a location opposite from the regions in 

which stimuli were visited most frequently and which produced the highest magnitude 

responses in the previous session. Additionally, if a given stimulus dimension was not 

explored during the first session, a random offset from the origin along that axis was 

selected for the beginning of the second session.

The starting locations for the simplexes for each display run beyond the first run in the 

session, that is, the ith run, is set to be the simplex point that evoked the largest response 

from the associated cortical region in the (i − 1)th run. At the start of the ith display/search 

run, each simplex is initialized with the starting point xi,1, as defined above, and D further 

points, xi,d+1 = xi,1+Ud υd, where D is the dimensionality of the space, Ud is a scalar value 

drawn from a uniform distribution between −1 and 1, and υd is a vector with dth element 1 

and all other elements 0. In other words, each initial simplex for each run consists of the 

initial point and, for each dimension of the space, an additional point randomly perturbed 

from the initial point only along that dimension. The redefinition of each simplex at the start 

of each new run constitutes a partial search reset to more fully explore all corners of the 

feature space, yet maintaining some hysteresis from the location from the previous run that 

produced the most activity.

Further details of the simplex simulated annealing method are provided by Leeds (2013) and 
Cardoso et al. (1996).

2.2. Inter-program communication

Three programs run throughout each real-time search to permit dynamic selection and 

display of new stimuli most effectively probing the visual selectivity of a chosen cortical 

region. The programs — focusing on fMRI preprocessing, visual property search, and 

stimulus display tasks, respectively — are written and executed separately to more easily 

permit implementation and application of alternate approaches to each task. Furthermore, 

the display program runs on a separate machine from the other two processes, shown in Fig. 

2, to ensure sufficient computational resources are dedicated to each task, particularly as 

analysis and display computations must occur simultaneously throughout each scan. The 

first machine, called the “analysis machine,” is an Optiplex 960 running Red Hat on an Intel 

Core 2 Duo processor at 3 GHz with 4 GB memory; the second machine, called the “Display 

machine,” is an Apple MacBook Pro (2008) running OS X on an Intel Core 2 Duo processor 

at 2.5 GHz with 4 GB memory.

Due to the division of tasks into three separate programs, each task relies on information 

determined by a different program and/or processor, as indicated in Fig. 2. The methods 

used to communicate the information necessary for preprocessing, search, and stimulus 

display are as follows:

Leeds and Tarr Page 5

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Preprocessing program input The scanner console machine receives brain 

volumes from the fMRI scanner and sends these volumes to the analysis machine 

disk in real-time. The preprocessing program checks the disk every 0.2 seconds to 

determine whether all the volumes for the newest block of search results—the full 

10 s cortical responses to recently-shown stimuli — are available for analysis. The 

preprocessing program uses the data to compute one number to represent the 

response of the corresponding pre-selected brain region to its respective stimulus. 

The program proceeds to write the response into a file labeled responseN and then 

creates a second empty file named semaphoreN, where N ∈ 1, 2, 3, 4 in each file is 

the number of the search being processed (see Sec. 2.3). The files are written into a 

pre-determined directory that is monitored by the search program, so the search 

program can find information saved by the preprocessing program. The creation of 

the semaphoreN file signals to the search program that the response of the brain 

region studied in the Nth search has been written fully to disk. This approach 

prevents the search program from reading an incomplete or outdated responseN 

file and acting on incorrect information.

• Search program input The search program rotates among four simultaneous 

searches for the visual feature selectivities of four different brain regions, that is, 

searching for the stimulus images containing features producing the highest 

possible activity in pre-selected cortical regions. At any given time during a real-

time scan, the search program either is computing the next stimulus to display for a 

search whose most recent cortical response has recently been computed, or is 

waiting for the responses of the next block of searches to be computed. While 

waiting, the search program checks the pre-determined directory every 0.2 seconds 

for the presence of the semaphore file of the current search, created by the 

preprocessing program. Once the search program finds this file, the program deletes 

the semaphore file and loads the relevant brain region’s response from the response 

file. The search program proceeds to compute the next stimulus to display, intended 

to evoke a high response from the brain region and sends the stimulus label to the 

display program running on the display machine.

• Display program input Two different methods were used for the transmission of 

stimulus labels between the search and display programs.

– Update Method 1 For our initial group of subjects (N = 5) 

— all presented with the real-world object stimuli — the 

search program sent each label to the display program by 

saving it in a file, rtMsgOutN, in a directory of the analysis 

computer mounted by the display computer. Immediately 

prior to showing the stimulus for the current search N ∈ {1, 

2, 3, 4} — the display program looked for the corresponding 

file in the mounted directory (rotating between four searches, 

as did the preprocessing and search programs).

– Update Method 2 For our remaining subjects — presented 

with either real-world or Fribble object stimuli — labels were 
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passed over an open socket from the Matlab (MATLAB, 

2012) instance running the search program to the Matlab 

instance running the display program. In the socket 

communication, the search program paired each label with 

the number identifier N of the search for which it was 

computed. Immediately prior to showing the stimulus for any 

given current search, the display program read all available 

search stimulus updates from the socket until it found and 

processed the update for the current search and then showed 

the current stimulus to display for the current search.

Ordinarily, both techniques allowed the display program to present the correct new stimulus 

for each new trial, based on the computations of the search program. However, when 

preprocessing and search computations did not complete before the time the new stimulus 

was needed for display, the two communication techniques between the search and display 

programs had differing behaviors. As discussed in Sec. 3.1, we find the second method is 

preferable in that socket communication enables direct and immediate communication 

between the search and display programs once the search program has selected new stimuli 

to display. In contrast, the first method’s writing of files to a mounted directory relies on 

periodic updates to shared files across the network, which is performed by operating system 

functions that may be delayed in execution beyond the control of our Matlab programs. 

Thus, the display program sometimes acts on outdated information in the local copy of its 

shared file before file updates have been completed.

It is also worth noting the first (file-update) method provides an occasional benefit over the 

second (socket-communication) method. At certain iterations, the search program will 

refrain from exploring a new simplex point for a given stimulus class. In this case, using the 

second method, the search program will not send a stimulus update over the socket and the 

display program will pause several seconds while awaiting an update through the socket. 

Using the first method, the display program will present a stimulus at the proper time 

interval regardless, using the stimulus saved in the shared file at the previous iteration. In 

practice, this beneficial behavior of update method 1 is outweighed by method 1’s relatively 

slower communication of new stimulus choices. Furthermore, the second method can be 

repaired in future studies by implementing a simple alteration of our code in which the 

search program selects a blank screen or a default object stimulus each time a simplex 

computation is skipped.

2.3. Interleaving searches

We explored the selectivity to specific visual images for four distinct preselected brain 

regions within ventral cortex. Brain regions were selected based on criteria discussed in 

Secs. 2.8.5 and 2.9.5 using data collected from an earlier scanning session for each subject. 

For each brain region, a distinct search was performed using stimuli drawn from a single 

class of visual objects. For each brain region, a unique search was performed using a distinct 

class of visual object stimuli. For real-world object stimuli, the four stimulus classes were 

mammals, human-forms, cars, and containers, as shown in Fig. 4a. For Fribble object 
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stimuli, the four classes were distinguished by core body shape and color as well as by 

orientation of appendages, as shown in Fig. 5a.

To use scanning time most efficiently, four searches were performed that interrogated the 

four different pre-selected brain regions during each scan. Following the stimulus onset, a 

10–14 s interval1 is required to gather the 10 s cortical response to the stimulus and an 

additional ~10 s is required to process the response and to select the next stimulus for 

display. While the next stimulus for a given search is being selected, the display program 

rotates to another search, maximizing the use of limited scan time to study multiple brain 

regions. The display and analysis programs also rotate in sequence among the four searches 

— that is, Search 1 → Search 2 → Search 3 → Search 4 → Search 1 ⋯. As 

discussed above, different classes of real-world and Fribble objects were employed for each 

of the four searches. More generally, alternation among visually-distinct classes is an 

advantage to our approach in that it decreases the risk of cortical adaptation present if 

multiple similar stimuli are viewed in direct succession. Note that the specific nature of each 

visual class is not critical to our methods. While we studied cars and mammals, we 

anticipate a search would work equally well for any two relatively unrelated categories, for 

example, buildings and fish.

The preprocessing program evaluates cortical responses in blocks of two searches at a time 

— that is, the program waits to collect data from the current stimulus displays for Search 1 

and Search 2, analyzes the block of data, waits to collect data from the current stimulus 

displays for Search 3 and Search 4, analyzes this block of data, and then repeats the 

sequence. This grouping of stimulus responses increases overall analysis speed. Several 

steps of preprocessing require the execution of AFNI (Pittman, 2011) command-line 

functions. Computation time is expended to initialize and terminate each function each time 

it is called, independent of the time required for data analysis. By applying each function to 

data from two searches together, the “non-analysis” time across function calls is minimized.

2.4. Stimulus display

All stimuli were presented using MATLAB (2012) and the Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997) running on an Apple MacBook Pro (2008) running OS X. 

Images were displayed on a BOLDscreen (Cambridge Research, Inc.) 24 inch MR 

compatible LCD display located at the head end of the scanner bore. Subjects viewed the 

screen through a mirror attached to the head coil with object stimuli subtending a visual 

angle of approximately 8.3 deg × 8.3 deg. During the real-time search scans, each stimulus 

was displayed for 1 s followed by a centered fixation cross that remained displayed until the 

end of each 8 s trial, at which point the next trial began. The 8 s trial duration is chosen to be 

as short as possible while providing sufficient time for the real-time methods to compute and 

determine the next stimuli to display based on the previous cortical responses. Further 

experimental design details are provided in Secs. 2.8.4 and 2.9.4.

1The 4 s beyond the duration of the cortical response accounts for communication delay between the fMRI scanner and the machine 
running the preprocessing and search programs.
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2.5. fMRI Procedures

Subjects were scanned using a 3 T Siemens Verio MRI scanner with a 32-channel head coil. 

