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Abstract

A promising recent development in the study of brain function is the dynamic analysis of resting-

state functional MRI scans, which can enhance understanding of normal cognition and alterations 

that result from brain disorders. One widely used method of capturing the dynamics of functional 

connectivity is sliding window correlation (SWC). However, in the absence of a “gold standard” 

for comparison, evaluating the performance of the SWC in typical resting-state data is challenging. 

This study uses simulated networks (SNs) with known transitions to examine the effects of 

parameters such as window length, window offset, window type, noise, filtering, and sampling rate 

on the SWC performance. The SWC time course was calculated for all node pairs of each SN and 

then clustered using the k-means algorithm to determine how resulting brain states match known 

configurations and transitions in the SNs. The outcomes show that the detection of state transitions 

and durations in the SWC is most strongly influenced by the window length and offset, followed 

by noise and filtering parameters. The effect of the image sampling rate was relatively 

insignificant. Tapered windows provide less sensitivity to state transitions than rectangular 

windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC gave 

poor estimates of correlation for each brain state. Clustering based on the SWC time course did 

not reliably reflect the underlying state transitions unless the window length was comparable to the 

state duration, highlighting the need for new adaptive window analysis techniques.
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Introduction

Resting-state functional MRI (rsfMRI) has had much success as a tool for the study of 

normal and disordered brain function (Rombouts et al., 2005; Sorg et al., 2007; Zang et al., 

2007; Xia et al., 2013). Initially, rsfMRI analysis assumed networks in the resting-brain were 

stationary over the whole scan length (typically ranging from six to ten minutes), but more 

recently methods that examine the network connectivity as a function of time have been 

applied. Several studies have reported that the connectivity of these networks changes over 

the course of the scan (within a few seconds) and reveal a number of functional connectivity 

(FC) states in the brain, which can be sensitive to changes related to neurological disorders 

(Sakoğlu et al., 2010; Leonardi et al., 2013a, 2013b; Damaraju et al., 2014; Li et al., 2014; 
Ou et al., 2015). These dynamics are also linked to changes in human behavior (Kucyi et al., 

2013; Thompson et al., 2013a, 2013b; Jia et al., 2014; Sadaghiani et al., 2015).

Sliding window correlation (SWC) is the simplest and most commonly used method for 

dynamic FC analysis and most of the dynamic FC studies use it at some point (Schulz and 

Huston, 2002; Chang and Glover, 2010; Kiviniemi et al., 2011; Handwerker et al., 2012; 
Chang et al., 2013; Hutchison et al., 2013a, 2013b; Keilholz et al., 2013; Thompson et al., 

2013a, 2013b; Wilson et al., 2015). It should be noted that in this study dynamic FC refers to 

the dynamics of resting-state networks only and not the dynamics because of any 

environmental input or task. In the SWC, a temporal window of a certain size and shape is 

selected, and the correlation coefficient between two signals of interest within that window 

is computed. Afterwards the window is shifted (slided) by some offset, and the process is 

repeated for the entire scan length. Despite the popularity of the SWC, results are strongly 

dependent on window length (Sakoğlu et al., 2010; Hutchison et al., 2013a, 2013b; Keilholz 

et al., 2013; Wilson et al., 2015) and the ideal values for this and other parameters for the 

dynamic FC analysis remain unknown. A nice but simplified examination of the relationship 

between the minimum window length and the frequency components of the signals has been 

presented (Leonardi and Van De Ville, 2015). Another study used windows of different sizes 

on resting state and sleep data and reported that short epochs can be used effectively for 

dynamic FC analysis (Wilson et al., 2015). However, no study has convincingly identified 

the best window length for dynamic FC analysis. Furthermore, since these brain networks 

change states at random times, using the same window over the entire rsfMRI scan may not 

be the optimum method to capture the true dynamic configurations of these networks. The 

effect of window length, offset, and other parameters has not been systematically examined 

in realistic data, and a recent study that looked at the effect of window length on the 

correlation between the BOLD signal and simultaneously-acquired local field potentials 

found that the optimal window length is somewhat ambiguous (Thompson et al., 2013a, 
2013b).

After the SWC is performed pairwise for the brain areas of interest, clustering is often used 

to find the number of ‘states’ that occur over the length of the scan, and the times at which 

transitions occur (Hutchison et al., 2013a, 2013b; Allen et al., 2014; Damaraju et al., 2014; 
Shakil et al., 2014). The most commonly used method for clustering SWC results is based 

on the k-means algorithm (Hutchison et al., 2013a, 2013b; Allen et al., 2014; Damaraju et 

al., 2014; Shakil et al., 2014). The accuracy of the clustering depends on the clustering 
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algorithm and the ability of the SWC to resolve transitions of interest, emphasizing the need 

to evaluate the SWC parameters.

The biggest obstacle in identifying the best approach to the SWC and clustering for dynamic 

FC analysis is that there is no ‘ground truth (GT)’ in standard rsfMRI data, since the actual 

network dynamics, number of states, and state transitions are all unknown. This study 

circumvents this problem by using simulated networks (SNs) with known transition points 

created from real rsfMRI data. We evaluate the SWC algorithm and the effects of window 

size, window shift, window type, noise, filtering, and sampling or repetition time (TR) on 

the SWC results, and on the correct identification of state transitions and durations obtained 

from these results using k-means clustering. As expected, window size and offset had a 

substantial impact on the accuracy of the results, followed by the impact of noise and 

filtering, while TR had a very small impact. Tapered windows resulted in poorer state 

identification than rectangular windows due to the abrupt sharp state transitions present in 

the SNs. These findings motivate further work on methods that can dynamically adapt the 

length of the window during the analysis or the formulation of an algorithm which can more 

accurately detect the state transition points.

Material and methods

Data and preprocessing

We used rsfMRI scans of nine healthy human subjects (four females, ages: 21–57 years, 

downloaded from Nathan Klein Institute's Enhanced Rockland dataset of 1000 Functional 

Conectome Project (http://www.nitrc.org/projects/fcon_1000/). The scans were done on 

SIEMENS MAGNETOM TrioTim syngo MR B17 scanner. The scanning parameters were: 

TR = 645 ms, voxel size = 3 mm isotropic, duration = 10 min, TE = 30 ms, slices = 40, 

multi-band accel, factor = 4, and time points = 900. Each scan contained 900 volumes and 

the initial 10 volumes of each scan were discarded to compensate for transient scanner 

instability. All preprocessing was done in statistical parametric mapping (SPM 12, http://

www.fil.ion.ucl.ac.uk/spm/). Preprocessing included motion correction, coregistration of the 

functional images with the anatomical image, segmentation, normalization, and smoothing. 

Default parameter values from SPM12 were used during preprocessing but smoothing was 

done using a Gaussian kernel of size 8 and for normalization a voxel size of 3 × 3 × 3 was 

chosen. The images were coregistered to the AAL atlas (Tzourio-Mazoyer et al., 2002) using 

nearest neighbor interpolation without any warping.

After preprocessing, five functional networks (dorsal DMN, ventral DMN, anterior-salience, 

visuospatial, and sensorimotor) were extracted using the masks from the Stanford FIND 

(http://findlab.stanford.edu/home.html) lab (Shirer et al., 2012) for all subjects.

Region-of-interest (ROI) time series

For each subject, seven, non-overlapping, three-dimensional, regions-of-interest (ROIs) 

consisting of 3 × 3 × 3 voxels were chosen from each of the abovementioned five networks 

(dorsal DMN, ventral DMN, anterior-salience, visuospatial, and sensorimotor). The 

anatomical location of the ROIs in the five networks (taken from Supplementary data of 
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Shirer et al. (2012)) is given in Supplementary Fig. 1. Maps of the five functional networks 

(taken from Supplementary data of Shirer et al. (2012)) along with the locations of the ROIs 

selected for the current study (arrows) are given in Supplementary Fig. 2. Each ROI time 

series was formed by extracting the intensities of the voxels in the ROI and then computing 

their mean at each time point. In order to observe the dependency of the analysis on the 

location of ROIs, we later performed the analysis on a second, entirely different sets of ROIs 

(shown in Supplementary Fig. 3). These ROIs were used to create simulated networks (SNs) 

as described in the next section. The averaged time series of each ROI was extracted and 

bandpass filtered (0.016–0.08 Hz, order 20 FIR) before the formation of the SNs. As 

expected, the ROIs that came from the same network were highly correlated, which was 

confirmed by computing the pairwise stationary correlations (Supplementary Fig. 4).

Sliding window correlation of actual resting-state networks

The main goal of this study was to analyze the performance of the SWC with variable 

parameters using SNs with known timing formed from real rsfMRI data. However, before 

starting this analysis we computed the pairwise SWC of the time series of the five actual 

networks (dorsal DMN, ventral DMN, anterior-salience, visuospatial, and sensorimotor) 

using the same window sizes as the ones used for the SNs (discussed in detail in the 

Simulated networks and sliding window correlation section). The purpose was to compare 

the SWC of the actual data with the results of previous studies (Hutchison et al., 2013a, 
2013b; Keilholz et al., 2013; Wilson et al., 2015), and to determine how the abrupt intensity 

changes (outliers) introduced in our SNs due to state transitions (explained in the Simulated 

networks and sliding window correlation section) might influence results of the SWC.

