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Abstract

The purpose of categorization is to identify generalizable classes of objects whose members can be 

treated equivalently. Within a category, however, some exemplars are more representative of that 

concept than others. Despite long-standing behavioral effects, little is known about how typicality 

influences the neural representation of real-world objects from the same category. Using fMRI, we 

showed participants 64 subordinate object categories (exemplars) grouped into 8 basic categories. 

Typicality for each exemplar was assessed behaviorally and we used several multi-voxel pattern 

analyses to characterize how typicality affects the pattern of responses elicited in early visual and 

object-selective areas: V1, V2, V3v, hV4, LOC. We found that in LOC, but not in early areas, 

typical exemplars elicited activity more similar to the central category tendency and created 

sharper category boundaries than less typical exemplars, suggesting that typicality enhances 

within-category similarity and between-category dissimilarity. Additionally, we uncovered a brain 

region (cIPL) where category boundaries favor less typical categories. Our results suggest that 

typicality may constitute a previously unexplored principle of organization for intra-category 

neural structure and, furthermore, that this representation is not directly reflected in image features 

describing natural input, but rather built by the visual system at an intermediate processing stage.
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1. INTRODUCTION

The purpose of categorization is to identify generalizable classes of objects whose members 

can be treated equivalently. Within a category, however, some exemplars are more 

representative of that concept than other members of the same category. This typicality 

effect usually manifests behaviorally as increased speed of recognition, as well as lower 

error rates for verifying category membership of the more typical item (Posner and Keele 

1968; Rosch 1973; Rosch and Mervis 1975). Despite well-studied behavioral effects, little is 

known about how typicality influences the neural representation of objects from the same 

category: for example, why are some dog exemplars more representative of the category 

“dog” than others and where can we find evidence for this distinction in the brain?

Previous investigations of the neural basis for typicality have employed category learning 

paradigms over artificially constructed categories (Aizenstein et al. 2000; Zeithamova et al. 

2008; Davis et al. 2012a, 2012b; Davis and Poldrack 2014). By contrast, our environment 

contains tens of thousands of distinct object categories (Biederman 1987; Deng et al. 2009). 

Furthermore, considerable evidence suggests that perceived typicality is reflected in how fast 

and how accurately we perceive many such real-world objects and categories (Posner and 

Keele 1968; Rosch 1973; Rosch and Mervis 1975). Thus, the overarching goal of our 

present work is to investigate how the typicality of real-world object categories affects their 

representation in human visual cortex.

Many theories and cognitive models have been proposed for the instantiation of typicality as 

a dimension of object representation in human categorization (for reviews, see e.g. Ashby 

and Maddox 1993, 2005; Minda and Smith 2002; Abbott et al. 2012), however, a clear 

neural correlate of these models has yet to be identified. Nevertheless, in virtually all such 

models, distinct objects are defined as points in a multidimensional psychological space and 

similarity (in terms of features or properties) between such items belonging to the same or 

different categories represents the defining characteristic by which typicality (and 

categorization itself) is instantiated. In the spirit of this observation, we set out to test one of 

the earliest and most fundamental hypotheses regarding the instantiation of typicality 

relationships between exemplars in a given category: the family resemblance hypothesis first 

put forward by Rosch and Mervis (Rosch and Mervis 1975). Their proposed model states 

that highly typical members of a category are those that share most features in common with 
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other members of that category (i.e. a typical subordinate level exemplar, such as a Golden 

Retriever, is highly representative of the basic level category ‘dog’), while simultaneously 

sharing the fewest features in common with other categories in a similar semantic space (i.e. 

with other basic level categories within the same superordinate category; e.g. Golden 

Retrievers would share very few features in common with cats).

Investigating hypotheses such as this one is challenging in the real-world domain mainly 

because the sheer number of categories in our environment is estimated to be in the tens of 

thousands (Biederman et al. 1987) and because controlling for the features of natural visual 

stimuli is notoriously difficult. In our present experiment, we put forward the first attempt to 

push beyond small-scale, artificial, hand-designed datasets for investigating how typicality 

modulates neural representations by leveraging a large-scale taxonomically structured image 

database (ImageNet, Deng et al. 2009), along with employing a method for obtaining high-

throughput behavioral rankings (the Amazon Mechanical Turk platform). As such, we are 

now able to test directly whether brain regions exist where the family resemblance 

hypothesis represents a guiding principle for the neural intra-class organization of a large set 

of real-world object categories and, furthermore, compare this organization against the 

corresponding low-level visual feature representation of the over one thousand images we 

used as stimuli in our study.

To this end, we performed a passive viewing fMRI experiment in which participants viewed 

color photographs from 64 subordinate level object categories grouped into 8 basic level 

categories. The typicality of each subordinate category (hitherto referred to as an 

“exemplar”) within its corresponding basic category (hitherto referred to as a “category”) 

was ranked behaviorally. The family resemblance model was originally defined using a 

semantic feature space: e.g. the category ‘dog’ is exemplified by features such as ‘has-tail’, 

‘wags-tail’, and ‘is-furry’; and an exemplar which possesses more of these features would be 

rated as more typical. Although Rosch’s family resemblance hypothesis has been well 

received, it has been difficult to find definitive evidence for it primarily because the feature 

space used by the brain is unknown. Here, we set out to investigate this question in the 

domain of neural activation patterns, where we can remain agnostic as to the nature of the 

feature spaces, semantic or otherwise, in which object categories are represented. Multi-

voxel pattern analyses allow us to characterize the similarity between neural patterns elicited 

by these categories throughout human visual cortex, without making any explicit 

assumptions regarding the building blocks of the feature spaces themselves. As such, we 

found that in object-selective regions of occipito-temporal cortex, but not in early visual 

areas, typical exemplars were more similar to the central tendency of the category and 

created significantly sharper category boundaries than less typical exemplars, suggesting that 

typicality enhances category cohesion (within-category similarity) and category 

distinctiveness (between-category dissimilarity). Thus, we present the first evidence that 

typicality modulates neural representations of real-world object categories in object-selective 

cortex in a manner consistent with the family resemblance hypothesis. Interestingly, using a 

whole-brain analysis, we also uncovered the first evidence of a brain region where category 

boundaries favor less typical categories (cIPL). Taken together, these findings suggest that 

the two extremes of the behavioral typicality continuum may simultaneously exert separate 

influence on the neural representation of real-world object categories across human visual 
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cortex, and moreover, that typicality may constitute a previously unexplored principle of 

organization for intra-category neural structure, one that is likely built by the visual system 

at an intermediate processing stage, rather than inherited from low-level features of our 

input.

