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Abstract

Establishing baseline MRI biomarkers for normal brain aging is significant and valuable for 

separating normal changes in the brain structure and functioning from different neurological 

diseases. In this paper for the first time we have simultaneously measured a variety of tissue 

specific contributions defining R2* relaxation of the gradient recalled echo (GRE) MRI signal in 

human brains of healthy adults (ages 22 to 74 years) and related these measurements to tissue 

structural and functional properties. This was accomplished by separating tissue ( ) and 

extravascular BOLD contributions to the total tissue specific GRE MRI signal decay (R2*) using 

an advanced version of previously developed Gradient Echo Plural Contrast Imaging (GEPCI) 

approach and the acquisition and post-processing methods that allowed the minimization of 

artifacts related to macroscopic magnetic field inhomogeneities, and physiological fluctuations.

Our data (20 healthy subjects) show that in most cortical regions  increases with age while 

tissue hemodynamic parameters, i.e. relative oxygen extraction fraction (OEFrel), deoxygenated 

cerebral blood volume (dCBV) and tissue concentration of deoxyhemoglobin (Cdeoxy) remain 

practically constant. We also found the important correlations characterizing the relationships 

between brain structural and hemodynamic properties in different brain regions. Specifically, 

thicker cortical regions have lower  and these regions have lower OEF.

The comparison between GEPCI-derived tissue specific structural and functional metrics and 

literature information suggests that (a) regions in a brain characterized by higher  contain 

higher concentration of neurons with less developed cellular processes (dendrites, spines, etc.), (b) 

regions in a brain characterized by lower  represent regions with lower concentration of 
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neurons but more developed cellular processes, (c) the age-related increases in the cortical 

mostly reflect the age-related increases in the cellular packing density.

The baseline GEPCI-based biomarkers obtain herein could serve to help distinguishing age-related 

changes in brain cellular and hemodynamic properties from changes which occur due to the 

neurodegenerative diseases.
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1. INTRODUCTION

Although it is well known that aging can cause functional cognitive impairments, the 

neurobiological effects of normal aging (i.e. changes in the cellular content and 

organizations, including the cerebral cortical thinning and atrophy) on functional and 

structural declines are still not well understood (1). A conventionally accepted idea dating 

back to 1950s is that the age-related cognitive functional decline is caused by the loss of 

neurons (2,3). However, quantitative studies with newly developed stereological methods 

suggest that neuron death is not sufficient to account for the age-related functional decline 

and the number of neurons in the neocortex remains largely the same over adult life (1). A 

more recent point of view is that relatively subtle alterations in the synaptic connectivity, 

dendritic spine density and neural plasticity (4–7) can be associated with age–related 

cognitive dysfunctions. Most of the cited studies related to neuronal structure were 

performed on non-human primates or other animals, or on post-mortem human tissues. To 

study neurodegenerative disorders, it is important to separate the normal aging effects from 

the underlying neurodegenerative pathologies. Hence it is essential to study the age-related 

cellular and functional alterations quantitatively in vivo and to establish a baseline for 

distinguishing normal aging from pathological effects.

Magnetic resonance imaging (MRI) is a well-established powerful non-invasive tool to study 

brain structure and function in vivo. For example, diffusion MRI can probe the tissue 

structure on a cellular scale and provide the information on the neural architecture and 

physiological changes (8), BOLD (Blood-Oxygen-Level-Dependent) MRI (9) provides 

information on brain functions (10–13) and high-field phase images allow in vivo 

visualization of the cortical substructures (14).
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In this study, the MRI-based Gradient Echo Plural Contrast Imaging (GEPCI) technique 

(15–17) is utilized to establish quantitative in vivo biomarkers characterizing the evolution 

of tissue structural, cellular and functional properties throughout adult human lifespan. 

GEPCI is a post-processing method generating a multitude of quantitative and “weighted” 

images from a single acquisition of GRE signal with multiple gradient echoes. In this paper 

we mainly use GEPCI quantitative measurements of the transverse relaxation (R2*) of 

gradient echo MRI signal and GEPCI T1-weighted images. We also use a novel advanced 

approach (18) to separate the total R2* relaxation into tissue-specific ( ) and BOLD-

related contributions.

Previously we have published several studies to validate different aspects of the technique 

that we are using in the current paper. Specifically, we have developed a theoretical model of 

BOLD effect (19), validated it in phantom studies (20), conducted detailed measurements of 

blood magnetic susceptibility (21), validated our model in vivo using a rat model (22), 

provided analysis of systematic errors due to diffusion effects (23) and errors due to noise in 

the data (24). In the Appendix B of this paper, we provide additional analysis of errors 

specific to the method that is used in this paper.

Since the transverse relaxation of MRI signal is known to be affected by macroscopic field 

inhomogeneities (20), in this paper we use a newly-developed approach – voxel spread 

function method (25) – that allows minimizing the contribution of these adverse effects, thus 

providing measurements of tissue-specific R2* -related relaxation properties. Further 

improvement in our measurements is achieved by utilizing another novel method (26) 

allowing the reduction of the artifacts resulting from physiological fluctuations and scanner 

instabilities. Both these advances improve the accuracy of our measurements.

Since  describes the part of the signal decay resulting from water molecule interactions 

with cellular and extracellular components of biological tissues, we hypothesize that in the 

normal brain it can serve as a biomarker of the cortical “cellular packing density” – a 

parameter mostly proportional to the number of neurons and glia cells in the unit tissue 

volume – and can potentially identify tissue alterations (see further comments in the 

Discussion section). BOLD effects (9,19,20) describe the relaxation due to the mesoscopic 

magnetic field inhomogeneities caused by the presence of a blood vessel network. Hence, 

separating BOLD effects from R2* allows important information on tissue functional 

hemodynamic properties, such as, oxygen extraction fraction (OEF), deoxygenated cerebral 

blood volume (dCBV) and tissue concentration of deoxyhemoglobin (Cdeoxy) (18).

In this paper, by comparing our results with the literature data we provide a support for the 

hypothesis that in a healthy adult brain the tissue-specific  can serve as a biomarker of 

the cortical cellular packing density. We also use this hypothesis to explain the relationships 

between  and the functional data, such as OEF and aerobic glycolysis. The baseline 

GEPCI-based biomarkers obtained herein could also serve to help distinguish age-related 

changes in brain cellular and hemodynamic properties from changes which occur due to 

neurodegenerative diseases, e.g. (27).
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2. METHODS

2.1 Subjects

This study was approved by the Institutional Review Board of Washington University 

School of Medicine. Twenty participants aging from 22 to 74, including 7 male (ages: 22, 

26, 29, 35, 37, 42, 65) and 13 female (ages: 23, 28, 33, 42, 45, 46, 50, 52, 56, 57, 61, 61, 

74), were recruited in this study. None of the participants had any history of neurological 

diseases. All participants provided informed consent.

2.2 Data Acquisition

All subjects were scanned in a 3T Trio MRI scanner (Siemens, Erlangen, Germany). A 3D 

multi gradient echo sequence was used to obtain the data. Sequence parameters were: 

resolution 1×1×2 mm3 (read, phase, slab), FOV 256 mm×192 mm, repetition time TR = 

50ms, flip angle 30°, 10 gradient echoes with first gradient echo time TE1 = 4 ms, echo 

spacing ΔTE = 4ms. Additional phase stabilization echo (the navigator data) was collected 

for each line in k-space to correct for image artifacts due to the physiological fluctuations 

(26). The total acquisition time of GEPCI is 11 mins 30s. Field inhomogeneity effects were 

removed by using the voxel spread function (VSF) approach (25). Standard clinical 

Magnetization-Prepared Rapid Gradient Echo (MPRAGE) (28) images with TR/TI/TE = 

2200/1100/3.37 ms and the resolution 0.9×0.9×1.5 mm3 were also collected for 

segmentation purposes. The total acquisition time of MPRAGE is 6 mins. After the data 

acquisition, the raw k-space data were read into MATLAB (The MathWorks, Inc.) for the 

post-processing.