Simulated networks and sliding window correlation

To form a SN, seven ROIs from one of the abovementioned rsfMRI networks were used. A 

portion of the time courses for these ROIs was taken and used as the time courses for the 

seven nodes of the SN until the first state transition point t1. At t1, a portion of the time 

courses from the seven ROIs of a different network was added to the SN to create a new 

state lasting from t1 to t2. This process was repeated until the desired length of 890 time 

points was obtained. For example, if we chose the nodes from ventral DMN from t1 to t2, 

then the nodes from t2 to t3 were from another network e.g. sensorimotor network of the 

same subject, and this process continued till we reached the last interval from tn – 1 to tn. 

Formation of the SNs in such a manner incorporated real rsfMRI data but gave us control 

over the time at which the SNs changed states (switched from one resting-state functional 

network to another) since we chose the transition times t1 to tn. It should be noted here that 

our SNs were formed from five resting-state networks but some of them had more than five 

transitions which means the data from the same resting-state network would be taken more 

than once in formation of these SNs. However, apart from one SN (QPeriodicSN explained 

later in this section) there is no repetition of data. For example, if the data from ventral DMN 

is taken for the durations tx – 1 to tx and ty – 1 to ty (x and y are integers) for a SN then it 

would be from two entirely different non-overlapping intervals of the ventral DMN. This 

step insured that no two parts of a SN has exactly the same correlation values between the 

node pairs (except for QPeriodicSN).
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The configuration of a SN between any two consecutive transition points is referred to as 

one ‘state’ of that SN since it was formed by data from one FC network (state) of original 

resting-state scans. All the states of a SN (except QPeriodicSN) have different correlation 

values between the node pairs but more than one of these states may be from the same 

resting-state network. By changing the transition points we were able to form five different 

SNs. Three of these SNs were formed with state transitions at equal intervals (state transition 

at every 50 TRs for 50SN, at every 100 TRs for 100SN, and at every 200 TRs for 200SN, 

TR = 645 ms). Real resting-state networks are unlikely to change configurations at equal 

intervals but the analysis with these SNs allowed us to explore the best choice of the sliding 

window parameters for the ideal case of regularly changing networks. However, we also 

formed two SNs where the state transitions occurred at random intervals to evaluate the 

performance of the SWC in more realistic scenario. In the first randomly changing network, 

we used quasi periodicity by repeating three states at random points during the formation of 

the SN (QPeriodicSN). The second randomly changing network (RandSN) had completely 

random state change points with state durations from 20 TRs (≈13 s) to 130 TRs (≈84 

s).The formation of these five SNs allowed us to examine the sensitivity of the SWC to 

regular states of different lengths, and randomly changing states with or without quasi 

periodicity. The state durations for the SNs ranged from ≈13 s to ≈129 s, while the window 

lengths used were ≈17, 33, 65 and 129 s (25 TRs, 50 TRs, 100 TRs, and 200 TRs, TR = 645 

ms). All of these window lengths were within the sizes commonly reported in the literature 

that vary from 8 to 240 s (Chang and Glover, 2010; Kiviniemi et al., 2011; Handwerker et 

al., 2012; Chang et al., 2013; Keilholz et al., 2013; Thompson et al., 2013a, 2013b; Kucyi 

and Davis, 2014; Wilson et al., 2015).

In their papers (Leonardi and Van De Ville, 2015; Shakil et al., 2015), explored the 

relationship of frequency components in the correlating signals and window length. 

(Leonardi and Van De Ville, 2015) established the mathematical relationship between the 

window length and the minimum frequency (fmin) of the correlating time series. By using 

simple sinusoids (Leonardi and Van De Ville, 2015) reported that the minimum window 

length should at least be equal to 1/fmin in order to avoid spurious fluctuations arising due to 

the SWC algorithm itself. Using the same guidelines (Shakil et al., 2015) explored the effect 

of two frequencies on the SWC results. Since the frequency components of the signals may 

influence the results of the SWC, we plotted log10 (power spectrum) vs. log10 (frequency) of 

the actual (ROI) and SN time series in Supplementary Figs. 5(a) and (b) respectively. The 

frequency characteristics are similar, however, due to abrupt transitions in the SNs, the 

power spectrum changes in the SNs are less smooth. It should be mentioned here that there 

is no one to one correspondence between the plots in (a) and (b). The plots in (a) are for 

original rsfMRI networks, while those in (b) are for SNs that were formed by combination 

of time series in (a).

Overall five SNs were formed from each subject's data: Three with equal duration states and 

two with randomly changing states. The equal duration SNs had 18 (50SN), 9 (100SN), and 

5 (200SN) distinct states of FC. QPeriodicSN had a total of 15 FC states, of which three 

were repeated at random time points, while RandSN had 10 distinct FC states changing at 

random times. We computed SWC for all of these SNs for different window lengths and 

other parameters to determine the best combination of parameters for SWC as a dynamic FC 
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analysis method. Detailed results from the SNs created from one randomly selected subject's 

data along with the mean results of all SNs created from all nine subjects are reported in this 

study.

Ground truth

State changes in the SNs occurred at times t1, t2, t3 ..., tn – 1, and tn, when ROIs were taken 

from a different resting-state network. This resulted in a change of pairwise correlations 

between all of the nodes in a SN at each transition point. To examine the influence of 

various SWC parameters on its sensitivity to network transitions, actual correlations between 

the nodes of the SNs were computed for the durations for the which the state remained the 

same. The actual correlation of a node pair for any state was correlation coefficient of the 

node pair time series for the duration of the state. This correlation value was the same for the 

whole state duration and can be replicated. For example, if the correlation coefficient 

between two time series was 0.5 for the state between t1 and t2 then 0.5 would be replicated 

from t1 to t2 for representation purposes. The computation of correlation in this manner is 

the same as the computation of stationary correlation with length of the correlating time 

series equal to the state duration instead of the whole scan length as in the case of stationary 

correlation. The mean of the resulting actual correlations of an SN was called the “ground 

truth (GT)” for that SN. Because there were n = 7 nodes in each SN, overall there were 

, distinct correlations for each state, and the GT was the mean of these 

correlations. Fig. 1 shows the GT for 100SN in (a), QPeriodicSN in (b), and RandSN in (c). 

The GTs for the other two SNs (50SN and 200SN) are shown in Supplementary Fig. 6. 

Discontinuities in Fig. 1 (and Supplementary Fig. 6) are the state change points, which will 

be referred as “state transition points” in our study, and the duration between two 

consecutive discontinuities corresponds to one state of the SN. It is also important to note 

that the GTs are not the actual correlation time series between the node pairs, but are their 

means plotted to clearly show the state transitions and durations.

Inter-subject variability of the SWC

We computed the actual correlations of all SN node pairs in all subjects and their mean was 

taken as GTs (Fig. 1 and Supplementary Fig. 6). In order to observe the deviation of the 

SWC results from actual correlations, we computed the correlations of the actual 

correlations and SWCs for all node pairs for all the windows in each subject. We then 

calculated the means of these correlations for each subject (over all node pairs) to observe 

the inter-subject variability of these correlations. Afterwards, we computed the overall mean 

for all the nine subjects to show the overall trend of correlation changes for each window.

Sliding window correlation parameters

Six parameters were varied to explore their influence on the sensitivity of the SWC and 

subsequent clustering. For all parameter values, the SWC was calculated pairwise for all 

nodes of each SN.

a) Window length: Gonzalez-Castillo et al. (2014) reported that 

resting-state networks exhibit long-term stability and that the 

similarity of within-subject whole brain connectivity is a function of 
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window duration. In various dynamic FC studies based on the SWC, 

the window length ranges from 8 to 240 s (Chang and Glover, 2010; 
Kiviniemi et al., 2011; Keilholz et al., 2013; Allen et al., 2014). We 

examined windows of 25, 50, 100, and 200 TRs (≈17, 33, 65 and 

129 s). All the window sizes were within the limits reported in the 

literature (Chang and Glover, 2010; Kiviniemi et al., 2011; Keilholz 

et al., 2013; Allen et al., 2014; Kucyi and Davis, 2014; Wilson et 

al., 2015).

b) Signal-to-noise ratio (SNR): The signal-to-noise ratio (SNR) of 

rsfMRI data depends on a number of factors and can include 

structured noise due to motion or physiological cycles (Kruger and 

Glover, 2001; Greve et al., 2013; Bright and Murphy, 2015). In 

order to explicitly examine the influence of random noise on the 

identification of states using the SWC, additive white Gaussian 

noise (AWGN) (using awgn() in Matlab) was added to the time 

series of each SN at levels of 10 dB and 20 dB. We also examined 

the effect of reduced SNR by selecting random single voxels from 

random slices as nodes of our SNs instead of 3 × 3 × 3 voxels ROIs.

c) Window offset: Typical window offsets used in previous studies 

range from 1 to 20 s (which covers the range from a single TR step 

to 50% of the window length) (Chang et al., 2013; Keilholz et al., 

2013; Kucyi and Davis, 2014; Shakil et al., 2014). The majority of 

this study uses a window offset of one TR (645 ms), but the effects 

of offsets equal to one-fourth or one-half of the window lengths 

were also explored.

d) Window type: Typically rectangular windows are used for the SWC 

analysis (Chang et al., 2013; Keilholz et al., 2013; Kucyi and Davis, 

2014; Shakil et al., 2014). The majority of the work in this study 

also utilized a rectangular window but the impact of using tapered 

(Hamming, Hanning) windows were also examined.

e) Filtering: Typical rsfMRI studies bandpass filter (0.01–0.08 Hz or 

0.01–0.1 Hz) the time series in order to reduce the effects of noise. 