2. MATERIALS AND METHODS

2.1 Constructing a Behaviorally-Normed Category Set

The goal of our experiment was to test the family resemblance hypothesis (Rosch and 

Mervis 1975) which posits that highly typical members of a category share the most features 

in common with other members of that category, while simultaneously sharing the fewest 

features in common with members of semantically related categories. To test this model 

appropriately, we required a set of basic level categories (e.g. dog, car), each comprising 

multiple subordinate level categories (exemplars, e.g. Chihuahua, sedan) for which perceived 

typicality could be assessed behaviorally.

In our experiment, we started with a four-tiered taxonomic hierarchy comprising the 

following putative levels: two domain level categories (natural, man-made), four 

superordinate level categories (animals, plants, musical instruments, vehicles), sixteen basic 

level categories (e.g. bird, cat, dog, fish for ‘animals’), and one hundred and twenty-eight 

subordinate level categories (e.g. Chihuahua, stealth plane, parsley). Subsequently, we 

assessed the entry levels in each of our four superordinate tiers. We performed a match-to-

category behavioral experiment in which we asked participants to verify whether each image 

belonged to its subordinate, basic, superordinate, or domain level category. We found that, of 

our four putative superordinate categories, ‘animals’ and ‘vehicles’ were the only ones who 

adhered strongly to the putative hierarchy, whereas plants and musical instruments varied 

across disparate taxonomic tiers and, for some of their categories, the basic level was 

situated either at a more general or more specific tier than their putative designation (e.g. 

putative basic levels ‘wind instruments’, ‘string instruments’, ‘garden plants’ closer to 

superordinate level; putative superordinate level ‘plants’ closer to basic level; putative 

superordinate ‘musical instruments’ closer to domain level; see Supplementary Material and 

Supplementary Figs. S1 & S2). Therefore, to maintain a consistent, verified hierarchy, we 

selected a subset of our original dataset comprising eight basic level categories (dogs, cats, 

birds, fish; cars, boats, planes, trains) and sixty-four subordinates (eight for each basic 

category, e.g. Chihuahua, stealth plane, etc.). This hierarchy has the added advantage that it 

contains equal numbers of natural/animate and man-made/inanimate categories, a distinction 

known to affect representations of object categories in human visual cortex (Connolly et al. 

2012; Konkle & Caramazza 2013).

Subsequently, we used ImageNet (Deng et al. 2009) to collect 16 distinct images containing 

objects of interest from each of our sixty-four subordinate level categories; i.e. if the 

subordinate category is pugs, then we showed 16 distinct photographs of pugs. Pictures were 

cropped to feature the objects prominently and centrally within a square region (400 × 400 

pixels in size) and included their natural background. Within each subordinate category, the 

images varied greatly in color and pose. Representative images from each of our 64 

categories are shown in Fig. 1.
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2.2 Behavioral Experiment: Typicality Rankings

2.2.1 Participants and Materials—40 participants were recruited on Amazon’s 

Mechanical Turk platform (AMT) from a pool of trusted US-based participants with at least 

2,000 previously accepted AMT results at a minimum of 98% approval. Participants 

completed the study from their own personal computing device.

2.2.2. Experimental Procedures—Each of the AMT hits contained 28 trials comprising 

each possible pairwise comparison between the eight subordinate categories within a 

particular basic category. In each trial, participants viewed a randomly drawn image from 

two subordinate categories and were asked to indicate by clicking which image was the most 

typical of its corresponding basic category. Ten individual participants ranked each basic 

category, with each participant ranking a median of six basic level categories overall. 

Participants were compensated $0.50 per hit and each hit took an average of 88 seconds to 

complete.

2.2.3 Data Analysis—Pairwise typicality rankings for the eight subordinates in each basic 

category were obtained. We computed the percentage of times each subordinate was chosen 

as the more typical item in a pair and used this quantity to order subordinates according to 

their typicality in each basic category independently. We also recorded a high value for the 

inter-subject reliability of the collected typicality rankings (75% ± 2%, mean ± s.e.m.; see 

Supplementary Fig. S3).

2.3 fMRI Experiment

2.3.1 Participants—12 volunteers (2 females, ages 24 – 32, including authors M.C.I. and 

M.R.G.) with no past history of psychiatric or neurological disorders and normal or 

corrected-to-normal vision participated in this experiment. Participants gave informed 

written consent in compliance with procedures approved by the Stanford University 

Institutional Review Board. Except for the participating authors, all subjects received 

financial compensation. One participant was subsequently rejected from our analyses due to 

our inability to satisfactorily identify their regions of interest using the localizer scanning 

procedures detailed in the corresponding section below.

2.3.2 Scanning Parameters and Preprocessing—Imaging data were acquired with a 

3 Tesla G.E. Healthcare scanner. A gradient echo, echo-planar sequence was used to obtain 

functional images (volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip angle, 80°; 

matrix, 128×128 voxels; FOV, 20 cm; 29 oblique 3 mm slices with 1 mm gap; in-plane 

resolution, 1.56×1.56mm). We also collected a high-resolution (1×1×1mm voxels) structural 

scan (SPGR; TR, 5.9 ms; TE, 2.0 ms; flip angle, 11°) in each scanning session. The 

functional data were spatially aligned to compensate for motion during acquisition and each 

voxel’s intensity was converted to percent signal change relative to the temporal mean of 

that voxel using the AFNI software package (http://afni.nimh.nih.gov/afni). To perform our 

analyses, we computed the average voxel activity for each block. We did not perform any 

smoothing.
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2.3.3 Experimental Procedure—Images were presented centrally subtending 21°x21° 

visual angle and were superimposed on an equiluminant gray background. We used a back-

projection system (Optoma Corporation) operating at a resolution of 1024×768 pixels at 75 

Hz. Participants performed 2 sessions, 8 runs each, with 16 blocks per run and 8 images per 

block. Each block consisted of a 500 ms fixation cross presented centrally, followed by 8 

consecutive stimulus presentations from the same subordinate level category, with a 12 s gap 

between the blocks. Each image was presented for 160 ms, followed by a 590 ms blank gray 

screen. Subjects were asked to maintain fixation at the center of the screen, and respond via 

button-press whenever an image was repeated (one-back task, 0–2 repetitions per block). 