2.3 Data Analysis and Image Generation

The image processing was finished in MATLAB (The MathWorks, Inc.) using previously 

developed algorithm (18). In brief, after correcting the k-space data for physiological 

artifacts (26), we apply FFT in the phase-encoding directions to get images. 3D spatial 

Hanning filter is then applied to the data in the image domain. To achieve an optimal signal-

to-noise ratio, we use the following equation to combine the data of all channels (29):

[1]

where the sum is taken over all M channels (ch), S̄ denotes complex conjugate of S, λch are 

weighting parameters and εch are noise amplitudes (r.m.s.). Index n corresponds to the voxel 

position (n=x,y,z). This algorithm allows for the optimal estimation of quantitative 

parameters, and also removes the initial phase incoherence among the channels (29,30).

The data are then analyzed on a voxel-by-voxel basis using the theoretical model (20):

[2]

where TE is the gradient echo time,  is the tissue transverse relaxation rate 

constant (describing GRE signal decay in the absence of BOLD effect), Δf is the frequency 
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shift (dependent on tissue structure and also macroscopic magnetic field created mostly by 

tissue/air interfaces), function FBOLD(TE) describes GRE signal decay due to the presence 

of blood vessel network with deoxygenated blood (veins and the part of capillaries adjacent 

to veins), and function F(TE) describes the effects of macroscopic magnetic field 

inhomogeneities. In this paper we use voxel spread function (VSF) method (25) for 

calculating F(TE).

For the BOLD model we use a recently proposed expression (18):

[3]

that better accounts for the presence of large vessels in the voxel than traditional exponential 

function (19). In Eq.[4], ζ is the deoxygenated cerebral blood volume fraction (dCBV) and 

δω is the characteristic frequency determined by the susceptibility difference between 

deoxygenated blood and surrounding tissue(19):

[4]

In this equation, Δχo = 0.27 ppm (21) is the susceptibility difference between fully 

oxygenated and fully deoxygenated blood, Y is the blood oxygenation level (with Y = 0 

being fully deoxygenated), Hct is the blood hematocrit, and γ is the gyromagnetic ratio. 

Function fs describes the signal decay due to the presence of the blood vessel network which 

was defined in (19). Herein we use a mathematical expression for the function fs in terms of 

a generalized hypergeometric function  (31):

[5]

By fitting equation [2] to the real and imaginary parts of the complex signal using nonlinear 

regression algorithm, we are able to find the five parameters: S0, , Δf, ζ and δω for each 

voxel in the brain. Details of the fitting routine are described in great detail in (18). Based on 

the fitting results we can calculate BOLD-related R2′ :

[6]

Oxygen Extraction Fraction (OEF)

[7]

and the concentration of deoxyhemoglobin per unit tissue volume (32):

[8]
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where nHb is the total intracellular Hb concentration equal to 5.5×10−6mol / mL (32). Since 

Hct was not measured in our experiments, we will only report relative regional OEF 

(OEFrel) values

[9]

Note that conventionally, in a GRE experiment the total R2* relaxation rate constant is 

considered to be a sum of two components – R2 relaxation rate constant representing the 

part of MR signal decay that cannot be reversed by a refocusing 180° RF pulse, and R2′ 

relaxation rate constant representing the part of the signal decay that can be reversed by a 

refocusing 180° RF pulse (usually attributed to BOLD effect in a static dephasing regime 

(19)) : R2* = R2 + R2′. However, such a consideration would only be valid for a single 

compartment model. For a multi-compartment tissue, the part of R2* remaining after the 

subtraction of BOLD effect can still have contributions from magnetic susceptibility effects 

resulting from the presence of different cell-building components. Hence, in our model, Eq. 

[2], we call it .

In this paper we also estimate the standard R2* values by fitting the following equation to 

the experimental data:

[10]

2.4 Image segmentation

MPRAGE images were input into FreeSurfer (Laboratory for Computational Neuroimaging, 

Martinos Center for Biomedical Imaging) (33) to generate brain segmentations, calculate 

surfaces and cortical thickness. 26 cortical regions of interest (ROI), were chosen to 

represent frontal, temporal, parietal and occipital lobes. The thalamus, caudate, putamen, 

pallidum, hippocampus and amygdala were chosen to study the subcortical regions. 

MPRAGE images were registered to GEPCI-T1-weighted images using FMRIB’s Linear 

Image Registration Tool (34,35) in FSL and the transformation matrices of the registration 

were generated. Finally, these matrices were applied to the brain segmentations from 

FreeSurfer and transformed them to the space of GEPCI-T1-weighted images. Since GEPCI 

–T1-weighted images are naturally co-registered with all GEPCI maps (R2*, , OEFrel, 

Cdeoxy, and dCBV), the segmentations were also naturally registered to all these maps. 

Cortical thicknesses in the cortical ROIs except cerebellar cortex generated by the 

FreeSurfer were also used for data analysis.

Even though the data were collected with rather high in-plane resolution – 1×1 mm2, they 

are still susceptible to the partial volume effect. To minimize it we apply a CSF mask to 

further remove CSF signals from FreeSurfer segmentations, and we use the statistical 

measurement instead of voxel-wise analysis - for each of the FreeSurfer ROIs which usually 

contains thousands of voxels, we generated a single parameter – the median value of the 

corresponding measurement distribution (the median value is less sensitive to outliers that 
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are related to partial volume effect). This procedure also minimizes the errors in the model 

parameters estimates discussed in the Appendix B.

2.5 Statistical analysis

The statistical analysis and correlations were established using the LinearModel class in 

MATLAB (The MathWorks, Inc.). All GEPCI parameters in each ROI were characterized by 

their median values and correlated with age across 20 subjects using the following equation:

[11]

Age 40 years was selected as the adult reference age for convenience. The cortical 

thicknesses were correlated with ages using the same equation. The p-values were calculated 

to evaluate each correlation and conventionally p < 0.05 is considered as a significant 

correlation. Multiple comparison analysis was not applied here because we only report 

individual correlations instead of comparing them across different ROIs.

3. RESULTS

3.1 Age-related changes in the cerebral cortex

Our data (Figures 1 and 2, Tables A.1 and A.2) show that in most cortical regions R2* and 

 increase with age, OEFrel, dCBV and Cdeoxy remain constant while cortical thickness, 

Th, decreases. In addition to parameters listed above, we have also introduced a parameter 

 that represents an integrated characteristic of the  under a unit square of the cortex 

and is computed as a product of the median  and Th for each FreeSurfer region: 

. The detailed role of this parameter will be addressed in the Discussion 

section.

Figure 1a shows that R2* statistically significantly increased (p < 0.05) with age in all shown 

cortical ROIs. All other regions (see summary in Table A.1) also demonstrated increased 

R2* with age though with different rates (slopes in Table A.1), e.g. rostral-anterior frontal 

and rostral middle frontal have the smallest slopes.  also significantly increased (p < 

0.05) with age in the selected ROIs (Fig. 1b) and in most cortical regions in Table A.1 but 

with higher p values compared to R2*. The regions with non-significant increases in R2* 

with age showed even smaller changes in  with age. For instance, rostral middle frontal 

and rostral anterior frontal  did not significantly change with age, with p values of 0.42 

and 0.76, respectively. In addition, a few regions with significant increases in R2* with age 

showed non-significant but apparent increasing tendencies of  with age. For example, 

although  of the insula did not correlate significantly with age (p = 0.14), an increasing 

trend was seen.

Figure 1c shows that the relative OEF (OEFrel) expressed as a local-to-global ratio, Eq. [9], 

showed no significant trend with age – the p values of the linear model were not significant 

(p > 0.05) in all cortical regions except the rostral-middle frontal (p= 0.013) and the lateral 

occipital (p= 0.026). To describe this data we use a constant model in all cortical regions. 

