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Abstract

Quantitative study of perivascular spaces (PVSs) in brain magnetic resonance (MR) images is 

important for understanding the brain lymphatic system and its relationship with neurological 

diseases. One of major challenges is the accurate extraction of PVSs that have very thin tubular 

structures with various directions in three-dimensional (3D) MR images. In this paper, we propose 

a learning-based PVS segmentation method to address this challenge. Specifically, we first 

determine a region of interest (ROI) by using the anatomical brain structure and the vesselness 

information derived from eigenvalues of image derivatives. Then, in the ROI, we extract a number 

of randomized Haar features which are normalized with respect to the principal directions of the 

underlying image derivatives. The classifier is trained by the random forest model that can 

effectively learn both discriminative features and classifier parameters to maximize the 

information gain. Finally, a sequential learning strategy is used to further enforce various 

contextual patterns around the thin tubular structures into the classifier. For evaluation, we apply 

our proposed method to the 7T brain MR images scanned from 17 healthy subjects aged from 25 

to 37. The performance is measured by voxel-wise segmentation accuracy, cluster- wise 

classification accuracy, and similarity of geometric properties, such as volume, length, and 

diameter distributions between the predicted and the true PVSs. Moreover, the accuracies are also 

evaluated on the simulation images with motion artifacts and lacunes to demonstrate the potential 

of our method in segmenting PVSs from elderly and patient populations. The experimental results 

show that our proposed method outperforms all existing PVS segmentation methods.
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1. Introduction

Perivascular spaces (PVSs), also named Virchow-Robin spaces, are the CSF-filled spaces 

surrounding the penetrating arteries and veins in the brain. The PVSs usually have thin 

tubular structures less than 2 mm in diameter for healthy and young people. Recently, it has 

been revealed that the PVSs play an important role in the brain lymphatic system. (Iliff, 

Wang et al. 2013; Rangroo Thrane, Thrane et al. 2013; Yang, Kress et al. 2013; Kress, Iliff 

et al. 2014).

Many evidences have been also found that the enlargement or the increased number of PVSs 

is closely related to aging (Heier, Bauer et al. 1989; Zhu, Tzourio et al. 2010; Chen, Song et 

al. 2011), cognitive decline (Maclullich, Wardlaw et al. 2004), and small vessel diseases 

(Rouhl, van Oostenbrugge et al. 2008; Doubal, MacLullich et al. 2010; Zhu, Tzourio et al. 
2010). Thus, the quantitative study of PVSs is important for analyzing the causes of these 

neurological diseases, as well as understanding the PVS functions. However, relevant studies 

have been relatively limited because the majority of non-dilated PVSs are too thin to be 

clearly visualized in the conventional 1.5T or 3T MR images. In addition, the manual 

delineation of thin tubular structures in a three-dimensional (3D) image is very time-

consuming. Especially, since the appearances of lacunes and PVSs are very similar in a 2D 

slice view (Wuerfel, Haertle et al. 2008; Wardlaw, Smith et al. 2013), clinicians have to 

check multiple views for accurate PVS delineation. Due to these difficulties, PVS rating 

scales were often ambiguous in the literature, and the reported quantitative diameters and 

lengths were inconsistent (Hernandez Mdel, Piper et al. 2013). Recently, with the increased 

signal to noise ratio of 7T MR scanners (Bouvy, Biessels et al. 2014), PVSs can be shown 

even in the MR images scanned from healthy subjects. However, the manual delineation 

becomes more and more challenging, with the increased number of visible PVSs. For 

example, although Bouvy et al. (Bouvy, Biessels et al. 2014) demonstrated the increased 

sensitivity of 7T MR images to visualize PVS, their quantitative analysis was performed 

only on the 2D slice view due to the segmentation challenge. Thus, an accurate 

characterization of PVS morphology could not be achieved. Accordingly, development of an 

accurate and reliable automatic PVS segmentation method for 7T MR images is necessary to 

accelerate the relevant aging and disease studies.

However, so far, few automatic methods have been developed for PVS segmentation. 

Wuerfel et al. (Wuerfel, Haertle et al. 2008) segmented the PVSs by using a semi-automatic 

software, which can adjust intensity threshold (Makale, Solomon et al. 2002). Descombes et 
al. (Descombes, Kruggel et al. 2004) constructed a model defined by the pre-defined PVS 

filters and geometric properties, and then optimized it by the Markov chain Monte Carlo 

method. Uchiyama et al. (Uchiyama, Kunieda et al. 2008) enhanced the intensities of tubular 

structures using white top-hat transformation, and then extracted them by intensity 

thresholding. Subsequently, they identified the PVSs by using geometric properties such as 

the location, size, and degree of irregularity. Ramirez et al. (Ramirez, Gibson et al. 2011; 

Ramirez, Berezuk et al. 2015) proposed a semi-automatic segmentation method, namely 

Lesion Explorer, which exploited T1, T2, and PD images for the segmentation of subcortical 

hyperintensities. They first conducted tissue segmentation on T1 image, identified several 

anatomical landmarks required for regional parcellation, and, finally, extracted subcortical 
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hyperintensities and PVSs by applying the adaptive local thresholds derived from the T2 and 

PD images. Recently, Wang et al. (Wang, Valdes Hernandez Mdel et al. 2016) proposed a 

thresholding-based semi-automatic approach to perform the PVS segmentation. They first 

adjusted image intensity based on the standard slices of basal ganglia and centrum 

semiovale, and then adaptively determined a threshold with respect to the characteristics of 

T2-weighted image. Although the target object was not exactly the PVSs, Wang et al. 
(Wang, Catindig et al. 2012) proposed a multi-stage segmentation method to delineate white 

matter hyperintensity, cortical infarct, and lacunar infarct. Note that the appearance of 

lacunar infarct is similar to the PVS except for its thickness (i.e., lacunar infarct is usually 

thicker than PVS) and the lack of well-defined orientation of the CSF-like region. In this 

method, the anatomical brain structure, appearance model, and morphological operations 

were used and performed for segmentation of the lacunar infarct. Yokoyama et al. 
(Yokoyama, Zhang et al. 2007) also proposed a method using intensity thresholding and 

morphological operations to segment the lacunar infarct. Although these existing methods 

generate reliable results under certain conditions, many parameters such as thresholds and/or 

geometric constraints have to be determined heuristically. Thus, these methods often require 

manual intermediate steps such as the measurement of image characteristics, landmark 

identification, and removal of partial brain structures. Moreover, the informative contextual 

patterns around the PVS were not considered in the simple thresholding-based methods.