Two recent studies (Leonardi and Van De Ville, 2015; Shakil et al., 

2015) have shown that the frequency components of the signal and 

the window size interact to impact final SWC results. Both the 

studies showed that the spurious correlations of the SWC results are 

reduced when the size of the window is greater than 1/fmin (fmin = 

minimum frequency). Since both of these studies reported a 

relationship between the minimum frequency of the correlating 

signals and the shortest recommended window length, we explored 

this relationship by varying the minimum frequency content of the 

rsfMRI signal. For this purpose we used highpass filtered (>0.016 
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Hz, >0.05 Hz and >0.08 Hz) time series to form SNs, corresponding 

to minimum window lengths of 62.5, 20, and 12.5 s respectively.

f) Repetition time (TR): Most simulations used SNs formed from 

scans acquired with a TR of 645 ms, but analysis was also 

performed on scans with 1400 ms TR to determine how a lower 

sampling rate influences SWC results and their state distributions.

Clustering

One of the major goals of this study was to determine how well the clustering based on the 

SWC performs at identifying network state durations and transitions. In previous dynamic 

FC studies, k-means clustering was used on SWC results to extract states of FC (Leonardi et 

al., 2013a, 2013b; Allen et al., 2014; Damaraju et al., 2014; Shakil et al., 2014). We also 

applied k-means clustering to the SWC results to determine whether state transitions and 

durations were identified correctly. For this purpose, the SWC results were grouped into 

clusters called “Cstates” and the results were examined to determine how well the Cstates 

coincided with the known state transitions and durations shown in the GTs (Fig. 1 and 

Supplementary Fig. 6). In order to evaluate the performance of k-means clustering alone for 

state identification, we clustered the raw time courses for the seven nodes of each SN in 

addition to clustering the SWC results. Silhouette criteria was used to determine the best 

number of clusters for each data set. The number of clusters was varied from two to twelve 

and the overall mean of silhouettes was computed (Rousseeuw, 1987). We selected the 

number of clusters (raw SNs) and Cstates (SWC results) for each case when this mean 

became constant or started to decrease.

In general, the number of Cstates for all windows and all SNs was less than or equal to the 

actual number of states in the SN (10 for RandSN, 15 for QPeriodicSN, 18 for 50SN, 9 for 

100SN, and 5 for 200SN), resulting in the assignment of more than one state to the same 

Cstate. To determine the similarity of states assigned to the same Cstate, the Euclidean 

distance between them was computed.

Results

Sliding window correlation of actual ROI time series

We computed pairwise SWC of the actual ROI time series of the five functional networks 

(dorsal DMN, ventral DMN, anterior-salience, visuospatial, and sensorimotor) for all 

windows. Fig. 2 shows the results of the pairwise SWC along with the stationary 

correlations (black horizontal lines). The node pairs are selected at random from three of the 

five networks (dorsal DMN, ventral DMN, and sensorimotor network). It can be observed 

that for all cases the SWC varies around the actual correlation but the extent of variability is 

largest for the smallest window (25 TRs, red in (a)) and decreases as the window size 

increases towards right. The same plots (overlaid on each other) are shown for three other 

pairs of randomly selected nodes in Supplementary Fig. 7. All the plots of these figures 

show a similar trend and are in accordance with the results reported in Hutchison et al. 

(2013a, 2013b), Keilholz et al. (2013), and Wilson et al. (2015).
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Effects of window length

Four different window sizes (25, 50, 100, and 200 TRs, or 17, 33, 65 and 129 s respectively) 

were employed to determine the effect of window length on the sensitivity to actual 

correlations, state transitions, and state durations in the SNs. For this portion of the study, 

the window offset was kept constant at one TR (645 ms), the window shape was rectangular, 

and all time courses were bandpass filtered (0.016–0.08 Hz). The SWC for all pairs of nodes 

for all SNs exhibited variability over time. Greater variability was observed when shorter 

windows were used, in accordance with previous studies (Hutchison et al., 2013a, 2013b; 
Keilholz et al., 2013). Fig. 3 shows the actual correlations (black lines) and the SWC for one 

node pair in 100SN (row 1), QPeriodicSN (row 2), and RandSN (row 3) for all window 

lengths. Actual correlations and SWCs for 50SN and 100SN for the same node pair are 

plotted in Supplementary Fig. 8. Results were similar for all node pairs and all subjects. A 

few observations can be made:

a) None of the SWC time courses accurately capture the different 

states of correlation for the SNs. The amount of variability in the 

SWC time course is typically higher than the variation across 

different states of correlation. Large changes in the SWC sometimes 

correspond to transitions between states due to the abrupt changes 

that occur at the transition points, but often exist in the absence of 

state transitions (especially in smaller windows). SWC results vary 

widely between −1 and 1 for almost all windows, though these 

variations are more rapid for smaller windows (red and green) 

compared to larger ones (pink and brown).

b) Smaller window sizes can capture short-lived variations in 

correlation more accurately than longer windows, as can be seen 

from the rapidly fluctuating plots of the 25 TRs window (red) and 

50 TRs window (green), as compared to the longer windows (pink 

and brown). However, a portion of these fluctuations may arise 

since smaller windows also create more high-amplitude variations 

and spurious fluctuations (Leonardi and Van De Ville, 2015; Shakil 

et al., 2015) that do not correspond to state transitions.

c) For the SNs with state transitions at equal intervals, the SWC is 

sensitive to the state transitions if the window size is equal to the 

state duration, although the actual correlation values are not always 

captured. 100SN is shown as an example in Fig. 3 (row 1, (c)) and 

similar results were obtained for 50SN and 200SN (shown in 

Supplementary Fig. 8 for the same node pair). We plotted the SWC 

values at the center of each window (Fig. 3) but shifting the values 

to the start of the window reveals that the SWC changes at the 

transition points when the actual correlation (state of the SN) is 

changing sharply (Supplementary Fig. 9). These results show the 

inability of the SWC to deal with abrupt amplitude changes 
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(outliers) in the intensity levels of correlating signals (Lindquist et 

al., 2014).

d) For QPeriodicSN a quasi-periodic pattern was observed in the SWC 

results for smaller windows (blue arrows in Fig. 3, row 2 (a) and 

(b)) but this pattern was lost for larger windows.

e) For the SN with randomly changing state transitions (Fig. 3, row 3), 

no window size consistently identifies transitions at the state change 

points.

Inter-subject variability

Stationary correlation between the actual correlation and the SWC of all node pairs for all 

windows was also computed. Means of these correlations for each subject are shown in Fig. 

4. The SWC was not strongly correlated with the actual correlation since there were sharp 

changes at points where state transitions occurred. However, the smaller windows gave 

better correlation values regardless of the SN. This may be because smaller windows capture 

dynamics of correlation at smaller scales compared to larger windows. It can also be 

observed that regardless of the window size, the means were highest for 200SN, in which the 

states were stable for longest amount of time. We also plotted the mean correlations of all 

subjects individually in Supplementary Fig. 10. In most of the cases, the means were highest 

for the smallest window size (blue) and decreased as window size increased. Furthermore, 

similar to Fig. 4, the mean correlation for almost all the windows was highest for 200SN.

Silhouette indexes

Fig. 5(a) shows the silhouette indices for k-means clustering on the raw signal for five SNs 

for the subject selected for detailed analysis in this study, and (b) shows the silhouette 

indices for the SWC results of the same subject. For the raw SNs, the silhouette indices are 

highest for five clusters in all cases (shown by black dot and red arrow) and the results of 

clustering raw 100SN, QPeriodicSN, and RandSN with five clusters are shown in Fig. 6. 

Silhouette indexes for the raw SNs for the other eight subjects are plotted in Supplementary 

Fig. 11 and as expected the highest silhouette value was obtained for five clusters (shown by 

red dots and pointed to by green arrows).

The SWC changes the cluster assignment, resulting in different values of the highest 

silhouette for different combinations of SNs and window length, as shown in Fig. 5(b) for 

the subject selected for detailed analysis in this study. Large red dots are the selected 

silhouette indexes for 100SN (25 TRs, 50 TRs, 100 TRs windows) and the results of 

corresponding clustering are shown in Fig. 7. Similarly, pink dots are the selected silhouettes 

for QPeriodicSN (25 TRs, 50 TRs, 100 TRs windows) and black dots are for RandSN (25 

TRs, 50 TRs, 100 TRs windows) with the corresponding clustering plotted in Figs. 7 and 8 

respectively. Silhouette indices became constant before the number of clusters reached 

twelve. Silhouette indices for the SWC results of the other eight subjects are plotted in 

Supplementary Fig. 12. We can observe from the concentration of the color distribution in 

the plots that the silhouette indexes have similar trends for a given window size in almost all 
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subjects. The mean number of Cstates varied from three to seven, with an overall mean of 

five for all the SNs and all windows.