The mean values of OEFrel are shown in Fig. 1 as solid lines with the 95% confidence 
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intervals shown as dashed lines. These results indicate that OEFrel remains relatively 

constant over adult lifespan. The mean values of OEFrel ranged from 0.6 to 1.5 across the 

selected 26 ROIs with the regions in occipital lobe, such as cuneus, lingual and lateral 

occipital, having comparatively higher OEFrel (Table A.2).

Results for dCBV (Fig. 1d and Table A.2) and Cdeoxy (Fig. 1e and Table A.2) showed 

similar properties (no statistically significant dependence on age) as OEFrel and were 

described with a constant model.

Cortical thickness significantly decreased (p<0.05) with age in most cortical regions (Fig. 1f, 

Table A.1). However, caudal anterior cingulate (p = 0.62), cuneus (p = 0.11), parsorbitalis (p 

= 0.23), isthmus of cingulate (p = 0.35), paracentral (p = 0.07), rostral anterior cingulate (p = 

0.21), rostral middle frontal (p = 0.17), superior frontal (p = 0.11) and superior parietal (p = 

0.09) cortex each showed less significant thinning with age. But trends toward decreasing 

thickness can be observed in some areas, such as, paracentral lobule, superior frontal and 

superior parietal cortex. Furthermore, the slopes, that show age-related differences in 

cortical thickness (mm/year), varied across different areas. These results indicated that age-

related thinning varied in different regions of the brain.

Results for the integrated parameter  were analyzed using the same procedure as 

OEFrel and showed no significant linear relationships with age. They were presented using a 

constant model demonstrating no statistically significant changes over the studied human 

lifespans for each ROI except caudal anterior cingulate (Fig. 1g). The mean and standard 

deviation of the constant model can be found in Table A.2.

3.2 The distributions of parameters on the brain surfaces

The summary of the distributions of all the GEPCI-derived parameters is presented on the 

lateral and medial cortical surfaces of the left hemisphere in Fig. 2. The ventricles, white 

matter and deep gray matter are excluded. R2* and  have a similar distributed network. 

Frontal lobe, inferior parietal, precuneus and posterior cingulate have relatively lower values 

than paracentral lobule, lateral occipital, cuneus and lingual. This distribution feature is 

consistent with the previously reported T2* mapping from 7 T resulting from the averaging 

of 14 subjects (36).

3.3 Correlations between structural and hemodynamic cortical tissue properties

 correlates negatively with the cortical thickness across 26 cortical ROIs (p < 0.05 and r 

= 0.71, Figure 3a). This correlation indicates that the thinner cortex has a relatively higher 

. Furthermore,  positively correlates with OEFrel across 26 cortical ROIs (p < 0.05 

and r = 0.8, Figure 3b). The regions extracting more oxygen also have higher . 

Implications of all these correlations will be discussed in detail in the Discussion section.

3.4 Age-related changes of R2* in subcortical regions

R2* has statistically significant increases with age in basal ganglia (caudate, putamen and 

pallidum). Amygdala also shows significant increase of R2* with age. Thalamus and 

hippocampus show less significant age-related changes.
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3.5 Age-related changes of the R2* in cerebellar cortex

None of these parameters shows significant (p < 0.05) linear correlation with age in 

cerebellar cortex. OEFrel, dCBV and Cdeoxy are consistent with the tendencies in other 

cortical regions. However, R2* and  showed no significant linear relationships with age 

which is reflected by non-significant p values of the linear model. The significant p values of 

the constant model for all the parameters indicated that all the measurements remain 

constant with age in the cerebellar cortex. Though, since the cerebellar cortex is very thin (< 

1mm), this data may be affected by partial volume effect due to the resolution of the images.

4. DISCUSSION

In this paper for the first time we report the measurements of a variety of tissue specific 

contributions defining R2* relaxation of GRE MRI signal in adult human brain. This was 

accomplished by separating tissue ( ) and extravascular BOLD contributions to the GRE 

MRI signal decay using our previously developed approach (18,20) and the acquisition and 

post-processing methods that allowed the minimization of artifacts related to macroscopic 

magnetic field inhomogeneities (25), and physiological fluctuations (26). Our major 

experimental findings can be summarized as follows:

1. We found that R2* significantly increases with age in most cortical regions and this 

increase is mostly caused by the increase in  (Fig. 1b) since hemodynamic 

characteristics (OEFrel and dCBV) do not change with age (Fig. 1e).

2. Our data show that while the cortex becomes thinner with normal aging (in 

agreement with previous reports (37,38)), the integrated , i.e. the product of 

and cortical thickness ( ), remains constant with age in most 

cortical regions – Fig. 1g.

3. We found that in the brain cortex  negatively correlates with the cortical 

thickness across 26 FreeSurfer regions – Fig. 3a.

4. We found that in the brain cortex  positively correlates with OEFrel across 26 

FreeSurfer regions – Fig. 3b.

5. The key questions are: why  increases with age in the cortex and what features 

of the brain cellular structure cause this increase and variability between different 

brain structures? Main contributions to  signal decay in different brain 

structures come from the water molecules interactions with cell structural proteins, 

lipids and iron (39–41). In the subcortical GM (i.e. the caudate, putamen and 

pallidum) a significant increase in R2* with age that we observed (Fig. 4), is 

consistent with previous studies (41–46) and is usually attributed to the known iron 

deposition in those regions with the increasing age. However, iron is unlikely a 

contributor to the age-related increase of the cortical  because, according to 

Hallgren and Sourander (47), the iron content in the cortex remains nearly constant 

after the age of 30. The major contributions to the increased cortical  and its 

variability are likely to be attributed to the water molecule interactions with other 

cellular structural components such as lipids and proteins.
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6. Another source of the variation in R2* potentially could be an anisotropic effect 

reported by Rudko et al (48). However, even at 9.4T field strength, R2* showed 

only 0.94 ± 0.32 s−1 variation in GM of mice, which is a much smaller effect than 

the variation across different brain regions that we found in a human brain at 3T.

The hypothesis that the changes of MR signal relaxation properties are related to the 

changes in the concentration of lipids and proteins has been useful in studying Central 

Nervous System (CNS) diseases, such as Multiple Sclerosis (e.g. (17,49)) where cellular 

damage is mostly attributed to the loss of myelin. However, this hypothesis might not be 

adequate to describe normal aging effects of a healthy tissue where MR signal relaxation 

properties are related not only to the concentration of the cellular structural components but 

also to their cellular structural arrangements (50). For example, lipids distributed as multiple 

small droplets would have much bigger water-accessible surface, hence cause substantially 

stronger relaxation effects than a single large lipid droplet with the same total amount of 

lipids.

Herein by comparing our results with the literature data we provide support for a hypothesis 

that in a healthy adult brain the tissue-specific  can serve as a biomarker of the cortical 

“cellular packing density” – a parameter mostly proportional to the number of neurons and 

glial cells in the unit tissue volume. We also use this hypothesis to explain the relationships 

between  and the functional data, such as OEF and aerobic glycolysis.

4.1 Cortical Cellular Packing Density correlates with  over adult lifespan

Our hypothesis is supported by the available literature data on the cellular changes in the 

aging brain. It was a common impression that the neuron loss (2,3) is an inevitable process 

of aging that leads to the cortical thinning and cognitive dysfunction. However, many studies 

have reported that the number of neurons in the human cortex remains the same over adult 

life (1,7,51–56) and that normal aging is accompanied by changes in the dendritic structures, 

spine density and synapse density. Significant reduction in dendritic arbors of pyramidal 

neurons located in prefrontal, superior temporal and precentral cortices and changes in 

dendritic spine size, shape and density across the neocortex in humans and animals were 

discussed by Dickstein (5). Hof and Morrison (6) argued that while neuron death 

predominates in Alzheimer’s disease, age-related cognitive impairment is probably mediated 

by changes in the synaptic communication rather than by neuron death. Fjell et al. (4) also 

argued that regions with a high degree of life-long plasticity are more affected by normal 

aging effects. Moreover, several hypotheses that do not include the loss of neurons have 

been proposed to explain the cortical thinning with the increasing age, including the 

shrinkage of the neuronal size and the reduction/loss of presynaptic terminals, dendritic 

complexity and neuropil (56). In addition to neurons, the number of other CNS cells such as 

glial cells did not show significant differences between elderly individuals with a mean age 

of 89 years and young individuals with a mean age of 26 years (55). Furthermore, the glia/

neuron ratios of 1.32 for female and 1.49 for males showed no statistically significant 

correlation with age over adult life (57). Thus, the published studies indicate that the total 

number of neurons and glial cells in the cortex remains relatively constant over normal adult 

life.
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The unchanged number of cells and the decreasing cortical volume imply the increasing cell 

density with age in the cortex, which is also supported by the results of Haug and Eggers 

(51,58) who concluded that the neuronal density significantly increases with age in 

Brodmann areas 6 and 11 in the frontal lobe and area 17 in the occipital lobe, with area 7 in 

parietal lobe and area 20 in inferior temporal gyrus showing non-significant but similar 

tendencies. Freeman et al (56) also found that frontal and temporal cortical neuronal density 

showed a small increase with increasing age.