Functional images were acquired with a T2*-weighted echoplanar imaging (EPI) pulse 

sequence (31 oblique axial slices, in-plane resolution 2mm × 2mm, 3mm slice thickness, no 

gap, sequential descending acquisition, repetition time TR = 2000ms, echo time TE = 29ms, 

flip angle = 72°, GRAPPA = 2, matrix size = 96 × 96, field of view FOV = 192 mm). An 

MP-RAGE sequence (1mm × 1mm × 1mm, 176 sagittal slices, TR = 1870, TI = 1100, FA = 

8°, GRAPPA = 2) was used for anatomical imaging.

2.6. Experimental design

For each subject, our study was divided into an initial reference scanning session and two 

real-time scanning sessions (Fig. 3a). In the reference session we gathered cortical responses 

to four classes of object stimuli to identify cortical regions selective for each separate 

stimulus class. As discussed in Secs. 2.8 and 2.9, two different stimulus sets, comprised of 

four visually-similar object classes, were used to explore visual feature selectivity: real-

world objects and synthetic Fribble objects; each subject viewed stimuli from only one set. 

In the real-time scan sessions we used our real-time imaging methods to search for stimuli 

producing the highest possible responses from each of the four cortical brain regions 

identified during the reference scan, dynamically choosing new stimuli based on the 

response of each region to recently shown stimulus images.

Runs in the reference scan session used a slow event-related design. Each stimulus was 

displayed in the center of the screen for 2 s followed by a blank 53% gray screen shown for 

a time period randomly selected to be between 500 and 3000 ms, followed by a centered 

fixation cross that remained displayed until the end of each 10 s trial, at which point the next 

trial began. As such, the SOA between consecutive stimulus displays was fixed at 10 s. 

Subjects were instructed to press a button when the fixation cross appeared. The fixation 

onset detection task was used to engage subject attention throughout the experiment. No 

other task was required of subjects, as such, the scan assessed object perception under 

passive viewing conditions. Further details about the reference scan are provided in Leeds et 

al. (2014).

Across two 1.5-hour real-time scan sessions, we explored the selectivity to specific visual 

images for four distinct brain regions within ventral cortex, each assigned to a distinct 

search. Stimuli were presented for each search in 8.5-minute “search” runs (4 to 8 runs were 

used per subject depending on other factors). Each stimulus was selected by the real-time 

search program based on responses of a pre-selected region of interest (ROI) to stimuli 

previously shown from the same object category. Task details are provided in Secs. 2.8.4 and 

2.9.4.

Each real-time session began with a 318-second functional scan performed with a viewing 

task to engage subject attention. For a given subject, the first functional volume scanned for 

this task was used to align the ROI masks (defined in Secs. 2.8.5 and 2.9.5) selected in the 

reference session to that subject’s brain position in the current session. Further details of this 

initial scan are provided in Leeds et al. (2014).
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2.7. Preprocessing

During real-time scan sessions, at the beginning of each run functional volumes were motion 

corrected using AFNI. Polynomial trends of orders one through three were removed. The 

data then were normalized for each voxel by subtracting the average and dividing by the 

standard deviation, obtained from the currently analyzed response and from the previous 

reference scan session, respectively, to approximate zero-mean and unit variance (Just et al., 

2010). The standard deviation was determined from ~1 hour of recorded signal from the 

reference scan session to gain a more reliable estimate of signal variability in each voxel. 

Due to variations in baseline signal magnitude across and within scans, each voxel’s mean 

signal value required updating based on activity in each block (the time covering the 

responses for two consecutive trials). To allow multivariate analysis to exploit information 

present at high spatial frequencies, no spatial smoothing was performed (Swisher et al., 

2010).

Matlab was used to perform further processing on the fMRI time courses for the voxels in 

the cortical region of interest for the associated search. For each stimulus presentation, the 

measured response of each voxel consisted of five data samples starting 2 s/1 TR after onset. 

Each five-sample response was consolidated into a weighted sum by computing the dot 

product of the response and the average hemodynamic response function (HRF) for the 

associated region. The HRF was determined based on data from the reference scan session. 

The pattern of voxel responses across the region was consolidated further into a single scalar 

response value by computing a similar weighted sum. Like the HRF, the voxel weights were 

determined from reference scan data. The weights corresponded to the most common multi-

voxel pattern observed in the region during the earlier scan; that is, the first principal 

component of the set of multi-voxel patterns. This projection of recorded real-time responses 

onto the first principal component treats the activity across the region of interest as a single 

locally-distributed code, emphasizing voxels whose contributions to this code are most 

significant and de-emphasizing those voxels with typically weak contributions to the average 

pattern.

During the alignment run of each real-time session, AFNI was used to compute an alignment 

transformation between the initial functional volume of the localizer and the first functional 

volume recorded during the reference scan session. The transformation computed between 

the first real-time volume and the first reference volume was applied in reverse to each voxel 

in the four ROIs determined from the reference scan.

More standard preprocessing methods were used for the reference scan; as such, 

preprocessing steps for the reference scan can be found in Leeds et al. (2014).

2.8. Real-world objects embedded in SIFT space

We pursued two methods to search for visual feature selectivity. In our first method, we 

focused on the perception of real-world objects with visual features represented by the scale 

invariant feature transform (SIFT, Lowe (2004)).
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2.8.1. Subjects—Ten subjects (four female, age range 19 to 31) from the Carnegie Mellon 

University community participated, provided written informed consent, and were monetarily 

compensated for their participation. All procedures were approved by the Institutional 

Review Board of Carnegie Mellon University.

2.8.2. Stimuli—Stimulus images were drawn from a picture set comprised of 400 distinct 

color object photos displayed on 53% gray backgrounds (Fig. 4a). The photographic images 

were taken from the Hemera Photo Objects dataset (Hemera Technologies, 2000–2003). The 

number of distinct exemplars in each object class varied from 68 to 150 object images. Note 

that our use of real-world images of objects rather than the hand-drawn or computer-

generated stimuli employed in past studies of intermediate-level visual coding (e.g., Cadieu 

et al. (2007) and Yamane et al. (2008)) was intended to better capture a broad set of 

naturally-occurring visual features.

2.8.3. Defining SIFT space—Our real-world stimuli were organized into a Euclidean 

space that was constructed to reflect a scale invariant feature transform (SIFT) representation 

of object images (Lowe, 2004). Leeds et al. (2013) found that a SIFT-based representation of 

visual objects was the best match among several machine vision models in accounting for 

the neural encoding of objects in mid-level visual areas along the ventral visual pathway. 

The past success of SIFT as a model for mid-level visual representation in the brain (Leeds 

et al., 2013) lends the model to study of visual properties of interest for diverse visual 

classes, from the cars and mammals examined in our current study to faces, tools, dwelling-

places and beyond. The SIFT measure groups stimuli according to a distance matrix for 

object pairs (Leeds et al., 2013). In our present work, we defined a Euclidean space based on 

the distance matrix using Matlab’s implementation of metric multidimensional scaling 

(MDS, Seber (1984)). MDS finds a space in which the original pairwise distances between 

data points — that is, SIFT distances between stimuli — are maximally preserved for any 

given n dimensions. This focus on maintaining the SIFT-defined visual similarity groupings 

among stimuli — using MDS — was motivated by the observations of Kriegeskorte et al. 

(2008) and Edelman and Shahbazi (2012), both of whom argued for the value of studying 

representational similarities to understand cortical vision.

The specific Euclidean space used in our study was derived from a SIFT-based distance 

matrix for 1600 Hemera photo objects, containing the 500 stimuli available for display 

across the real-time searches, as well as 1100 additional stimuli included to further capture 

visual diversity across the appearances of real-world objects (nb. ideally, the object space 

would be better covered by many more than 1600 objects, however, we necessarily had to 

restrict the total number of objects in order to limit the computation time required to 

generate large distance matrices). Details on the computation of the distance matrix are 

provided by Leeds et al. (2014). MDS was then used to generate a Euclidean space into 

which all stimulus images were projected. The real-time searches for each object class 

operated within the same MDS space. This method produced an MDS space containing over 

600 dimensions. Unfortunately, as the number of dimensions in a search space increases, the 

sparsity of data in the space will increase exponentially. As such, any conclusions regarding 

the underlying selectivity function will become increasingly more uncertain absent further 
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search constraints. To address this challenge, we constrained our real-time searches to use 

only the four most-representative dimensions from MDS space.2

2.8.4. Experimental design—Search runs in the real-time scan sessions employed a one-

back location task to engage subject attention throughout the experiment. Each stimulus was 

displayed centered on one of nine locations on the screen for 1 s followed by a centered 

fixation cross that remained until the end of each 8 s trial, at which point the next trial began. 

Subjects were instructed to press a button when the image shown in this subsequent trial was 

centered on the same location as the image shown in the previous trial. The specific nine 

locations were defined by centering the stimulus at +2.5, 0, or −2.5 degrees horizontally 

and/or vertically displaced from the screen center. From one trial to the next, the stimulus 

center shifted with a 30% probability. Differences in the display location across stimuli were 

kept small to enhance subject attention in a difficult task and to minimize the effects of 

location shift on visual responses in the brain regions of interest.

2.8.5. Selection of regions of interest (ROIs)—Reference scan data was used to select 

ROIs for further study in real-time scan sessions. Single-voxel and voxel-searchlight 

analyses, described by Leeds et al. (2014), were used to find class-selective and SIFT-

representational regions in the ventral stream. For each class, a 125 voxel cube-shaped ROI 

was selected. The use of relatively small — one cubic centimeter — cortical regions make it 

more likely that our methods will reveal information regarding local neural selectivities for 

complex visual properties. This assumption is based on analyses that were successfully 

pursued on similar spatial scales in Leeds et al. (2013), using 123-voxel searchlights.

2.9. Fribble objects embedded in Fribble space

Our second approach to searching for visual feature selectivity focused on the perception of 

synthetic novel objects — Fribbles — in which visual features were parameterized as 

interchangeable 3D components (Williams and Simons, 2000).

2.9.1. Subjects—Ten subjects (six female, age range 21 to 43) from the Carnegie Mellon 

University community participated, provided written informed consent, and were monitarily 

compensated for their participation. All procedures were approved by the Institutional 

Review Board of Carnegie Mellon University.