Over the course of the experiment, each participant viewed 2 blocks from each of the 

subordinate level categories. The order of blocks, the number of repetitions in each block, 

and the images in each block were counter-balanced across runs and between subjects. The 

experiment was implemented in MATLAB (www.mathworks.com), using the Psychophysics 

toolbox extension (Brainard 1997; Pelli 1997).

2.3.4 Regions of Interest (ROIs)—The positions and extents of each participant’s lateral 

occipital complex (LOC) were obtained using standard localizer runs conducted in a 

separate fMRI session. Participants completed two runs, each with 12 blocks drawn equally 

from six categories: child faces, adult faces, indoor scenes, outdoor scenes, objects (abstract 

sculptures with no semantic meaning), and phase-scrambled objects. Blocks were separated 

by 12 s fixation cross periods and comprised 12 image presentations, each of which 

consisted of images presented for 900 ms, followed by a 100 ms fixation cross. Each image 

was presented exactly once, with the exception of two images during each block that were 

repeated twice in a row. Subjects were asked to maintain fixation at the center of the screen 

and respond via button press whenever an image was repeated. To avoid any issues related to 

intrinsic variability in signal reliability across our participant pool, we selected fixed-volume 

ROIs across all our participants. The volume of LOC in mm3 was chosen conservatively, 

based on sizes previously reported in the literature, accounting for resolution differences 

between studies (Golarai et al. 2007; Walther et al. 2009; Iordan et al. 2015). Accordingly, 

LOC was defined as the top 500 voxels bilaterally near the inferior occipital gyrus that 

responded to an Objects > Scrambled Objects GLM contrast.

To determine the locations of early visual areas V1, V2, V3v, and hV4, we used a standard 

retinotopic mapping protocol in a separate experiment, in which a checkerboard pattern 

undergoing contrast reversals at 5 Hz moved through the visual field in discrete increments 

(Sayres and Grill-Spector 2008). First, a wedge subtending an angle of 45° from fixation 

was presented at 16 different polar angles for 2.4 seconds each. Next, an annulus subtending 

3° of visual angle was presented at 15 different radii for 2.4 seconds each. Each subject 

passively observed two runs of 6 cycles in each condition, yielding 512 timepoints per 

subject. The locations and extents of early visual areas were delineated on a flattened 

cortical surface for each subject, using a horizontal vs. vertical meridian general linear test, 

which gave the boundaries between retinotopic maps.

We aligned the positions of the ROIs to the experimental sessions using the AFNI software 

package (http://afni.nimh.nih.gov/afni), by first aligning the structural scans between 

sessions with sub-millimeter precision, and then applying the alignment transformation to 
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the ROI positions. Percent signal change was then extracted for each voxel in each ROI and 

these vectors were submitted to the similarity analyses described next.

2.4 fMRI Data Analysis

2.4.1 Correlation Advantage—First, we assessed whether the most or the least typical 

exemplars in each category were more similar to the central category tendency. To this end, 

for each basic category, we used the average neural patterns of all exemplars as a proxy for 

the central category tendency representation. This definition is similar to that of a putative 

prototype for that category (Sigala and Logothetis, 2002). We then computed the correlation 

(Pearson’s r) between this category central tendency, on the one hand, and the most and least 

typical subordinates in each basic category, on the other hand. We hypothesized that if the 

family resemblance hypothesis is upheld, then the most typical subordinate will be more 

similar (correlated in its elicited pattern of activation) to the central category tendency than 

the least typical subordinate. Additionally, we computed a version of this analysis where we 

omitted from the computation of the central tendency the most typical and least typical 

exemplars (leaving only the six middle-typicality exemplars in each category). Results were 

similar, regardless of the method used to compute the central category tendency. Throughout 

our analyses, we chose to focus on Pearson correlation as a straightforward, scale-invariant 

measure of similarity of neural patterns, which has the ability to normalize across 

differences in mean activation level between stimuli and is therefore less susceptible to such 

variation across a large set of object categories.

2.4.2 Category Boundary Effect—Next, we assessed whether typical exemplars share 

fewer features in common with other categories than less typical exemplars. Here, we refer 

to neural features (as measured by voxel activity levels) and we make no assumption that the 

features are semantic or otherwise (Clarke and Tyler 2014), only that multi-voxel patterns 

reflect some underlying feature space. By measuring similarity of brain activity patterns we 

aim to bridge the gap between the two types of features, positing that similarity in one 

descriptive space (voxels) is a good proxy for similarity in the other (internal feature 

representation). We hypothesized that if this is the case, then categories defined solely by 

relatively higher typicality exemplars would be more distinguishable from one another than 

categories comprising only less typical exemplars. To this end, for each ROI and each 

subject, we split our dataset into two halves comprising the four most typical and four least 

typical exemplars, respectively, from each category. We then computed a category boundary 

effect measure separately for each of the two halves of our dataset. We defined the category 

boundary effect identically to previous work (Kriegeskorte et al. 2008; Iordan et al. 2015) as 

the difference between within-category similarity and between-category similarity, averaged 

across all categories considered. For each basic level category, we computed within-category 

similarity as the average correlation (Pearson’s r) between neural patterns elicited by within-

category pairs of blocks (e.g. for ‘dogs’, this quantity is defined as the average correlation 

between voxel activations for any two blocks where any type of dog was shown). Similarly, 

we computed between-category similarity as the average correlation between neural patterns 

elicited by between-category pairs of blocks across basic level categories (e.g. for ‘dogs’, 

this quantity is defined as average correlation between voxel activations for a block where 

dogs were shown and another block where, for example, planes were shown). We performed 
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each of these analyses for each subject and ROI separately. We used this measure to quantify 

how well categories are separated in the neural space of representation, given their 

behavioral typicality.