To effectively use the contextual patterns of PVSs for guiding the segmentation, we propose 

a novel learning-based method. So far, many learning-based methods have been proposed to 

segment tubular structures in other applications. These methods usually consist of a feature 
extraction step and a classifier learning step. For example, Staal et al. (Staal, Abramoff et al. 

2004) extracted various features from a convex region defined by ridges of image 

derivatives, and then learned the k-NN classifier. Soares et al. (Soares, Leandro et al. 2006) 

used Gabor wavelet transform responses at multiple scales as features, and then learned the 

Gaussian mixture model for building Bayesian classifier. Ricci et al. (Ricci and Perfetti 

2007) detected a line through a target voxel, and then used line strengths as well as the 

intensity differences between the line and surrounding pixels as the features. You et al. (You, 

Peng et al. 2011) also found vessel centerlines, and then computed the vessel strengths by 

using the steerable complex wavelet. For the methods of Ricci et al. and You et al., support 

vector machine was used to learn the classifier. Lupascu et al. (Lupascu, Tegolo et al. 2010) 

extracted a feature vector utilizing intensity, vesselness, spatial properties, and Gabor-

wavelet-transform responses at multiple scales. The classifier was then trained by the 

AdaBoost algorithm. Marin et al. (Marin, Aquino et al. 2011) extracted a feature vector that 

was composed of appearance patterns and moment- invariant-based features, and then 

trained the classifier by using the neural network method. Fraz et al. (Fraz, Remagnino et al. 
2012) extracted the feature vector utilizing the orientation analysis of gradient vector field, 

and then trained the classifier using an ensemble learning method. Although these methods 

achieve good performances for their own applications, the properties of PVSs are different 

from their target objects in several aspects. First, PVSs are separated into the small and thin 

tubular structures with various directions and widely spread in the white matter region, 

including centrum semiovale and subcortical nuclei. Moreover, the overall PVS area is very 

small due to their thin shapes, compared to the whole MR image and there are many similar 
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tubular structures outside the white matter region (Fig. 2(a)). Therefore, it is ineffective to 

learn a classifier for PVS segmentation in the whole MR image with the conventional 

features.

To address these issues, we first define a region of interest (ROI) in the entire MR image as 

voxels with vesselness above a certain threshold within the white matter. Then, we learn a 

set of sequential classifiers by using the random forest model with the randomized 3D Haar 

features. To extract discriminative features for the tubular structures, we first normalize both 

the principal directions and the intensity distributions of local neighboring region, and then 

extract the randomized Haar features in that normalized region. In the testing stage, we 

predict the labels of all voxels in the ROI by using the trained sequential classifiers.

There are three major contributions in this paper. First, to the best of our knowledge, this is 

the first learning-based method for PVS segmentation. Unlike previous thresholding-based 

PVS segmentation methods, our method can learn the contextual patterns around the PVSs 

without any heuristic setting of threshold values. Second, our normalized features can 

capture consistent patterns of PVSs even in regions with intensity inhomogeneity. Moreover, 

since the random forest model used in our method can select informative features from a 

number of randomized Haar features, no specific handcrafted features are needed. Finally, 

our method can effectively distinguish between noisy PVS tubular structures and the 

ambiguous outliers by integrating the contextual features into the sequential classifiers. As a 

result, our method can achieve significantly higher segmentation accuracy.

2. Materials and Method

2.1. Experimental details

17 healthy volunteers aged from 25 to 37 participated in this study. Written consents were 

obtained from all volunteers following the guidelines provided by the institutional review 

board. The imaging was performed on a 7T Siemens Scanner using a 32-channel receive and 

a single- channel volume transmit coil (Nova Medical, Wilmington, MA). Both T1- and T2-

weighted images were scanned for each subject. The T1-weighted images were acquired by 

the MPRAGE sequence (Mugler and Brookeman 1990) with 0.65 × 0.65 × 0.65mm3 voxel 

size, while the T2-weighted images were acquired by the 3D variable flip angle turbo-spin 

echo sequence (Busse, Hariharan et al. 2006) with 0.4 × 0.4 × 0.4 mm3 or 0.5 × 0.5 × 

0.5mm 3 voxel sizes. The reconstructed images had the same voxel sizes as those acquired 

images, and no interpolation was applied during the image reconstruction. Details of the MR 

acquisition parameters are provided in Table 1.

2.2. Generation of ground-truth PVS mask

To enable the training and evaluation of the proposed learning-based PVS extraction, we 

first generate ground-truth PVS masks by using a semi-automatic method based on the 

anatomical brain structure, vesselness thresholding, and geometric constraints (Wang, 

Catindig et al. 2012; Zong, Park et al. 2016), which is then followed by manual correction 

by two observers.
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○ We first conduct intensity inhomogeneity correction and skull stripping by using 

the N3 correction method (Sled, Zijdenbos et al. 1998) and the Brain Extraction 

tool (Smith 2002), respectively on T1-weighted images. We then divide the brain 

into WM, GM, and CSF regions by using a method based on hidden Markov 

random field model (Zhang, Brady et al. 2001). Note that T1-weighted images are 

used for tissue segmentation since they have better gray-white matter contrast. Then 

the segmented tissue masks are rigidly aligned to the T2- weighted image by the 

Flirt registration method (Jenkinson, Bannister et al. 2002) for direct segmentation 

of the T2-weighted image. Afterwards, we dilate the segmented WM region for 

ensuring the inclusion of PVSs located at the boundaries of WM and GM. An 

example of such dilated WM region is shown in Fig. 2 (b).