2.9.2. Stimuli—Stimulus images were generated based on a library of synthetic objects 

known as Fribbles (Williams and Simons, 2000; Tarr, 2013), and were displayed on 54% 

gray backgrounds as in Sec. 2.8.2. Fribbles are creature-like objects composed of colored, 

textured, geometric volumes. They are divided into classes, each defined by a specific body 

form and a set of four locations for attached parts. In the library, each appendage has three 

potential shapes, for example, a circle, star, or square head for the first class in Fig. 5a, with 

potentially variable corresponding textures. In contrast to the more natural, but less 

2Given n dimensions, it is preferable to explore at least 2n stimuli, more preferably 3n, constituting two to three locations along each 
dimensional axis. 16 stimulus displays are performed for each of the four object classes in each of five to seven runs during each real-
time session. Thus, there are a total of 16 × 5 = 80 to 16 × 7 = 112 stimulus displays per object class. Employing the more-
conservative 3n stimuli requirement, log3 80 ≈ 4 dimensions are most appropropriate for the number of available stimulus displays.
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parameterized real-world objects, Fribble stimuli provide good control for the varying 

properties shown to subjects.

2.9.3. Defining Fribble space—We organized our Fribble stimuli into Euclidean spaces. 

In the space for a given Fribble class, movement along an axis corresponded to morphing the 

shape of an associated appendage. For example, for the purple-bodied Fribble class, the axes 

were assigned to: 1) the tan head; 2) the green tail tip; and 3) the brown legs, with the legs 

grouped and morphed together as a single appendage type. Valid locations on each axis 

spanned from −1 to 1 representing two end-point shapes for the associated appendage (e.g., 

a circle head or a star head). Appendage appearance at intermediate locations was computed 

through the morphing program Norrkross MorphX (Wennerberg, 2009) based on the two 

end-point shapes. Example morphs can be seen in the Fribble space visualization in Fig. 5b.

For each Fribble class, stimuli were generated for each of 7 locations — the end-points −1 

and 1 as well as coordinates −0.66, −0.33, 0, 0.33, and 0.66 – on each of 3 axes, that is, 73 = 

343 locations. A separate space was searched for each class of Fribble objects.

Note that, in contrast to our approach to building a space for real-world objects (which might 

apply to any set of images), the methods used to build an object space for Fribbles 

necessarily rely on using objects that are, or can be, parametrized across all members of the 

class. As such, the real-world object method, while perhaps not ideal in all respects, is likely 

to be applicable to a much wider range of experimental designs.

2.9.4. Experimental design—Search runs in the real-time scan sessions employed a 

dimness detection task to engage subject attention throughout the experiment. Each stimulus 

was displayed in the center of the screen for 1 s followed by a centered fixation cross that 

remained displayed until the end of each 8 s trial, at which point the next trial began. On any 

trial there was a 10% chance the stimulus would be displayed as a darker version of itself — 

namely, the stimulus’ red, green, and blue color values each would be decreased by 50 (max 

intensity 256). Subjects were instructed to press a button when the image appeared to be 

“dim or dark.” For the Fribble stimuli, the dimness detection task was used to address a 

specific concern with the one-back location task: that it required subjects to hold two objects 

in memory simultaneously, thereby possibly adding noise to any measure of the neural 

responses associated with single objects. Indeed, this issue may have limited the strength of 

real-world object search results. As such, somewhat cleaner results were expected using the 

dimness detection task.

2.9.5. Selection of Fribble class regions of interest—We employed the 

representational dissimilarity matrix-searchlight procedure discussed in Leeds et al. (2013) 

to identify those cortical areas whose encoding of visual information was well characterized 

by each Fribble space. ROIs were selected manually from these areas for study during the 

real-time scan sessions in which we searched for complex featural selectivities within the 

associated Fribble space.

2.10. Metrics for search performance

We expected each search in visual feature space to show the following two properties:
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1. Convergence onto one, or a few, location(s) in the associated visual space 

producing greatest cortical response, corresponding to local neural selectivity.

2. Consistency in stimuli found to be preferred by the ROI, despite differing search 

starting points in visual feature space across the two scanning sessions.

Metrics were defined for both Convergence and Consistency and applied to all search results 

to assess the behavior of our real-time stimulus selection method.

Due to the variability of cortical responses and the noise in fMRI recordings, analyses were 

focused on stimuli that were visited three or more times. The average response magnitude 

for stimuli visited multiple times is more reliable with respect to conclusions of underlying 

ROI selectivity. Furthermore, repeat visits may indicate the implicit importance of a stimulus 

to the response of a given ROI, in that, as determined by the search, increased interrogation 

of a local region in feature space indicates that the algorithm “expects” higher responses in 

that region.

2.10.1. Convergence—For a given class, convergence was computed based on the feature 

space locations of the visited stimuli S, and particularly the locations of stimuli visited three 

or more times, Sthresh. The points in Sthresh were clustered into groups spanning no more 

than d distance in the associated space based on average linkage, where d = 0.8 for Fribble 

spaces and d = 0.26 for SIFT space.3 The result of clustering was the vector clustersSthresh, 

where each element contained the numeric cluster assignment (from 1 to N) of each point in 

Sthresh. The distribution of cluster labels in clustersSthresh was represented as pclust, where 

the nth entry pclust(n) is the fraction of clustersSthresh entries with the cluster assignment n.

Conceptually, convergence is assessed as follows based on the distribution of points, that is, 

stimuli visited at least three times:

• If all points are close together, that is, in the same cluster, the search is considered 

to have converged.

• If most points are in the same cluster and there are a “small number” of outliers in 

other clusters, the search is considered to have converged sufficiently.

• If points are spread widely across the space, each with its own cluster, there is no 

convergence.

Set as an equation, the convergence metric is:

(2)

where  and ‖pclust‖0 is the number of non-zero 

entries of pclust. The metric awards higher values when pclust element entries are high (most 

points are in a small number of clusters) and the number of non-zero entries is small (there 

are few clusters in total). Eqn. 2 pursues a strategy related to that of the elastic net, in which 

3The distance thresholds were chosen based on empirical observations of clusterings across regions and subjects in each space.
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ℓ2 and ℓ1 norms are added to award a vector that contains a small number of non-zero 

entries, all of which have small values (Zou and Hastie, 2005).

2.10.2. Consistency—For each subject and each stimulus class, search consistency was 

determined by starting the real-time search at a different location in feature space at the 

beginning of each of the two search scan sessions. If the second search returns to the 

locations frequently visited by the first search, despite starting distant from those locations, 

the search method shows consistency across initial conditions.

The metric for determining consistency of results across search sessions was a slight 

modification of the convergence metric. The locations of the stimuli visited three or more 

times in the first and second searches were stored in  and , respectively. The 

two groups were concatenated into , taking note which entries came from the first 

and second searches. Clustering was performed as above and labels were assigned into the 

variable clustersSboththresh. The distribution of cluster labels was represented as 

probabilities pclustBoth.

To measure consistency, the final metric in Eqn. 2 was applied only to entries of pclustBoth 

for which elements of  and  were present:

(3)

where B is the set of indices i such that cluster i contains at least one point from  and 

from . The metric awards the highest values for convergence if there is one single 

cluster across search sessions. A spread of points across the whole search space visited 

consistently between sessions would return a lower value. Complete inconsistency would 

leave no pclustBoth entries to be added, returning the minimum value of 0.

2.10.3. Testing against chance—A variant of the permutation test is used to assess the 

metric results. The null hypothesis is that the convergence or consistency measure computed 

for a given search or pair of searches, based on clustering of the k stimuli visited three or 

more times during the search(es), would be equally likely to be found if the measure were 

based on clustering of a random set of k stimuli; this random set is chosen from the stimuli 

visited one or more times during the same search(es). The group of stimuli visited one or 

more times is considered a conservative estimate of all stimuli that could have been 

emphasized by the search algorithm through frequent visits. In the permutation test, the 

designation “displayed three or more times” is randomly reassigned among the larger set of 

stimuli displayed one or more times to determine if a random set of stimuli would be 

considered similarly convergent or consistent as the set of stimuli frequently visited in my 

study. More specifically, indices are assigned to all points visited in Search 1 and Search 2, 

S1 and S2, respectively, the indices and recorded number of visits are randomly permuted, 

and metric(S1), metric(S2) and metric(Sboth) are computed based on the locations randomly 

assigned to each frequently-visited point. For each subject and each search, this process is 

repeated 500 times, the mean and standard deviation are computed, and the Z score for the 
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original search result metrics are calculated. Based on visual inspection, searches with z ≥ 

1.8 are considered to mark notably non-random convergence or consistency.

2.10.4. Temporal evolution—We studied the movement of the search through visual 

space for each stimulus class search and each session by comparing the distribution of 

stimulus locations visited during the first and second half of the session. We characterized 

these distributions by their mean and variance.

To assess the changing breadth of visual space examined across a search session, we divide 

the stimulus-points into those visited in the first half of the session and those visited in the 

second half:

(4)

where sigma2(·) is the variance function and  is the set of coordinates on the jth axis for 

the ith half of the session. Δvar pools variance across dimensions by summing. More fine 

covariance structure is ignored as the measure is intended to test overall contraction across 

all dimensions rather than changes in the general shape of the distribution.

To assess the changing regions within visual space examined across a search session, we 

again compared points visited in the first half of the session with those in the second half of 

the session:

(5)

where  are as defined for Eqn. 4 and  is the mean variance along the jth 

dimension of the point locations visited in the two halves of the search session. dist 
measures the distance between the mean location of points visited in the first and second 

halves of the search session, normalized by the standard deviation of the distributions along 

each dimension — similar to the Mahalanobis distance (Mahalanobis, 1936) using a 

diagonal covariance matrix. A shift of 0.5 on a dimension with variance 0.1 will produce a 

larger metric value than a shift of 0.5 on a dimension with variance 1.0.

3. Results

Our methods are designed to more rapidly identify complex visual properties used in the 

neural representation of objects within the human ventral pathway. Because these search 

methods are somewhat novel, we also assessed and confirmed their expected performance. 

