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Abstract

Resting state functional network connectivity (rsFNC) derived from functional magnetic resonance 

(fMRI) imaging is emerging as a possible biomarker to identify several brain disorders. Recently it 

has been pointed out that methods used to preprocess head motion variance might not fully remove 

all unwanted effects in the data. Proposed processing pipelines locate the treatment of head motion 

effects either close to the beginning or as one of the final steps. In this work, we assess several 

preprocessing pipelines applied in group independent component analysis (gICA) methods to 

study the rsFNC of the brain. The evaluation method utilizes patient/control classification 

performance based on linear support vector machines and leave-one-out cross validation. In 

addition, we explored group tests and correlation with severity measures in the patient population. 

We also tested the effect of removing high frequencies via filtering. Two real data cohorts were 

used: one consisting of 48 mTBI and one composed of 21 smokers, both with their corresponding 

matched controls. A simulation procedure was designed to test the classification power of each 

pipeline. Results show that data preprocessing can change the classification performance. In real 

data, regressing motion variance before gICA produced clearer group differences and stronger 

correlation with nicotine dependence.

1 Introduction

Reliable identification of mental illnesses and brain related diseases is critical to apply 

adequate treatment and improve medical outcomes. To this day, many diagnosis tools rely on 

subject interviews (Fagerstrom et al., 1990; Saunders et al., 1993) and some have been 

difficult to validate (Balestreri et al., 2004; Borg et al., 2004; Ruff et al., 2009). On the other 
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hand, techniques such as the assessment of resting state functional network connectivity 

(rsFNC) of the brain, derived from functional magnetic resonance imaging (fMRI), are 

emerging as possible alternatives with clinical applications (Fox et al., 2010; Lee et al., 

2013b). Changes in rsFNC patients have been observed in many studies including traumatic 

brain injury (Mayer et al., 2011; Vakhtin et al., 2013), addiction (Chanraud et al., 2011; 

Claus et al., 2013; Schmidt et al., 2015), Alzheimer’s disease (Sheline and Raichle, 2013), 

bipolar disorder and schizophrenia (Chai et al., 2011; Das et al., 2014; Yu et al., 2011). In 

spite of the success achieved, there have been few systematic approaches comparing 

classification results as a function of differences in data processing. Most classification 

studies use a specific pipeline and there has been no consensus on how to select the best 

processing pipeline or on whether there is an optimal approach.

There are many choices to make when preparing data for group independent component 

analysis (gICA). Appropriate data preprocessing can remove spurious variance unrelated to 

neurological signals, decrease the presence of false positives and increase the possibility of 

observing neural effects. One important characteristic that seems to change in different 

studies is the order in which preprocessing steps are applied. Of special concern are the steps 

where head motion correction is applied (Mowinckel et al., 2012; Satterthwaite et al., 2012; 

Van Dijk et al., 2012). Some algorithms such as ICA (Calhoun and Adali, 2012) tend to be 

more robust, but are not totally immune to motion (Damaraju et al., 2014). Motion 

preprocessing includes the removal of motion variance via regression of realignment 

parameters and minimization of the effects of sudden head movements, which produces 

spikes in the signal. A recent proposal for a methodological baseline in gICA and rsFNC 

suggests processing head motion correction after gICA (Allen et al., 2011). In some cases, 

the despiking step is performed before gICA (Mayer et al., 2014). Recent analysis of head 

motion variance in seed-based methods suggests the correction of head movement early in 

the preprocessing (Power et al., 2014). So far there has not been a consensus, or a 

comparison, among these options when gICA methods are utilized, resulting in different 

versions of preprocessing pipelines. In general, the effects of different preprocessing choices 

on single subject classification are understudied and more evidence is needed to determine 

valid recommendations and best practices.

In the present work, we hypothesize that the order of steps taken to deal with motion 

artifacts will affect the final results obtained from statistical group difference tests, 

correlation with behavioral assessments and single subject classification. We assess several 

alternative pipelines that permute despiking, motion variance regression and gICA steps in 

different orders. The hypothesis is tested using simulated and real data from two different 

cohorts. The analysis focuses on cross validated subject classification and patient-control 

group differences.

Classification and cross validation techniques have been applied in the past to assess the 

applicability of functional connectivity as a biomarker (Liu et al., 2015; Pariyadath et al., 

2014; Zeng et al., 2014). In addition to group differences, the present work uses a cross 

validation approach to analyze the differences among pipelines. The motivation for 

investigating these differences in preprocessing options is based on recent studies that warn 

about small but significant rsFNC bias due to head motion (Power et al., 2012; Van Dijk et 
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al., 2012). We carefully considered the suggestion that rsFNC bias could be minimized by 

processing head motion variance before using the gICA (Damaraju et al., 2014), rather than 

after gICA as has been done previously (Allen et al., 2011; Mayer et al., 2014; Rocca et al., 

2013; Vakhtin et al., 2013; Yuan et al., 2015). Frequency filtering is another process that can 

greatly change the results. Although high frequencies have been commonly related to 

nuisance biological signals (Allen et al., 2011; Cordes et al., 2001), other studies also 

suggest that important information is contained in high frequencies (Calhoun et al., 2011; 

Chen and Glover, 2015; Garrity et al., 2007; Van Someren et al., 2011; Yaesoubi et al., 

2015). A frequency analysis of resting state signals using this TE dependency indicates that 

BOLD signals can have important content up to 0.5 Hz (Chen and Glover, 2015). Based on 

these results, we include filters with different bandwidths in the analysis, assuming that 

important information for classification purposes could be found in frequencies above 0.15 

Hz. However, observations are compared against results obtained after filtering high 

frequencies to validate the outcomes.

2 Materials and methods

This study uses numerical simulation to test the performance obtained from using different 

preprocessing pipelines and then repeats the analysis using real data. Three different sample 

cohorts were selected. One cohort features mild traumatic brain injury (mTBI) patients and a 

set of healthy controls. In order to have a large enough number of samples, numerical 

simulations utilized a set of healthy subjects plus the healthy controls from the mTBI cohort 

as seed data. Afterwards, the analysis was repeated using the whole mTBI cohort. Because 

the control samples were used twice, it was necessary to replicate the results in a different 

and independent cohort to confirm the observed effects. The second cohort is smaller than 

the first and features nicotine dependent versus non-dependent subjects. The classification 

for this second cohort tries to differentiate smokers from non-smokers, but it also allows us 

to examine how preprocessing affects estimating the relationship between rsFNC and 

nicotine dependence.