○ Next, we calculate the vesselness (Frangi, Niessen et al. 1998; Shi, Shen et al. 

2011; Cheng, Chen et al. 2012) for each voxel in the dilated WM region. 

Specifically, the T2-weighted image is used for vesselness measurement, since the 

contrast between PVSs and the surrounding tissues is much higher in the T2-

weighted image. In particular, we pass the T2- weighted image through a Gaussian 

kernel with a scale s, and then compute the eigenvalues of the second derivative 

matrix (Hessian matrix) of kernel output. The three eigenvalues (λ1 < λ2 < λ3) 

represent the magnitudes of derivative for their associated eigenvectors v1, v2, v3, 

which represent three principal directions. By following the work of Frangi et al. 
(Frangi, Niessen et al. 1998), the vesselness V(x) of a voxel x is defined by the ratio 

of three eigenvalues as below:

(1)

where , and . The 

parameters a , f3 and y control the weights of RA, RB and S, respectively. Similar to 

the Frangi et al.’s work (Frangi, Niessen et al. 1998), α and β are set as 0.5, and γ is 

set as the half value of maximum Hessian norm in the image. If the smallest 

eigenvalue λ1 is small while the other two eigenvalues λ2 and γ3 are relatively large, 

a high vesselness can be obtained with Eq. (1), and thus the respective voxel can be 

likely belonging to the tubular structure. More details of this vesselness 

measurement method can be found in (Frangi, Niessen et al. 1998). Since the 

thickness of PVS is often less than four voxels with our current imaging resolution, 

we compute the vesselness values with two small scales (s = 0.5 and s = 1) for 

extracting very thin or relatively thick tubular structures, and then use their 

maximum vesselness as the final vesselness for the respective voxel. We extract 

voxels with vesselness above a certain threshold value and divide the extracted 
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voxels into connected clusters. Different vesselness thresholds are empirically 

chosen for different images.

○ Finally, the clusters with a certain range of length and thickness are set as the 

PVSs. Based on the prior geometric knowledge of PVS (Hernandez Mdel, Piper et 

al. 2013), the length range is set from 0.8 to 30 mm, while the thickness range is set 

from 0 to 2 mm. After generating PVS segmentations, two experienced imaging 

analysts manually modified the segmentations using the ITK-SNAP tool 

(Yushkevich, Piven et al. 2006) and the neurite tracer plugin in ImageJ (Longair, 

Baker et al. 2011). The manual correction is performed iteratively between the two 

imaging analysts until the final consensus is reached. The PVS masks are created 

for the entire brain in 6 subjects, while just for the right hemispheres for the 

remaining 11 subjects.

2.3. Learning-based PVS extraction

Our proposed method consists of 1) a training stage for classifier learning, and 2) a testing 

stage for PVS prediction, where both training and testing are applied only to voxels within 

an ROI. The overall procedure is shown in Fig. 1. The ROI is set as WM voxels with 

vesselness above a certain threshold. Unlike the thresholds used for delineating PVS for 

generating the ground-truth mask, the threshold for ROI definition is set to be a certain low 

value, such that 99% of the PVS voxels from the ground-truth masks are included in the 

resulting ROI. Examples of the vesselness map and its detected PVS ROI are shown in Figs 

2 (c), and (d), respectively.

2.3.1. Classifier learning—In the classifier learning step, we train a set of sequential 

classifiers by the random forest model with a number of randomized 3D Haar features.

○ First, we randomly sample the PVS and non-PVS voxels in the detected PVS 

ROI, with a ratio of their numbers as around 1:30. The feature vector f of each 

sample is directly related to the discriminative power of predictor. To capture the 

consistent patterns of PVSs with different orientations and intensity inhomogeneity, 

we first normalize both the principal directions and the intensity distribution of 

local region of each target sample voxel before extracting the feature vector. 

Specifically, when extracting the features at a target voxel x, we align its 

neighboring voxels , using the three 

eigenvectors v1, v2, v3 as follows:

(2)

where  is the set of aligned voxel positions relative to the 

voxel x, r is the range of local region, and K is the number of neighboring voxels. 

We extract a fixed- size 3D patch in the aligned local region, and then normalize the 

intensity distribution by the zero-mean unit-variance normalization. Here, r is 

determined to be the minimum radius that can make the fixed-size 3D patch 

completely included in the aligned local region. Four different patch sizes (5 × 5 × 
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5, 7 × 7 × 7, 9× 9 × 9, 11 × 11 × 11 voxels3) are tested in the training stage, and 

then the best one is used in the testing stage (Sec. 3.1). Fig. 3 shows typical 

examples of the original PVS patches, aligned PVS patches, and their (orientation 

and intensity) normalized PVS patches. Since we do not know which features are 

able to distinguish the PVS and non-PVS voxels, we extract a number of 

randomized Haar features in each normalized patch as follows:

(3)

where I(xk′) denotes the intensity value of a voxel positioned at xk′. The parameters 

θ, τi and τi represent the number of 3D cubic functions, polarity, center position, 

and size of ith cubic function, respectively. Various Haar features can be generated 

by randomizing these values in Eq. (3). In this work, we randomly chose θ as 1 or 

2, ρi as +1 or −1, ρi as 1 or 3, respectively. Since many informative features can be 

positioned near the tubular centerline, we extract more features near the tubular 

centerline by controlling the parameter μi. Specifically, μi is randomly selected with 

uniform distribution for the main direction of image derivative (i.e., the first 

principal direction of the aligned patch), while with the Gaussian distributions for 

other two directions (i.e., the second and third principal directions) within the range 

of patch size. In this way, more features are extracted along with the main direction.