Specifically, we first studied the timing of the stimulus displays, as executed by the display 

program, as well as the stability of real-time computation of ROI responses to stimuli, as 

executed by the preprocessing program. We then proceeded to examine the locations in 

visual space visited by each real-time search.
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3.1. Display program behavior

Within our real-time approach to studying the visual cortex, the display program’s central 
task is to display each intended stimulus as chosen by the search program at its intended 
time (i.e., at the beginning of its associated 8 s trial, described in Sec. 2.4). Unfortunately, in 

the course of each real-time session, challenges periodically arose to the prompt display of 

the next stimulus to explore in each real-time search. The computations required to 

determined ROI response to a recent stimulus and to determine the next stimulus to display 

did not always (and were not guaranteed to) complete before the time required by the 

display program to show the next search selection. When the new stimulus choice was not 

made sufficiently quickly, the stimulus displayed to the subject could be shown seconds 

delayed from its intended onset time or could incorrectly reflect the choice made from the 

previous iteration of the search, depending on the stimulus update method used by the 

display program.

Of the two stimulus update methods used by the display program, as explained in Sec. 2.2, 

Update Method 1 was more sensitive to this potential problem. As such, only for the first 

five subjects viewing real-world objects did the display program receive the search 

program’s next stimulus choice by reading a file in a directory shared between the machines 

respectively running the display program and the search program. For the remainder of the 

subjects, five viewing real-world objects and ten viewing Fribble objects, we employed 

Update Method 2 in which the display program received the search program’s next 

stimulus choice through a dedicated socket connection. This method improved on the 

notable delays in updates to the shared files observed for Method 1 (Table 1).

The relative benefits of Update Method 2 over Update Method 1 are studied in the context of 

the hardware and software configurations of our Analysis and Display machines. As such, 

our findings in this section provide important technical insights in engineering that we hope 

will ultimately be useful in advancing our understanding of human high-level vision.

3.1.1. Real-world objects search—The number of displays that appeared late or 

showed the wrong stimulus for subjects viewing real-world objects is presented in Table 1 

for each subject, object class, and scan session. Stimulus presentations were considered 

delayed if they were shown 0.5 s or more past the intended display time. Below, we first 

discuss display errors for stimulus update method 1, then we discuss display errors for 

stimulus update method 2.

Update Method 1 When updates for display stimuli were performed through inspection of 

shared files, for S6, S7, S8, S9, and S10, showing of incorrect stimuli dominated the display 

errors. S6, S7, and S8 were shown incorrect stimuli for 15 to 42% of trials for search 1 and 

search 3, corresponding to the mammal and car classes. Among these three subjects, 

incorrect displays for Search 2 and Search 4 only were observed in Session 2 for S6. S9 was 

shown no incorrect stimuli; S10 was shown incorrect stimuli on ~10% of trials for all 

searches in Session 1 and no incorrect stimuli in Session 2. Despite the frequency of 

incorrect stimuli displayed in searches for Object Classes 1 and 3, it is important to note that 

even in the worst case, correct stimuli were displayed on over half of the trials.
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Note that even when stimuli are chosen 1 s prior to display time, updates through the shared 

files read over the mounted folder may require as much as 3 s to complete, resulting in the 

display program reading and acting on old stimulus choices. These sources of typically 1 to 

5 s delays past display time in conjunction with the block processing method result in the 

strong discrepency in incorrect display frequency of Search 1 and Search 3—whose updates 

sometimes did not arrive to the display computer by the required time — compared with that 

of Search 2 and Search 4 — whose updates usually arrived at least 3 s before they are 

needed.

When updates for display stimuli were performed through inspection of shared files, display 

errors also included a limited number of delayed displays. S9 and S10 had delayed stimulus 

displays for 1 to 6% of trials, with delay on at least one trial for every session and for each 

of the four searches. In most cases, there were more delays for Search 1 than for any of the 

other searches. These delays likely resulted from the directory update performed by the 

display program prior to reading the file containing the stimulus choice for the current 

search. The update operation usually executes in a fraction of a second, but occasionally 

runs noticeably longer. Chances of a longer-duration update are greater when the operation 

has not been performed recently, such as at the start of a real-time search run following a ~2 

minute break between runs. As Search 1 starts every run, it may be slightly more likely to 

experience display delays.

Update Method 2 When updates for display stimuli were performed through a socket, for 

S1, S2, S3, S4, and S5, display delays dominated the errors in display program performance. 

Most subjects had delayed stimulus displays for 1 to 9% of trials, with delay on at least one 

trial for every session and for each of the four searches. However, the second session for S1 

showed no delayed displays, nor did Search 4 for the second session for S2. The number of 

delays for Search 1 was greater than or (occasionally) equal to the number of delays for any 

of the other searches, except for Session 1 for S3 for which Search 3 had the most delays. 

Across the five subjects, Search 3 had the second, or sometimes first, highest number of 

delayed displays. The discrepency in display error frequency between the first searches of 

each processing “block” as described above, that is, Search 1 and Search 3, and the second 

searches of each processing block, Search 2 and Search 4, are significantly less pronounced 

than they were for the frequency of incorrect stimuli for S6, S7, S8, S9, and S10, though the 

pattern remains weakly observable. For S1, S2, S3, S4, and S5, display delays can result 

from delays in completing processing of cortical responses for the block of two recently 

viewed stimuli — causing a greater number of delays for Search 1 and Search 3. As 

described in Sec. 2.3, the next stimuli to display are computed and provided to the display in 

blocks of two — Search 1 and Search 2 selections are provided together and Search 3 and 

Search 4 selections are provided together.

A limited number of incorrect stimulus displays also occurred when updating display stimuli 

through a socket. S3 and S4 were shown incorrect stimuli on 1 to 3% of trials for one or two 

searches in each scan session. The source of these errors was not determined, though they 

may have resulted from skipped evaluations in the simplex search. These errors did not 

occur using socket updates for searches of Fribble object stimuli reported below.
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Far fewer display errors occured when updates for display stimuli were performed over a 

socket than when they were performed through inspection of a shared file. Indeed, the socket 

update approach was introduced to improve communication speed between the search 

program and the display program and, thereby, to decrease display errors. Reflecting on the 

increased performance caused by use of sockets, we employed only socket communication 

for the Fribble objects searches.

3.1.2. Fribble objects search—The number of displays that appeared late for subjects 

viewing Fribble objects — which always relied on Update Method 2 — is shown in Table 2 

for each subject, object class, and scan session. Stimulus presentations were considered 

delayed if they were shown 0.5 s or more past the intended display time. There were no 

displays showing the wrong stimuli, because the display program waited for updates to each 

stimulus over an open socket with the search program before proceding with the next 

display.

All subjects had delayed stimulus displays in each scan session in one or more of the four 

searches. Across subjects, a total of ~70% of searches showed delayed displays, with errors 

occuring in 1 to 10% of trials. The number of delays for Search 1 was greater than the 

number of delays for any of the other searches; across subjects, Search 1 had roughly three 

times as many errors as any of the other classes. As with the real-world objects, these delays 

in displaying Fribble stimuli were produced by delays in the completion of fMRI signal 

preprocessing and by skipped simplex search evaluations.

The first block processed for each run requires slightly extra time for processing than does 

any other block, because the first block contains six extra volumes, corresponding to the 

cortical activity prior to the start of the first display trial. Often, this extra processing time 

causes a delay for the first update of Search 1. This slow start to preprocessing also 

contributes to the larger number of delayed displays for Search 1 observed in subjects 

viewing real-world objects, shown in Table 1, though the effects are much more pronounced 

for Fribble subjects than for real-world object subjects.

Overall, display program performance was quite good for subjects viewing Fribble stimuli. 

Correct stimuli were displayed on at least 90% of trials, and usually more, for each subject, 

session, and search.

3.2. Preprocessing program behavior

The preprocessing program’s central task was to act in real-time to compute the responses of 

pre-selected ROIs to recently shown stimuli. To rapidly convert raw fMRI signal to ROI 

response values, standard preprocessing methods were used to remove scanner and motion 

effects from blocks of fMRI data, followed by methods for extracting and summarizing over 

selected voxel activities. In more typical, that is, non-real-time, analyses, a larger array of 

preprocessing methods would be employed over data from the full session to more 

thoroughly remove signal effects irrelevant to analysis. However, a somewhat more 

conservative approach to preprocessing was used here to enable reasonable performance for 

real-time analysis, real-time stimulus selection, and real-time search of stimulus spaces.
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Of note, this truncated preprocessing may lead to inaccuracies in measures of brain region 

responses, misinforming future search choices. To investigate this potential concern, we 

compared the correlation between computed ROI responses computed using preprocessing 

employed during the real-time sessions (Sec. 2.7) and the computed responses using 

“offline” preprocessing considering all runs in a scan session together, and following the 

drift and motion correction as well as normalization methods of Leeds et al. (2014). We 

considered the effects of correcting for subject motion in the scanner using real-time 

preprocessing over a limited set of volumes compared to offline preprocessing across BOLD 

data from the full session.

Our preprocessing program aligned fMRI volumes in each time block to the first volume of 

the current 8.5-minute run, rather than to the first volume recorded in the scanning session. 

To extract brain region responses for each displayed stimulus, voxel selection is performed 

based on ROI masks aligned to the brain using the first volume recorded in the scan session 

(Sec. 2.7), under the assumption voxel positions will stay relatively fixed across the session. 

Significant motion across the scan session could potentially place voxels of interest outside 

the initially-aligned ROI mask as the session procedes, or cause voxels to be misaligned 

from their intended weights used in computing the overall ROI stimulus response (Sec. 2.7). 

In our analysis of preprocessing program performance, we track subject motion in each scan 

session and note its effects on the consistency between responses computed in real-time and 

offline.

While there were some inconsistencies between responses computed by the offline and real-

time methods, particularly under conditions of greater subject motion, we observe that real-

time computations are generally reliable across subjects and sessions. This reliability is 

particularly strong for subjects viewing Fribble objects rather than real-world objects, for 

reasons detailed below.

3.2.1. Real-world objects search—Consistency between ROI responses computed in 

real-time and responses computed offline for subjects viewing real-world objects are shown 

in Table 3 for each subject, object class, and scan session. Consistency was measured as the 

correlation between responses computed by the two methods for each display of each trial.

Correlation values were modestly strong and positive. Approximately 50% of searches 

produced correlations of 0.3 or above, and 20% produced correlations of 0.5 or above. 

Notably, 5 of the 17 searches producing negative correlations showed values below −0.3, 

pointing to a marked negative trend between the two methods. Consistent misalignment of 

positive and negative voxel weights when combining voxel activity to form a single regional 

response to a stimulus may consistenly invert the sign of the computed real-time response. 