2.1 The mTBI Cohort

A total of 96 subjects, 48 mTBI patients (24 females) plus 48 age (within 3 years) and sex 

matched healthy controls (HC), were selected for this study. In addition, subjects were 

matched on head movement using the mean frame-wise displacement (FWD) measure 

(Power et al., 2014) such that mTBI and HC do not differ more than 0.5 mm and the group 

difference was not statistically significant (p > 0.30). The 48 mTBI patients (mean age 27.8 

± 9.2) were recruited from local emergency rooms. Subjects classified as mTBI had a 

Glasgow Coma Scale between 13 and 15 at first contact with medical staff, no more than 30 

minutes loss of consciousness (if present), and no more than 24 hours post-traumatic 

amnesia in case it happened. This inclusion criterion is based on the American Congress of 

Rehabilitation Medicine. HC and mTBI subjects were excluded if there was a prior history 

of neurological disease, major psychiatric disturbance, and additional closed head injuries 

with more than 5 minutes of lost consciousness, additional closed head injury within the past 

year, learning disorder, ADHD or a history of substance abuse/dependence including 
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alcohol. All participants provided informed consent in accord to institutional guidelines at 

the University of New Mexico.

2.2 The Simulation Cohort

A set of 76 healthy subjects from another study was combined with the 48 HC from the 

mTBI cohort (both collected with the same parameters on the same scanner) resulting in a 

total of 124 subjects. The age of this cohort ranged from 18 to 65 (mean 30.8 ± 11.1) years. 

Of the 124 subjects 58 were females and 66 were males. Subjects from the extra 76 subjects 

did not report injury to the brain, brain-related medical problems, substance abuse, bipolar or 

psychotic disorders. Samples were distributed among two groups labeled as simulated 

patients (SP) and simulated controls (SC) with matched age (up to 3 years) and gender.

2.3 The Smokers Cohort

A total of 42 subjects, 21 smokers (10 females) between 18 and 51 years old (31.5 ± 10.5) 

plus 21 age (within 3 years) and sex matched non-smoking controls, were included. Mean 

FWD between matched samples is no larger than 0.5 mm and the group difference is not 

significant (p > 0.45). All smokers were instructed to abstain from smoking for three hours 

before the scan. Subjects were excluded if there was injury to the brain, brain-related 

medical problems, or bipolar or psychotic disorders. Smokers (SMK) reported having more 

than one cigarette per day over a period of 60 days before the scan. Levels of substance 

dependence for non-control subjects were measured using the Fagerstrom Test for Nicotine 

Dependence (FTND) (Fagerstrom et al., 1990). The mean FTND score for smokers is 10 

± 1.7. Smokers with signs of alcohol dependence were excluded based on an AUDIT score 

(Saunders et al., 1993) larger than 7. The non-smoking controls (CTR) group consisted of 

healthy individuals with no history of substance abuse/dependence assessed using the 

Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient 

Edition (SCID-I/P) (First et al., 2002). Control subjects with current abuse or dependence of 

alcohol were excluded. AUDIT scores were not collected for the CTR group. All control 

subjects reported themselves as non-smokers and scored zero for the FTND.

2.4 Imaging

All images were collected on a 3 Tesla Siemens Trio scanner. A five minute resting state run 

was completed by each participant using a single-shot, gradient-echo echo planar pulse 

sequence (TR = 2000 ms; TE = 29 ms; flip angle = 75º; FOV = 240 mm; matrix size = 64 x 

64). The first five images were eliminated to account for T1 equilibrium effects. A total of 

145 images were selected for further analysis. Foam padding and paper tape was used to 

restrict motion within the scanner. Presentation software (Neurobehavioral Systems) was 

used for stimulus presentation and synchronization of stimuli with the MRI scanners. 

Subjects were instructed to stare at a foveally presented fixation cross (visual angle = 1.02º) 

for approximately five minutes and to minimize head movement. Thirty-three contiguous, 

axial 4.55-mm thick slices were selected in the mTBI cohort to provide whole-brain 

coverage (voxel size: 3.75 x 3.75 x 4.55 mm, 1.05 mm gap). In the smokers cohort each 

volume consisted of 33 axial slices (64 × 64 matrix, 3.75 × 3.75 mm2, 3.5 mm thickness, 1 

mm gap).
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2.5 Preprocessing Pipelines

After examining the different variations of preprocessing that can be found in the literature 

(Allen et al., 2011; Mayer et al., 2014; Power et al., 2012), we considered four different 

pipelines in the current study. The primary differences among pipelines varied the order in 

which spike and motion artifact variances were processed. The four pipelines were evaluated 

via training/test cross-validation procedure explained in a further section. This selection 

procedure is performed to avoid biasing the classification results by hand picking the best 

pipeline. Figure 1 presents a depiction of each pipeline and a detail description of the 

preprocessing steps used is provided next.

All of the pipelines were preprocessed using statistical parametric mapping 5 (SPM; http://

www.fil.ion.ucl.ac.uk/spm) (Friston, 2003) including slice-timing correction, realignment, 

co-registration, spatial normalization and transformation to the Montreal Neurological 

Institute (MNI) standard space. These preprocessing steps will be designated as “STRCoN” 

for notation purposes. The despiking step, designate as “SpkReg”, consisted of the 

orthogonalization with respect to spike regressors, a procedure that was implemented in 

house using linear regression. Each spike is represented by an independent regressor valued 

one at the spike time point and zero everywhere else. The DVARS method (Power et al., 

2012) was used to find spike regressors where the RMS exceeded 3 standard deviations. In 

the step designated as “MotReg”, time courses were orthogonalized with respect to i) linear, 

quadratic and cubic trends; ii) the six realignment parameters; and iii) realignment parameter 

derivatives. In two of the pipelines, the steps MotReg and SpkReg are performed together 

using one regression analysis that includes all regressors. We will denote this step as 

“SpkMotReg”. Smoothing and group independent component analysis (gICA) are 

performed one after the other in all four pipelines. The notation “Smooth-gICA” is used to 

indicate the application of these two steps. An FWHM Gaussian kernel of 6 mm was used 

for the smoothing step. Data from all subjects were subject to a gICA (Calhoun et al., 2001; 

Calhoun and Adali, 2012) using the GIFT software (http://mialab.mrn.org/software/gift/) to 

obtain a set of functionally independent resting state networks (RSN). The number of 

components was determined to be 70 using a modified version of ICASSO (Himberg et al., 

2004; Ma et al., 2011) such that the overall R-index is close to the minimum and the quality 

index of any given RSN is above 0.7. This setup was considered a good consistency trade-

off between RSN quality and number of components considering the differences among all 

four pipelines. The final step “Filter” refers to a fifth-order Butterworth band-pass filter. 