○ Next, we learn the classifier using the random forest model (Criminisi, Shotton et 

al. 2011; Criminisi and Shotton 2013). The random forest model consists of an 

ensemble of decision trees randomly trained, with each decision tree t consisting of 

a collection of nodes and edges organized in a hierarchical structure. Each tree is a 

label/class predictor pt(c|f), where c is a class index and f is a high-dimensional 

feature vector. The training is performed by splitting the training examples at each 

node in the tree. Specifically, a number of feature and threshold combinations are 

randomly selected to split the training examples into two groups, and then their 

informative gains are computed by using the entropy measure (Criminisi, 

Robertson et al. 2013). Among these random selections, the split is determined by 

the pair of feature and threshold that maximize the informative gain at the 

respective node. This node splitting is repeated until the tree has reached at the 

maximal depth. Note that the selected features and thresholds are used to build 

simple decision functions in the internal tree nodes, while their relevant predictors 

are finally established in the leaf nodes. By considering the computational time and 

memory, we set the tree size as 10, the maximum tree depth as 100, and the feature 

size as 2000, respectively.

○ Ending parts of thin PVSs often have weak intensity, while some non-PVSs have 

similar appearance patterns as the PVSs. Thus, using only the appearance model is 

often limited to generate robust results. To address this issue, we adopt the auto-
context model to further integrate the contextual features of tubular structure into 

the classifier. In this model, the prediction map obtained by the previous classifier 
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is used to extract the contextual features, with which the subsequent classifier is 

trained. Specifically, the first classifier is trained by the appearance features 

extracted from the T2-weighted image. This classifier is then applied to the training 

images for generating the prediction maps of training images. Next, the second 

classifier is trained by using the 3D Haar features extracted from both the T2-

weighted image and the prediction map of the first classifier. The trained second 

classifier is similarly applied to the training images for generating the new 

prediction maps, which are used (together with the T2-weighted image) to train the 

third classifier. By repeating this procedure, the sequential classifiers are trained. 

Since the results usually converged after five iterations, we used five sequential 

classifiers.

2.3.2. PVS prediction—In the testing stage, we similarly extract the normalized Haar 

features at each target voxel in the detected ROI, and then pass them through the trained 

decision trees from the root node to a leaf node, with respect to the established decision 

functions of all selected nodes. Then, all the class labels in the selected leaf nodes of all 

decision trees are averaged, i.e.,  where nt is the total number of trees. 

The class label of the underlying voxel is finally determined by the maximal prediction:

(4)

Similar to the training stage, the label of each voxel in the detected PVS ROI is sequentially 

predicted by the learned sequential classifiers. An example of our PVS detection result for a 

testing subject is shown in Fig. 2 (e).

2.4 Comparison with other approaches

We compare our learning-based method using the normalized Haar features (LNHF) with 1) 
the method using simple intensity thresholding (IT), 2) the method using vesselness 

thresholding (VT), and 3) the learning-based method using the conventional Haar features 

(LHF). For fair comparison, only voxels within the segmented WM region is used in all 

comparison methods. In the IT method, we extract the voxels with their intensity higher 

than a certain value in the WM region, and then divide them into the connected clusters. 

Finally, we set the clusters with certain ranges of length and thickness as the final PVSs. In 

the VT method, we extract the voxels with their vesselness higher than a certain value in the 

WM region, and then set the connected clusters with certain ranges of length and thickness 

as the final PVSs. The threshold values for these two methods are found by cross-validations 

(Sec. 3.1), while the ranges of length and thickness are the same as the minimum and 

maximum lengths and thickness of manually-segmented PVSs in the training set. In the 

LHF method, the randomized Haar features are extracted in the patches that are not aligned 

with their respective principal directions as done in our proposed method. Except for using 

different features, both the LHF and LNHF methods start with the same ROI, and employ 

the same numbers of trees, maximum tree depth, feature size, and sequential classifiers. To 

find the optimal thresholds for IT and VT methods as well as the optimal parameters for 
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LHF and LNHF methods, we divide the data into a training set and a testing set. Specifically, 

we use the 6 images with manual labeling of each entire image as the training set, and use 

the remaining 11 images with manual labeling of only the right hemisphere of each image as 

the testing set. Several model parameters are optimized for all comparison methods on the 

training set with a leave-one-out cross-validation approach, due to the limited number of 

training dataset. For the LHF and LNHF methods, the optimal parameters are then used for 

training the sequential classifiers with the entire training set. Finally, the trained sequential 

classifiers and the IT and VT methods with optimal thresholds are applied to the testing set.

The performance is evaluated in terms of Dice similarity coefficient (DSC), sensitivity (SN), 

and positive prediction value (PPV) as defined below:

(5)

where TP, FP, FN denote the true positive, false positive, and false negative, respectively, as 

further illustrated in Table 2. DSC represents the ratio of total number of correctly classified 

voxels to the average number of all predicted PVS voxels and all true PVS voxels. Thus, it 

shows the overall classification performance, considering both the false positive and false 

negative cases. SN represents the ratio of total number of correctly classified PVS voxels to 

the total number of the true PVSs, and thus shows how many PVSs are not detected by an 

algorithm. On the other hand, PPV presents the ratio of total number of correctly classified 

PVS voxels to the total number of predicted PVS, and thus shows how many outliers are 

detected by an algorithm.

Besides evaluating the segmentation performance with voxel-wise comparison, we also 

perform cluster-wise comparison, since the PVSs can be separated as small thin clusters and 

the number of clusters and their geometric properties (such as volume, length, and thickness) 

are closely related to the brain abnormalities (Maclullich, Wardlaw et al. 2004; Rouhl, van 

Oostenbrugge et al. 2008; Doubal, MacLullich et al. 2010). For this purpose, the cluster-

wise detection ratios are defined as follows. Specifically, we divide both the automated 

segmentation result and its ground-truth into connected clusters, and then count the numbers 

of true positive, false positive, and false negative in terms of clusters. If a part of cluster in 

the automated segmentation result overlaps with a part of cluster in the manual ground-truth, 

we set this cluster as a true positive cluster. On the other hand, if a cluster is in the 

automated segmentation result, but not in the manual ground-truth, we set this cluster as a 

false positive cluster. Similarly, if a cluster is in the manual ground-truth, but not in the 

automated segmentation result, we set this cluster as a false negative cluster. Finally, the 

DSC, SN, PPV scores were calculated from the numbers of true positive, false positive, and 

false negative clusters.