This increasing age-related cortical cellular packing density within shrinking space in the 

cortex (due to shrinkage of the neuronal size and the reduction/loss of presynaptic terminals, 

dendritic complexity and neuropil (56)) is consistent with our interpretation of increased 

reported herein as a biomarker of cellular packing density. In this context, the product of 

and cortical thickness ( ) represents the cellular packing content underneath a unit 

surface (e.g., 1 square millimeter surface) of the cortex. Our finding that this product 

remains constant with age for all cortical regions (Fig. 1g, Table A.1), is in agreement with 

the published data discussed above indicating the preservation of cortical cellular content in 

healthy adults over their lifespan.

If both the number of neurons and the relative fraction of glial cells to neurons stay the same 

over age, the density of both neurons and glial cells would go up proportionally. Since axons 

and dendrites contain considerably larger concentration of macromolecules (i.e. lipids and 

proteins), their contribution to the  relaxation is expected to be prevailing compared to 

glial cells even though concentration of glia cells in the cortex is higher. Hence, we 

hypothesize that the increase of  is mainly due to the increased neuronal density.

4.2 Neuronal Packing Density correlates with  within individual human brains

Our data can also be compared with the direct measurements by Collins et al. (60) who 

provided detailed results on neuronal density in non-human primates. They found higher 

neuronal densities in primary visual cortex (V1), early extrastriate visual areas, primary 

auditory cortex (A1), primary somatosensory areas (S1) and middle temporal (MT), while 

lower neuronal densities in prefrontal cortex, premotor cortex, superior temporal sulcus, 

inferior parietal lobule and superior parietal lobule. In particular, Collins et al. reported the 

highest neuronal density in V1, the second highest in association visual areas and relatively 

higher density in S1 among all of the examined primates. Lowest neuronal densities were 

found in prefrontal cortex, premotor cortex or cortex ventral to S1 and motor cortex (M1) in 

different primates. Those distributions of neuronal density are in a very good qualitative 

correlation with the distributions of  found in our study. Indeed, in this study, the highest 

 were found in the visual cortex (cuneus, lateral occipital and lingual) and the lowest 

were found in the frontal areas (Fig.2 and Table A.1). Relatively higher  were also shown 

in S1 and M1 (paracentral, precentral and postcentral) and  values in these two regions 

were similar. Relatively lower  were found in regions close to S1 and M1. All in all, 

these data further support our hypothesis that  is related to neuronal density and can be 

considered as a biomarker of cellular packing density- the reported areas with lower 

neuronal density are the major areas with lower  and vice versa.
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Elston et al. (61) found that cells in the prefrontal cortex of humans are more branched and 

more spinous than those in the temporal and occipital lobes. Comparing these results with 

the measurements of neuronal density by Collins et al. (60) we can conclude that regions 

with relatively lower neuronal density have more complex dendritic arbors, larger somas and 

dendritic field sizes and more spines than regions with higher neuronal density. This is in 

agreement with the line of consideration by Glasser and Van Essen (62) who utilized T1- 

and T2-weighted MRI to evaluate a distribution of the myelin content in the cortex. Hence, 

comparing the  maps with these literature data (60,61), we can further suggest that the 

areas with lower  represent regions with complex dendritic arbors, larger somas and 

dendritic field sizes and more spines than regions with higher .

4.3 Brain tissue hemodynamic properties

Besides , the relative OEF, dCBV and Cdeoxy are also derived from our data and they are 

in agreement with previous literature results. The distribution of the relative OEF in Fig. 1 

shows the uniformity across frontal area and precuneus but higher values in the visual cortex 

(cuneus and lingual) which is consistent with the findings of default mode network (63). The 

relative OEF shows no significant change with age (Fig. 2c), which is consistent with 

previous studies. Leenders et al. reported that oxygen extraction fraction (OER) didn’t 

change or showed a slight increase with age in the selected regions (64). Pantano et al. 
showed that OEF had no statistically significant changes with age, although a small upward 

trend was present (65). Yamaguchi et al. also demonstrated that OEF didn’t show any 

correlation with age (66). Our data on dCBV shows no significant change with age which is 

consistent with previous findings of no significant changes in the cerebral blood volume 

(which is a measure of both, dCBV and arterial blood volume) with age (64,66).

Our  map outlines practically the same structural features of the brain as the map of 

aerobic glycolysis (67) with areas of low  (complex dendritic and synaptic structure) 

corresponding to areas of high aerobic glycolysis and areas of high  corresponding to 

areas of low aerobic glycolysis. This fits well with our biophysical hypothesis of 

reflecting cellular packing density. Indeed, the areas of complex dendritic and synaptic 

structures characterized by lower  are likely to require high aerobic glycolysis needed to 

support high synaptic activities (68). Moreover, since the correlation in brain regions 

between aerobic glycolysis and CBF is stronger than that between aerobic glycolysis and 

CMRO2 (68), areas of high aerobic glycolytic activity may show relatively lower OEF. 

Hence, it is not surprising that we found a very strong correlation between  and OEF (p < 

0.001, r = 0.71 in Figure 2b). It is also important to note that the regions with lower  are 

mostly located within the default mode network (63).

Although OEF and  are derived from the same data they are described by substantially 

different contributions in the model Eq. [2] and represent different properties of the system. 

Computer Monte-Carlo simulations (23) demonstrated that bias in the estimation of  due 

to using static dephasing regime model (19) does not exceed 0.3 s−1 and biases in OEF and 

dCBV are smaller than 10%. Hence, the observed correlation is not due to the biases in the 

fitting routine. Besides, the results are consistent with the above listed literature data.
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5. SUMMARY

Distinguishing the cognitive changes of normal aging from the initial stages of 

neurodegenerative disorders, such as Alzheimer’s disease, can be difficult. Hence, 

establishing baseline MRI biomarkers for normal aging is significant and valuable. In this 

paper we used an advanced GEPCI approach (18,25,26) allowing the quantitation of various 

tissue specific structural and functional metrics.

Comparison between our data and the available literature information suggests that the age-

related changes in the cortical  mostly reflect the age-related changes in the cellular 

packing density. Our data also show that tissue hemodynamic parameters, i. e. relative OEF, 

dCBV and Cdeoxy have no linear correlations with age and remain practically constant in 

most cortical regions. We found important correlations characterizing relationships between 

brain structural and hemodynamic properties in different brain regions. Specifically, thicker 

cortical regions have lower , reflecting less cellular packing density, and these regions 

extract less oxygen from the blood.

All our findings can be understood if we put forward the following hypotheses:

1. Regions in a brain characterized by a higher  contain higher concentration of 

neurons with less developed cellular processes and are characterized by lower 

glycolytic activity. Accordingly, they require less blood flow to maintain their 

structure. These areas have higher OEF.