Because of spike orthogonalization from either SpkReg or SpkMotReg, spike time points 

are zero valued. In order to apply filtering, spike time-points were interpolated using a spline 

then set again to zero after filtering.

Four different pipelines were implemented using the steps described above. Pipeline A (PA) 

applies spike and motion regressors using “SpkMotReg” before gICA in the order 

STRCoN-SpkMotReg-Smooth-gICA-Filter. In pipeline B (PB), only motion parameters 

are processed before gICA with steps succession STRCoN-MotReg-Smooth-gICA-
SpkReg-Filter. In pipeline C (PC) only despiking is performed before gICA with step 

ordering STRCoN-SpkReg-Smooth-gICA-MotReg-Filter. Pipeline D (PD) applies 

“SpkMotReg” after gICA using the order STRCoN-Smooth-gICA-SpkMotReg-Filter. In 
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addition, fifteen different data sets were calculated for each pipeline using filters with low 

cutoff frequency of 0.01 Hz and high cutoff frequencies between 0.10 Hz and 0.24 Hz 

separated by 0.01Hz steps. For each of the three experiments (simulation, mTBI and 

smokers), sixty different data sets were generated based on the four pipelines and fifteen 

frequency filters.

2.6 Functional Network Connectivity

Spatial maps were z-transformed and thresholded at |z|>3.5 to identify brain areas of 

relevance in each RSN. Artifactual RSNs were detected and discarded based on their 

dynamic range and low to high frequency power ratio following the method proposed by 

Allen et al. (Allen et al., 2011). RSNs were also manually inspected and not included if their 

spatial maps had considerable overlap with cerebrospinal fluid or white matter areas. RSNs 

were classified into broader categories or discarded if the main activation was located in 

areas of white matter or cerebrospinal fluid. In the case of the mTBI cohort, a subset of 53 

non-artifactual RSNs that could be replicated on all four pipelines was selected. In the case 

of the smokers cohort, only 43 RSNs were selected following the same procedure. RSNs 

were matched across pipelines by visual inspection and a spatial correlation of at least 0.5. 

Choosing a subset of RSNs with spatial content that can be match across all four 

permutations of steps SpkReg and MotReg (including SpkMotReg) minimized the 

differences among pipelines. These RSNs were organized in eight groups: subcortical 

(SBC), auditory (AUD), sensorimotor (SEN), cerebellum (CER), visual (VIS), attentional 

(ATT), default mode network (DMN), and cognitive control (CC). The CER group contains 

RSNs with spatial content that overlaps with visual and cerebellum regions, but their peak 

activation was detected within the cerebellum. Fifteen time-course sets were calculated for 

each case using band-pass filters with a low cutoff frequency of 0.01 Hz and high cutoff 

frequencies between 0.10 Hz and 0.24 Hz separated by 0.01Hz steps. The rsFNC matrix of 

each subject and time-course set was determined by measuring the correlation coefficient 

between the time courses of each one of the possible RSN pairs. The mTBI cohort has a 

total of 1378 (53*52/2) rsFNCs and the smokers cohort a total of 903 (43*42/2). For all 

RSNs and all subjects, the time points where spikes were detected were excluded from the 

calculation of correlation.

2.7 Simulations

Simulation frameworks for rsFNC can be overwhelmingly complicated. Examples where 

ground truth and noise becomes separated are not readily available. After trying different 

simulation scenarios, we concluded that the end result of applying gICA to artificially 

synthesized signals may either create unrelated components or be too simplistic. However, it 

is necessary to test the effectiveness of our pipeline assessment approach by controlling the 

rsFNC without excluding real-data characteristics. To this end, we have determined that 

manipulating real fMRI images, by adding an artificially generated signal in such a way that 

it will not undermine the effects of neuronal and noise-nuisance signals, will be the best 

strategy. This approach is practical only if the power of added signals is not too strong. In 

our model, time courses TC for each RSN are a combination of BOLD and noise such that 

TC1(t) = BOLD1(t) + NOISE1(t) and TC2(t) = BOLD2(t) + NOISE2(t). Ideally the 

correlation between BOLD signals corr[BOLD1, BOLD2] is zero or close enough to zero, 
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but in practice corr[TC1, TC 2] is the available measurement. The simulation strategy is to 

add a signal S(t), with the resulting mixture TCnew (t) = TC(t) + S(t) = BOLD(t) + NOISE(t) 

+ S(t) to tip off the correlation between two RSNs that originally had close to a zero 

correlation. Characterization of signal power is better defined as a simple power ratio (PR) 

between the variances of S(t) and TC(t), since a signal-to-noise ratio would require 

knowledge of the original BOLD signal. The procedure used to implement the simulation is 

described in this section.

Data for the SC controls were not modified in any way during simulation. Data for the SP 

samples were manipulated to increase the correlation between the time courses of chosen 

RSNs. The same artificially generated signal with relatively small amplitude, but 

algorithmically controlled time shifts, was implanted in each one of time courses from the 

chosen RSNs in the SP samples. Simulated connectivity was introduced after registration 

and spatial normalization. Up to this point, all four pipelines followed the same 

preprocessing steps. Time courses for the two selected RSNs were then extracted from the 

4D fMRI image using space time regression (STR). The signals extracted with STR were 

used without filtering, despiking, smoothing or nuisance correction. The artificially created 

signals were back-reconstructed into the fMRI data with a random spatial shift. The shift 

was implemented to simulate subject-wise differences of gICA spatial maps observed in real 

data. Spatial shifts for each coordinate were drawn from a zero mean normal distribution 

with a standard deviation of 9 mm. The artificially created signals were generated by adding 

sinusoidal waves with frequencies between 0.01 Hz and 0.24 Hz in increments of 0.01 Hz. 

The phases of each sinusoidal wave were chosen at random using a uniform distribution 

U[0, 2π]. One of the reasons for not limiting to low frequency ranges was the fact that 

filtering had not been applied at this point. The other reason was based on observations in 

the literature stating that BOLD signals have significant frequency content even at 

frequencies higher than 0.15Hz (Kundu et al., 2012). The steps used for the complete 

simulation procedure are described in the bullet list below.

• Select a population of healthy controls and run gICA.

• Select two non-artifact RSNs (RSN1 and RSN2) with time-courses 

exhibiting a small correlation.