To demonstrate that our proposed method can be used for quantitative study of PVSs, we 

also evaluate the cluster-wise segmentation performance in four sub-regions of the brain 

(i.e., the frontal lobe, parietal-occipital lobe, temporal lobe, and subcortical region), as well 
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as the similarity of geometric properties between the predicted and true PVSs. The 

morphological PVS features extracted from different methods are computed by the volume 

(V), length (L), and diameter (D) of each cluster in the manual ground-truth and in the 

segmentation results by the VT and LNHF methods. Then, we compare these three 

distributions in each sub-region and the entire brain. To measure the length L, we first 

extract the centerline of tubular structure by using a thinning algorithm (Lee, Kashyap et al. 

1994; Kerschnitzki, Kollmannsberger et al. 2013), and then compute the manifold distance 

of the longest path connecting any pair of voxels within the thinned cluster. The diameter D 

of each cluster is calculated as: .

2.5 Simulation

To demonstrate the potential ability of our method against motion artifacts and other 

subcortical lesions, we generate two types of simulation images with motion artifacts and 

lacunes. The motion artifacts are simulated by adding random phase noise to the k-space 

images. Specifically, the magnitude images of the original TSE images are inversely 

transformed with Fourier transformation along all three spatial dimensions to obtain the k-

space images. Then, a random phase shift is applied to each k-space data point. Since the 

phase noise caused by motion is proportional to the product of motion (i.e., head 

displacement) and the zero-order moments of the phase encoding gradients, the phase noise 

at each k-space position is simulated as: , where 

Ny and Nz are the numbers of phase encoding steps along the y (left-right) and z (inferior-

superior) directions, respectively, ny (= 0, 1, … Ny − 1) and nz(= 0, 1, … Nz − 1) are the 

phase encoding step indices, and ay and az are two random numbers from a Gaussian 

distribution with zero mean and standard deviation of 0.4, where the standard deviation is 

proportional to the severity of motion. The value of 0.4 was chosen to achieve motion 

artifact levels comparable to those in typical clinical images. We assume no motion along 

the anterior-posterior direction because our subjects are lying on the back of their heads and 

thus motion along the anterior-posterior direction is less likely to happen. The lacunes are 

simulated by modifying image intensities of voxels near the PVSs. Specifically, we 

randomly select 20% of PVSs in each subject and dilate the masks of selected PVSs using a 

dilation filter with 5 × 5 × 5 voxels (2.0~2.5 mm3). For each dilated region, we compute the 

difference between the mean intensities of the PVS and the dilated region, and then increase 

the intensities of the dilated region with that difference. We apply the IT, VT, LHF, and 

LNHF methods to these two types of simulation images and then compare their voxel- and 

cluster-wise accuracies.

3. Results

3.1 Model Learning and Optimization

We tested six intensity threshold values (250, 300, 350, 400, 450, 500) for the IT method and 

six vesselness threshold values (0.002, 0.003, 0.004, 0.005, 0.006, 0.007) for the VT 

method. The average DSC of the IT method was from 0.12 to 0.34 for the six intensity 

thresholds, and the best DSC was obtained with the threshold value 300. On the other hand, 
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the DSC of the VT method was from 0.37 to 0.52 for the six vesselness thresholds, and the 

best DSC was obtained with the threshold value 0.006. In both the LHF and LNHF methods, 

the segmentation accuracies were gradually improved and then converged as the numbers of 

trees and features increased. Fig. 4 shows the average DSC scores for five sequential 

predictions with the different patch sizes. Fig. 5 shows how the prediction maps and 

segmentation results change with respect to the sequential predictions. When using only the 

appearance features in the first iteration, the DSC was from 0.29 to 0.37 by the LHF method, 

while from 0.51 to 0.56 by the LNHF method. In the fifth iteration, the DSC was from 0.57 

to 0.61 by the LHF method, while from 0.62 to 0.64 by the LNHF method. The best scores 

were obtained with the patch size 7 × 7 × 7 for both methods. Table 3 reports the respective 

average DSC, SN, and PPV scores. It can be observed that our proposed LNHF method 

outperformed all comparison methods in terms of all three scores.

3.2. Model testing

The methods, with the optimal parameters determined by the 6 training images, were then 

applied to the 11 testing images. Since the labels of testing images were created only in the 

right hemisphere, each brain image was first separated into the left and right hemispheres by 

an existing method (Li, Nie et al. 2013). Then, the prediction was conducted on the right 

hemisphere. Table 4 and Fig. 6 show the average (standard deviation) DSC, SN, PPV scores 

and their respective distributions for the voxel-wise segmentation accuracy. Table 5 shows 

the number of PVSs and the DSC, SN, PPV scores of the cluster-wise segmentation 

accuracy. Figs. 7 and 8 show typical examples of qualitative results in both 2D slice views 

and 3D rendering views. Fig. 9 further shows qualitative results on several sagittal slices 

extracted from the subject with large amount of PVSs as shown in the bottom row of Fig. 8.

3.3. Morphological Properties

Table 6 shows the number of PVSs and the cluster-wise segmentation accuracy in the four 

sub- regions and the entire brain. In our testing dataset, 37.5%, 55.5%, 3.4%, and 3.6% of 

PVSs were positioned in the frontal lobe, parietal-occipital lobe, temporal lobe, and 

subcortical region, respectively. Our proposed LNHF method outperformed the other 

methods in almost all sub- regions and entire brain except for the SN score in the parietal-

occipital lobe. Fig. 10 shows the volume (V), length (L), and diameter (D) distributions of 

the predicted and true PVSs in the four sub-regions and the entire brain. Compared to the 

other segmentation methods, the distributions for LNHF resemble more closely to the 

distributions of the ground-truth.