2. Regions in a brain characterized by a lower  represent regions with lower 

concentration of neurons but more developed cellular processes (dendrites, spines, 

etc.). They display higher glycolytic activity, hence require higher blood flow to 

maintain and develop new structural elements responsible for “information 

storage”. These areas have lower OEF.
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Abbreviations

GEPCI Gradient Echo Plural Contrast Imaging

tissue specific R2*

Th the cortical thickness

the product of the median  and the cortical thickness

OEF oxygen extraction fraction

dCBV deoxygenated cerebral blood volume

Cdeoxy the concentration of deoxyhemoglobin

Zhao et al. Page 13

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VSF voxel spread function

REFERENCES

1. Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997; 278(5337):412–
419. [PubMed: 9334292] 

2. Brody H. Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. 
The Journal of comparative neurology. 1955; 102(2):511–516. [PubMed: 14381544] 

3. Coleman PD, Flood DG. Neuron numbers and dendritic extent in normal aging and Alzheimer's 
disease. Neurobiology of aging. 1987; 8(6):521–545. [PubMed: 3323927] 

4. Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB. What is normal in normal aging? Effects 
of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Progress in 
neurobiology. 2014; 117:20–40. [PubMed: 24548606] 

5. Dickstein DL, Weaver CM, Luebke JI, Hof PR. Dendritic spine changes associated with normal 
aging. Neuroscience. 2013; 251:21–32. [PubMed: 23069756] 

6. Hof PR, Morrison JH. The aging brain: morphomolecular senescence of cortical circuits. Trends in 
neurosciences. 2004; 27(10):607–613. [PubMed: 15374672] 

7. Morrison JH, Baxter MG. The ageing cortical synapse: hallmarks and implications for cognitive 
decline. Nature reviews Neuroscience. 2012; 13(4):240–250. [PubMed: 22395804] 

8. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nature 
reviews Neuroscience. 2003; 4(6):469–480. [PubMed: 12778119] 

9. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent 
on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of 
America. 1990; 87(24):9868–9872. [PubMed: 2124706] 

10. Bandettini P, Wong E, Hinks R, Tikofsky R, Hyde J. Time course EPI of human brain function 
during task activation. Mag Res Med. 1992; 25:390–397.

11. Kwong K, Belliveau J, Chesler D, Goldberg I, Weiskoff R, Poncelet B, Kennedy D, Hoppel B, 
Cohen M, Turner R, Cheng H-M, Brady T, Rosen B. Dynamic magnetic resonance imaging of 
human brain activity during primary sensory stimulation. Proc Natl Acad Sci (USA). 1992; 
89:5675–5679. [PubMed: 1608978] 

12. Ogawa S, Tank D, Menon R, Ellermann J, Kim S-G, Merkle H, Ugurbil K. Intrinsic signal changes 
accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. 
Proc Natl Acad Sci (USA). 1992; 89:5951–5955. [PubMed: 1631079] 

13. Frahm J, Merboldt KD, Hanicke W. Functional MRI of human brain activation at high spatial 
resolution. Magnetic resonance in medicine : official journal of the Society of Magnetic 
Resonance in Medicine / Society of Magnetic Resonance in Medicine. 1993; 29(1):139–144.

14. Duyn JH, van Gelderen P, Li TQ, de Zwart JA, Koretsky AP, Fukunaga M. High-field MRI of brain 
cortical substructure based on signal phase. Proceedings of the National Academy of Sciences of 
the United States of America. 2007; 104(28):11796–11801. [PubMed: 17586684] 

15. Luo J, Jagadeesan BD, Cross AH, Yablonskiy DA. Gradient echo plural contrast imaging--signal 
model and derived contrasts: T2*, T1, phase, SWI, T1f, FST2*and T2*-SWI. NeuroImage. 2012; 
60(2):1073–1082. [PubMed: 22305993] 

16. Yablonskiy DA. Gradient echo plural contrast imaging (GEPCI) - New fast magnetic resonance 
imaging technique for simultaneous acquisition of T2, T1 (or spin density) and T2*-weighted 
images. Radiology. 2000; 217:204–204.

17. Sati P, Cross AH, Luo J, Hildebolt CF, Yablonskiy DA. In vivo quantitative evaluation of brain 
tissue damage in multiple sclerosis using gradient echo plural contrast imaging technique. 
NeuroImage. 2010; 51(3):1089–1097. [PubMed: 20338247] 

18. Ulrich X, Yablonskiy DA. Separation of cellular and BOLD contributions to T2* signal relaxation. 
Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in 
Medicine / Society of Magnetic Resonance in Medicine. 2015

19. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous 
tissues: the static dephasing regime. Magnetic resonance in medicine : official journal of the 

Zhao et al. Page 14

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 1994; 
32(6):749–763.

20. Yablonskiy DA. Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. 
Phantom study. MagnResonMed. 1998; 39(3):417–428.

21. Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJ. Water proton MR properties of human 
blood at 1.5 Tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. 
Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in 
Medicine / Society of Magnetic Resonance in Medicine. 2001; 45(4):533–542.

22. He X, Zhu M, Yablonskiy DA. Validation of oxygen extraction fraction measurement by qBOLD 
technique. Magn Reson Med. 2008; 60(4):882–888. [PubMed: 18816808] 

23. Dickson JD, Ash TW, Williams GB, Sukstanskii AL, Ansorge RE, Yablonskiy DA. Quantitative 
phenomenological model of the BOLD contrast mechanism. J Magn Reson. 2011; 212(1):17–25. 
[PubMed: 21782488] 

24. Wang X, Sukstanskii AL, Yablonskiy DA. Optimization strategies for evaluation of brain 
hemodynamic parameters with qBOLD technique. Magnetic resonance in medicine : official 
journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in 
Medicine. 2013; 69(4):1034–1043.

25. Yablonskiy DA, Sukstanskii AL, Luo J, Wang X. Voxel spread function method for correction of 
magnetic field inhomogeneity effects in quantitative gradient-echo-based MRI. Magnetic 
resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / 
Society of Magnetic Resonance in Medicine. 2013; 70(5):1283–1292.

26. Wen J, Cross AH, Yablonskiy DA. On the role of physiological fluctuations in quantitative gradient 
echo MRI: implications for GEPCI, QSM, SWI. Magnetic resonance in medicine : official journal 
of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 
2014

27. Wen J, Yablonskiy DA, Luo J, Lancia S, Hildebolt C, Cross AH. Detection and quantification of 
regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI. 
NeuroImage: Clinical. 2015; 9:164–175.

28. Mugler JP, Brookeman JR. Three-dimensional magnetization-prepared rapid gradient-echo 
imaging (3D MP RAGE). MagnResonMed. 1990; 15(1):152–157.

29. Luo J, Jagadeesan BD, Cross AH, Yablonskiy DA. Gradient Echo Plural Contrast Imaging - Signal 
model and derived contrasts: T2*, T1, Phase, SWI, T1f, FST2*and T2*-SWI. NeuroImage. 2012; 
60(2):1073–1082. [PubMed: 22305993] 

30. Quirk JD, Sukstanskii AL, Bretthorst GL, Yablonskiy DA. Optimal decay rate constant estimates 
from phased array data utilizing joint Bayesian analysis. J Magn Reson. 2009; 198(1):49–56. 
[PubMed: 19181549] 

31. Yablonskiy DA, Sukstanskii AL, He X. Blood oxygenation level-dependent (BOLD)-based 
techniques for the quantification of brain hemodynamic and metabolic properties - theoretical 
models and experimental approaches. NMR Biomed. 2013; 26(8):963–986. [PubMed: 22927123] 

32. He X, Yablonskiy DA. Quantitative BOLD: mapping of human cerebral deoxygenated blood 
volume and oxygen extraction fraction: default state. Magnetic resonance in medicine : official 
journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in 
Medicine. 2007; 57(1):115–126.

33. Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased 
longitudinal image analysis. NeuroImage. 2012; 61(4):1402–1418. [PubMed: 22430496] 

34. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012; 
62(2):782–790. [PubMed: 21979382] 

35. Jenkinson M, Bannister P, Brady M, Smith S. Improved Optimization for the Robust and Accurate 
Linear Registration and Motion Correction of Brain Images. NeuroImage. 2002; 17(2):825–841. 
[PubMed: 12377157] 

36. Cohen-Adad J. What can we learn from T2* maps of the cortex? NeuroImage. 2014; 93(Pt 2):189–
200. [PubMed: 23357070] 

Zhao et al. Page 15

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E, Morris JC, Dale AM, Fischl 
B. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004; 14(7):721–730. [PubMed: 
15054051] 

38. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based 
morphometric study of ageing in 465 normal adult human brains. NeuroImage. 2001; 14(1 Pt 1):
21–36. [PubMed: 11525331] 

39. Stuber C, Morawski M, Schafer A, Labadie C, Wahnert M, Leuze C, Streicher M, Barapatre N, 
Reimann K, Geyer S, Spemann D, Turner R. Myelin and iron concentration in the human brain: a 
quantitative study of MRI contrast. NeuroImage. 2014; 93(Pt 1):95–106. [PubMed: 24607447] 

40. Fukunaga M, Li TQ, van Gelderen P, de Zwart JA, Shmueli K, Yao B, Lee J, Maric D, Aronova 
MA, Zhang G, Leapman RD, Schenck JF, Merkle H, Duyn JH. Layer-specific variation of iron 
content in cerebral cortex as a source of MRI contrast. Proceedings of the National Academy of 
Sciences of the United States of America. 2010; 107(8):3834–3839. [PubMed: 20133720] 

41. Haacke EM, Cheng NY, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, 
Obenaus A. Imaging iron stores in the brain using magnetic resonance imaging. Magnetic 
resonance imaging. 2005; 23(1):1–25. [PubMed: 15733784] 

42. Peran P, Cherubini A, Luccichenti G, Hagberg G, Demonet JF, Rascol O, Celsis P, Caltagirone C, 
Spalletta G, Sabatini U. Volume and iron content in basal ganglia and thalamus. Human brain 
mapping. 2009; 30(8):2667–2675. [PubMed: 19172651] 

43. Sedlacik J, Boelmans K, Lobel U, Holst B, Siemonsen S, Fiehler J. Reversible, irreversible and 
effective transverse relaxation rates in normal aging brain at 3T. NeuroImage. 2014; 84:1032–
1041. [PubMed: 24004692] 

44. Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, Knight RA. MR 
imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to 
estimated iron content. Radiology. 1999; 210(3):759–767. [PubMed: 10207479] 

45. Yao B, Li TQ, Gelderen P, Shmueli K, de Zwart JA, Duyn JH. Susceptibility contrast in high field 
MRI of human brain as a function of tissue iron content. NeuroImage. 2009; 44(4):1259–1266. 
[PubMed: 19027861] 

46. Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. 
Quantitative MR imaging of brain iron: a postmortem validation study. Radiology. 2010; 257(2):
455–462. [PubMed: 20843991] 

47. Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. Journal of 
neurochemistry. 1958; 3(1):41–51. [PubMed: 13611557] 

48. Rudko DA, Klassen LM, de Chickera SN, Gati JS, Dekaban GA, Menon RS. Origins of R2* 
orientation dependence in gray and white matter. Proceedings of the National Academy of 
Sciences of the United States of America. 2014; 111(1):E159–E167. [PubMed: 24374633] 

49. Seewann A, Vrenken H, van der Valk P, Blezer EL, Knol DL, Castelijns JA, Polman CH, Pouwels 
PJ, Barkhof F, Geurts JJ. Diffusely abnormal white matter in chronic multiple sclerosis: imaging 
and histopathologic analysis. Archives of neurology. 2009; 66(5):601–609. [PubMed: 19433660] 

50. He X, Yablonskiy DA. Biophysical mechanisms of phase contrast in gradient echo MRI. 
Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(32):
13558–13563. [PubMed: 19628691] 

51. Haug H, Eggers R. Morphometry of the human cortex cerebri and corpus striatum during aging. 
Neurobiology of aging. 1991; 12(4):336–338. discussion 352–335. [PubMed: 1961364] 

52. Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nature 
reviews Neuroscience. 2004; 5(2):87–96. [PubMed: 14735112] 

53. Terry RD, DeTeresa R, Hansen LA. Neocortical cell counts in normal human adult aging. Annals 
of neurology. 1987; 21(6):530–539. [PubMed: 3606042] 

54. Pakkenberg B, Gundersen HJ. Neocortical neuron number in humans: effect of sex and age. The 
Journal of comparative neurology. 1997; 384(2):312–320. [PubMed: 9215725] 

55. Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJ, Nyengaard JR, Regeur L. 
Aging and the human neocortex. Experimental gerontology. 2003; 38(1–2):95–99. [PubMed: 
12543266] 

Zhao et al. Page 16

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



56. Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, Frosch MP, Hedley-Whyte ET, Locascio 
JJ, Lipsitz LA, Hyman BT. Preservation of neuronal number despite age-related cortical brain 
atrophy in elderly subjects without Alzheimer disease. Journal of neuropathology and 
experimental neurology. 2008; 67(12):1205–1212. [PubMed: 19018241] 

57. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human 
brains. Neurobiology of aging. 2008; 29(11):1754–1762. [PubMed: 17544173] 

58. Haug H. Are Neurons of the Human Cerebral-Cortex Lost during Aging. Nervenheilkunde. 1985; 
4(2):103–109.

59. Carlo CN, Stevens CF. Structural uniformity of neocortex, revisited. Proceedings of the National 
Academy of Sciences of the United States of America. 2013; 110(4):1488–1493. [PubMed: 
23297199] 

60. Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH. Neuron densities vary across and within 
cortical areas in primates. Proceedings of the National Academy of Sciences of the United States 
of America. 2010; 107(36):15927–15932. [PubMed: 20798050] 

61. Elston GN, Benavides-Piccione R, DeFelipe J. The pyramidal cell in cognition: a comparative 
study in human and monkey. The Journal of neuroscience : the official journal of the Society for 
Neuroscience. 2001; 21(17):RC163. [PubMed: 11511694] 

62. Glasser MF, Van Essen DC. Mapping human cortical areas in vivo based on myelin content as 
revealed by T1- and T2-weighted MRI. The Journal of neuroscience : the official journal of the 
Society for Neuroscience. 2011; 31(32):11597–11616. [PubMed: 21832190] 

63. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode 
of brain function. Proceedings of the National Academy of Sciences of the United States of 
America. 2001; 98(2):676–682. [PubMed: 11209064] 

64. Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise 
RJ, Hatazawa J, Herold S, et al. Cerebral blood flow, blood volume and oxygen utilization. Normal 
values and effect of age. Brain : a journal of neurology. 1990; 113(Pt 1):27–47. [PubMed: 
2302536] 

65. Pantano P, Baron JC, Lebrun-Grandie P, Duquesnoy N, Bousser MG, Comar D. Regional cerebral 
blood flow and oxygen consumption in human aging. Stroke; a journal of cerebral circulation. 
1984; 15(4):635–641.

66. Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K. 
Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke; a journal of 
cerebral circulation. 1986; 17(6):1220–1228.

67. Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH, Morris JC, Raichle 
ME, Mintun MA. Spatial correlation between brain aerobic glycolysis and amyloid-beta (Abeta) 
deposition. Proceedings of the National Academy of Sciences of the United States of America. 
2010; 107(41):17763–17767. [PubMed: 20837517] 

68. Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME. Regional 
aerobic glycolysis in the human brain. Proceedings of the National Academy of Sciences of the 
United States of America. 2010; 107(41):17757–17762. [PubMed: 20837536] 

Zhao et al. Page 17

Neuroimage. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APPENDIX A

Summary of results

Table A.1

The parameters of Eq. [11] and p-values for R2*, , and cortical thickness in 26 selected 

FreeSurfer ROIs across 20 healthy subjects.