• Divide the population into SP and SC groups such that age and sex are 

matched.

• Create two artificial signals S1(t) and S2(t) with a known correlation. 

These signals can be sums of sines of required frequencies, but random 

phase shifts.

• Separate registered and normalized fMRI images from the SP group and 

only for these images proceed as follows:

– Use STR to estimate the time courses TC1(t) and TC2(t) 

from RSN1 and RSN2.

– Properly change the amplitude of the signals S1(t) and 

S2(t) to achieve required PR.
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– Create two RSNs (sRSN1 and sRSN2) by spatially shifting 

RSN1 and RSN2 by a distance and direction drawn at 

random. This can be implementing by randomly drawing a 

different number of voxels to shift for each of the three 

coordinates: X, Y, and Z.

– Reconstruct the fMRI image using unshifted data TC1(t), 

TC2(t), RSN1 and RSN2 plus the shifted RSNs and 

artificial signals S1(t), S2(t), sRSN1 and sRSN2.

• Run SC and SP together through the respective preprocessing pipeline.

After adding TC1(t) with S1(t) and TC2(t) with S2(t), it can be inferred that measured 

correlation between final mixed time-courses is not the same as correlation between the 

artificial signals. Measured correlations changed according to the artificial signal power as 

displayed in Figure 2. The simulation method seeks to merely increment the correlation 

between time courses, rather than replacing the signal. For this purpose, the power ratio 

selected between artificial signal and measured time course was low. The time course had 

eight times more power than the artificially added signal (a PR of −9dB) in order to avoid 

overshadowing the characteristics of the STR signal. Two correlation levels (0.1 and 0.2) 

were enforced algorithmically. For a total of 145 time points, it is necessary to have a 

correlation of 0.16 or higher in order to be significant at the p<0.05. Correlation levels 0.1 

and 0.2 lie at both sides of the significance threshold and will help in understanding the 

difference between strong and weak connectivity.

2.8 Pipeline Assessment

We designed a selection process to allow for the classification algorithm to pick appropriate 

pipeline and frequency content. Classification performance measures that allowed for a more 

thorough analysis were also obtained through this selection process. This section describes 

the applied pipeline/frequency selection.

In each cohort, the features used consisted of the time course correlations of the rsFNC 

matrices. The rsFNC features were orthogonalized with respect to age and gender before 

classification. A linear support vector machine (SVM) based on sequential minimal 

optimization with soft margin parameter C = 1 was utilized to classify subjects. The 

performance of the SVM classifier was tested using a leave-one-out cross-validation 

(LOOCV). Classification accuracy was assessed using the area under the curve (AUC) 

measure. An additional selection loop was nested for each one of the LOOCV iterations to 

select the best pipeline and bandwidth. All 60 combinations of 4 pipelines and 15 frequency 

bandwidths were subject to this extra selection loop. After omitting the one sample, the 

remaining samples were fed to 60 LOOCVs corresponding with each pipeline-filter 

combination. The AUC values of all 60 secondary LOOCVs were saved for further analysis. 

On each loop, the pipeline-filter combination with the highest AUC was then chosen to 

classify the omitted sample. Pipeline performance was assessed using the mean AUC value 

of each pipeline over all saved AUC measures. The same procedure was applied to 

frequency bandwidths. Permutation tests were used to evaluate significance of the pair-wise 

AUC differences.
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2.9 Group Tests, Correlation with FTND and RSN Spatial Differences

For each cohort, rsFNC differences between groups were assessed with two sample t-tests 

and corrected using false discover rate (FDR) multi-comparison correction. In the mTBI 

cohort, the significant rsFNC differences in each pipeline were further analyzed and 

compared with the other pipelines. In the case of the smokers cohort, linear regression with 

the covariates sex, age and FTND was applied, but only to the 21 subjects in the SMK 

sample group. Regression results were used to determine the relationship between rsFNC 

and nicotine dependence. Finally, peak coordinates for subject specific RSNs were used to 

test spatial map differences among pipelines. In the case of simulation data, the RSNs 

displayed in Figure 3 correspond to an aggregation among all subjects and does not show 

subject specific differences. The Euclidean distance between the peak coordinates of spatial 

maps from each subject and the mean spatial map was used to assess spatial differences 

among subjects. This procedure was applied for all selected RSNs in the mTBI and smokers 

cohorts.

3 Results

3.1 Simulations

Spatial content for the two gICA components selected for simulation is displayed in Figure 

3. These RSNs were selected after running all HC samples from the mTBI cohort through all 

four pipelines and verifying that RSN correlations were not significantly different from zero 

(p<0.05) on any pipeline. The time courses of these two RSNs are the same ones used to 

obtain Figure 2. Group differences of head movement were not significant (p > 0.1) when 

assessed using mean FWD. The PR between artificial signal and time courses was kept at −9 

dB. RSN correlation was manipulated using phase changes. Three simulations were then 

performed using this data. The first simulation separated the HC group into SP and SC, but 

did not modify the data before running the four pipelines. This first simulation constitutes 

the comparison baseline. The other two simulations enforced artificial correlations of 0.1 

and 0.2 as described in the methods section. The three simulations were fed to all four 

pipelines. We estimated the amount of residual variance due to head movement using the 

correlation between rsFNC and mean FWD. Table I shows these results where significance 

was assessed using permutation tests. Only PC and PD had significant correlations with 

FWD in the simulation data.

After running the LOOCV on the simulated data, we compared the AUC measurements 

obtained from each LOOCV loop among pipelines and among frequency bandwidths. These 

results are presented in Figure 4. The baseline case shows the AUC at no better than chance. 

PA and PB showed significantly larger AUC than PC and PD when added the simulated 

correlations. Frequency results show close to chance AUC for all frequencies at baseline. For 

the data with simulated correlations of 0.1 and 0.2, the AUC measure increases as higher 

frequencies are included. The largest AUC was measured when using the bandwidth [0.01 

0.24] Hz.

Group difference analysis revealed more pipeline features as shown in Figure 5. The t-values 

follow the same increasing trend observed for the AUC graph in Figure 4 providing evidence 
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for the observed AUC differences. Figure 5 also displays differences of peak spatial maps 

among pipelines for each of the two RSNs. PA and PB were significantly less affected by 

subject spatial content than PC and PD in both RSNs. In summary, results from PC and PD 

show larger effects related to head movement variance and smaller classification 

performance than PA and PB.

3.2 The mTBI Cohort

Spatial content for the 53 RSNs considered in the mTBI cohort are displayed in Figure 6. 