2.4.3 Low-Level Feature Analysis—To show that the effects in the correlation 

advantage and category boundary effect analyses above, are not solely due to low-level 

image features, we also performed analogous computations for image descriptor features 

extracted from our stimulus images: LAB color histograms, GIST (Oliva and Torralba 

2001), and multi-scale Gabor wavelet features (Kay et al. 2008). Color histograms were 

represented using LAB color space. For each image, we created a two-dimensional 

histogram of the a* and b* channels using 64 bins per channel. We then averaged these 

histograms over each of the 16 distinct stimuli in each subordinate category, such that each 

subordinate was represented as a 4,096-length vector representing the averaged colors its 

corresponding images. For GIST, we used the descriptor features first proposed by Oliva and 

Torralba (Oliva and Torralba 2001). This model provides a summary statistic representation 

of the dominant orientations and spatial frequencies at multiple scales coarsely localized on 

the image plane. We used spatial bins at 4 cycles per image and 8 orientations at each of 4 

spatial scales for a total of 3.072 filter outputs per image. We averaged the GIST descriptors 

for each of the 16 distinct stimuli in each subordinate category to arrive at a 3,072-

dimensional representation of each of our 64 subordinates. For wavelet features, we 

represented each image in our stimulus set as the output of a bank of multi-scale Gabor 

filters. This type of representation has been used to successfully model the representation in 

early visual areas (Kay et al. 2008). Each image was converted to grayscale, downsampled 

to 128 by 128 pixels, and represented with a bank of Gabor filters at three spatial scales (3, 

6, and 11 cycles per image with a luminance-only wavelet that covers the entire image), four 

orientations (0, 45, 90, and 135 degrees), and two quadrature phases (0 and 90 degrees). An 

isotropic Gaussian mask was used for each wavelet, with its size relative to spatial 

frequency, such that each wavelet has a spatial frequency bandwidth of one octave and an 

orientation bandwidth of 41 degrees. Wavelets were truncated to lie within the borders of the 

image. Thus, each image is represented by 3*3*2*4+6*6*2*4+11*11*2*4 = 1,328 total 

Gabor wavelets. We created the wavelet representation of each of our 64 subordinate 

categories by averaging over the representation of the 16 distinct images associated with 

each of them.

2.4.4 Whole-Brain Searchlight Analysis—For each participant’s brain, we extracted 

all grey matter voxels and placed a sphere of radius 4 voxels at every other voxel location 

(step size: 2 voxels). We excluded all locations where half or more of the voxels in the 

proposed cube did not overlap with grey matter. For each cube, we computed a local 

category boundary effect (CBE) for responses to the most typical and the least typical half of 

our dataset, similar to the analysis procedure described above. We then used these values to 

identify brain regions where category boundaries were stronger between more typical 

categories (More Typical Half CBE > Less Typical Half CBE) and vice versa (More Typical 

Half CBE < Less Typical Half CBE). Individual subject results were transformed into group 

space by aligning to the Talairach atlas and averaging the aligned maps together. To establish 

statistical significance for our results, we thresholded the group maps for each analysis by 
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using a false discovery rate (FDR) of 0.05, which was determined by computing 1,000 

simulated group maps, obtained by permuting the category labels without replacement in 

each voxel cube searchlight.

2.5 Statistical Analyses

For all our experiments, we used paired two-tailed t-tests when comparing observed effects 

against chance and when establishing whether a significant difference exists between two 

observed effects. We used Kolmogorov-Smirnov tests to establish that no significant 

deviation from normality exists for the distributions of all effects to which t-tests were 

applied. All statistical tests were implemented in MATLAB.

3. RESULTS

3.1 Typical Exemplars Are More Neurally Similar to Category Central Tendency

Using two separate behavioral experiments (see Materials and Methods), we established a 

dataset of eight verified basic level categories (4 natural/animate and 4 man-made/

inanimate), each of which comprised eight subordinate level categories normed according to 

their typicality. Henceforth, we will use the term ‘category’ to refer to one of our eight basic 

level categories and the term ‘exemplar’ to refer to one of our sixty-four subordinate level 

categories. To investigate whether the family resemblance hypothesis is upheld in visual 

cortex neural patterns of activation, we scanned participants viewing our sixty-four 

exemplars (16 visually different images per exemplar, see Materials and Methods). Since 

psychological representations of categories are influenced by factors such as task, learning, 

and attention (Nosofsky 1992; Love 2005; Harel et al. 2014), we asked participants to 

perform a one-back repetition task in the scanner (i.e. no explicit categorization or typicality 

judgment task) used solely to ensure they maintained alertness during the experiment. Our 

analyses focused on object-selective cortex (lateral occipital complex (LOC)) and early 

visual areas (V1, V2, V3v, hV4).

First, we assessed the intra-class component of the family resemblance hypothesis, namely 

that more typical exemplars in a category share more features in common with the central 

category tendency that do atypical exemplars. To test this, within each of our eight 

categories, we compared how similar (using Pearson’s r) the most typical and least typical 

exemplars were to the central category tendency, defined here by averaging together the 

neural patterns corresponding to all exemplars in each category. This definition is similar to 

that of a putative prototype for that category (Sigala and Logothetis 2002).

Here, we hypothesized that if family resemblance provides a good model for the 

organization of neural patterns of activation elicited by real-world objects with respect to 

their typicality, then more typical items should sit closer to the center of this space and hence 

be more similar to the central category tendency, than the atypical exemplars. Indeed, we 

found that highly typical exemplars were by far more similar to the category average than 

less typical exemplars in object-selective cortex (i.e. LOC), but not in early visual areas (Fig. 

2; LOC: high > low t(10)=3.8, p=0.003; V1: high > low t(10)<1, p=0.491; V2: high > low 

t(10)=1.3, p=0.228; V3v: high > low t(10)<1, p=0.468; hV4: high > low t(10)=1.2, 
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p=0.261). Additionally, these results replicate using a version of the analysis where we 

omitted from the computation of the central tendency the most typical and least typical 

exemplars (leaving only the six middle-typicality exemplars in each category, see 

Supplementary Fig. S4). Interpreted differently, an equivalent prediction of the family 

resemblance hypothesis is that the degree of similarity of each subordinate within a basic 

category to the most typical subordinate in that category should consistently decrease with 

the typicality rating given to that particular subordinate. Indeed, we found that this 

alternative prediction mirrors our results above: similarity is highest between the two most 

typical subordinates within a basic category and drops successively as typicality for a given 

subordinate decreases (see Supplementary Fig. S5). Together, these findings show that intra-

class structure of real-world categories is consistent with the family resemblance hypothesis 

in LOC and provides evidence that the representation of object categories shares key 

properties in common with prototype- and norm-based representations (see e.g. Sigala et al. 