R2* (s−1) R2t*(s−1) Thickness (mm)

name
Slope

(k)
Intercept

(a) p value
Slope

(k)
Intercept

(a) p value
Intercept

(a)
Slope

(k) p value

banksst 0.029 18.6 0.020 0.028 16.5 0.021 −0.0095 2.51 0.001

cauda-lanterior cingulate 0.031 15.6 0.011 0.052 13.5 0.004 −0.0018 2.52 0.617

caudal-middle-frontal 0.034 17.6 0.006 0.021 15.8 0.120 −0.0052 2.49 0.020

cuneus 0.040 19.7 0.005 0.043 17.8 0.007 −0.0035 1.78 0.112

fusiform 0.034 18.9 0.007 0.023 16.4 0.093 −0.0064 2.72 0.002

inferior parietal 0.034 18.2 0.002 0.029 16.3 0.012 −0.0060 2.39 0.007

isthmus cingulate 0.038 18.3 0.003 0.044 17.2 0.001 −0.0030 2.36 0.347

lateral occipital 0.041 20.6 0.015 0.040 18.1 0.032 −0.0038 2.18 0.023

lingual 0.048 19.9 0.005 0.051 18.3 0.009 −0.0043 2.00 0.022

middle temporal 0.037 18.5 0.002 0.030 14.8 0.060 −0.0082 2.86 0.007

parahippocampal 0.031 17.2 0.055 0.004 15.0 0.841 −0.0081 2.69 0.036

paracentral 0.043 19.0 0.001 0.039 17.6 0.027 −0.0050 2.36 0.072

parsopercularis 0.042 17.0 0.001 0.042 14.8 0.005 −0.0081 2.51 0.001

parsorbitalis 0.024 18.9 0.106 0.006 15.1 0.699 −0.0039 2.62 0.228

parstriangularis 0.033 17.6 0.010 0.019 15.0 0.392 −0.0053 2.36 0.028

postcentral 0.030 18.3 0.005 0.032 16.2 0.017 −0.0046 2.03 0.014

posterior cingulate 0.029 16.6 0.003 0.028 15.2 0.015 −0.0055 2.45 0.016

precentral 0.037 18.4 0.003 0.032 16.5 0.020 −0.0064 2.51 0.021

precuneus 0.033 18.0 0.004 0.034 16.4 0.003 −0.0060 2.31 0.009

rostral-anterior cingulate 0.014 15.6 0.227 0.006 11.9 0.762 −0.0040 2.76 0.212

rostral-middle-frontal 0.020 17.1 0.074 0.011 14.8 0.417 −0.0031 2.23 0.168

superior frontal 0.027 16.6 0.008 0.027 14.7 0.021 −0.0047 2.63 0.115

superior parietal 0.023 18.3 0.072 0.021 16.1 0.197 −0.0040 2.12 0.094

superior temporal 0.038 17.6 0.002 0.017 14.4 0.275 −0.0074 2.77 0.008

supramarginal 0.033 17.6 0.001 0.028 15.5 0.020 −0.0073 2.53 0.001

insula 0.022 15.5 0.036 0.020 12.5 0.143 −0.0051 3.02 0.002
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Table A.2

The mean values and standard deviations of the OEF, dCBV, Cdeoxy, and  in 26 

selected FreeSurfer ROIs across 20 healthy subjects.

ROI OEFrel dCBV(%) Cdeoxy (µM) SR2t*(mm/s)

name mean std mean std mean std mean std

banksst 1.14 0.30 3.23 1.22 18.2 6.0 41.0 3.2

caudal-anterior cingulate 0.87 0.54 2.79 1.99 15.2 10.2 34.3 3.4

caudal-middle-frontal 1.02 0.20 2.65 0.53 15.5 3.9 39.1 2.7

cuneus 1.10 0.31 2.70 1.69 14.4 8.5 31.9 3.4

fusiform 1.29 0.21 3.36 1.08 21.0 5.2 44.4 2.8

inferior parietal 1.07 0.22 3.03 0.68 16.5 4.0 38.7 2.5

isthmus cingulate 1.02 0.35 1.18 0.90 6.7 4.5 40.7 3.8

lateral occipital 1.29 0.14 4.25 1.10 23.4 5.4 39.6 2.9

lingual 1.43 0.42 1.88 1.41 10.5 6.5 36.6 2.8

middle temporal 1.05 0.29 6.45 1.59 37.8 9.0 42.1 3.0

parahippocampal 0.99 0.46 1.86 1.41 12.3 8.5 39.8 4.8

paracentral 1.52 0.52 1.12 0.99 8.1 6.6 41.5 4.3

parsopercularis 0.98 0.39 3.09 1.29 17.7 6.1 37.1 2.7

parsorbitalis 1.13 0.49 6.12 1.98 36.2 9.3 39.5 3.4

parstriangularis 0.87 0.36 4.48 2.29 25.1 11.2 35.2 3.9

postcentral 1.21 0.18 2.43 0.88 15.1 5.7 32.9 2.7

posterior cingulate 0.75 0.30 1.88 0.99 10.1 5.5 37.1 2.3

precentral 1.21 0.17 2.21 0.69 13.7 4.7 41.3 3.4

precuneus 0.89 0.33 2.44 0.89 13.0 5.0 37.7 2.8

rostral-anterior cingulate 0.60 0.17 6.25 2.36 34.3 11.1 32.9 5.0

rostral-middle-frontal 0.63 0.20 4.16 1.36 20.9 4.9 33.0 2.7

superior frontal 0.75 0.17 2.74 0.62 15.5 4.3 38.5 3.2

superior parietal 1.25 0.28 2.80 0.74 16.9 5.6 34.2 3.7

superior temporal 0.72 0.22 5.17 1.33 29.1 6.7 39.5 3.8

supramarginal 0.89 0.20 3.23 0.94 17.6 5.1 39.0 2.7

insula 0.60 0.22 3.46 1.04 20.7 6.0 37.8 2.7
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Table A.3

The regression coefficients, p values and Pearson correlation coefficients for  vs. 

Thickness and  vs. OEFrel. Data represent averages from 20 healthy subjects across 

26 selected FreeSurfer ROIs displayed in Fig. 3.

slope intercept p value r

R2t*(s−1) vs. Thickness (mm) −3.96 25.3 4.34E-05 0.71

R2t*(s−1) vs. OEF 5.09 10.5 6.94E-07 0.8

Table A.4

The regression coefficients and p values of R2* vs. age in 6 subcortical ROIs. Data represent 

results from 20 healthy subjects displayed in Fig. 4.

ROI R2* (s−1)

name slope intercept p value

caudate 0.094 21.4 0.0003

putamen 0.209 24.0 0.0003

pallidum 0.178 34.8 0.0004

thalamus 0.013 21.0 0.1635

hippocampus 0.024 16.9 0.0816

amygdala 0.035 15.4 0.0341

APPENDIX B

Error analysis

In previous publications we provided the analysis of the systematic errors due to the 

diffusion effects (23) and the errors due to the noise in the data (24). The additional 

restrictions of the model used in this study were also discussed in detail by Ulrich and 

Yablonskiy (18). In this Appendix we provide some additional analysis specific to this paper 

by using in silico data.

The simulated data were generated to test the accuracy of the theoretical model (Eq. [2]) 

used in this study. As the frequency (Δf) has minimal effects on the fitting process, only the 

amplitude of the signals were used in this simulation. First, the true values of the parameters 

were assigned based on our typical results: , OEF = 40%, and dCBV = 3%. Then the 

parameters were substituted into Eq. [2] to generate the “true” signals over 10 TEs from 4ms 

to 40ms. Second, a set of “real” signals over 10 TEs was generated by adding the random 

noise to the true signals. A typical SNR in our experiments is between 300 and 500 (for 

Hanning filtered data). In the simulated data we used the noise corresponding to SNR equal 

to 400. The random noise values were drawn from the standard normal distribution 

generated by a built-in function in MATLAB. In total, 500,000 sets of the simulated signals 
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were generated in this way. Third, the same fitting routine used in the Method section was 

applied to each set of the simulated signals to calculate the output parameters. Finally, the 

medians, means and standard deviations of each parameter were calculated. The results are 

listed in Table B.1. The histograms of the output parameters, and the corresponding true and 

median values are shown in Figure B.1

The results show that the median values of , OEF, dCBV and Cdeoxy better represent the 

true values than the means because the histograms are skewed and the median is less biased 

by the outliers.