These RSNs were found in all pipelines. Classification performance results can be found in 

Table II. The classification AUC reached a value of 80.2 % after optimally selecting pipeline 

and bandwidth for each LOOCV loop. In Figure 7, we provide histograms of selected 

pipelines and bandwidths. PA was selected in 85 out of 96 LOOCV loops. PB was chosen 11 

times, but PC and PD were never chosen. The most frequently chosen bandwidth was 0.22 

Hz (29 out of 96 times). The patterns observed in the histograms closely follow the mean 

AUC results, also displayed in Figure 7. PA and the bandwidth with cutoff 0.22 Hz achieved 

the highest mean AUC. Although histograms and mean AUC suggests that classification 

performance is best after using PA, there were no significant differences among the pipeline 

AUCs after a permutation test assessment. In the same fashion, bandwidths did not show 

significant differences of AUC.

Mean rsFNC and t-value matrices are displayed in Supplementary Figure 1. Group 

differences of rsFNC were found in PA and PB where patients have increased connectivity 

for the CER4-SEN2 and the ATT1-ATT7 rsFNCs. The spatial content of CER4 is located in 

the middle part of the cerebellar vermis. SEN2 encompasses both the supplementary motor 

area (SMA) and the paracentral lobule areas. ATT1 embraces the precuneus and ATT7 the 

left angular gyrus. More details of these two rsFNCs are presented in Figure 8, where 

changes of t-value and p-value for different bandwidths are displayed. The significant t-

values of PA and PB are very similar and exhibit robustness of p-value variability against 

frequency content. These two rsFNCs were not significant in PC or PD regardless of the 

selected bandwidth with the distinctive characteristic that corresponding p-values show 

larger variability. Although it is possible the results displayed in Figure 8 could be affected 

by head movement, none of the pipelines exhibited a significant correlation with mean FWD 

as shown in Table I. PA and PB exhibited the largest sensitivity to differences in rsFNC. In 

addition, bandwidth selection did not affect the significance of t-tests and produces little t-

value variability. Spatial map differences were not significant among pipelines for this 

cohort.

3.3 The Smokers Cohort

Figure 9 displays the pipeline and frequency assessments for the smokers cohort. PA and the 

bandwidth [0.01 0.24] Hz exhibit the highest AUC for this cohort. Table I also shows head 

movement contamination results for each pipeline. No FWD differences could be found 

among pipelines after a permutation test. Final classification results are presented in Table II 

with higher AUC (95.2 %) than the mTBI cohort. Two sample t-tests were performed using 

this bandwidth resulting in several significant group differences. Mean rsFNC and t-value 

matrices for the smokers cohort are displayed in Supplementary Figure 2. Significant sample 
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t-tests are provided in the Supplementary Table I. Of all the rsFNC showing group 

differences, only one has a significant correlation coefficient with FTND. The linear 

regression model also shows a significant relationship with FTND scores. When testing with 

the bandwidth [0.01 0.15] Hz, only PA remained significant. Further tests revealed that the 

FTND relationship with rsFNC was significant in PA no matter what choice of bandwidth 

was selected. The RSN pair is highlighted by a circle in Supplementary Figure 2 and the 

spatial content illustrated in Figure 10. One RSN (VIS 5) shows peak activation in the 

fusiform gyrus and the other one (SBC 2) in the putamen. We can see in Figure 10 that PC 

achieves the largest regression coefficient, but its significance is also one of the least robust 

to bandwidth selection. PB exhibits a similar lack of robustness and has the smallest 

regression coefficient. PA and PD has similar FTND coefficient, but PA achieves the 

smallest p-value of all pipelines at any bandwidth. RSN spatial differences were not 

significant among pipelines for this cohort.

4 Discussion

Simulations provided the strongest evidence obtained in this work. Results from smokers 

and mTBI cohorts allowed us to confirm that simulations reflect what is observed in real 

data. Outcomes indicate that data preprocessing affects the average classification 

performance and the detection of rsFNC differences. Pipelines where head motion was 

corrected before gICA were preferred by the implemented pipeline selection. While it is 

known that linear regression might not completely remove non-linear effects of head 

movement (Satterthwaite et al., 2012), it is important to consider other factors. One possible 

explanation is rooted in the fact that regressions applied before gICA will work in a voxel-

wise manner, but after gICA the regression operates on time courses obtained from 

aggregations over many voxels. Reconstructed time courses are the result of an operation 

where information and data have been reduced. Although gICA is in principle a linear 

process, the combination of multiple data reduction steps suggested by Calhoun et al. 

(Calhoun et al., 2001; Erhardt et al., 2011) leads to additional nonlinear effects. Consider a 

matrix X holding data to be fed into gICA. Motion variance regression, such as the one 

applied in PA, can be put in matrix form X = S + C where S is the matrix of regression 

residuals and C the matrix of regressed motion covariates. A data reduction operator Rn, 
such as principal component analysis, is then applied in the gICA pipeline where a set of n 

components (n>0) is removed. The data reduction operator leads to the inequality RnX ≠ 

RnS + RnC indicating the existence of non-linearities. The differences between performing 

gICA on motion corrected RnS or motion uncorrected RnX data cannot be simplified nor 

fully described by linearity assumptions. A complete mathematical description of motion 

variance regression in combination with gICA can be highly complicated and is outside the 

scope of this paper. Lacking a more theoretical framework, we reduced preprocessing 

options to several different black boxes and compared the relationship between input and 

output of each one. The results from these black boxes indicate that processing head motion 

variance before or after gICA lead to different results in both temporal and spatial analyses. 

Better classification performance and larger rsFNC group differences may be linked to a 

reduced influence of head movement if motion parameters are processed before gICA. 

Reduced spatial map variability may also be related to the removal of head motion variance 
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before gICA. In addition, results suggest that the position of spike processing in the pipeline 

is not critical. In general, the two pipelines where head motion was processed before gICA 

exhibit the best performance whether spikes were processed before or after gICA.

In the simulation, the two levels of rsFNC were chosen to test weak and strong rsFNCs. 