2002; Leopold et al. 2006; Abbott et al. 2012).

To show that the effects we observed cannot be explained solely on the basis of the low-level 

properties of the stimuli themselves, we replicated our similarity analysis using several sets 

of descriptor features extracted from our images: LAB color histograms, GIST (Oliva and 

Torralba 2001), and multi-scale Gabor wavelet features (Kay et al. 2008) (see Materials and 

Methods for details on how each of the features was computed). We found that all features 

show similar numerical correlations between the most typical and least typical exemplars 

with the central category tendency. Additionally, for GIST and wavelet features, we saw an 

opposite pattern to our LOC results, namely that correlation with the central category 

tendency was numerically higher for exemplars ranked as less typical (GIST high r=0.86, 

low r=0.84; Wavelet: high r = 0.60, low r = 0.64; Color: high r=0.88, low r=0.84). For color 

histograms, a small trend is observed for typical exemplars to be more correlated with the 

central category tendency, however this trend disappears (and in fact reverses) when 

excluding the most and the least typical exemplars from the computation of the central 

category tendency (middle-six exemplars analysis: GIST: high r=0.87, low r=0.89; Wavelet: 

high r=0.54, low r=0.60; Color: high r=0.91, low r=0.93; see Supplementary Fig. S4). 

Overall, this implies that low-level features alone cannot fully account for the pattern of 

results we observe in object-selective cortex, and further suggests that the human visual 

system likely constructs (or, at the very least, strongly amplifies) feature descriptions of our 

visual input that correlate with behavioral typicality judgments later on.

3.2 Typical Exemplars Exhibit Stronger Inter-Category Boundaries

We saw that typicality is correlated with how similar an exemplar is to its central category 

tendency. Next, we investigated whether typicality affects the second dimension of the 

family resemblance hypothesis: are typical exemplars more dissimilar to other categories 

than atypical ones? We hypothesized that if this is the case, then categories defined solely by 

relatively higher typicality exemplars would be more distinguishable from one another than 

categories comprising only less typical exemplars. As such, we split our dataset into to 

halves, corresponding to the most typical and least typical exemplars from each category. 

We subsequently computed the category boundary effect (Kriegeskorte et al. 2008; Iordan et 

al. 2015) for each of the two halves of the dataset as the difference between within-category 
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similarity and between-category similarity, averaged across our eight basic level categories. 

We predicted that if the family resemblance hypothesis holds, then the category boundary 

effect would be stronger when computed on the half of the dataset comprising the four most 

typical exemplars from each category than when computed on the half of the dataset 

consisting of the least typical four exemplars from each category. Using this measure of how 

separable categories are in the space of neural patterns of activation, we found that typical 

exemplars are more easily distinguishable than less typical exemplars in object-selective 

cortex (Fig. 3; LOC: most typical > least typical, t(10)=3.0, p=0.013). By contrast, typicality 

does not modulate how separable categories are in the space of neural activations in early 

visual areas (V1: most typical > least typical, t(10)<1, p=0.597; V2: most typical > least 

typical, t(10)=1.5, p=0.167; V3v: most typical > least typical, t(10)=1.1, p=0.298; hV4: most 

typical > least typical, t(10)=1.9, p=0.092).

Analogously to our previous analysis, we asked whether low-level features of our stimulus 

set are sufficient to explain the pattern of results we observed in object-selective cortex. 

Accordingly, we computed the category boundary effect on feature descriptors (LAB color 

histograms, GIST, and multi-scale Gabor wavelet features) extracted from the most typical 

half and least typical half of our dataset. For all of our feature representations, we found an 

opposite effect to the one present in LOC: numerically more pronounced category 

boundaries for the less typical half of our dataset, compared to the most typical half (high vs. 

low category boundary: Color 0.09 vs. 0.14; GIST 0.13 vs. 0.14; Wavelet 0.27 vs. 0.32). 

These results, together with the finding that category boundaries are identical in early visual 

areas for the two halves of our dataset, provide evidence that it is unlikely that low-level 

features are directly responsible for the emergence of the typicality effect we observe in 

object-selective regions. In short, this suggests that typical exemplars become more 

separated in their neural representation in LOC, and that this effect is not purely driven by 

the visual appearance of our exemplars and categories, but instead is a direct result of 

sequential processing along the ventral visual stream.

Finally, the category boundary effect is a compound measure that relies on both within-

category similarity (category cohesion) and between-category dissimilarity (category 

distinctiveness) (Kriegeskorte et al. 2008; Iordan et al. 2015). To investigate the 

contributions of each of these components of category representation on the strength of the 

typicality effect we observed, we computed these measures separately for our two halves of 

the dataset comprising the most and least typical categories, respectively. In all visual areas, 

we observed no significant differences in cohesion or distinctiveness between the two halves 

of our dataset (cohesion: LOC: most typical > least typical, t(10)=1.7, p=0.120; V1: most 

typical > least typical, t(10)<1, p=0.564; V2: most typical > least typical, t(10)=1.5, 

p=0.153; V3v: most typical > least typical, t(10)<1, p=0.631; hV4: most typical > least 

typical, t(10)<1, p=0.763; distinctiveness: LOC: most typical > least typical, t(10)<1, 

p=0.736; V1: most typical > least typical, t(10)<1, p=0.735; V2: most typical > least typical, 

t(10)<1, p=0.537; V3v: most typical > least typical, t(10)<1, p=0.760; hV4: most typical > 

least typical, t(10)=-1.2, p=0.247). Considering our main finding that a significant difference 

exists between category boundaries elicited by more and less typical exemplars in LOC, the 

lack of a significant effect for cohesion and distinctiveness suggests that neither within-

category similarity, nor between-category similarity differences drive our effects on their 
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own, but rather it is their combined effect (difference) that separates typical and atypical 

exemplars in this brain region.

An analogous prediction of this second aspect of the family resemblance hypothesis 

indicates that if typical subordinates are indeed more separable from other categories, then 

they should sit farther from a putative fixed category boundary between two basic categories 

compared to less typical categories. Indeed, a separate analysis that defined fixed support-

vector-machine (SVM) boundaries between every pair of basic categories indicated that, on 

average, the most typical four subordinates in each category exhibited larger distances to 

their corresponding boundary than the four least typical subordinates in LOC, but not in 

early visual regions (Supplementary Fig. S6).