The Silhouette criteria for raw SNs identified five as the best number of clusters for all 

subjects, which was an expected result since the raw SNs were originally extracted from five 

resting-state networks. As a consequence all the raw SNs were divided into five clusters 

(Cstates) as shown in Fig. 6 and Supplementary Fig. 13.

Dependence of state identification on window length

We clustered the actual (raw) SNs in five Cstates based on Silhouette criteria to determine 

whether the k-means algorithm would be able to identify the state transitions and durations 

in raw data. The results of this clustering for 100SN, QPeriodicSN, and RandSN are given in 

Fig. 6. The blue lines in the plots show the GTs of the SNs with state transition points at the 

discontinuities. Circular colored markers on these lines indicate the Cstate in which the SN 

resides at that particular time. If all circles between two state transition points are in the 

same color, then the SN remained in one Cstate during that time. A change of marker color 

at a state transition point indicates correct detection of the state transition. Good state 

transition and duration identification implies that the color should change at the state 

transition points but should remain the same between any two adjacent state transition 

points. It can be observed from the figure that k-means perfectly identified the state 

transitions and durations for the raw SNs. Results for 50SN and 200SN are shown in 

Supplementary Fig. 13.

To examine how the window length of SWC impacts the identification of ‘brain states’, the 

SWC results were divided into clusters (Cstates) using the k-means algorithm. Figs. 7–9 

show the clustering results for different SNs and different window lengths.

For 100SN, it can be seen in Fig. 7(a) that the Cstate changes at almost every discontinuity, 

indicating that a state transition has been correctly identified even when the window size is 

only about one-fourth of the state duration. Similar findings were observed for windows of 

50 TRs and 100 TRs ((b) and (c)). These results show that the state transitions can be 

correctly identified when the window size is proportional to the state duration (one-fourth, 

one-half, or equal) for the SNs that change state at equal intervals. However, especially for 

shorter windows, it is common for a single actual state to be assigned to multiple Cstates, 

artificially increasing the number of observed transitions. Results for other regularly 

changing SNs (50SN, 200SN) for the same subject are shown in Supplementary Figs. 14 and 

15 respectively. Similar observations were made for all SNs in all the subjects.

In 100SN the changes in Cstate consistently occurred at known state transitions for all 

window lengths, but Cstates changed between true transitions for window lengths that were 

smaller than the state duration (25 and 50 TRs in Fig. 7). The time period of a state duration 

is assigned to more than one Cstate (typically two for the 50 TR window and three or more 

for the 25 TR window), while for the 100 TR window it is typically assigned to a single 

Cstate. These findings were similar for other regular networks and indicate the failure of the 

SWC to correctly identify the state for the whole of its duration if the window size is not at 

least as long as the state duration interval. Reducing the window size to one-half of the state 
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duration resulted in each state typically being divided into two Cstates, as can be seen from 

Fig. 7(b). Similar results can be observed for 50SN and 200SN for the same subject in 

Supplementary Figs. 14 and 15 respectively. These observations were consistent across all 

window sizes and in all the regularly changing SNs of all the subjects. The number of 

correct state transitions and state duration assignments for all SNs were assessed by 

computing the mean for all subjects in Tables 1 and 2. These results are explained further in 

the next section.

Since real resting-state networks in the brain would not be expected to exhibit regularly 

spaced state transitions, we also explored the effect of window size on state transitions and 

state durations in QPeriodicSN and RandSN. QPeriodicSN was formed based on the 

identification of quasi periodic patterns of FC networks in rats and humans (Majeed et al., 

2011). Majeed et al. reported that the same patterns of FC dynamics occur at random times 

during the scan. We presented similar quasi periodicity by repeating three states (shown by 

red rectangles in Fig. 1) at random times in QPeriodicSN. Fig. 8 shows the state distribution 

of QPeriodicSN for 25 TRs, 50 TRs, and 100 TRs windows. It can be observed from the 

color changes at the state transition points that the 25 TRs window was able to identify state 

transitions better than the larger windows (50 TRs and 100 TRs). Smaller windows (25 TRs 

and 50 TRs) also identified the quasi periodicity of the SN as shown by almost identical 

Cstates assignments inside green dotted rectangles. However, most of the actual states were 

assigned to multiple Cstates for all windows, indicating that the state durations are not 

correctly identified. An interesting observation is that it appears that the state durations are 

dominated more by the size of the window than by the actual transitions of the SN, as can be 

seen by the width of the black rectangles that are almost equal to window sizes.

Fig. 9 illustrates the state distribution of the SWC results of RandSN for 25 TRs, 50 TRs, 

and 100 TRs windows. The results shown here are similar to the results of QPeriodicSN, in 

which each state is assigned to more than one Cstate, and state assignment is dominated by 

the window size, especially for smaller windows (25 TRs and 50 TRs). Figs. 8 and 9 clearly 

identify the inefficiency of the SWC in recognizing the state transitions and durations for 

randomly changing networks.

Correct state duration and transition identification

Clustering based on the SWC performed well for identifying state transitions and durations 

for certain combinations of SNs and window sizes but not for other combinations. In order 

to quantitatively analyze the SWC results, mean percentages of full state identifications and 

number of correct state transitions for each SN and each window size were calculated for all 

nine subjects. The Cstate transitions were defined by a change of cluster assignment at any 

time, and the identification was said to be correct if the change occurred at a state transition 

point. For example, if there are total ‘m’ state transitions in a SN and ‘n’ of these are 

coinciding with the Cstate transitions then the correct transition percentage would be 

.

A state was defined as fully identified if it remained in the same Cstate for more than 98% of 

its duration. Because the number of Cstates was less than or equal to number of states in the 

SNs (15 for QPeriodicSN, 10 for RandSN, 18 for 50SN, 9 for 100SN, and 5 for 200SN), 
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even in the case of successful full state identification, more than one of the states would be 

assigned to the same Cstate. To examine how well the Cstates reflected the underlying 

patterns of correlation, the distance between the states assigned to a single Cstate was 

calculated and compared across Cstates. The mean percentages of full state identification 

and the mean percentages of closest states assigned to the same Cstate are given in Table 1.

As expected from Figs. 7–9, poor full state identification was achieved with small window 

sizes. For a 25 TRs window the percentage of full state durations assigned to the same 

Cstates varied from 0% to 21%. This is not surprising given the large amount of variability 

observed in the SWC obtained with short windows. States were identified well (>99%) when 

the SN had transitions at equal intervals, and the window size was equal to the interval 

between transitions. The mean percentages of the closest states assigned to a Cstate was also 

high for 100SN and 200SN, but not for 50SN (50 TRs window) though the mean percentage 

of full state identification was high (99%) for this case too. This low percentage may be due 

to sensitivity of the window to small correlation changes and presence of spurious 

fluctuations.

Table 2 gives the total number of state transitions along with the mean percentages of correct 

state transitions with respect to both the total detected state transitions and the actual state 

transitions (in the parenthesis) for all windows sizes and SNs. The total number of 

transitions was dependent on the window size as well as the actual number of states in a SN. 

QPeriodicSN and 50SN had largest number of state transitions (17 and 14), and in general 

all the windows showed the largest number of transitions for these SNs (columns 3 & 4), but 

the largest (44) of them occurred for smallest window of 25 TRs. For any SN, the 25 TRs 

window captured the highest number of state transitions, some of which may be due to 

spurious fluctuations. The correct state transition percentages with respect to total and actual 

state transitions were maximum for a SN ((59, 86) for 50SN, (57, 86) for 100SN, and (48, 

72) for 200SN) when the window size was equal to the state duration in regularly changing 

SNs. These percentages were reasonably high when the window size was smaller than or 

equal to the state duration but dropped when window size became larger than the state 

duration. For both QPeriodicSN and RandSN, in the absence of any regularity, correct 

identification was observed for smaller windows and decreased with the increase in the 

length of the window. However, these percentages were higher for QPeriodicSN as a result 

of quasi periodic patterns.

Effects of signal-to-noise ratio (SNR)

Various types and levels of noise are present in actual resting-state scans. Filtering the data 

minimizes some of the noise sources but cannot eliminate them completely. In order to 

examine the influence of noise, we added random additive white Gaussian noise (AWGN) at 

levels of 10 dB and 20 dB to all SNs before performing the SWC. The SWC results of one 

node pair in 100SN for the 100 TRs window are shown in Fig. 10, since this combination of 

state and window length performed best for the noise-free case. The addition of noise 

reduced the actual correlation and lessened the sharp state transitions in the SWC results. 

Higher levels of noise had stronger effects.
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Fig. 11 shows the state distribution of the noisy 100SN for 100 TRs windows. As expected 

from the result of the SWC for a node pair, the state transitions are lost after the addition of 

noise as can be observed from the lack of a color change at the discontinuities in (b) and (c). 

Similar results were observed for other regularly changing SNs (50SN for 50TRs window 

and 200SN for 200 TRs window).