Weak rsFNC was set for a correlation higher than zero, but not strong enough to reach a 

statistical significance with a p-value larger than 0.05. The setup for strong rsFNC enforced 

a statistically significant correlation with a p-value smaller than 0.05. The threshold for a 

significant correlation is based on the number of time courses available to calculate the 

correlation. Simulation results suggest that some preprocessing methods may obscure weak 

rsFNCs. In Figure 4, only the results obtained after preprocessing with PA or PB delivered 

classification accuracy larger than 55% when the simulated rsFNC is 0.10. Although these 

classification performances are not higher than chance, results suggest that PA and PB 

would be a better choice for weak connectivity than PC and PD. The outcomes for the 

baseline case came out as anticipated. All pipelines delivered a classification close to chance 

in the baseline case, indicating the lack of difference between the two populations as it was 

preset in the simulation. The strong rsFNC case resulted in a classification larger than 

chance (> 65%) for pipelines PA and PB, but with a significantly lower performance for PC 

and PD. Nevertheless, all pipelines exhibited an AUC larger than 55% coinciding with the 

introduction of an artificial signal that simulates larger connectivity. While these results were 

obtained after artificially manipulating the data, which is an obligated step in our simulation 

procedure, the strict cross validation method in our pipeline assessment counteracted the 

effects of possible bias.

Differences among pipelines also influenced the estimation of spatial maps. Results 

displayed in Figure 5 show larger differences among the spatial maps of pipelines where 

motion parameters were not processed before gICA. Although the difference among 

pipelines is less than a voxel, motion variance produced some significant increments on 

spatial maps variability. The large correlation with FWD observed for PC and PD in Table I 

and the spatial maps results suggests that motion variance contamination can have a 

significant presence if not regressed in the early stages of the preprocessing.

More information about the differences among pipelines can be grasped from the t-value 

displayed in Figure 5. PA and PB shows an increasing trend of group difference that follows 

the enforced simulated connectivity, closer than the results obtained from PC and PD. The t-

values of PC and PD were relatively low and lacked significance except for the strong 

rsFNC case, suggesting a larger difficulty in assessing existing group differences for the 

weak rsFNC case. The comparison of t-test results among pipelines suggests that head 

motion should be addressed before smoothing and gICA to account for a better detection of 

small rsFNCs. This order of preprocessing steps agrees with observations presented in ROI 

studies, where it is known that despiking and removal of motion variance early in the 

preprocessing pipeline can reduce bias in rsFNC when applying ROI methods (Power et al., 

2014). Although gICA and ROI approaches are different techniques, a recent study that 

considered only healthy controls suggests that (similar to the case of seed methods) 

despiking before the gICA step may reduce bias in the final rsFNC measures (Damaraju et 

al., 2014). Different from the mentioned study, we did not consider pipelines without 
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despiking or without motion correction because we are assuming that both steps must be 

carried out in practical applications. Another important characteristic of our study is the 

focus on the analysis of patient-control differences. Previous studies on preprocessing steps 

used only healthy controls with a different criteria to form sample subgroups (Damaraju et 

al., 2014; Power et al., 2014).

In the real data, the classification performance obtained for the mTBI cohort achieved an 

accuracy of 80.2%, which is substantially higher than chance. In the smokers cohort, the 

performance was higher than for the mTBI cohort. These results are promising and suggest 

that fMRI could be highly informative in detecting mTBI or nicotine dependence once an 

experiment design targeting diagnosis is implemented. Mean classification performance was 

not different among pipelines or frequencies, but the trend to select PA and include high 

frequencies coincides with the simulation results. With respect to the rsFNC group 

differences and nicotine dependence measure, PA results show higher sensitivity and 

robustness against frequency content. This sensitivity can be explained in part by differences 

of p-value spectrums among pipelines and the dependence of FDR multi-comparison 

correction on these spectrums. Even when ground truth is not known in real data, the 

sensitive and robust behavior of PA observed in simulations, mTBI and smokers cohorts 

supports correcting for head movement before smoothing and gICA.

The current analysis included information from many parts of the brain to assess the 

behavior of different preprocessing and the power to detect group differences. Of all 1378 

considered RSN pairs, few exhibited an rsFNC difference between HCs and mTBIs. This 

fact seems antagonistic with respect to results reported earlier by Vakhtin et al. (Vakhtin et 

al., 2013), where several rsFNC group differences were found through the brain; however, in 

that study the number of test comparisons was much lower. In contrast to the Vakhtin results, 

the study performed by Mayer et al. (Mayer et al., 2014) sought to achieve significance after 

multi-comparison correction primarily because of the larger number of RSNs considered. 

Although other processing differences can be mentioned, that study processed motion 

variance after gICA, coinciding with the lack of significant group differences also observed 

in the present analysis. Only by processing motion variance before gICA we could observe 

rsFNC changes for the mTBI cohort. The significance of rsFNC differences depended little 

with bandwidth in these two examples. In addition, no evidence of significant head 

movement noise was found. Based on these two results, we believe that head movement and 

other nuisance signals were not major players in the observed rsFNC differences. In favor of 

the revisited data preprocessing applied in this report is the fact that we followed novel 

recommendations in the field (Damaraju et al., 2014; Power et al., 2014) that aimed at 

decreasing the effect of movement artifacts. In this manner, we expected to reduce the 

impact of motion on our statistical analysis.

Abnormal activation of the precuneus related to working memory and attention have been 

associated with post-concussive syndrome (Smits et al., 2009). Sustained attention 

impairments in patients with brain injury have been related to increase activation in the 

precuneus (Bonnelle et al., 2011). Abnormal activation has also been reported in the left 

angular gyrus during verbal encoding (Olsen et al., 2014; Strangman et al., 2009). Based on 

the previous literature, the brain areas in ATT1-ATT7 with significant rsFNC difference 
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might be involved in attentional dysfunction of the mTBI population. By processing motion 

variance before gICA, we could find a significant change in the rsFNC between the 

cerebellum and the SMA/paracentral lobule RSNs. After confirmation that frequency does 

not affect significance, several factors that differ from previous work can be mentioned. The 

most important difference is the small amount or the complete lack of cerebellum RSNs in 

previous studies. In this vein, Nathan et al. (Nathan et al., 2014) found increases in rsFNC 

linked to the cerebellum (as well as DMN and SMA) given that more cerebellar areas were 

included. Another study found functional connectivity of the cerebellum among those 

correlated with post concussive complaints (Stevens et al., 2012).