3.4. Simulations

The two types of simulation images are shown in Fig. 11. Tables 7 and 8 provide the DSC, 

SN, and PPV for the voxel-wise and cluster-wise analyses, respectively. For the second 

simulation regarding the impact of lacunes, 11.8%, 22.4%, 2.0%, and 1.6% of lacunes were 

detected as PVSs (false positive) by the IT, VT, LHF, and LNHF methods, respectively. 

Since the simulation images included more ambiguous outliers, the overall performances 

decreased for all of the comparison methods. However, our LNHF method still outperformed 

other comparison methods for the most cases.

Park et al. Page 11

Neuroimage. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Discussion

We compared the segmentation accuracy between our LNHF method and other three 

methods (IT, VT, and LNH). Although the N3 correction method (Sled, Zijdenbos et al. 

1998) was performed to address intensity inhomogeneity in the WM region, it was difficult 

to ensure a consistent intensity distribution for all PVSs. Due to inconsistent intensities of 

PVSs, the IT method could not find a single threshold that was suitable for all testing 

images. Thus, the IT method often either detected many outliers as the PVSs or missed 

many true PVSs. On the other hand, the VT method gave much better and robust results by 

considering the local structure. However, outliers with tubular structures near the boundaries 

between WM and GM were often extracted as PVSs (Figs. 7 and 8). Moreover, thin tubular 

structures (e.g., with the thickness less than 2 voxels) were often not extracted. Compared to 

these thresholding-based methods (IT and VT), the LHF method gave better segmentation 

accuracy by incorporating segmentation contextual patterns into the training of classifiers. 

Nonetheless, the discriminative power of classifier was still limited due to the use of 

inconsistent features. Especially, the accuracy of LHF method with the first classifier was 

often worse than that of VT method, since it was hard to capture the consistent appearance 

patterns of PVSs by using the conventional Haar features. On the other hand, our proposed 

LNHF method outperformed both thresholding-based methods, even using only the 

appearance features. Moreover, it is worth emphasizing that our proposed LNHF method is 

much more robust against the use of different patch size. As shown in the right panel of Fig. 

4, the DSC scores of our proposed LNHF method were comparable with respect to the use 

of different patch size (i.e., 7 × 7 × 7, 9× 9 × 9, 11 × 11 × 11), since our method was able to 

consistently extract Haar features near the tubular centerline.

In both learning-based (LHF and LNHF) methods, many ambiguous PVS voxels were not 

classified as PVSs in the first iteration. Thus, although these two methods obtained the best 

PPV scores with the first classifiers in both training and testing stages (Tables 3 and 4), they 

also had high false negative errors. As a result, the DSC and SN scores in the first iteration 

were much lower than those in the final iteration. As the prediction was repeated iteratively, 

the accuracy of each of these two learning-based methods was progressively improved. 

Specifically, by integrating the contextual features into the training of sequential classifiers, 

the tubular structures were more clearly detected, while many small outlier voxels were 

removed, as shown in Fig. 5. Finally, the false negative errors were significantly reduced in 

the final iteration, while still keeping the comparable PPV score as in the beginning.

Our proposed LNHF method also outperformed all other methods in terms of both the 

subject- and region-wise segmentation accuracies as shown in Tables 5 and 6, respectively. 

Specifically, our method achieved the average DSC gains of 32%, 10%, and 7%, compared 

to the IT, VT, and LHF methods. Note that the VT method identified many ambiguous 

structures as the PVSs, and thus its SN score was slightly higher than our method in the 

parietal-occipital lobe. But its DSC and PPV scores were much lower than our method, due 

to its high false positive errors. Compared to the previous PVS rating scales that were often 

measured by the number of PVS on the partial 2D slices, we found much larger numbers of 

PVS (i.e., a few hundred vs. a few tens), even in the healthy young subjects. We believe that, 

with the optimized imaging sequence and PVS segmentation approaches we have developed, 
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the PVS can be quantified in much greater details (such as obtaining the length, diameter, 

and volume distributions), compared to the previous PVS rating scales.

Regarding the geometric properties (Fig. 10), the VT method often over-segmented the 

PVSs and resulted in many small segments with volumes less than 1 mm3. Since these small 

segments partially overlapped with the true PVSs, the VT method often obtained good SN 

score in terms of the cluster-wise accuracy. However, in terms of voxel-wise accuracy, the 

VT method had high false positive error rates as well as low DSC score because only small 

parts of PVS overlapped with the ground truth. On the other hand, our proposed LNHF 

method could reliably segment the PVSs with various sizes. Compared to the manual 

ground-truth, our method segmented slightly more clusters with short lengths (around 2-3 

mm). This was mainly because of the challenge of accurately segmenting the ending parts of 

PVSs due to their ambiguous appearance as shown in Figs. 5 (e)-(h). However, the overall 

shapes of volume and length distributions were more similar to those of manual ground-

truth, compared to the VT method. The diameters of most predicted and true PVSs were less 

than 1 mm, and there was no significant difference between two methods.

To analyze the tendency of segmentation errors, we further provide the distributions of 

volume, length, and diameter for the true positive, false positive and false negative clusters 

in Fig. 12. As can be seen, the volumes and lengths of most false positive clusters were 

relatively small and short, while the volumes and lengths of most false negative clusters 

were larger than those of false positive clusters, but less than those of true positive clusters. 

The diameters of most false positive and false negative clusters were also thinner than those 

of the true positive clusters. Fig. 12 indicates that most false positive and false negative 

errors of our method occur in very ambiguous cases, such as the PVSs with the short length 

(i.e., less than 2 mm, or 4-5 voxels) and with the thin diameter (i.e., less than 0.8 mm, or 1-2 

voxels). Since these PVSs are similar to some outliers in the WM region, it is often 

ambiguous even for the observers to manually delineate them. On the other hand, most PVSs 

with long length and thick diameter are well classified by our proposed method. Since the 

PVSs are dilated in variable neurological diseases, our method may be especially useful for 

the study of PVS abnormality in such patients.