We also examined a more typical reduction in SNR for rs-fMRI by taking a single voxel as a 

node of our SNs instead of 3 × 3 × 3 voxel ROIs. All analysis was performed on seven of the 

nine subjects for four SNs (RandSN, 50SN, 100SN, and 200SN) and mean percentages of 

full and closest state identifications are shown in Supplementary Table 1. The results 

indicate that higher SNR improves the estimation of SWC, state durations, and transitions.

Effects of window offset

Up to this point all of the results were shown for a window offset of one TR (645 ms). Since 

some previous studies have used larger offsets (Chang and Glover, 2010; Chang et al., 2013; 
Kucyi and Davis, 2014; Wilson et al., 2015), we also explored the effect of larger offsets on 

the SWC and the resulting Cstates. It was observed earlier in this study (Fig. 7(c)) that for a 

window of size 100 TRs applied to 100SN, the SWC transitioned at the point of the actual 

state change. When the same 100 TRs window is applied to 100SN but with a window offset 

of one-fourth (25 TRs) or one-half (50 TRs) the window length, an additional transition 

occurring at approximately 25 TRs (50 TRs) after the transition at the state change point is 

introduced into the SWC time course (Supplementary Figs. 16(b) and (c), blue oval markers 

show one of these additional transitions in each of these figures).

We also plotted state distributions for 100SN with a 100 TRs window for an offset of one 

TR, an offset of 25 TRs, and an offset of 50 TRs (Supplementary Fig. 17). State durations 

were successfully identified for an offset of one TR, but not for an offset of 25 TRs and 50 

TRs. Almost all of the actual states were separated into two Cstates in both cases, one of 

which was equal to the duration of the offset (black ovals). Results were consistent across all 

windows and all SNs.

Effects of window type

A rectangular window was used for the majority of our simulations, similar to most of the 

previous dynamic FC studies (Keilholz et al., 2013; Shakil et al., 2014; Leonardi and Van De 

Ville, 2015), but we also explored the effects of window type on the SWC results. Hamming 

and Hanning windows of the same lengths as the rectangular windows (25 TRs, 50 TRs, 100 

TRs, and 200 TRs) were used for the SWC computations. The state distributions for a 

Hamming window for 50SN, 100SN, and 200SN and windows lengths of 50 TRs, 100 TRs, 

and 200 TRs respectively are shown in Supplementary Fig. 18. Results for the Hanning 

window were similar. The Cstates are not localized to true correlation states and state 

transitions are poorly identified. The results for both tapered windows were worse than those 

obtained for rectangular windows, possibly because the SNs in our model have sharp 

discontinuities that are tracked better by rectangular windows.
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Effects of filtering

Recent studies showed that the SWC for two sinusoids approaches the steady state value 

only if the window size ≥1/fmin, where fmin is the minimum frequency of the correlating 

time series (Leonardi and Van De Ville, 2015; Shakil et al., 2015). To determine if matching 

the lowest frequency in the time course of the signals to the window size impacts the 

calculation of the SWC and corresponding clustering in more complex data, we performed 

the same analysis on the SNs created using highpass filtered (>0.016 Hz, >0.05 Hz, and 

>0.08 Hz) time series. Based on the findings of (Leonardi and Van De Ville, 2015; Shakil et 

al., 2015), windows of size greater than or equal to 62.5 s (for fmin = 0.016 Hz), 20 s (for 

fmin = 0.05 Hz), and 12.5 s (for fmin = 0.08 Hz) would result in the SWC approaching the 

steady state values for our highpass filtered SNs. The SWC between the node pairs were 

computed and compared with the actual correlations for these highpass filtered SNs. The 

results for one node pair for 100SN are given in Fig. 12. We observed decrease in the SWC 

values for almost all of our windows (17, 33, 65, 129 s) when fmin was 0.08 Hz (row 3), but 

this reduction was more noticeable for larger windows and did not follow the steady state 

correlations shown by black lines. Furthermore, increasing the highpass cutoff also resulted 

in the loss of sharp transitions at the state change point even when the window size was the 

same as the state duration, which can be observed in row 3 (c). The state transitions and 

duration detections were not strongly influenced by the lower cutoff values of the ideal case 

(100SN with 100 TRs window) as shown in Supplementary Fig. 19. However, there was 

some error in the detection of state transitions (Supplementary Fig. 19(c)). This deterioration 

may be the result of the SWC's inability to detect the state transitions for higher cutoffs as 

was observed in Fig. 12 (row 3 (c)). Since most of the power in the low frequency BOLD 

fluctuations lie in the very low frequencies (<0.1 Hz), the filters with higher cutoffs discard 

much of the information. Similar results were observed in all the subjects.

Effects of the change in the repetition time

The simulations described up to this point were performed using high temporal resolution 

data acquired using a multiband sequence. Most rsfMRI studies, however, are performed 

with longer TRs (1–3 s), which results in a lower sampling rate and provide fewer points in 

any given window. To examine the effect of this reduction in samples, the same analysis was 

performed using data from scans with 1400 ms TR for two subjects for low SNR SNs 

formed by single voxels as nodes. RandSN changed states at random times, while 50SN, 

100SN, and 200SN changed states after every 24 TRs, 47 TRs, and 93 TRs, respectively 

giving the states almost the same durations in seconds as that of the SNs formed with 645 

ms TR scans. Window sizes of 13, 24, 47, and 93 TRs (≈19, 34, 66, 131 s) were used, which 

were almost equal (in seconds) to the sizes of the windows used for the 645 ms TR scans. 

The results of the analysis were similar to the results for the 645 ms TR scans, illustrating 

that the outcome of the SWC depends more strongly on the size of the window (in seconds) 

used than on the TR of the scans. We did not perform this analysis on higher SNR ROI 

based SNs because the results were so similar for the voxel-based SN case.
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Effects of regions-of-interest selection

In order to determine if the results were dependent upon the ROIs selected, we selected 

entirely different sets of ROIs for all the five resting-state networks as shown in 

Supplementary Fig. 3. Afterwards, we formed the SNs with these ROIs and performed the 

analysis on new SNs. The mean percentages of full state identification for these SNs are 

shown in Supplementary Table 2. Even though the means differ from the previous SNs 

(Table 2), the trend remained the same with highest percentages obtained for a window when 

the size of the window was equal to the intervals of the SN (red entries in the Supplementary 

Table 2).

Discussion

Dynamic analysis of resting state FC holds the potential to provide new insights into the 

organization and interplay of network activity in the brain. Already it has been shown that 

dynamic analysis can improve sensitivity to changes that occur in psychiatric disorders 

(Sakoğlu et al., 2010; Jones et al., 2012; Damaraju et al., 2014; Li et al., 2014). One of the 

major challenges in furthering the field of dynamic FC is a lack of gold standards that can be 

used to evaluate how well analysis techniques reflect the actual network interactions in a 

system where the timing, duration, and composition of states are all unknown.

Previous studies have taken two approaches to the problem, either linking network dynamics 

to measurable behavioral outputs (Thompson et al. 2013, Kucyi and Davis, 2014) or tying 

them to simultaneous measures of electrical activity made with other modalities 

(Tagliazucchi et al., 2012; Chang et al., 2013; Pan et al., 2013; Thompson et al., 2013a, 
2013b). These studies impart confidence that dynamic analysis methods reflect at least some 

of the underlying neural dynamics. However, they do not readily adapt to a systematic 

investigation of analysis techniques and parameters.

SWC is one of the simplest and most widely used approaches to dynamic functional 

analysis, and is sometimes followed by clustering to identify common states of correlation 

patterns throughout the brain (Allen et al., 2014; Shakil et al., 2014). Most dynamic 

functional connectivity studies use SWC but the method's performance depends on the 

choice of parameters like window length, offset etc. In this study, we formed SNs from real 

rsfMRI data in order to obtain SWC results similar to those of real FC networks but with 

controlled state transition times.

Two recent studies (Hindriks et al., 2015; Shine et al., 2015) analyzed the performance of 

the SWC for dynamic analysis and identified shortcomings of the method. (Hindriks et al., 

2015) reported that the mere presence of fluctuations in the SWC time series cannot be taken 

as the evidence of dynamic functional connectivity and that it is important to select an 

appropriate null hypothesis when performing the dynamic FC analysis and (Shine et al., 

2015) compared their proposed method with the SWC. Our approach complements these 

studies since similar to Shine et al. (2015), we observed a significant influence of a change 

in signal amplitude on the SWC results for all windows (Fig. 3, Supplementary Figs. 8 and 

9). We also observed spurious fluctuations in the results of the SWC for actual rsfMRI 

networks (Fig. 2) and for the SNs (Fig. 3, Supplementary Figs. 8 and 9), supporting the 
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findings of Hindriks et al. (2015) that the mere presence of fluctuations in the SWC results 

cannot be taken as evidence of dynamic FC. These similarities in the results validate the use 

of our SNs for evaluating the impact of parameter choice on the performance of SWC.

SWC has successfully identified changes linked to electrophysiology, behavior or disorders 

in previous studies (Tagliazucchi et al., 2012; Chang et al., 2013; Thompson et al., 2013a, 
2013b; Damaraju et al., 2014; Li et al., 2014), despite its relatively poor performance in this 

study. As mentioned in the Sharp transitions section, our simulated networks are only 

approximations of actual brain states, which may not exhibit the same sharp state transitions. 