Effects of this inversion on search behavior are considered in Sec. 3.3.

Correlation values can vary dramatically within a given subject and session across ROIs. 

Real-Time Session 1 for Subject S4 and real-time Session 2 for Subjects S6 and S7 show 

correlations that are high and low, positive and negative across stimulus class searches. 

Searches for Stimulus class 1 and 3 show high correlations across subjects. At first 

consideration, this within-session variability is quite surprising, as all regions presumably 
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are affected by the same subject movement and scanner drift. However, brain regions differ 

in the form of the multi-voxel patterns that constitute their response. Patterns the are more 

broad in spatial resolution, with voxels responding similarly to their neighbors, are less 

affected in their appearance if subject movement shifts the ROI ~2 mm from its expected 

location. High-resolution patterns, in which neighboring voxels exhibit opposite-magnitude 

responses to a stimulus, are harder to analyze correctly when shifted. Significant angular 

motion also could produce differing magnitudes of voxel displacement for ROIs closer and 

farther from the center of brain rotation.

We considered head motion as an important potential source of inconsistency between 

computed responses. In particular, we expected increased motion would cause increased 

inconsistency between real-time and offline computations. The expected pattern is weak but 

apparent when viewing correlation values sorted by subject motion, shown in Fig. 6. 

Sessions with the least motion are in the top rows and sessions with the most motion are in 

the bottom rows; colors correspond to correlation values and are sorted from lowest to 

highest in each row for ease of visualization. Studying the search with the lowest correlation 

— the left-most column — per subject and session reveals sessions containing two to three 

searches with low correlation values, corresponding to green and cyan colors, are 

predominantly seen when there is greater subject motion. However, all sessions contain 

searches with high correlations, and the search with the most motion, S32 in the bottom row, 

contains three high-correlation searches.

3.2.2. Fribble objects search—Consistency between ROI responses computed in real-

time and responses computed offline for subjects viewing Fribble objects are shown in Table 

4 for each subject, object class, and session. Consistency was measured as the correlation 

between responses computed by the two methods for each display of each trial.

Correlation values were low but generally positive, and higher than those observed in the 

real-times objects searches. 75% of searches produced correlations of 0.2 or above, and 

more than 50% produced correlations above 0.45. 7 of the 17 searches producing negative 

correlations showed values equal to or below −0.4, pointing to a marked negative trend 

between the two methods. The potential mechanism for a consistent inversion in the sign, for 

example, +3 becomes −3, of the computed ROI responses is discussed above for subjects 

viewing real-world objects.

Notably, correlation values can vary dramatically within a given subject and session across 

ROIs. Real-Time Session 1 for Subject S20 shows correlations that are high and low, 

positive and negative across stimulus class searches. Nonetheless, within-session variation is 

notably less pronounced for subjects viewing Fribble objects compared to subjects viewing 

real-world objects. Importantly, 12 of the 20 sessions, with each session corresponding to a 

row in the Figure, contain three or four searches with consistently high real-time/offline 

result correlations. Searches for Stimulus Classes 1 and 2 show high correlations across 

subjects. Searches from Stimulus Classes 3 and 4 show high magnitude correlations across 

subjects, alternating between positive and negative correlations.
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Table 4 shows the maximum motion for subjects viewing Fribble objects, pooled across 

translational and rotational dimensions, between the start of the scan session and the start of 

each scan run. Motion for subjects viewing Fribble objects is generally reduced from that of 

subjects viewing real-world objects shown in Table 3. For 11 of 20 Fribble sessions, 

maximum motion falls under 2 millimeters/degrees in a given direction, while the motion 

along other directions is usually less than 1 millimeter/degree. In contrast, 5 of 20 real-world 

object sessions achieve this limit to their motion. Thus, by the end of each Fribble-viewing 

session, true ROI locations usually stay within a voxel-width’s distance of their expected 

locations.

This decreased motion may be due to the differing tasks performed for the two object types. 

For real-world objects, subjects were asked to perform a one-back location task in which 

they were to judge the relative location of consecutively-displayed objects (Sec. 2.8.4). In 

contrast, for Fribble objects, subjects were asked to perform a dimness-detection task in 

which they were to judge whether the object, always displayed in the same central location, 

was dimmed (Sec. 2.9.4). We suggest that slight movement of real-world objects around the 

screen may have encouraged slight head motion during stimulus viewings.

Comparing between real-world object and Fribble object viewing groups, there appears to be 

a relation between subject motion and consistency for real-time and offline computations. 

Fribble subjects, who moved less as a whole, showed a higher number of searches with high 

correlation values, as well as more pronounced negative correlation values for several 

searches. To consider motion effects within the Fribble sessions, we study correlation values 

sorted by subject motion, shown in Fig. 7. In this Figure, there is no clear smooth transition 

from high (red) to low (green/cyan) correlations with increasing motion (moving from 

higher to lower rows). However, the two sessions with unusually high motion, S121 and 

S152, contain searches with consistently lower real-time/offline result correlations as shown 

in the bottom two rows. Even these two sessions contain at least one search with a 

correlation value above 0.3.

3.3. Real-Time search performance

3.3.1. Visualized feature spaces—To search for those visual properties selectively 

driving different cortical regions within the ventral pathway we constructed two types of 

visual feature spaces. Each of these spaces — Euclidean in nature — represented an array of 

complex visual properties through the spatial grouping of image stimuli that were 

considered similar according to the defining visual metric, as in Secs. 2.8.3 and 2.9.3.

Critically, each space contained a low number of dimensions — four dimensions for SIFT 

and three dimensions for each Fribble class — to allow the searches for visual selectivity to 

converge in the limited number of simplex steps that can be evaluated in real-time over the 

course of a scanning session. These low-dimensional spaces also permit visualization of 

search activity over each scan session and visualization of general ROI response intensities 

across the continuum of visual properties represented by a given space. We display this 

information through colored scatter plots. For example, representing each stimulus as a point 

in feature space, Fig. 8 shows the locations in SIFT-based space selected or visited by the 

search for human-form images evoking high activity in the pre-selected SIFT/“human-form” 
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region of Subject S3, and shows the localized neural response to each of the displayed 

stimuli. The four dimensions of SIFT-based space are projected onto its first two and second 

two dimensions in Figs. 8a and b, respectively. Stimuli visited during the first and second 

realtime sessions are shown as circles and diamonds, respectively, centered at each stimulus’ 

corresponding coordinates in the space. (Black dots correspond to the locations of all stimuli 

in the human-form class that were available for selection by the search program.) The 

magnitude of the average ROI response to a given visited stimulus is reflected in the color of 

its corresponding shape. For stimuli visited three or more times, colors span blue–dark blue–

dark red–red for low through high average responses. Size of circles and diamonds indicates 

time in search when stimulus was visited, with small shapes for early visits and larger shapes 

for later visits.

Inspection of Fig. 8 reveals two patterns visible in the stimulus searches: (1) There are 

multiple distinct selectivities — multiple locations of search concentration — for single 

ROIs; and (2) There are marked changes in the cortical responses arising from slight 

deviations in visual properties (i.e., slight changes in location in each visual space). We 

report and discuss the implications of this observed local cortical selectivity in Leeds et al. 

(2014). In contrast, here we incorporate these observations into our formulations of metrics 

for optimizing search performance, as introduced in Sec. 2.10.

3.3.2. Real-world objects search—Convergence of real-time searches, that is, the 

focus of searches on one or a small number of locations across a session, is shown for real-

world object searches in Table 5 for each subject, object class, and session.

Above-threshold convergence, z ≥ 1.8, occurred for only 9 of 80 searches performed across 

all sessions and object classes. Interestingly, 8 of the 9 converged searches were performed 

for Stimulus Classes 2 (human-forms) and 4 (containers), with 4 performed for each class. 

The greater success of searches for these stimulus classes seems to coincide with reduced 

errors in stimulus display throughout the search, as shown in Table 1. However, it is worth 

noting there are a large number of display errors for Search 4 of S62, as well as for Search 1 

of S81, despite their high convergence. Motion and preprocessing factors underlying the rare 

above-threshold convergence results are not apparent. Less than 50% of convergent searches 

showed high (above 0.2) correlations between real-time and offline calculations of ROI 

responses to stimuli (Table 3). The scan session with greatest head motion, S11, shows a 

high Z value for Stimulus Class 4.

Below-threshold convergence Z values ranged widely. Several searches showed values Z < 

−1.3, seeming to indicate that a random set of stimuli was markedly more convergent than 

the stimuli actually visited frequently. To some extent, this phenomenon may point to an 

unexpected feature of our significance test, as defined in Sec. 2.10. Convergence measures 

the clustering of stimuli visited by the search three or more times, while stimuli visited one 

or two times are ignored. For our permutation test, we randomly reassigned each frequently-

visited label to one of the stimuli visited any number of times by the search. This approach 

was intended to judge the convergence of frequently visited stimuli in light of the 

distribution of stimuli that were visited but not considered sufficiently close to the ROI 

selectivity center to be re-visited. However, if several stimuli are nearby in space and close 
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to the location producing highest cortical response, their neighborhood may be visited many 

times but each stimulus visited only visited once or twice. This non-frequently visited 

clustering may be indicated by extreme negative Z values. At the same time, it is worth 

noting that convergence Z values did not fall below −2, while the majority of above-

threshold values were greater than 2.

Consistency of real-time searches, that is, the focus of a search on the same location or 

locations in visual space when initialized at two different points in the space in two different 

scan sessions, is shown for real-world object searches in Table 6 for each subject and object 

class.

Above-threshold consistency, z ≥ 1.8, occurred for only 2 of 40 searches performed across 

all subjects and object classes. The searches were performed for Stimulus Class 2 (human-

forms). From the two above-threshold results, no clear pattern for successful consistency 

could be deduced. Each consistent search coincided with a low number of errors in stimulus 

display (Table 1), but many searches with fewer display errors do not exhibit high 

consistency. Motion and preprocessing factors underlying the rare above-threshold 

consistency results are not apparent. Neither of the two subjects, S1 and S5, showed above-

threshold convergence for Class 2 searches. The lack of consistency for searches with above 

threshold convergence — particularly for Search 2 for S7, which converged in both session 

but shows a consistency score of Z = 0.74 — indicates the potential presence of multiple 

regions in SIFT-based space producing high responses from a given ROI. Consideration of 

further sources of difficulty for search performance of real-world objects are discussed in 

Sec. 4.3.