A potential limitation of our work is that the validations were conducted using the high- 

resolution images obtained from healthy young subjects. It is desirable to apply our method 

to clinical scenarios, where MR images are often acquired with shorter acquisition times 

and/or lower spatial resolution, along with motion artifacts and subcortical lesions (e.g., 
white matter hyperintensities/lacunes). Based on the simulation images, we have 

demonstrated that our method is more robust than other comparison methods for the cases 

with motion artifacts and lacunes (Section 3.4). In clinical populations, subcortical lesions 

such as WM hyperintensities can also coexist with PVSs. However, since such lesions are 

usually more distinct from PVSs than lacunes, our method may be more robust compared to 

the thresholding based methods. Another issue is that the increase of PVS density can make 

the gap between PVSs decrease. Although these effects may increase the ambiguity, we 

expect that our method will be able to learn the related patterns during the classifier learning 

phase, if enough training data with similar patterns are available. Specifically, a potential 

approach is to use cluster-wise information along the tubular centerline of the tentatively-
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segmented PVSs, such as intensity distribution or geodesic distance (Bai and Sapiro 2007), 

to distinguish the complex patterns. Regarding the motion artifacts, the current imaging 

sequence takes about 12 - 13 mins, which would be challenging for elderly subjects and 

patients, which are the target subjects in our future study. For these subjects, we are 

currently exploring different rapid acquisition approaches such as the variable flip angle 

GRASE sequences and compressed sensing image reconstruction. Finally, image resolution 

is another significant issue because it is difficult to acquire the 7T high- resolution images at 

lower fields. Since the contrast-to-noise ratio of image is generally higher at lower resolution 

and our method works well on thin PVS, we expect our approach to be applicable at 

millimeter resolution as well. However, due to the small size of PVS in normal subjects 

(0.13 – 0.96 mm; (Pesce and Carli 1988)), 1 mm resolution is unlikely to provide accurate 

characterization of the PVS morphology, especially in healthy young subjects. We expect 

that our method will be applicable to the lower-resolution images scanned from old subjects 

or patients due to their high density of PVSs. Accordingly, there are still some challenges on 

clinical imaging application of our method on the aging and patient populations such as with 

the focal atrophy, diffuse and punctate WM hyperintensities, loss in WM density, cerebral 

microbleeds and juxtacortical lesions. In the future, we will apply our method to 

quantitatively study the development of PVS abnormality in patients with neurological 

diseases, such as small vessel disease, multiple sclerosis, and Alzheimer’s disease (Doubal, 

MacLullich et al. 2010; Cai, Tain et al. 2015; Kilsdonk, Steenwijk et al. 2015).

5. Conclusion

We have proposed a learning-based method for PVS segmentation. Our method can 

effectively learn the intensity and contextual patterns of PVSs by using the (orientation and 

intensity) normalized Haar features, and train the sequential classifiers using the random 

forest model. Our method outperforms both the thresholding-based methods and a learning-

based method using conventional Haar features. Our method can be used for future 

quantitative studies of PVS morphology which may help illuminate their relationship with 

neurological diseases.
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Figure 1. 
Framework of the proposed PVS segmentation method.
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Figure 2. 
(a) T2-weighted MR image, (b) dilated WM region, (c) vesselness map in the dilated WM 

region, (d) detected PVS ROI map by the vesselness thresholding, (e) PVS classification 

result, and (f) manual ground-truth.
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Figure 3. 
Demonstration of patch alignment and intensity normalization before feature extraction. 

(Top row): The original PVS patches extracted from the T2-weighted image; (Middle row): 

The orientation-aligned patches; (Bottom row): The (orientation and intensity) normalized 

patches.
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Figure 4. 
The average DSC scores for five sequential predictions, with respect to the use of 4 different 

patch sizes. For both LHF and our proposed LNHF methods, their scores were significantly 

improved by the second iteration, and then gradually converged.
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Figure 5. 
Segmentation refinement using the auto-context model. (a) and (e) show MR image and its 

manual ground-truth labels, respectively. (b), (c), and (d) show the prediction maps obtained 

by the first, second, and fifth classifiers, respectively; and (f), (g), and (h) show the 

segmentation results obtained by the prediction maps in (b), (c), and (d), respectively. By 

repeating the prediction steps, the tubular structures become clearer and clearer (as indicated 

by yellow arrows), while small outlier voxels become weaker and weaker (as indicated red 

arrows).
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Figure 6. 
The distributions of DSC, SN, and PPV scores for 11 testing images. The top, center, and 

bottom lines of each box represent the upper quartile, median, and lower quartile scores, 

respectively; and also the upper and lower whiskers represent the maximum and minimum 

scores, respectively.
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Figure 7. 
Qualitative PVS segmentation results by IT, VT, LHF, and LNHF methods (from 2nd to 5th 

columns), with the manual ground-truth (GT) shown in the last column.
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Figure 8. 
The 3D rendering of PVS segmentation results on the sagittal view, for the subjects with 

small amount of PVS (first row), moderate amount of PVS (second row), and large amount 

of PVS (third row), respectively. The results of IT, VT, LHF, and LNHF methods are shown 

from 1st to 4th columns, with the manual ground truth (GT) shown in the last column.
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Figure 9. 
PVS segmentation results in four different sagittal slices (along the inferior-superior 

direction) for the subject with large amount of PVS shown in the last row of Fig. 8. The 

results by the IT, VT, LHF, and LNHF methods are shown from 1st to 4th columns, with the 

manual ground-truth (GT) shown in the last column.
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Figure 10. 
The distributions of PVS volume (left), length (middle), and diameter (right) in the frontal 

lobe (1st row), parietal-occipital lobe (2nd row), temporal lobe (3rd row), subcortical region 

(4th row), and entire region (5th row) of brain. GT, LNHF, and VT denote the manual 

ground-truth (blue), our proposed LNHF (red), and the vesselness thresholding method 

(green), respectively.
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Figure 11. 
Typical 2D slice views from the two types of simulation images (top) and their segmentation 

results (bottom). The slice views from an original image and its corresponding images with 

simulated motion artifact and simulated lacunes are shown in the left, middle, and right, 

respectively.
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Figure 12. 
The distributions of PVS volume (a), length (b), and diameter (c) for the true positive (TP), 

false positive (FP), and false negative (FN) clusters, respectively.
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Table 1

The MR acquisition parameters of T1- and T2-weighted images.