Overall, our findings provide strong evidence in favor of the neural plausibility of the family 

resemblance hypothesis in LOC. In this brain region, typical exemplars are more similar to 

the average category representation and are more separable (as conferred by their larger 

category boundary effect) across categories than atypical exemplars, which suggests that 

typicality exerts a measurable and consistent modulatory effect on the nature of the 

distributed patterns of neural representation of real-world object categories in object-

selective cortex.

3.3 Whole-Brain Analysis

So far, we have limited our analyses to functionally defined cortical areas. However, it may 

be the case that activity in other brain areas beyond our pre-selected ROIs may favor the 

representation or dissociation of typical and atypical exemplars from the same category. To 

investigate this hypothesis, we performed a whole-brain searchlight analysis (Kriegeskorte et 

al. 2006) where we computed the category boundary effect for the most typical half of the 

dataset and the least typical half of the dataset for equally spaced spheres of voxels tiling the 

entire gray matter surface of our participants’ brains. This analysis identifies brain regions 

where typicality organizes the neural representation space according to the family 

resemblance hypothesis (typical exemplars more similar to central category tendency, while 

maximizing distance to other categories). More interestingly, by performing the reverse 

contrast, we may also uncover brain regions where the opposite is true: since we know that 

even atypical exemplars are still identified as members of their respective categories, it is 

likely that computations exist which are meant to ensure differentiation between these 

exemplars and thus enable correct assignment into their purported categories.

Consistent with our previous ROI results, we found that typicality modulates the strength of 

category distinctions in right LOC and to a lesser extent in a region adjacent to right hV4 

(Fig. 4, right). This finding indicates that, indeed, typicality modulates representation of 

object categories in object-selective cortex and that this effect is strongest in this region, not 

simply a late vs. early visual cortex difference in representation.

Interestingly, we also uncovered an advantage for neural patterns of activation distinguishing 

best between atypical exemplars, compared to highly typical exemplars, in the caudal 

inferior parietal lobule (cIPL; Fig. 4, left). This region has been previously implicated in 

contextual processing (Konen and Kastner 2008) and category learning (Zeithamova et al. 
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2008), which raises the possibility that enhanced category boundaries for atypical categories 

here may be due to additional or specialized processing required to disambiguate between 

less typical exemplars and subsequently assign them a correct category label.

Taken together, our results suggest that typicality is linked to the neural representation of 

object categories across several brain regions, with its effects extending to both intra-class 

and inter-class organization. Our results provide neural confirmation for both predictions of 

the family resemblance hypothesis in object-selective cortex (Rosch and Mervis 1975) and, 

furthermore, we provide the first evidence that typicality provides a concrete dimension of 

neural organization for real-world object categories in both object-selective cortex (LOC) 

and cIPL, but outside of early visual cortex, which further suggests that this representation is 

not directly reflected in image features describing natural input, but rather built by the visual 

system at an intermediate processing stage.

4. DISCUSSION

Typicality is a ubiquitous, yet often overlooked property of virtually all objects we interact 

with in our visual environment. Despite well-studied and long-standing behavioral effects 

associated with typicality, such as increased speed of recognition and lower error rates for 

identifying the category membership of more typical items (Posner and Keele 1968; Rosch 

1973; Rosch and Mervis 1975), little is known about how typicality relates to the neural 

representation of objects from the same category. Our work is the first to address this 

fundamental question using a large array of real-world stimuli. As such, we provide the first 

neural test of the predictions of the family resemblance hypothesis for real-world object 

categories: namely, that highly typical exemplars share most features in common with other 

members of their category (e.g. ‘Golden retriever’ is a highly representative dog), while 

simultaneously sharing the fewest features in common with other exemplars from 

semantically-related categories (e.g. Golden retrievers share fewer features with cats than 

less typical exemplars such as Chihuahuas). Using several similarity-based multivariate 

pattern analyses, which make no explicit assumptions regarding the nature of the neural 

feature space in which objects are represented, we found that this conception of category 

structure describes the organization of neural patterns better in object-selective regions than 

in early visual areas of the brain. Coupled with the fact that this representation is not directly 

reflected in image features describing natural input, these data suggest that such a 

representation is not given in the input, but rather built by the visual system at an 

intermediate processing stage. In the current set of experiments, we exclusively investigated 

how typicality affects the neural representation of a set of carefully normed, hierarchically 

organized object categories. While there is no reason to believe that a separate collection of 

categories (i.e. one not possessing a taxonomic relationship) would behave differently within 

the context of neural typicality measures as exemplified in our results, such an experiment 

remains an interesting question for future work.

The neural basis of typicality has been previously investigated almost exclusively using 

learning paradigms over artificially constructed category spaces (see e.g. Aizenstein et al. 

2000; Sigala et al. 2002, Sigala and Logothetis 2002, Davis and Poldrack 2014). One of the 

main advantages of using artificial categories is the tremendous degree of control one 
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possesses over the instantiation of the feature space, as well as the stimuli themselves. 

Additionally, synthetic category spaces remove all potential confounds related to object 

properties that may be directly linked to typicality itself, such as familiarity, discriminability, 

and expertise. Nevertheless, these idealized and impoverished spaces not only noticeably 

lack the complexity of visual stimuli we encounter in our everyday environment, but 

participants’ experience with them is necessarily more limited, leaving open the question as 

to what degree such findings generalize to the real world and to categories that are 

overlearned. By testing the predictions of the family resemblance hypothesis on real-world 

categories directly, our current experiment provides long overdue concrete evidence for a 

typicality-based organization of the neural representation space for such categories in human 

visual cortex. In our experiment, we not only found that highly typical objects generate 

stronger category boundaries in object-selective cortex, but we also uncovered the first 

evidence for a brain region where the opposite is true: in the caudate inferior parietal lobule 

(cIPL), we see atypical exemplars becoming more differentiated by neural patterns of 

activity than their highly typical counterparts. This region is superior to the trans-occipital 

sulcus and the functionally defined scene-selective region TOS (or OPA) (Grill-Spector 

2003; Dilks et al. 2013), likely overlapping with functionally defined area IPS0 (Silver and 

Kastner 2009). A representation of objects is known to exist in posterior parietal cortex 

(PPC), independent of action planning, and this cortical region has been shown to exhibit 

adaptation to object properties, including shape and size (Konen and Kastner 2008). 