Below-threshold consistency Z values ranged widely. For example, 6 searches showed 

values Z < −1.3, seeming to indicate a random set of stimuli selected for each of two 

sessions would be markedly more consistent than the stimuli actually visited frequently by 

the search. Reasons for extreme low Z scores are discussed above.

The change in the distribution of locations visited by real-time searches, as reflected by 

change in the distribution’s mean (dist) and variance (Δvar), is shown for real-world object 

searches in Table 7 for each subject, object class, and session.

Change in the variance of locations explored from the first half to the second half of each 

session was quite small across all searches. Δvar generally falls between −0.02 and 0.02, 

while the variance of locations explored in each half of a session fall between 0.02 and 0.07. 

Visited points are just as likely to be more dispersed (positive Δvar values) as they are to be 

more concentrated (negative Δvar values) as the search progresses.

The lack of convergence over time as indicated by the Δvar measure in part may reflect the 

reinitialization of the simplex at the start of each new run within the scan session, as 

described in Sec. 2.1. Existence of multiple locations in search space evoking high cortical 

responses also may account for lack of convergence over time. In contrast to Δvar, the time-

independent convergence measure defined in Eqn. 2 can reach high Z values while 

converging on multiple locations in space, provided the number of locations is small.
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Changes in the center of the distribution of locations explored from the first half to the 

second half of each session is notable for several searches, with dist ≥ 2 for 9 out of 80 

searches and dist ≥ 1.5 for 24 out of 80 searches. The 9 high shifts in distribution focus 

occurred with roughly equal frequency for searches of Stimulus Classes 2, 3, and 4. Most 

high shifts in focus (7 of 9) occur in the second session. In the second session, the starting 

locations were selected to be distant from the center of focus from the first session, as 

discussed in Sec. 2.10.2; in the first session, the starting locations were set to be the origin, 

around which stimuli are distributed in a roughly Gaussian manner. While this observation 

indicates a step towards cross-session consistency for several searches, the corresponding Z 

scores for the consistency metric defined in Eqn. 3 are predominantly negative.

3.3.3. Fribble objects search—Convergence of real-time searches, as defined in Sec. 

2.10, is shown for Fribble objects in Table 8 for each subject, object class, and session.

Above-threshold convergence occured for 20 of 80 searches performed across all sessions 

and object classes. Converged searches were performed for all stimulus classes, though more 

frequently for Classes 1, 3, and 4 as compared to Class 2. Higher frequency of delayed 

displays for Search 1 compared to the frequency of delays for other searches (Table 2) did 

not appear to adversely affect performance of Search 1 as it had for subjects viewing real-

world objects. In part, this may be attributable to the smaller number of display errors for 

Fribble object searches overall, especially compared to the number of incorrect real-world 

stimuli displayed for Search 1 and Search 3 reported in Table 1. Motion and preprocessing 

factors underlying above-threshold convergence results are not apparent. Only 55% of 

convergent searches showed high (above 0.2) correlations between real-time and offline 

calculations of ROI responses to stimuli (Table 4). Several real-time sessions contained 

multiple searches with above-threshold convergence; three of four searches converged in 

session 1 for S19. However, decreased subject head motion was not an apparent underlying 

factor in successful search convergence.

Above-threshold convergence Z scores generally were higher for Fribble object searches 

than they were for real-world object searches; 50% of above-threshold Fribble object 

searches showed Z ≥ 2.5, compared to 33% of above-threshold real-world object searches. 

This greater frequency and magnitude of successful search convergence for Fribble objects 

may reflect the lesser motion of the subjects in these sessions or, potentially related, the 

seemingly more reliable results of fMRI signal processing during these sessions, reported in 

Sec. 3.2. The structure of the Fribble search spaces also may pose advantages over the SIFT-

based image space, as discussed in Sec. 4.3.

Below-threshold convergence Z values still were assigned to 60 of the 80 searches, and 

ranged somewhat widely. However, unlike in real-world objects searches, negative Z values 

were much more infrequent and were relatively small in magnitude, that is, Z > −1.3. 

Furthermore, many sub-threshold searches exhibited degrees of convergence, for example, 

22 searches have 1.0 ≤ Z ≤ 1.8, compared to 6 searches fitting this criterion for real-world 

objects sessions.
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Consistency of real-time searches, as defined in Sec. 2.10, is shown for Fribble objects in 

Table 9 for each subject and object class.

Above-threshold consistency occurred for 7 of 40 searches performed across all subjects and 

object classes. The searches were performed for all stimulus classes, though somewhat more 

frequently for Classes 1 and 4. There was no clear pattern based on frequency of stimulus 

display errors, nor based on motion and preprocessing factors. Nonetheless, 5 out of 7 search 

pairs showed a correlation greater than or equal to 0.3 between real-time and offline 

calculations of ROI responses to stimuli. Several real-time sessions contained multiple 

searches with above-threshold consistency; three of four searches were consistent for S17. 

However, decreased subject head motion was not an apparent underlying factor in successful 

search consistency within Fribble-viewing subjects. Almost all searches showing above-

threshold consistency also showed convergence in one scan session, and in both sessions for 

S19 Search 4. It is possible that the lack of covergence we observed for both scan sessions 

may reflect the fact that convergence may require more observations and time than was 

possible in our fMRI study. This may be particularly true for our second session in which we 

started the search at locations distant from the potentially high-activity regions of visual 

space, thereby leading the search to probe many suboptimal locations.

Below-threshold consistency Z values ranged widely. Several searches show values Z < 

−1.3.

The change in the distribution of locations visited by real-time searches, as reflected by 

change in the distribution’s mean (dist) and variance (Δvar), is shown for Fribble object 

searches in Table 10 for each subject, object class, and session.

Equivalent to observations made for search behavior using real-world objects, the change in 

the variance of locations explored from the first half to the second half of each session was 

small across all searches. Δvar generally falls between −0.1 and 0.1. Visited points were 

observed to be just as likely to be dispersed (positive Δvar values) as to be concentrated 

(negative Δvar values) as the search progressed. Potential contributions to this lack of 

convergence over time as indicated by the Δvar measure are discussed above in the context 

of search performance for real-world objects, where we observed a similar lack of decrease 

in variance of stimuli explored over time.

Also similar to real-world objects searches, changes in the center of the distribution of 

locations explored from the first half to the second half of each session is notable for several 

searches, with dist ≥ 2 for 12 out of 80 searches and dist ≥ 1.5 for 23 out of 80 searches. The 

12 high shifts in distribution focus occurred with roughly equal frequency for searches of all 

stimulus classes. Unlike in real-world objects searches, high shifts in focus occurred with 

equal frequency across the first and second sessions.

Starting from the origin in the first session, each search initially probed stimuli whose 

component shapes were morphed intermediate appearances between two better-established 

shapes at the extremes: −1 and 1 coordinates on each axis. Intuitively, a region involved in 

object perception would be expected to be selective for salient visual features, as opposed to 

the less well-defined shapes generated by morphing within the Fribble space (Fig. 5). As 
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such, large shifts from the origin in Session 1 are unsurprising. In contrast, the definition of 

the real-world object feature space through SIFT and multi-dimensional scaling placed 

groups of salient visual features throughout the space, not just at its extremes, making large 

shifts from the origin less likely in the first session.

As in real-world objects search, in the second Fribble session, the starting locations were 

selected to be distant from the center of focus from the first session (Sec. 2.10.2) — thus, a 

significant shift in search focus would be required to identify the same stimuli producing 

high activity in the pre-selected cortical regions. While these second session observations 

indicate a step towards cross-session consistency for several searches, the corresponding Z 

scores for the consistency metric defined in Eqn. 3 are predominantly below threshold, 

though for all but S11, Z ≥ 1.4.

Overall, all measures of Fribble object search behavior indicate more stability and more 

consistency in identified visual selectivities when compared with search of real-world 

objects. In particular, Fribble searches benefit from more tightly-defined feature spaces 

describing stimuli with known dimensions of variation, similar to the artificial stimuli used 

in past neurophysiological studies of neural visual selectivity (Hung et al., 2012). However, 

there remains significant room for improvement in achieving convergence, both over space 

and while operating across time. Nonetheless, even the current success rate of a relatively 

simple search method—simplex simulated annealing—to investigate a rather complex 

problem in visual encoding constitutes a promising basis for further development of real-

time fMRI methods.

4. Discussion

We develop and assess a novel method to explore the complex visual feature selectivities of 

localized regions in the human ventral visual pathway. Our work introduces a set of 

algorithms and their implementations for dynamically selecting stimuli to display during 

each scan session based on cortical responses to stimuli displayed seconds earlier in the 

same session. This dynamic, or real-time, stimulus selection was implemented to most 

effectively search defined visual spaces in limited scan time. That is, we developed methods 

to rapidly identify those images of objects that produced the highest responses from 

localized brain regions. This application of real-time search to identify maximally preferred 

stimuli for regions of the ventral pathway has not been pursued previously in human 

neuroimaging to our knowledge, and algorithmically-driven real-time neural data analysis is 

quite new across all neuroscientific studies of vision (Yamane et al., 2008; Hung et al., 

2012). Despite the large number of technical and biological challenges this approach faces, 

our real-time BOLD response processing and stimulus display system showed acceptable 

errors across twenty subjects. Furthermore, stimulus selection through searches for preferred 

stimuli exhibited significant convergence and consistency in many subjects. Adjustments in 

system settings applied throughout our study steadily improved the operation of our 

methods, thereby suggesting valuable ways forward in the continued development of 

methods for the real-time analysis of neural data.

Leeds and Tarr Page 27

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1. Socket communication to reduce stimulus display errors

Ordinarily during real-time scanning sessions, the search program selected each new 

stimulus image at least 1 to 2 seconds before it was needed by the display program. The 

shared-file method for communication between the search and display programs proved 

problematic when stimuli were selected less than 4 seconds before they were to be 

displayed. While the new stimulus was correctly recorded in the file, the file updates 

sometimes required over 5 seconds to be visible on the display machine. In contrast, socket 

communications for selected stimuli were available to the display machine immediately after 

their computation by the search program. Once sockets were used for inter-computer 
communication, display errors dropped dramatically, providing the first major 
technical insight in our study.