However, there are several reasons why SWC could perform adequately in previous studies. 

First, it is important to note that the “ground truth” in these empirical studies is unknown, 

preventing an examination of the accuracy of the SWC measurements. Instead, BOLD SWC 

is compared to other measures of neural activity, behavioral output, or across populations. In 

studies that relate SWC of BOLD to sliding window measures of neural activity 

(Tagliazucchi et al., 2012; Chang et al., 2013; Thompson et al., 2013a, 2013b), the sliding 

windows might affect both signals in a similar manner, preserving relationships between 

them. In studies that look at transitions and states across groups (Damaraju et al., 2014; Li et 

al., 2014), a similar effect may be preserving the differences between groups even if the 

actual correlation is poorly estimated. For comparison to behavior, ROIs are often large and 

may increase the SNR enough to improve SWC performance (Thompson et al., 2013a, 
2013b).

The effects of different parameter choices for the SWC and clustering were examined using 

these model networks. While the SNs were created using data from actual resting state 

networks, several implicit assumptions may affect their similarity to actual networks in the 

brain:

1) All nodes were assumed to be connected at all times. The SNs were 

spatially invariant, meaning that nodes did not join or leave the 

network at any time.

2) Abrupt transitions occurred between consecutive states. In practice, 

the characteristics of ‘state’ transitions in the brain are not known, 

but it is likely that smoother transitions over the course of seconds 

occur alongside or instead of abrupt transitions.

3) The average duration of a real brain ‘state’ is not known. For our 

study it was modeled as 13 to 129 s, ranging from time scales on the 

order of a cohesive thought to more long-term changes (in 

vigilance, for example) that occur on the scale of minutes. It is 

likely that these time scales are expressed simultaneously in the 

actual brain.

These assumptions are excellent targets for future extensions of this work and more complex 

model networks may prove more realistic for examining the accuracy of dynamic analysis 

techniques. Nevertheless, this simple model provides some guidance about the impact of 

parameter choice on the SWC.
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Sharp transitions

Despite the fact that the data in our SNs was from rsfMRI scans, our SNs had sharp state 

transitions as shown in Fig. 1 and Supplementary Fig. 4, which is different from the gradual 

changes expected in real resting-state networks. These sharp state transitions were due to 

abrupt changes in the signal intensities at the state transition points (Lindquist et al., 2014) 

that acted as outliers, especially for smaller windows (25 TRs, 50 TRs) in which the 

averaging in the SWC includes a smaller number of points. Although the transitions in our 

SNs may not reflect the actual state transitions of rsfMRI networks, they clearly identify the 

important issue of SWC's very high sensitivity to even one large short-lived intensity change 

which may happen due to some form of noise. Similar to the results of actual rsfMRI 

networks (Fig. 2., Supplementary Fig. 7) and previous studies (Hutchison et al., 2013a, 
2013b; Keilholz et al., 2013; Wilson et al., 2015) the SWC fluctuated between negative and 

positive values even when the actual correlation was positive for the SNs. Furthermore, 

similar to Wilson et al. (2015) we observed that despite the large variations for smaller 

windows, the pattern and timings of these correlation variations were the same. For example, 

in Fig. 3, the −1 correlations appear almost at the same points for all the windows, though 

other lesser variabilities are smoothed out by an increase in the size of the window, as 

expected. However, our results differ from those of Wilson et al. (2015) in the sense that the 

correlations vary between extreme values of −1 and 1 regardless of the actual correlation 

values between two state transition points. A closer inspection of these results show that 

these variations are mostly accompanied by abrupt signal changes at state transition points. 

Once the SWC value changed at the state transition point, it remained the same in most of 

the cases till the next abrupt signal change (at the next state transition point) especially for 

longer windows (pink and brown). This may be because the data between two consecutive 

state transition points was from the same resting-state networks so would not have any 

abrupt changes in signal. For smaller windows (red and green) the window size was less than 

1/fmin which may have introduced spurious fluctuations (Leonardi and Van De Ville, 2015; 
Shakil et al., 2015). These results emphasized the vulnerability of the SWC as an efficient 

and effective dynamic analysis method for FC. While sharp transitions are troublesome for 

SWC, the same sharp transitions in our SNs in some sense provided a “best case scenario” 

for clustering, with distinct boundaries between states that resulted in efficient clustering 

performance by k-means, with perfect identification of state transitions and durations in the 

raw SNs.

Window length

As expected, window length had a substantial effect on the amount of variability captured by 

the SWC and was the single most important determinant of the overall accuracy of the 

technique. Smaller windows (17 and 33 s) had more variability in the SWC results 

regardless of the SN. Some of these fluctuations maybe the result of spurious fluctuations 

arising from the SWC algorithm itself based on the findings of recent studies (Leonardi and 

Van De Ville, 2015; Shakil et al., 2015). In these studies it was reported that the minimum 

window length to avoid the spurious fluctuations arising due to the SWC itself should be at 

least equal to 1/fmin, where fmin is the minimum frequency in the simplified correlating 

signal. In our study the fmin is 0.016 Hz that corresponds to a minimum window length of 

62.5 s and window lengths less than this (17 and 33 s) would give rise to spurious 
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fluctuations. Regardless of window length, we found the overall correspondence between the 

actual correlation and the SWC to be rather poor. SWC results were more divergent from the 

actual correlation values at the time of state transitions illustrating that even a single outlier 

or abrupt change can have significant influence on the SWC output (Lindquist et al., 2014). 

This effect was more pronounced for smaller windows, since the averaging of SWC includes 

a smaller number of samples, and a large change in the value of even one sample would 

greatly influence the averaging. Furthermore, smaller windows would introduce spurious 

fluctuations also (Leonardi and Van De Ville, 2015; Shakil et al., 2015). Window sizes that 

were well matched to the duration of the states provided fairly good sensitivity to state 

transitions but still gave poor estimates of the actual correlation values. Perhaps because of 

the sensitivity to transitions, clustering after the SWC provided surprisingly good state 

identification for window lengths well matched to state durations, despite the poor 

estimation of correlation values. To some degree, the clustering was able to salvage 

information from the relatively poor accuracy of the SWC time courses. However, this was 

only true for certain situations where window lengths aligned well with state durations. It 

was also noted that in some situations, the duration of Cstates appears to be dominated by 

the window length rather than by the actual underlying state durations. Surprisingly, the 

clustering of raw SNs resulted in perfect state transition and duration identifications, giving 

far better performance than when SWC was used. These ideal results may be due to the 

sharp state transitions of our SNs which would provide distinct grouping to the clustering 

algorithm. However, these results also suggest that the application of the SWC is in general 

detrimental to the identification of brain states, and that clustering based on raw data 

provides a cleaner estimate of the patterns of underlying activity. If windowing methods are 

used, the results of these simulations highlight the need for development of adaptive 

techniques to maximize sensitivity to states of different durations.

Inter -subject variability was influenced by the size of the window more than the type of the 

SN. The smaller windows could capture the short-lived variabilities of the node pair 

correlations much better than the larger windows as is evident from Fig. 4 and 

Supplementary Fig. 7. However, the largest correlation was present for 200SN in almost all 

the subjects for all windows because the states were stable for the longest duration (200 

TRs). This result suggests that the SWC could perform well when the underlying network is 

changing very slowly.

Signal-to-noise ratio (SNR)

Additive white Gaussian noise (AWGN) deteriorated the results of both SWC and k-means 

clustering since it reduced the identification of sharp state transitions. This AWGN (20 dB 

and 10 dB SNRs) was added to the whole length of time series in SNs. This resulted in less 

sharp state transitions and the SWC result being closer to actual correlation value 

influencing the state assignments of the SWC results even for best case scenarios (50SN 

with 50TRs, 100SN with 100 TRs windows, and 200SN with 200 TRs window). The noise 

that we added was random, but actual noise is rsfMRI often arises from physiological 

sources (heart beat at ≈1 Hz, respiration at ≈0.3 Hz) and head motion (Kruger and Glover, 

2001; Greve et al., 2013; Bright and Murphy, 2015) and is spatially structured. These types 

of noise may introduce structured deterioration in the SWC results which may introduce 
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smooth but large variability in the correlation resulting in poor performance of the SWC in 

estimating the actual correlation. Influence of these structured noises is reduced during the 

preprocessing by filtering (heart and respiration) and regressing (motion parameters), 

however, they cannot be eliminated completely. In addition, the different filtering ranges are 

used (0.01–0.08 or 0.01–0.1 Hz usually) which may also influence the final output as 

discussed in the Time domain filtering section and reported by Leonardi and Van De Ville 

(2015) and Shakil et al. (2015).

Number and size of ROIs

For actual FC networks the number of ROIs is different for different networks. For example, 

the atlas used in this study (from FIND lab, http://findlab.stanford.edu/home.html) has a 

total of 90 functional ROIs and out of these the number of ROIs for different FC networks 

vary from two (primary and higher visual networks) to twelve (post salience network). 