Furthermore, the PPC has also been implicated in the learning of new categories 

(Zeithamova et al. 2008), in the recall of words and objects, provided the stimuli are 

associated with strong memory of source context (Johnson and Rugg 2007; Peters et al. 

2009; Vilberg and Rugg 2009, 2012), as well as in the representation of perceptual decision 

variables (Heekeren et al. 2006; Tosoni et al. 2008). Taken together, these findings raise the 

possibility that this cortical region may aid in the categorization of atypical items, perhaps 

through mediating contextual facilitation of recognition. Intuitively, processing category 

boundaries both in terms of typical and atypical exemplars is potentially necessary for 

arriving at a unified percept of a category: to recognize a ‘dog’ in our visual interaction with 

the world, our brain must understand both what a dog usually looks like (typicality), as well 

as what degree of deviation from this representation should place our percept outside of that 

particular category.

Nevertheless, caution is necessary in interpreting these results, especially in dorsal stream 

regions: given that typicality is a subjective measure that subsumes multiple dimensions and 

features of object categories (including e.g. frequency of occurrence in the world and 

familiarity with such objects), the possibility exists that our findings may have been 

influenced by differences in the allocation of attentional resources across such dimensions 

(e.g. if participants paid more attention to blocks containing less familiar subordinate 

categories). However, our searchlight analysis identified regions where the category 

boundary effect (computed via the similarity of multi-voxel patterns) differs consistently 

between typical and atypical members of our categories, which indicates the presence of 

discriminable category information in these brain regions. Thus, if attention plays a role in 

our findings, then it would necessarily have to be operating on the category representations 

themselves, bringing within category members closer in neural space and pulling between 
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category members apart. Additionally, previous work has shown that two parallel and 

hierarchically organized neural systems for object representation exist along the ventral and 

dorsal pathways (Konen and Kastner 2008, Wurm and Lingnau 2015, Vaziri-Pashkam and 

Xu 2015, Braunlich and Seger 2016) and our results in cIPL are consistent with such an 

account.

Recent work has shown that distance from an inferred category boundary constructed from 

patterns of neural activation in human inferotemporal cortex can be used to successfully 

predict behavioral categorization (Carlson et al. 2014; Ritchie et al. 2015). This distance-

based model of category representation is consistent with our results in LOC, where we 

show that category boundaries are stronger between highly typical exemplars than between 

less typical exemplars, with the latter sitting farther from the category central tendency. 

Relatedly, many distance metrics have been previously employed for characterizing the 

similarity of neural patterns of activity in human visual cortex in general, and typicality in 

particular, ranging from overall cortical activity level (Leopold et al. 2006; Park et al. 2015) 

to Pearson correlation (e.g. Haxby et al. 2001; Davis and Poldrack 2014; Iordan et al. 2015) 

and Euclidean or city block distance (Ashby and Maddox 1993; Sigala et al. 2002). Of these, 

we chose to focus on Pearson correlation as a straightforward, scale-invariant measure of 

similarity of neural patterns (Davis et al. 2014). This is especially relevant, given that we 

perform a large-scale experiment using 64 real-world categories and prior evidence has 

shown that objects from different categories have the potential to elicit consistently different 

univariate activity profiles both within and between brain regions (e.g. animate vs. inanimate 

categories (Connolly et al. 2012; Konkle and Caramazza 2013), small vs. big objects 

(Konkle and Oliva 2012; Konkle and Caramazza 2013)). Moreover, our decision is 

consistent with analyses used in many recent experiments investigating the underpinnings of 

object categorization and typicality in humans and non-human primates (e.g. Haxby et al. 

2001; Kriegeskorte et al. 2008; Connolly et al. 2012; Davis and Poldrack 2014; Iordan et al. 

2015).

Several cognitive theories have been proposed that suggest that we may expect real-world 

object categories to have a strong prototype-dominated cortical representation (Nosofsky 

1991; Ashby and Maddox 1993), with typical exemplars closer in neural distance to the 

basic level prototype (category central tendency) and less typical exemplars generating a 

more distinct neural pattern of activation (i.e. larger neural distance from prototype). Indeed, 

previous work involving artificially constructed face stimuli suggests that both feature-based 

and neural distance from a category central tendency are usually correlated with perceived 

typicality (Leopold et al. 2001; Sigala et al. 2002; Leopold et al. 2006; Davis and Poldrack 

2014). Prototype theory is typically contrasted with exemplar theory, which proposes that we 

represent categories with respect to several emblematic exemplars (or perhaps all exemplars) 

in each category, which serve to map that particular category’s representational space 

(Nosofsky 1986, 1991; Ashby and Maddox 1993). This theory has also received some 

support; recent work has shown that exemplar models explain a comparable amount of 

variance in human performance on category generalization and prediction tasks (Abbott et 

al. 2012) and even surpass prototype models in performance using data from humans and 

monkeys categorizing cartoon depictions of faces and fish (Sigala et al. 2002). In our work, 

we find brain areas that separately emphasize characteristics from both of these putative 
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representational models, raising the possibility that the human brain may use both strategies 

for forming categories. First, we show that, in object-selective regions, typical categories are 

closer to the central category tendency and category boundaries are sharpened between 

typical and atypical exemplars, a finding that is consistent with the family resemblance 

hypothesis, as well as with a prototype-based encoding of category structure (but see (Ashby 

and Maddox 1993) for an alternate explanation of how exemplar theory may also account for 

such a prediction). Conversely, we also find that atypical exemplars exhibit stronger category 

boundaries in cIPL. One potential explanation for this finding is that real-world categories, 

especially due to their inherent intra-class complexity, may not be fully or accurately 

captured by a single prototype per category. Thus, while a prototype representation would 

imply that the intra-class distribution of subordinate categories within a basic is less 

important compared to the location of the category central tendency (i.e. prototype), by 

contrast an exemplar representation would predict a much heavier reliance on less typical 

subordinates for differentiating between basic categories, which may be the case in cIPL. 

Taken together, these two contrasting patterns of results suggest that the human brain may, in 

fact, use both exemplar and prototype models to structure category representations, albeit in 

different brain regions. Such a position could reconcile the seemingly contradictory 

behavioral and modeling results that have yet to eliminate either model as the sole 

framework for intra-category organization (see e.g. Sigala et al. 2002 and Leopold et al. 