Delays in stimulus selection past the required stimulus display time are relatively limited, 

but do occur on occasion. These late displays reflect variable speed of real-time fMRI signal 

processing, which can be slowed by irregular subject motion and scanner magnet behavior 

during cortical response to previous stimuli. Other programs running on the “analysis 

machine” — in parallel with the preprocessing and search programs — also can 

unexpectedly take up processor resources, slowing down real-time analysis. While we 

initiate no extra programs on the analysis machine during real-time sessions, we also do not 

reconfigure the machine to suspend potentially unnecessary background processes.

Additional delays can occur when the search program occasionally skips simplex 

computations for a given class of objects at a given step. Thus, stimulus displays on some 

occasions occured at 20 second delays, followed in succession by the displays of the other 

stimuli whose trials had passed during the time waiting. This problem did not occur often, 

but requires further code development for future versions of the real-time search study.

Delays in stimulus selection and delays in updates to shared files both are truly technical 

issues, rather than fundamental scientific challenges. These delays may be decreased by 

improvements to the hardware and software used for real-time analyses. Our study employs 

Red Hat on an Intel Core 2 Duo processor running at 3 GHz with 4 GB memory. Increasing 

the number of cores on our processor, increasing machine clock speed, and adjusting the 

operating system policies on directory update timings likely will decrease display errors 

using either method of inter-program communication used in this study. Nevertheless, our 

observations provide engineering insight for those using systems similar to our own. For 

more advanced hardware, our insights can still guide real-time investigators wishing to use 

smaller inter-stimulus intervals, such as 4s, where processing speed may still remain an 

issue.

4.2. Moderate stability of truncated real-time BOLD signal processing

To compute ROI BOLD responses with sufficient speed for dynamic stimulus selection, 

several typical BOLD response preprocessing steps are truncated or removed in our system. 

These steps are designed to better account for factors such as scanner drift and subject head 

motion. We find truncated real-time preprocessing achieves somewhat similar ROI response 

estimates to full offline preprocessing — correlation of responses between real-time and 
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offline computations was 0.3 on average across all searches, and 0.5 on average across the 

two stimulus classes with the most stable search results for real-world and Fribble stimuli. 

These results appear fairly robust to sub-voxel/single-voxel motion, that is, up to 2–3mm 

translation (Tables 3 and 4). For larger motions, evidence suggests truncated preprocessing 

may break down; however, there is insufficient data to judge this condition with confidence.

It is important to note that correlation in real-time and offline preprocessing computations 

still remain below 0.9, and correlations below 0.1 do exist for several searches. These results 

potentially can motivate future development in real-time scanning and search methods. At 

the same time, 0.3 and 0.5 correlations are relatively promising results. While our method 

for correlation expresses the consistency between real-time and offline preprocessing results 

on a trial-by-trial basis, the consistency of computed cortical responses considered for study 

of ROI selectivity likely is higher. As discussed in Sec. 3.3.1, ROI responses across the 

associated visual space are examined only for stimuli shown three or more times. Responses 

for each of these stimuli are averaged across displays to reduce variability from noise. This 

noise removal may mimic offline preprocessing effects, increasing the correlation between 

the two methods’ results.

4.3. Contributing factors to search convergence and consistency

Over 30 preferred-stimulus searches exhibited significant convergence and consistency 

across our study. However, over 100 searches did not pass significance in either measure. 

Our results suggest potential room for improvement in the technical and conceptual 

underpinnings of each of the programs in our system. Revised settings employed over the 

course of our study were accompanied by marked improvement in search performance, 

suggesting promising future directions in the development of real-time stimulus selection 

methods. The convergence and consistency that we observe throughout the study instills 

confidence in the robust nature of our search method to succeed in the face of sub-optimal 

assumptions and operation parameters.

Display errors show effect on performance—Insufficiently fast computation and 

network-communication times prevented the display program from showing subjects the 

correct stimuli at the proper time. The stimulus selection method assumes the correct 

stimulus is shown for each trial and selects each new stimulus based on past ROI responses 

regardless of the validity of the visual stimuli actually reaching the subject. Incorrect 

displays misinform the simplex search about stimulus responses and can lead to sub-optimal 

exploration and acceptance of future simplex points. Looking at real-world and Fribble 

object results together, all but one of the significantly convergent and consistent searches 

used socket communication for the display program, significantly limiting the number of 

display errors. The assumption of noisy stimulus response measurements embeded in the 

simplex simulated annealing approach may contribute to the partial robustness of real-time 

search to a relatively small number of display errors.

Preprocessing errors show less clear effect on performance—Shortcomings in 

motion correction during preprocessing also may mislead real-time stimulus selection. 

Similar to the risks of undetected display errors, incorrect response calculations could lead 

Leeds and Tarr Page 29

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to sub-optimal exploration and acceptance of future simplex points. However, counter to this 

theoretical concern, we observe more than half of significant convergence results correspond 

to sessions with low correlations in offline-vs-real-time response computations. Limiting 

convergence and consistency measures to stimuli visited three or more times may permit 

averaging activity over multiple trials to overcome errors in individual measurements. 

Alternatively, for sessions with highly negative correlations, particularly noticable in Fribble 

spaces, searches may effectively be searching for stimuli evoking particularly low responses; 

this strategy may successfully identify maxima in stimulus space as well because of the 

observed phenomenon of local inhibition (Leeds et al., 2014).

Regular resetting of simplex points may limit convergence—The persistent 

variability of visited stimulus locations across each search session reflects the simplex re-

initialization strategy described in Sec. 2.1. At the beginning of each run, a new simplex was 

defined centered at the termination point of the search for the previous run. The four 

additional simplex points were randomly selected around this center to be located +1 to −1 

distance away from the center. Thus, an equal spread of points was used to investigate the 

first run of the session as the last run of the session. As there were 16 stimulus displays for 

each run to place 5 simplex points, chance for convergence was limited both within and 

across runs.

Complexity of visual feature space shows effect on search performance—
Searches performed in Fribble spaces substantially outperformed searches performed in 

SIFT-based space. While there were 10% more searches with minimal display errors (5 or 

fewer errors per search) for Fribble object searches than for real-world object searches, there 

is no evidence that these display errors influenced our results. In particular, we observed 

100% more convergent Fribble object searches than real-world object searches despite the 

higher display error rate for the former. The significant improvement afforded by Fribble-

based space may be attributed to the closer relation between Fribble-space coordinates and 

their corresponding stimuli. Fribble space is composed of three axes indicating morphing of 

selected appendage properties. These axes account for the entire variability in stimuli shown. 

SIFT space, in contrast, sought to capture an unknown number of complex real-world visual 

properties using only four dimensions. The small number of dimensions was required to 

enable effective search over a limited number of scan trials. However, Fig. 4c shows that at 

least 50 dimensions would be required to explain 50% of the variance in a SIFT-based 

pairwise distance matrix for 1000 images.

While Fribble space is associated with markedly improved search performance, it requires 

markedly simplified stimuli. Future work may pursue variations on SIFT space derived from 

a set of real-world objects more similar in appearance but nonetheless retaining real-world 

visual complexities.

Viewing task may influence search performance—It also is possible that the greater 

frequency and magnitude of successful search convergence for Fribble objects may reflect 

the lesser motion of the subjects in these sessions or, potentially related, the seemingly more 

reliable results of fMRI signal processing during these sessions, reported in Sec. 3.2. These 

improvements in head-motion and BOLD signal stability, in turn, may stem from the 
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Fribble-object viewing task. Subjects viewing Fribbles performed a dimness detection task 

for stimuli presented at a fixed location on the screen, while subjects viewing real-world 

objects performed a one-back location task for stimuli presented at slightly varied locations 

on the screen. Variable stimulus locations for real-world stimuli — though location variation 

was very slight — may have produced further head motions that hindered ROI BOLD 

response calculations. The requirement to remember a past stimulus further may have 

weakened the signal from the stimulus being viewed presently, as it competed for 

representation space with the previous stimulus. It also is possible changes in display 

location for real-world objects elicited different location-dependent cortical responses. 

However, this confound seems unlikely given the relatively small degree of location change 

(+/−2.5 degrees) and well-established invariance typically seen in mid- and high-level 

cortical regions within the ventral visual pathway.

Finally, in a recent experiment, we employed a real-time search using a dimness detection 
task and real-world objects for a single subject. We note that search convergence and 

consistency measures were consistent with those reported in our present study using the one-

back location task. This admittedly somewhat anecdotal result provides some indication that 

the simplicity of Fribble space plays a greater role in the heightened success of real-time 

search than does the task.

Simplified search assumptions—The simplex method underlying our search expects a 

given ROI’s stimulus response function to have a unique maximum in feature space. In 

contrast, our data often show multiple local maxima (e.g., Fig. 8). If there are three or more 

maxima in a region — particularly if the number of maxima is larger — it is unlikely the 

search will repeatedly probe a sufficient number of stimuli to associate each maximum 

location with a large enough cluster of stimuli to produce a high convergence value, defined 

in Eqn. 2. Similarly, the presence of a large number of maxima increases the likelihood that 

starting searches from different points in feature space will produce different sets of results, 

each focusing on points closest to their respective starting location, producing poor 

consistency measures as defined in Eqn. 3. Despite some inaccuracies in our assumptions, 

we are encouraged by convergence on local extrema in cortical responses to a small number 

of locations in visual feature space, as seen in several searches.