However, another expanded atlas by the same lab covering more gray matter contains 499 

functional ROIs. The selection of seven nodes (ROIs) for our SNs was random but this 

number had no influence on the results of the SWC between the node pairs and affected the 

results of clustering only in that fewer nodes gave poorer clustering results. We performed 

an additional analysis by reducing the number of nodes to three and clustered the SWC 

using k-means. In that analysis for most of the cases, the best Silhouette mean was obtained 

for two clusters only, which would result in assignment of different states to the same 

Cstates and deteriorate the clustering results. Increasing the number of nodes should 

improve the state assignments as each additional node provides more information that can be 

used to distinguish between states.

Sizes of the ROIs in actual FC networks range from a few voxels to hundreds of voxels. In 

this study we found that the size of the ROI influences the results of the SWC because the 

SNR depends on the size of the ROI. Reducing the size of the ROI to a single voxel 

deteriorated the correct state identifications (Supplementary Table 1) compared to larger 

ROIs (Table 1). As a result, it may be deduced that the SWC and k-means combination 

would provide better estimates of actual correlations and state distributions if bigger ROIs 

were used that are similar to ROIs of real FC networks.

Window offset

An offset of a single TR proved best for detecting both state changes and durations. 

Increasing the window offset reduced the sensitivity of the SWC towards the correlation 

changes, as well as its ability to detect state transitions and durations. The larger the offset, 

the worse the results became. A closer inspection of the results showed that this 

deterioration may be due to shifts in the SWC results due to uncertainty in the times which 

best reflect the average in the window, and to the introduction of new transitions at intervals 

equal to the offset. To some extent, this may be related to the sharp transitions between 

networks used for this study and could well be mitigated for networks with more gradual 

transitions.
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Time domain filtering

Typical rsfMRI scans use a bandpass filter to minimize contributions from noise (typically 

0.01–0.1 Hz or 0.01–0.08 Hz). Following the findings of Leonardi and Van De Ville (2015) 

and Shakil et al. (2015), we applied highpass filters with different frequency cutoffs to the 

data. We observed that the highpass filtered SNs provide results similar to bandpass filtered 

networks when the highpass cutoff was the same as the that of the bandpass lower cutoff. As 

we increased the highpass cutoff to higher values (>0.05 Hz and >0.08 Hz) magnitudes of 

the SWC results for windows larger than 1/fmin were reduced, but the ability of the SWC to 

follow actual correlation values did not improve though the sharp state transitions of the 

SWC results were lost. The ability of the clustering algorithm to identify state transitions 

deteriorated, particularly for larger windows. This suggests that in our model, other sources 

of variability dominate the signal rather than the instability introduced by a mismatch in 

frequency and window length. One reason for the differences observed from Leonardi and 

Van De Ville (2015) and Shakil et al. (2015) may be that in our case, correlations were 

computed for the duration of the states, rather than for the whole scan time, making the 

sample length shorter. In some sense, the finding that the inclusion of lower frequencies does 

not greatly impact the performance of the SWC is encouraging. The combined requirements 

of highpass filtering to match the window length and low pass filtering to limit contributions 

from noise would place rather stringent limits on the range of windows that could be used to 

examine the SWC dynamics. The unfortunate corollary of this finding is that since the 

inclusion of lower frequencies does not greatly impact the SWC, the highpass filter does not 

appreciably improve the SWC performance, leaving it far from ideal as an analysis 

technique.

Repetition time (TR)

TR did not substantially affect the results of the SWC as far as sensitivity towards 

correlation changes and state identification were concerned. While shorter TRs provide more 

samples which should theoretically improve the estimation of correlation values, longer TRs 

often provide stronger signal-to-noise ratios that could offset this effect. As many rsfMRI 

studies routinely use TRs of 1–3 s, it is encouraging to see that the reduced sampling rate 

can have a minimal effect on the SWC and clustering.

Considerations for future SWC studies

The SWC gives a mediocre estimation of the actual underlying correlation even in the best 

of circumstances for our SNs, as shown in Fig. 3. However, with appropriate window lengths 

it can detect transition points fairly well, at least in networks with abrupt or sharp transitions. 

Clustering based on these window lengths results in reasonably accurate state identification. 

The results from our model suggest that the use of a window length equal to or longer than 

the expected state duration will provide the most accurate state characterizations. This 

requirement will of course need to be balanced with the necessity of using windows short 

enough to provide an estimation of changes over time. Shorter windows also identified 

greater proportions of actual transitions between states, though this is counterweighted by 

the number of false transitions that occur. An offset of a single TR and a rectangular window 
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provided the most accurate results, although this may be due in part to the abrupt changes in 

the model network.

Finally, the results of the SWC applied to QPeriodicSN and RandSN (arguably the most 

realistic models for the types of transitions expected in rsfMRI) highlight the way that 

window size impacts the resulting states. A large proportion of the states identified were 

approximately equal in length to the sliding window, regardless of the length of the actual 

state duration. This may be an important point to consider during the interpretation of the 

SWC-based clustering on real rsfMRI data.

A surprising and novel aspect of this study was perfect state transition and duration 

identification obtained using k-means clustering on the raw SN signal. These ideal results 

may be partly due to abrupt transitions of our SNs and will require further examination. 

However, they suggest that researchers may wish to consider using clustering-based 

approaches on the raw signal to identify the states of FC, rather than the SWC time courses 

whenever possible.

Future directions

This study evaluated the performance of the SWC as a suitable method for capturing 

network dynamics with rsfMRI. After examining the effects of various parameters on the 

dynamic analysis results of the SWC, we observed that no set of parameters were suitable 

for optimum performance of the SWC under conditions that are likely to exist in the human 

brain (e.g., random lengths of state durations). Windows that matched the intervals at which 

brain states changed provided the most accurate information, but this situation is unlikely to 

be found in rsfMRI.

The clear outcome of this study is the need to develop algorithms that can adaptively detect 

state transitions of different durations. This is a clear target for future research and may be 

addressed by the use of multiscale approaches (e.g., wavelet-based analysis) that can 

simultaneously examine multiple time scales. An ideal analysis method would identify each 

state based on quantitative relationships between areas, along with transition points between 

states. The challenge of identifying an optimum number of ‘brain states’ is another target for 

future efforts.

Any algorithm that aims to address these issues will need to be tested against modeled 

network dynamics, but even the best performance on a model network will not guarantee 

success in identifying transitions of interest in actual rsfMRI data. Validation with 

multimodal data and behavioral outputs will be necessary to conclusively establish a link 

between the output of the algorithm and activity within the brain. Despite the large amount 

of work, remaining, dynamic rsfMRI has the potential to have a profound impact on our 

understanding of the brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Ground truths (GTs) for (a) 100SN, (b) QPeriodicSN, and (c) RandSN. 100SN has state 

transitions at every 100 TRs (65 s), QPeriodicSN has quasi periodic states (red rectangles) 

repeated at random times, and RandSN has all the states transitions at random times. Each 

SN has seven nodes and ground truth for any SN is the mean of actual correlations of all of 

its node pairs.
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Fig. 2. 
Stationary and sliding window correlations of three node pairs (selected at random) from 

three different real resting-state networks. Stationary correlations of the node pairs are 

shown by black horizontal lines. The size of the window increases from left to right. The 

SWC fluctuates around the stationary correlation and these fluctuations are largest for 

smallest window in (a) and decrease as the window size increases towards the right.
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Fig. 3. 
Actual correlations and SWCs for one node pair in 100SN (row 1), QPeriodicSN (row 2), 

and RandSN (row 3). The SWC is plotted for windows of 25 TRs, 50 TRs, 100 TRs, and 

200 TRs ((≈17, 33, 65 and 129 s). The window offset is one TR and filtered (0.016–0.08 

Hz) time series are used. The actual correlation between the node pair is plotted in black. 

Smaller windows (red, green) result in more variable correlation time series. The large 

amount of variability indicates that smaller windows could capture short-lived correlations 

but some of these variations may be due to the spurious fluctuations introduced due to the 

small size of the window. Smaller windows are also able to capture the quasi periodic 

pattern of QPeriodicSN indicated by the blue arrows but this pattern is lost with increasing 

window size. The transitions in the SWC results occur at an interval of 65 s (100 TRs) for 

100SN when the state duration and window size are the same (pink dashed) which shows 

that SWC is good in identifying the transition of states when window size and state duration 

are well matched.