Pipeline assessment in the smokers cohort barely made use of PB, PC and PD as the pipeline 

usage histogram illustrates in Figure 9. The high rate of PA selection suggests that we could 

ignore the other three pipelines and use PA for all LOOCV loops. Results from the mTBI 

cohort suggest that the influence of sex, age and other possible sources of bias may be 

minimized by the enforcement of matched samples and cross validation. The high 

classification accuracy obtained in the smokers group could be caused by the selection of 

samples with high nicotine dependence. Observed accuracy in this cohort may not be a 

strange outcome since high classification performance has been previously observed in a 

similar population setup by another study that used a dual regression technique and a lower 

number of RSNs (Pariyadath et al., 2014). Different from the Pariyadath study, where 

maximum accuracy reached 78.6%, the number of RSNs in the present analysis is larger and 

this may account for the observed higher accuracy of 95.2%. Another difference resides in 

the method used to find biological causes of rsFNC variations, which in our analysis is based 

on group differences and their correlation with FTND (in the training data). Although FDR 

was applied only to group differences (p-values from t-tests), the correlation of nicotine 

dependence with the rsFNC between putamen and fusiform gyrus was independent of the 

CTR group, thus providing evidence of a strong relationship as useful information for the 

classification algorithm. The putamen is part of a dopaminergic network involved in 

anticipation of reward and related emotions. Increases in the functional connectivity of this 

reward brain area have been associated with substance use disorders including cocaine 

(Konova et al., 2015) and heroine (Schmidt et al., 2015). Along with other areas involved in 

planning, attention and visual processing, higher activation of the putamen in smoking 

abstainers is related to increased salience of craving cues (McClernon et al., 2009). The role 

of putamen as a hub of information and its involvement in drug seeking behavior (Konova et 

al., 2015) suggests that craving may produce functional changes affecting the putamen’s 

synchrony with other parts of the brain. The information flow does not only involve reward 

pathways, such as the mesocorticolimbic system, but recruits coherent involvement of the 

visuospatial system increasing attention to smoking cues (Due et al., 2014). The connection 

between reward and visual networks (in relation to craving) increases the activation of 

relevant brain areas including the putamen and fusiform gyrus (Ely et al., 2015). In general, 

evidence from previous studies supports the existence of a relationship between 

dopaminergic and visuospatial functions in nicotine dependence. Results in this work 

indicate that only through the use of an appropriate preprocessing is it possible to observe 

significant changes (after multi-comparison correction) in the synchronic function of the pair 

putamen-fusiform gyrus.
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One important limitation of our study was the available frequency range. BOLD signal 

content has been found at high frequencies (Chen and Glover, 2015) and up to 0.8 Hz 

(Boubela et al., 2013; Lee et al., 2013a). Our study was limited in this respect to 0.25 Hz. 

Future work should explore different frequency characteristics in relation to the initial 

independent variable. Another important parameter with different choices is despiking, but 

in this work we did not explore all available options. Some studies suggest to remove spike 

time points by replacing the spike point with an interpolated value extracted from 

surrounding (no spike) times values (Allen et al., 2011). Other authors suggest excluding the 

spike time course from the analysis (Grouiller et al., 2011). We choose to remove spiky time 

courses, attempting to reduce as much as possible the influence of spikes. An interpolation 

process used to replace spiky values preserved time continuity among the samples and 

minimized spike influence in non-spiky time courses after filtering. The spiky time point 

was excluded from the final correlation. We also need to mention that spikes were detected 

using DVARS (Power et al., 2014), but other options can be adopted including large 

deviations of FWD (Power et al., 2012). Although we considered spatial map variability, the 

Euclidean distance used to measure spatial deviations leaves out many important parameters. 

Items that were not considered include location of the spatial map, distance between RSNs, 

shape and area of the spatial map, and multiple brain areas. These parameters require a study 

focused on the relationship between spatial and temporal differences among subjects. 

Finally, we need to consider that all classification procedures were performed solely for 

pipeline assessment and discarded particularities important for subject diagnosis. The most 

notorious problem is that many non-artifact RSNs were discarded because they could not be 

replicated in all four gICA. Discarded RSNs could have provided useful information for 

classification purposes. Future studies that focus in diagnosis can reintroduce variations 

from some of the RSN discarded here to obtain even high accuracies.

5 Conclusion

Results presented in this work show relationships among classification performance, group 

differences, correlation with non-categorical measures, frequency content and pipeline 

choices. The optimization of pipeline and frequency bandwidth for the purposes of 

classification tends to select the pipeline where motion variance is regressed out before 

gICA (PA and PB in Figure 1) and bandwidths with relatively high frequency content. The 

rsFNC group differences in the mTBI cohort and correlation with FTND in smokers add 

supporting evidence to indicate that PA is a good choice for preprocessing. Simulations 

suggest that PA and PB are more sensitive at detecting rsFNC differences when the signal is 

small. In real data, the influence of this sensitivity allowed for the detection of higher 

classification performance and significant group differences. Although simulation results 

indicate that including higher frequencies might be convenient, care must be taken to avoid 

frequencies containing known nuisance signals. Given that bandwidth choice seems to vary 

between 0.10 Hz and 0.15 Hz in the literature (Allen et al., 2011), robustness against 

frequency indicates that results obtained from using any of these two filter bandwidths 

should not be rejected on a frequency basis without a more careful assessment.
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Highlights

• We analyze different preprocessing pipelines for group independent 

component analysis (gICA).

• We evaluate each pipeline using classification algorithms, leave-one-

out cross validation and statistical methods such as regression, 

correlation and t-test.

• The data pinpoint a strategy that best seems to prepare fMRI data for 

gICA.
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Figure 1. 
Preprocessing pipelines tested in this study. Before estimating rsFNC, a set of preprocessing 

steps must be applied to the raw fMRI data. The initial steps labeled as STRCoN correspond 

to slice-timing correction, rigid body realignment for motion, co-registration, spatial 

normalization, and transformation to the MNI standard space. The step labeled MotReg 
corresponds with removal of motion variance through regression. Step SpkReg indicates 

orthogonalization with respect to spike regressors. When spike and motion regressions were 

necessary, they were performed in one single regression step called SpkMotReg. The label 

Smooth-gICA indicates that smoothing and group ICA were performed. The final step on 

each pipeline is Filter, where a pass-band filter is applied. Four different pipelines named 

PA, PB, PC and PD were considered with different order of steps as displayed in this figure.
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Figure 2. 
Plot used to parameterize the simulation. This shows the relationship between final 