5. Conclusions

Promise of real-time stimulus selection

Our work employs a collection of novel methods in real-time analysis of cortical data to 

explore complex visual properties used in perception. This unique approach to human 

neuroimaging faces many technical and biological challenges — from scanner and 

physiological noise in fMRI recordings to uncertainty about the nature of higher level visual 

representations — compounded by the small number of stimuli able to be shown in the 

limited scanning time available in fMRI. To address this final challenge, real-time selection 

of stimuli based on cortical responses to recently displayed visual objects was used to 

optimize the use of this limited scanning time, building on similar approaches in primate 

neurophysiology (Tanaka, 2003; Yamane et al., 2008; Hung et al., 2012). Our present 
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application of simplex simulated annealing (Cardoso et al., 1996) for stimulus selection 

faces considerable additional challenges — from occasional faults in stimulus display to 

frequent simplex resets. Nonetheless, search for numerous brain regions studied converged 

in their search for stimuli of interest to the region. These searches, for real-time stimuli and 

particularly for Fribble stimuli, help us to understand the representation of objects in human 

ventral cortex. In particular, within the search spaces we defined, we observed evidence for 

local inhibition, likely reflective of local competition between neural units, and multiple sets 

of featural selectivies, likely reflecting the large size of the studied brain regions; we discuss 

both properties in further detail in Leeds et al. (2014).

In sum, examinations of the behavior of each component of our real-time system under 

multiple settings and for multiple subjects shows our system to be robust to undesired 

actions from subjects (e.g., head motions) and program flaws (e.g., stimulus selection 

delays). At the same time, our examination of system performance suggests methodological 

and experimental parameters to improve future performances in real-time search:

• Use socket communication between stimulus selection and display programs

• Use the fastest available processors to perform real-time analyses

• Use stimuli that can be described by low-dimensional visual feature spaces (and 

conversely…)

• Use feature spaces that require low dimensions to describe stimuli

• Continue search simplex convergence across runs

• Explore alternative stimulus selection methods that can manage local maxima

• Align functional volumes to start of each scan session

We view these first attempts at searching for effective stimuli to drive localized brain regions 

as measured by fMRI as a success. In parallel, similarly successful real-time stimulus 

selection methods have been implemented in neurophysiology to make efficient use of 

limited recording time. Together, these new methods point to the potential of dynamic 

approaches to stimulus selection in future work.
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Highlights

• We develop real-time BOLD signal processing for efficient study of cortical 

vision.

• Adaptive search of stimuli converges on visual selectivities in some searches.

• Adaptive search is robust to undesired subject motion and stimulus display 

errors.

• Simpler visual stimuli and search spaces allow more frequent search 

convergence.

• Assumption of single regional selectivity seems flawed, but searches still 

converge.
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Figure 1. 
(a) Schematic of loop from stimulus display to measurement and extraction of cortical 

region response to selection of next stimulus. (b) Example progression of desired stimulus 

search. Cortical response is highest towards the center of the space (red contours) and lowest 

towards the edges of the space (blue contours). Stimuli displayed in order listed. Cortical 

responses to initial stimuli, e.g., those numbered 1, 2, and 3, influence selection of further 

stimuli closer to maximal response region in visual space, e.g., those numbered 4 and 5. 

Figure adapted from Fig. 1 in Leeds et al. (2014)
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Figure 2. 
Diagram of communications between the console (which collects and sends fMRI data from 

the scanner), the “analysis machine,” and the “display machine,” as well as communications 

between the analysis programs. These elements work together to analyze cortical responses 

to object stimuli in real-time, select new stimuli to show the subject, and display the new 

stimuli to the subject.
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Figure 3. 
(a) Structure of the three scanning sessions performed for each subject. First row depicts the 

three sessions, second row depicts the runs for the reference session, and third row depicts 

the runs for each real-time session. (b) An example of the alternation among four stimulus 

class searches in a real-time search run. These four classes are comprised of mammals, 

human-forms, cars, and containers, and correspond to four colored brain regions shown on 

the upper-right of the figure. Figure adapted from Fig. 2 in Leeds et al. (2014).
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Figure 4. 
Example real-world objects (a) and corresponding SIFT feature space (b). Real-world object 

images were selected from four object classes — mammals, human-forms, cars, and 

containers. Feature space shows example stimuli projected onto first two dimensions of 

space. (c) Percent variance explained using first n dimensions of MDS feature space for 

SIFT. Figure is adapted from Fig. 3 in Leeds et al. (2014).
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Figure 5. 
Example Fribble objects (a) and example corresponding Fribble feature space (b). Fribble 

images were selected from four synthesized classes, shown in rows 1/2, 3/4, 5/6, and 7/8, 

respectively. Feature space shows stimuli projected onto first two dimensions of space. 

Figure is adapted from Fig. 4 in Leeds et al. (2014).
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Figure 6. 
Motion effects on ROI computed responses for real-world objects searches, as in Table 3. 

Rows are sorted from lowest to highest corresponding maximum motion magnitude (values 

not shown), and columns within each row are sorted from lowest to highest correlation 

values. Correlation between computed responses for each of four class ROIs using offline 

preprocessing on full scan session versus real-time preprocessing on small time blocks 

within single runs.
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Figure 7. 
Motion effects on ROI computed responses, as in Table 4. Rows are sorted from lowest to 

highest corresponding maximum motion magnitude (values not shown), and columns within 

each row are sorted from lowest to highest correlation values.
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Figure 8. 
Search results for S3, class 2 (human-forms), shown in (a) first and second SIFT space 

dimensions and (b) third and fourth dimensions. Location of all potential stimuli in space 

shown as black dots. Results from real-time scan session 1 are circles, results from real-time 

scan session 2 are diamonds. For stimuli “visited” (i.e., selected by the search) three or more 

times, colors span blue–dark blue–dark red–red for low through high responses. Size of 

circles and diamonds indicates time in search when stimulus was visited, with small shapes 

for early visits and larger shapes for later visits. Note axes for (a) are from −1 to 1 and for 

(b) are from −0.5 to 0.5. Figure is adapted from Fig. 5 in Leeds et al. (2014).
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Figure 9. 
Histogram of convergence measures for searches in SIFT-based space.

Leeds and Tarr Page 44

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Histogram of consistency measures for searches in SIFT-based space.
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Figure 11. 
Histogram of convergence measures for searches in Fribble spaces.
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Figure 12. 
Search results for S16, class 1, shown in three-dimensional Fribble space. Each dimension 

corresponds to morphing of a Fribble appendage. First two dimensions are respresented by 

the horizontal and vertical axes. Because candidate stimuli are spaced at regular intervals in 

the space, indicated by the black dots, the third dimension coordinate is visualized as a slight 

diagonal offset from the location of the coordinates in the first and second dimensions. A 

positive third dimension coordinate results in displacement up and to the right along the 

corresponding diagonal line of black dots. Shapes and colors assigned as described in Fig. 8.
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Figure 13. 
Histogram of consistency measures for searches in Fribble spaces.
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Table 5

Convergence for searches of real-world objects as measured by Z score metric discussed in Sec. 2.10.

Subjectsession z1 z2 z3 z4

S11 −0.36 1.29 −0.34 2.14

S12 −0.82 1.26 .01 −0.68

S21 −0.09 0.15 −0.43 0.39

S22 0.01 0.38 −0.75 0.67

S31 −1.34 0.77 −0.41 −1.01

S32 −0.87 2.60 0.60 −0.32

S41 0.30 0.71 −0.35 2.27

S42 −.49 −1.04 −0.08 −0.45

S51 0.35 −0.08 −1.23 −0.95

S52 0.52 1.14 −0.32 −0.88

S61 −0.57 2.77 0.79 2.37

S62 −0.01 −1.43 −0.20 2.58

S71 −0.57 1.95 −1.01 1.00

S72 0.11 1.91 −0.54 1.30

S81 2.23 0.36 0.07 −0.37

S82 −1.26 0.14 1.23 0.83

S91 0.20 0.20 −1.38 −0.93

S92 −0.15 −0.80 0.05 −0.42

S101 −1.35 −0.34 −0.42 −1.07

S102 −0.69 −0.21 −0.18 0.14

Z scores of 1.8 and above in bold.
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Table 6

Consistency between searches of real-world objects as measured by Z score metric discussed in Sec. 2.10.

Subjectsession z1 z2 z3 z4

S1 −1.02 1.80 −0.39 −0.59

S2 0.34 −1.40 −0.21 −1.78

S3 −1.91 −0.82 1.44 0.04

S4 −0.92 0.10 −1.35 0.44

S5 −1.12 2.19 −0.71 0.41

S6 0.20 −0.67 0.86 −0.83

S7 0.21 0.74 0.60 0.21

S8 −0.49 −0.53 1.79 1.35

S9 1.69 −0.33 0.65 −0.91

S10 −1.54 −0.59 .09 −1.36

Z scores of 1.8 and above in bold.
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Table 8

Convergence for searches in Fribbles spaces as measured by Z score metric discussed in Sec. 2.10.

Subjectsession z1 z2 z3 z4

S111 −0.08 0.40 −0.13 3.90

S112 3.40 0.18 0.63 −0.38

S121 1.20 0.56 1.70 0.25

S122 0.42 1.10 0.51 1.90

S131 0.91 1.10 −0.43 0.79

S132 2.42 −1.2 1.42 2.67

S141 0.39 1.43 0.43 0.95

S142 1.45 0.60 0.52 1.40

S151 2.76 1.66 2.20 0.18

S152 1.45 1.69 −0.83 1.87

S161 1.72 2.10 1.80 0.98

S162 2.87 −1.10 −0.11 −0.22

S171 −0.47 −0.27 0.89 −0.59

S172 2.42 2.97 1.76 0.47

S181 0.54 1.57 1.82 1.72

S182 1.43 0.93 1.17 2.30

S191 2.00 0.93 3.00 4.20

S192 0.90 0.86 1.40 2.10

S201 0.77 1.07 2.86 2.84

S202 1.24 1.66 0.39 1.41

Z scores of 1.8 and above in bold.
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Table 9

Consistency between searches in Fribbles spaces as measured by Z score metric discussed in Sec. 2.10.

Subjectsession z1 z2 z3 z4

S11 2.10 0.57 0.43 2.20

S12 −0.53 1.40 −0.03 1.40

S13 0.46 0.62 −1.20 −1.40

S14 −0.59 −0.19 −1.20 1.22

S15 −1.10 −1.10 1.43 2.96

S16 −0.29 0.85 0.39 0.54

S17 2.28 3.14 3.28 −0.99

S18 −1.70 −0.03 0.28 −1.80

S19 1.40 0.30 0.97 3.80

S20 0.63 0.15 0.46 0.05

Z scores of 1.8 and above in bold.
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