The 2D contour covariance maps of the relationships between , OEF and dCBV are 

shown in Fig. B.2. It demonstrates the peak value of  around 17, OEF around 40% and 

dCBV around 3%, well estimating the true values. The negative correlation between  and 

OEF (r = −0.88, p < 0.001) strengthens that the observed positive correlation between 

and OEFrel in our experimental data (Fig. 3) reflects the physiological relationship instead of 

errors.

The detailed analysis of the correction for field inhomogeneity artifacts was provided in our 

previous paper where voxel spread function method (25) was introduced. Here we further 

demonstrate that VSF procedure does not create bias in parameters estimates in our data. We 

characterize signal decay due to the macroscopic field inhomogeneities by the F function at 

the last echo, F(TE10), where the strongest signal decay is observed. Example of the 

distribution of F function at the last echo, F(TE10), and the contour map of the joint 

covariance between  and F(TE10), for the whole gray matter from an individual subject is 

shown in Figure B.3. No correlation is found between  and F(TE10). The peak value of 

F(TE10) is around 0.99 and most of values are located between 0.9 and 1 due to a good 

shimming procedure and rather small voxel size. The number of voxels with values lower 

than 0.8 is so small that they are not visible on the contour map. These voxels with lower 

F(TE10) are mostly affected by the magnetic inhomogeneity due to the air/water interface 

around the sinuses and represent a very small fraction of the brain.

Table B.1

The true values, medians, means and standard deviations of all the parameters in the 

simulations are listed here. The medians more accurately represent true values than the 

means for all the parameters.

A0 R2t*(s−1) OEF (%) dCBV (%) Cdeoxy (µM)

true values 100.00 17.00 40.00 3.00 22.44

median 99.94 16.91 40.01 3.43 24.63

mean 99.85 16.44 40.80 4.12 27.04

standard deviation 0.75 2.06 17.32 2.60 10.73
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Figure B.1. The histograms of the simulated data for , OEF, dCBV and Cdeoxy are 

shown with true values (black) and median values (red). The black and red lines overlap in 

the histogram of OEF. Note that the peak in OEF histogram at the lower boundary is due to 

the restriction set in the fitting routine (OEF > 10%).
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Figure B.2. The contour covariance maps of the simulated data. The results show the peak 

values of  around 17, OEF around 40% and dCBV around 3%, well estimating the true 

values. The covariance between OEF and dCBV is consistent with the actual covariance map 

between the OEF and dCBV presented in Fig. 6 in the previous publication by Ulrich and 

Yablonskiy (18).

Figure B.3. Typical example of the distribution of F(TE10) and the joint covariance contour 

of  and F(TE10) are shown for a single subject. The range of F(TE10) is from 0 to 1 and 

most of values are between 0.9 to 1. The number of voxels with F(TE10) lower than 0.8 is 

quite small and they are not visible on the contour map. No covariance is found between 

and F(TE10) suggesting no bias in  estimate due to the field inhomogeneities.

One additional bias in the parameter estimates may be related to the estimation of OEF. 

Because our model of BOLD effect is developed under the assumption that the orientations 

of blood vessels are statistically random in each voxel, the actual variations of the blood 

vessel orientations may cause deviations in estimating OEF on a voxel by voxel basis. For 

example, if the blood vessels in some voxels have the predominant orientation parallel to the 
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static magnetic field B0, the BOLD effect is so minimal that the fitting routine will 

substantially underestimate OEF; conversely, OEF will be underestimated for the voxels 

with the predominant orientations of blood vessels perpendicular to B0. However, as 

demonstrated in (20), the estimates of  and dCBV are not affected by this limitation. 

Besides, the use of median values for representing our results for very large regions, also 

minimizes these biases.

In conclusion, although substantial deviations from the true values of all parameters can be 

found in individual voxels and there are several restrictions on this model, the medians 

values of the parameters are very close to the true values. All in all, the simulations support 

that the methodology used in this study can generate the valid regional medians of  and 

hemodynamic parameters for large cortical regions. In our paper, we report results for 

cortical regions usually containing thousands of voxels.
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Highlights

Transverse relaxation of MRI signal is separated in tissue ( ) and BOLD contributions

We hypothesize that  can serve as a biomarker of the cortical cellular packing density

Cortical regions with lower  are thicker and have lower oxygen extraction fraction 

(OEF)

 grows with age in most cortical regions while OEF remains constant

Age related increase in cortical  reflects increases in the cellular packing density
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Figure 1. 
Age-related changes of parameters in selected cortical ROIs. Examples of the scatter plots of 

(a) R2*, (b) , (c) OEFrel (expressed as local-to-global ratios, see Methods), (d) dCBV, (e) 

Cdeoxy, (f) cortical thickness (Th) and (g)  versus age are shown across 4 selected 

cortical ROIs. Each plot represents the data from a single cortical region and each point in 

the plot represents a single subject. Male subjects are represented by blue points and female 

subjects by red points. For R2*,  and cortical thickness, the solid lines are the regression 

curves and the p values evaluate the significance of the linear model. , OEFrel, dCBV 
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and Cdeoxy show no significant change with age and are represented by a constant model 

(the solid lines). The dashed lines in all plots represent the 95% confidence intervals. 

Number of stars (*) show significance level: p < 0.01 (**), p < 0.05 (*). The results of 

regression analysis from all other regions are listed in Table A.1 and Table A.2.
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Figure 2. 
Structural and hemodynamic parameters mapped on the cortical surface. The distributions of 

all GEPCI-derived parameters are presented on the lateral and medial cortical surfaces of the 

left hemisphere, including R2* (s−1), , OEFrel, dCBV(%), Cdeoxy (µM), cortical 

thickness (Th) (mm),  (mm/s), and the regression slope of  vs. age (s−1/year). 

Images for R2*, , and Th represent the regional mean values corresponding to an average 

40-year old subject (parameter a in Eq. [11] and in Table A.1). Images for , OEFrel, 

dCBV and Cdeoxy are the regional mean values averaged across all subjects (Table A.1). The 

surface of the cortex was generated by the FreeSurfer at the depth of 0.5 (the voxels in the 

center of gray matter were sampled). White matter, deep grey matter and ventricles were 

excluded.
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Figure 3. 

The linear regression analysis of (a)  versus cortical thickness; (b)  versus OEFrel; 

Each point represents one of the 26 FreeSurfer ROIs. The regional values of  and 

thickness correspond to the data evaluated at the age of 40 (parameter a in Eq. [11]). Since 

OEFrel remains constant with age in the cortical regions, the values of OEFrel are just the 

mean values across the subjects in the corresponding regions. All the coefficients from the 

linear regressions are listed in Table A.3 in the Appendix A.
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Figure 4. 
The scatter plots and linear regressions of R2* versus age in subcortical ROIs. Each plot 

represents the data from a single subcortical region and each point in the plot represents the 

median value in the region from a single subject. Male subjects are represented by blue 

points and female subjects by red points. The solid lines are the regression curves and the 

dashed lines are the 95% confidence intervals. All the coefficients from the linear 

regressions are listed in Table A.4 in the Appendix A. p < 0.001 ***, p < 0.01 **, p < 0.05 *.
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Figure 5. 

The scatter plots of (a) R2*, (b) , (c) OEFrel (expressed as local-to-global ratios, see 

Methods), (d) dCBV, (e) Cdeoxy versus age are shown in cerebellar cortex. Each point in the 

plot stands for the cerebellar cortex from a single subject. Male subjects are represented by 

blue points and female subjects by red points. For all the parameters the solid lines stand for 

the mean values. The dashed lines represent the 95% confidence intervals. The p values of 

the constant model are shown as well.
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