2006). Critically, our results provide clear evidence that LOC and cIPL are strong candidates 

for future investigations attempting to elucidate the contributions of these individual models 

in explaining the eventual emergence of perceptual typicality.

Over the past two decades, evidence has been uncovered for specific cortical regions 

selective for broad stimulus classes such as faces, scenes, objects, and bodies (Malach et al. 

1995; Kanwisher et al. 1997; Epstein and Kanwisher 1998; Downing et al. 2001), as well as 

organizational principles corresponding to broad attribute dimensions, including animacy 

(Chao et al. 1999; Kriegeskorte et al. 2008; Connolly et al. 2012; Konkle and Caramazza 

2013) and real-world object size (Konkle and Oliva 2012; Konkle and Caramazza 2013). 

Furthermore, many studies have demonstrated that category information is recoverable from 

distributed representations (Haxby et al. 2001; Cox and Savoy 2003; Haynes and Rees 2005; 

Eger et al. 2008; Huth et al. 2012), yet what constitutes a category representation in the 

high-dimensional space of neural patterns of activity is still poorly understood. Here, we 

show that perceived typicality, a high-level cognitive property of objects, directly modulates 

the representation of exemplars and categories fairly early in visual processing. Our results 

raise the possibility that the same theoretical principles that guide the cognitive formation of 

categories (cognitive usefulness and feature correlation constraints present in the 

environment (Rosch et al. 1976)) may, in fact, fundamentally and sequentially guide the 

processing of visual input from its very early cortical stages. Indeed, previous work from our 

lab has already shown that this early link to cognition also holds for hierarchical 

organization of category structure, whose influence on the organization of neural patterns 

becomes apparent as early as lateral occipito-temporal cortex (Iordan et al. 2015). In the 

process of building category representations, the inclusion of such principles would improve 

the utility and flexibility of eventually generated categories by emphasizing better 

boundaries between them and by allowing distinctions between individual exemplars and 
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multiple levels of generality to emerge gradually from the neural representation. 

Furthermore, such principles constitute important signposts for recent work whose goal is to 

map the layers of deep learning models for visual categorization onto successive stages of 

the ventral visual hierarchy (Cadieu et al. 2014; Yamins et al. 2014; Yamins and DiCarlo 

2016). Most such computational models include few, if any, high-level cognitive constrains 

on their internal representation aside from categorization itself as an end-goal. Moving 

forward, we argue that attempts to build models of visual processing that more accurately 

mirror the human visual processing hierarchy would benefit from incorporating (either 

explicitly or at a verification stage) other high-level properties such as typicality, which we 

have presently identified as having a measurable impact on the feature spaces of visual 

regions strongly involved in object and category recognition (e.g. LOC).

Together, these findings solidify our understanding of how we define and describe 

boundaries between category representations in the brain, and moreover, put forward a new 

hypothesis for the organization and goals of intermediate visual processing: it is not simply 

focused on isolating and identifying primitives such as shapes, objects, or scenes, and their 

interplay, but also on employing cognitively relevant principles of category organization (of 

which typicality and hierarchical organization are two examples) to directly guide the 

development of the neural representation, for the ensuing purpose of improved and more 

flexible categorization, action, and cognition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Typicality ranked stimulus set
Our stimulus set comprised 8 subordinate level exemplars from each of 8 basic level 

categories. Participants were shown 16 images from each exemplar, varying in pose and 

color (only one representative image is shown above). Within each basic category, exemplars 

are organized according to behavioral typicality from the most typical (left) to the least 

typical (right): e.g. airliners (rank 1) and fighter planes (rank 2) were judged to be much 

more typical examples of planes than stealth planes (rank 7) and gyrocopters (rank 8).
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Fig. 2. Typical exemplars are more correlated with category central tendency than less typical 
exemplars in object-selective cortex
Correlation between category central tendency and most typical exemplar in each category 

(orange) or least typical exemplar in each category (blue), averaged across all 8 basic level 

categories. In object-selective cortex (LOC), typical categories are more similar to the 

average category representation than less typical categories and this effect is not present in 

early visual areas. (Inset) We performed a similar analysis using the image-level features 

from our stimulus set: LAB color histograms (C), GIST features (G), and multi-scale Gabor 

wavelet features (W). All features show similar values for both highly typical and less 

typical exemplar correlations, with the GIST and wavelet features exhibiting an opposite 

trend to our LOC results (higher correlation for less typical exemplars). Therefore, low-level 

stimulus features cannot solely explain our results in object-selective cortex. *** P<0.001, 

** P<0.01, n.s. – not significant. Error bars: 95% confidence interval.
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Fig. 3. Category boundaries are stronger for highly typical exemplars in object-selective cortex
Category boundary effect for the two halves of our dataset comprising the most typical 4 

exemplars from each category (orange) and the least typical 4 exemplars from each category 

(blue). In object-selective cortex (LOC), typical exemplars from one category are more 

distinguishable from exemplars of other categories, an effect not reflected in early visual 

areas’ patterns of activation. (Inset) We performed a similar analysis using the image-level 

features from our stimulus set: LAB color histograms (C), GIST features (G), and multi-

scale Gabor wavelet features (W). All of the feature representations show an opposite trend 

to that observed in LOC (stronger category boundaries for less typical items) and therefore 

cannot fully explain our results in object-selective cortex. ** P<0.01, * P<0.05, n.s. – not 

significant. Error bars: 95% confidence interval.
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Fig. 4. Whole-brain searchlight analysis uncovers brain regions where category boundaries are 
stronger between most typical and least typical exemplars
We performed a whole-brain searchlight analysis where we computed the difference 

between the category boundary effects obtained for the most typical half of our dataset and 

the least typical half of our dataset. Figure shows group map results, corrected for multiple 

comparisons using an FDR measure (see Materials and Methods for details). Regions shown 

in orange (right LOC, right hV4) showed a significant effect of typicality: highly typical 

exemplars were more distinguishable from exemplars of other categories. Conversely, 

regions shown in blue (left cIPL) showed the opposite trend: less typical exemplars were 

more easily distinguishable form members of other categories. This cortical region has been 

previously implicated in category learning (Zeithamova et al. 2008) and contextual 

processing (Konen and Kastner 2008), which suggests the possibility that it may aid in the 

categorization of atypical items, perhaps through mediating contextual facilitation of 

recognition.
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