Shakil et al. Page 28

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Mean of mean correlations (of all node pairs) over all subjects. The overall mean is not very 

high because the SWC is very sensitive to abrupt transitions between the states. However, 

smaller windows give SWC results that are more similar to the actual correlation values 

compared to larger windows.
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Fig. 5. 
Silhouette indexes for raw SNs in (a) and SWC results in (b) for one subject. (a) The highest 

silhouette value (black dot and red arrow) corresponding to the best number of clusters for 

all the raw SNs were five since the SNs were formed from five resting-state networks. (b) 

The silhouette values for SWC results were different for different windows. Red dots show 

the silhouette indexes for 100SN (25 TRs, 50 TRs, and 100 TRs) windows. Pink dots are for 

QPeriodicSN and black are for RandSN for the same window sizes. The cluster (Cstate) 

distribution of the SWC results for these SNs are plotted in Figs. 7–9.
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Fig. 6. 
Clustering of raw SNs (100SN in (a), QPeriodicSN in (b), and RandSN in (c)) using k-

means. The best number of clusters was identified using Silhouette criteria. Discontinuities 

in the blue lines indicate state transition points, while the colors of the overlaid circles 

represent the Cstate at each time point that was assigned by the clustering algorithm (k-

means). When the circles between two adjacent state transition points remain the same color, 

it indicates that the state is correctly identified to be in single Cstate and a color change at 

state transition points indicates that the state transitions are correctly identified. The division 

of the raw signals gives perfect state transitions and state durations. The repeated states of 

QPeriodicSN (red rectangles) are assigned to the same Cstates, as expected.
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Fig. 7. 
State distribution of SWC results for 100SN for (a) 25 TRs, (b) 50 TRs, and (c) 100 TRs 

windows in one subject. The best number of clusters (Cstates) in each case was identified by 

Silhouette criteria. Discontinuities in the blue lines indicate state transition points, while the 

colors of the overlaid circles represent the Cstate at each time point that was assigned by the 

clustering algorithm (k-means). When the circles between two adjacent state transition 

points remain the same color, it indicates that the state is correctly identified to be in single 

Cstate and a color change at transition points indicates that the state transitions are correctly 

identified. (a) State distribution for a 25 TR window seven clusters or Cstates. Here state 

transitions are identified accurately but the number of transitions is much greater than the 

number of actual state transitions. State durations are not identified correctly in this case. (b) 

State distribution for a 50 TR window (three clusters or Cstates). Here state transitions are 

identified accurately but again the number of transitions is greater than the actual number of 

state transitions. State durations are not identified correctly, with most actual states split 

evenly into two Cstates. (c) State distribution when the window size is equal to the state 

duration of 100 TRs. The state transitions are correctly identified as seen by the change of 

color at the discontinuities. Furthermore, the state durations are also identified reliably as 

shown by consistent assignment of each actual state to a single Cstate.
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Fig. 8. 
State distribution of QPeriodicSN for (a) 25 TRs, (b) 50 TRs, and (c) 100 TRs windows in 

one subject. Discontinuities in the blue lines indicate that state transition points and the 

colors of the overlaid circles represent the Cstate at each time point that was assigned by the 

clustering algorithm (k-means). When the circles between two adjacent state transition 

points remain the same color, it indicates that the state is correctly identified to be in single 

Cstate, while a color change at transition points indicates that the state transitions are 

correctly identified. The 25TRs window is able to capture the state transitions accurately 

than the larger windows in (a) but the number of overall state transitions in this case is also 

larger than for the 50TRs or 100TRs windows in (b) and (c). The quasi periodic pattern of 

the SN is identified in 25 TRs and 50 TRs windows as shown by the same color distributions 

inside the green dotted rectangles. Furthermore, the state identification is dominated by the 

size of the window since most of the state durations are almost equal to the window size as 

shown by black rectangles.
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Fig. 9. 
State distribution of RandSN for (a) 25 TRs, (b) 50 TRs, and (c) 100 TRs windows in one 

subject. Discontinuities in the blue lines indicate state transition points, while the colors of 

the overlaid circles represent the Cstate at each time point that was assigned by the 

clustering algorithm (k-means). When the circles between two adjacent state transition 

points remain the same color, it indicates that the state is correctly identified to be in single 

Cstate, while a color change at transition points indicates that the state transitions are 

correctly identified. None of the window correctly identifies the state transitions and 

durations. For smaller windows ((a) and (b)), identified state durations are mostly equal to 

the size of the window.
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Fig. 10. 
Actual correlation and SWC of one node pair (100SN for 100 TRs window) before addition 

of the noise in (a) and after addition of additive white Gaussian noise (AWGN) with an SNR 

of 20 dB in (b) and 10 dB in (c). Noise reduces the sharp transitions of the SWC results. The 

identification of transition points becomes more difficult for small SNR (c) compared with 

large SNR (b).
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Fig. 11. 
State distribution of 100SN for 100 TRs window before addition of the noise in (a) and after 

addition of additive white Gaussian noise (AWGN) with an SNR of 20 dB in (b) and 10 dB 

in (c). Addition of noise resulted in poorer identification of state transitions.
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Fig. 12. 
Actual and sliding window correlations of one node pair for 100SN for different highpass 

cutoffs. The cutoffs are increasing along the rows, while the window sizes are increasing 

along the columns. (a) Results for 25 TRs (17 s) window. The window size is larger than 

minimum window size (1/fmin = 12.5 s) to suppress the spurious correlations for row 3 only. 

Not much difference in the SWC values are observed from first two rows for the same 

window size. (b) Results for 50 TRs (33 s) window. The window size is larger than 

minimum window size (1/fmin = 20 s, and 12.5 s) to suppress the spurious correlations for 

row 2, and 3. Significant reduction in the SWC values are observed for cutoff > 0.08 Hz. (c) 

and (d) follow the same trend as (b) for windows of sizes 100 TRs (65 s), and 200 TRs (129 

s) respectively. In (c) the sharp transitions observe for a cutoff of >0.01 and >0.05 Hz (row 2 

and 3) are not present for cutoff > 0.08 Hz (row 3).
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Table 1

Mean percentages of full state identifications for all SNs along with the mean percentages of the closest states 

that are assigned to the same cluster (Cstate, given in parentheses) for all nine subjects. Results are shown for 

bandpass filtered data with a window offset of one TR. The second row contains the SN type along with the 

total number of states (parentheses). A state was considered fully identified if it remained in the same Cstate 

for more than 98% of its total duration. For a specific window size, the maximum full state identification 

occurs for the SN with state durations equal to that window size (50 TRs window for 50SN, 100 TRs window 

for 100SN, and 200 TRs window for 200SN), shown in (row 4, column 4), (row 5, column 5), and (row 6, 

column 6). None of the windows provided good full state identification for the QPeriodicSN and RandSN. The 

number of actual state transitions (15 for QPeriodicSN, 10 for RandSN, 18 for 50SN, 9 for 100SN, and 5 for 

200SN) was greater than the number of Cstates (mean varying between three and seven), which means that in 

the case of full state identifications, more than one state would be assigned to the same Cstate. The numbers in 

the parenthesis next to the full state identification percentages show how many of the states, which were 

closest to each other, are assigned to a single Cstate. Only 55% of the states assigned to the same Cstate are 

closest to each other compared with the other states for 50SN (50 TRs window in row 4, column 4). This 

percentage becomes better with an increase in the size of the window for equal duration networks (row 5, 

column 5 & row 6, column 6). No specific pattern is observed for the full state identification of QPeriodicSN 

and RandSN except that in both SNs the identification became better with the increase in the size of the 

window.

Mean percentages of full state identification (mean percentages of closest states) for nine subjects for filtered (0.016–0.08 Hz) simulated 
networks

RandSN (10) QPeriodicSN (15) 50SN (18) 100SN (9) 200SN (5)

25 TRs (17 s) window 21 (97) 9 (94) 13 (58) 11 (40.7) 0 (0)

50 TRs (33 s) window 50 (64) 58 (97) 99 (55) 21 (56) 25 (56)

100 TRs (65 s) window 30 (50) 50 (75) 42 (66) 100 (85) 15 (44)

200 TRs (129 s) 
window

69 (59) 65 (55) 44 (73) 39 (82) 100 (97)
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Table 2

Total state transitions along with the mean percentages of correct state transitions (with respect to total 

detected state transitions and actual state transitions given in the parentheses) are shown for all window sizes 

and SNs. The second row contains the SN type along with the total number of state transitions for each one in 

the parenthesis. The total number of transitions is dependent on the window size as well as the actual number 

of states in a SN. QPeriodicSN and 50SN have the most state transitions (14 and 17) and all the windows show 

the maximum number of transitions for these SNs (columns 3 & 4) but the largest of them occurs for smallest 

window of 25 TRs (row 3, column 3 and 4). Mean percentages of correct state transitions with respect to the 

total and actual state transitions are largest for an equal interval SN when the window size is equal to the state 

durations ((row 4, column 4), (row 5, column 5), and (row 6, column 6)). Furthermore, the state transitions are 

fairly well identified if the window size is less the state durations.

Mean total state transitions (mean((correct state transitions/total state transitions) × 100), mean ((correct state transitions/actual state 
transitions) × 100)) for nine subjects for filtered (0.016–0.08 Hz) simulated networks

RandSN (9) QPeriodicSN (14) 50SN (17) 100SN (8) 200SN (4)

25 TRs (17 s) 
window

39 (16, 68) 39 (32, 90) 44 (28, 73) 33 (19, 81) 42 (6, 64)

50 TRs (33 s) 
window

15 (37, 63) 25 (40, 70) 25 (59, 86) 13 (45, 74) 9.6 (27, 64)

100 TRs (65 s) 
window

13 (17, 25) 18 (27, 33) 15 (12, 10) 12 (57, 86) 5.8 (44, 64)

200 TRs (129 s) 
window

4.3 (15, 7) 7.1 (3, 2) 10 (0, 0) 6.8 (8, 6.9) 6 (48, 72)
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