VFA-TSE (Resolution 1) VFA-TSE (Resolution 2) MP2RAGE

TE (ms) 457 319 1.89

TR (ms) 5000 5000 6000

Matrix size 448*362*288 512*404*208 308*304*256

Resolution (mm3) 0.48*0.48*0.50 0.41*0.41*0.40 0.65*0.65*0.65

FOV (cm3) 21.5*17.4*14.4 21.0*16.7*8.3 20.0*19.7*16.6

FA (degree) Variable Variable 4 (TI1), 4 (TI2)

Slice orientation Axial Axial Sagittal

TI (ms) N.A N.A. 800/2700

GRAPPA factor 3 (PE1) 3 (PE1) 3 (PE1)

Bandwidth (Hz/Pixel) 700 349 290

Number of average 1 1 1

TA (min) 12:25 13:00 9:42
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Table 2

PVS classification

PVS present PVS absent

PVS detected True Positive (TP) False Positive (FP)

PVS not detected False Negative (FN) True Negative (TN)
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Table 3

The average (standard deviation) of DSC, SN, and PPV scores for six fully-labeled images. (Iter. 1) denotes 

the prediction using the first classifier, while (Iter. 5) denotes the prediction using the fifth classifier. The best 

scores are highlighted as boldface.

IT VT
LHF LNHF

(Iter.1) (Iter.5) (Iter.1) (Iter.5)

DSC 0.34 (0.09) 0.52 (0.05) 0.40 (0.07) 0.61 (0.04) 0.55 (0.05) 0.64 (0.04)

SN 0.32 (0.16) 0.54 (0.16) 0.28 (0.08) 0.57 (0.09) 0.47 (0.09) 0.59 (0.08)

PPV 0.46 (0.13) 0.56 (0.12) 0.72 (0.05) 0.71 (0.06) 0.74 (0.07) 0.73 (0.07)
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Table 4

The average (standard deviation) of DSC, SN, and PPV scores for 11 testing images. (Iter. 1) denotes the 

prediction result using the first classifier, while (Iter. 5) denotes the prediction result using the fifth classifier. 

The best scores are highlighted as boldface.

IT VT
LHF LNHF

(Iter.1) (Iter.5) (Iter.1) (Iter.5)

DSC 0.35 (0.11) 0.54 (0.06) 0.44 (0.09) 0.56 (0.09) 0.58 (0.06) 0.63 (0.05)

SN 0.36 (0.15) 0.48 (0.08) 0.32(0.09) 0.51 (0.12) 0.52 (0.08) 0.59 (0.08)

PPV 0.43 (0.22) 0.64 (0.08) 0.72 (0.07) 0.67 (0.07) 0.67 (0.05) 0.68 (0.06)
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Table 7

The voxel-wise segmentation accuracy for the simulation images with motion artifacts (simulation 1) and 

lacunes (simulation 2). The best scores are highlighted as boldface.

IT VT
LHF LNHF

(Iter.1) (Iter.5) (Iter.1) (Iter.5)

Simulation
1

DSC 0.27 (0.12) 0.46 (0.06) 0.26 (0.08) 0.44 (0.09) 0.46 (0.07) 0.52 (0.06)

SN 0.27 (0.09) 0.38 (0.06) 0.17 (0.06) 0.36 (0.11) 0.37 (0.07) 0.48 (0.08)

PPV 0.36 (0.22) 0.58 (0.10) 0.58 (0.09) 0.57 (0.08) 0.58 (0.08) 0.57 (0.07)

Simulation
2

DSC 0.29 (0.10) 0.46 (0.05) 0.41 (0.10) 0.51 (0.09) 0.52 (0.06) 0.57 (0.05)

SN 0.29 (0.08) 0.47 (0.06) 0.32 (0.10) 0.48 (0.13) 0.46 (0.09) 0.55 (0.10)

PPV 0.31 (0.16) 0.47 (0.06) 0.56 (0.06) 0.56 (0.07) 0.56 (0.05) 0.58 (0.07)
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Table 8

The cluster-wise segmentation accuracy for the simulation images with motion artifacts (simulation 1) and 

lacunes (simulation 2). The best scores are highlighted as boldface.

IT VT
LHF LNHF

(Iter.1) (Iter.5) (Iter.1) (Iter.5)

Simulation
1

DSC 0.31 (0.12) 0.53 (0.06) 0.52 (0.09) 0.54 (0.08) 0.62 (0.05) 0.63 (0.05)

SN 0.38 (0.11) 0.55 (0.08) 0.42 (0.12) 0.46 (0.12) 0.57 (0.08) 0.58 (0.08)

PPV 0.34 (0.22) 0.53 (0.12) 0.73 (0.12) 0.70 (0.09) 0.70 (0.10) 0.70 (0.08)

Simulation
2

DSC 0.31 (0.14) 0.51 (0.06) 0.58 (0.06) 0.59 (0.08) 0.64 (0.04) 0.67 (0.06)

SN 0.42 (0.11) 0.61 (0.08) 0.57 (0.13) 0.57 (0.14) 0.65 (0.10) 0.64 (0.12)

PPV 0.28 (0.17) 0.45 (0.09) 0.63 (0.09) 0.66 (0.09) 0.65 (0.10) 0.72 (0.08)

Neuroimage. Author manuscript; available in PMC 2017 July 01.


	Abstract
	1. Introduction
	2. Materials and Method
	2.1. Experimental details
	2.2. Generation of ground-truth PVS mask
	2.3. Learning-based PVS extraction
	2.3.1. Classifier learning
	2.3.2. PVS prediction

	2.4 Comparison with other approaches
	2.5 Simulation

	3. Results
	3.1 Model Learning and Optimization
	3.2. Model testing
	3.3. Morphological Properties
	3.4. Simulations

	4. Discussion
	5. Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8