Measured Correlation, Power-Ratio (PR) and correlation between artificial signals. The plot 

uses two different time-courses: TC1 and TC2. These time-courses were extracted from 

fMRI data for two different RSNs using space-time-regression. The two time courses exhibit 

low correlation value. Two signals, S1 and S2, are algorithmically generated to have an 

artificial correlation Art.Corr[S1,S2] with different values 1.0, 0.5, 0.2 and 0.1. Signals and 

time courses are mixed and the measured correlation corr[TC1+S1, TC2+S2] is plotted for 

different, PR = (var[S]/var[TC]). After 0dB, Art.Corr dominates the measured correlation, 

but below −12dB its influence is minimal. The simulation was performed with PR = −9dB, 

aiming at minimizing changes in the characteristics of original time courses TC1 and TC2, 

but allowing a significant correlation level of 0.2. In our data, significant correlations 

(p<0.05) are those surpassing the threshold of 0.16.
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Figure 3. 
Spatial content of the uncorrelated RSNs used in the simulation. The mean correlation 

between these two RSNs was low (ideally zero) in the HC samples. Simulated connectivity 

was achieved using these t-maps and space time regression to extract, modify and 

reintroduce artificial phase information. In this figure, images were cropped using t-value 

thresholds between 20 and 30 and the color bars indicate these levels.
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Figure 4. 
Pipeline and Frequency performances for simulated data. Simulated increments of 

connectivity were achieved by artificially adding time coherent signals where the correlation 

significance threshold (p<0.05) is 0.16. The strongest connectivity case with correlation of 

0.2 demonstrates the case of a significant correlation. The case with correlation of 0.1 is an 

artificially simulated no-significant correlation. The baseline case show results for the case 

where no signal was added. Results shown are averages of either pipeline or frequency 

dimensions. Pipelines PA and PB exhibit better performance than PC and PD for cases 

where signals were introduced. Frequency results are different from chance only for the 

largest simulated connectivity of 0.2. The best frequency bandwidth in the 0.20 case was the 

range [0.01 0.22] Hz. There were no significant differences among bandwidths with high 

cut-off 0.20, 0.21, 0.22,0.23 and 0.24 Hz on all three bar plots. Otherwise, most of the AUC 

differences were significant in the frequency dimension. The number of significant 

differences was too high to fit in the figure.
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Figure 5. 
t-values and mean spatial maps deviations for simulated data. As the case of No-Signal 

shows, without artificial manipulation the t-value is not significant for any pipeline. 

However, the RSN pair in this simulation was chosen to exhibit this characteristic. The two 

pipelines where MotReg (or SpkMotReg which includes MotReg) was performed before 

gICA (see PA and PB in Figure 1) were sensitive to the artificially simulated correlation. In 

the pipelines where MotReg was performed after gICA (see PC and PD in Figure 1), these 

were only sensitive if the simulated correlation was strong enough (0.20). This figure also 

shows mean deviations of subject-wise spatial maps. This deviation was calculated using the 
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Euclidean distance from the peak coordinates of the mean spatial map (averaged over all 

subjects) to the peak coordinates of each subject spatial map. Significantly higher deviations 

were detected for PC and PD in ATT6. Deviations in ATT7 were not significantly different, 

but a trend of higher deviation can be seen in PC and PD.
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Figure 6. 
RSNs used in the analysis. This set obtained using gICA was selected based on the 

frequency content and visual inspection. Some RSNs in the CER group overlap with visual 

areas, but with a large peak region in the cerebellum and high temporal correlation with 

other cerebellar components. A total of 53 RSNs were identified in the mTBI sample and for 

all four pipelines. In the smokers sample, only 43 of these components could be matched. 

RSNs marked with an asterisk (*) were missing in the smokers sample. The match was 

confirmed by visual inspection and using a spatial correlation larger than 0.5.
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Figure 7. 
Pipeline and Frequency Performance for the mTBI Sample. On each cross validation loop, 

the LOOCV optimization selected the pipeline and bandwidth combination with the best 

AUC measure. The top row displays the mean AUC performances obtained from all pipeline 

and bandwidth combinations applied by the LOOCV optimization. Permutation tests 

indicated no statistically significant differences. The bottom row shows the histograms of 

pipeline and bandwidth selection. Although AUC differences were not significant, the 

pipeline histogram follows the trend observed in AUC. PA is the most frequently selected 

pipeline with a higher mean AUC. Frequency bandwidths show a more uncertain 

distribution.
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Figure 8. 
Spatial content of the significant rsFNC differences in the mTBI group. These two rsFNC 

are significant only in PA and PB, which are the pipelines where motion variance is removed 

before gICA. The t-values seemed unaffected by frequency. On the other hand, FDR 

corrected p-values show large variability with the bandwidth selection in PC and PD. 

Activation differences in the precuneus and angular gyrus areas (Olsen et al., 2014; Smits et 

al., 2009) suggest attentional deficits related to these areas. Abnormal rsFNC have also been 

found in the cerebellum (Nathan et al., 2014) and in other cases linked to post concussive 

complaints (Stevens et al., 2012).

Vergara et al. Page 29

Neuroimage. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Pipeline and Frequency Performance for the Smokers Sample. Differences in mean AUC are 

not significant for either pipelines or frequency bandwidth. The preferences for PA and high 

frequency bandwidth displayed by the histograms are similar to that observed in the mTBI 

cohort.
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Figure 10. 
RSN with significant group difference corrected using FDR. In addition, this RSN pair 

exhibit an increase in rsFNC correlated with FTND. The spatial content of these networks 

suggests a resting state interaction between reward and visuospatial brain networks. The two 

plots on the right show changes against bandwidth selection of FTND regression coefficients 

and corresponding p-values for each pipeline. Although PC exhibits the largest effect size, 

the significance of the regression coefficient is dependent on the bandwidth. PB has the 

lowest effect size and also shows high instability with respect to significance. The effect 

sizes of PA and PD are very similar. The p-values in PA are the lowest and always 

significant in showing the highest level of robustness against selected bandwidth.
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Table I

Correlations of rsFNC with FWD for all Pipelines

Cohort PA PB PC PD

Simulations (Sim.)

Sim. Correlation=0.0 0.16 0.17 *0.24 *0.26

Sim. Correlation=0.1 0.09 0.14 *0.33 *0.30

Sim. Correlation=0.2 0.07 0.10 *0.28 *0.19

mTBI ATT1 vs. ATT7 0.02 0.08 0.03 −0.02

mTBI CER4 vs. SEN2 0.13 0.10 −0.06 −0.02

Smokers −0.14 −0.04 −0.06 −0.01

*
Significant at p<0.05 uncorrected
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Table II

Classification Results for mTBI and smokers cohorts

Cohort Number of Features Sensitivity (%) Specificity (%) AUC (%)

mTBI 1378 83.3 77.1 80.2

Smokers 903 95.2 95.2 95.2
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