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Abstract

We propose a novel method to harmonize diffusion MRI data acquired from multiple sites and 

scanners, which is imperative for joint analysis of the data to significantly increase sample size and 

statistical power of neuroimaging studies. Our method incorporates the following main novelties: 

i) we take into account the scanner-dependent spatial variability of the diffusion signal in different 

parts of the brain; ii) our method is independent of compartmental modeling of diffusion (e.g., 

tensor, and intra/extra cellular compartments) and the acquired signal itself is corrected for scanner 

related differences; and iii) inter-subject variability as measured by the coefficient of variation is 

maintained at each site. We represent the signal in a basis of spherical harmonics and compute 

several rotation invariant spherical harmonic features to estimate a region and tissue specific linear 
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mapping between the signal from different sites (and scanners). We validate our method on 

diffusion data acquired from seven different sites (including two GE, three Philips, and two 

Siemens scanners) on a group of age-matched healthy subjects. Since the extracted rotation 

invariant spherical harmonic features depend on the accuracy of the brain parcellation provided by 

Freesurfer, we propose a feature based refinement of the original parcellation such that it better 

characterizes the anatomy and provides robust linear mappings to harmonize the dMRI data. We 

demonstrate the efficacy of our method by statistically comparing diffusion measures such as 

fractional anisotropy, mean diffusivity and generalized fractional anisotropy across multiple sites 

before and after data harmonization. We also show results using tract-based spatial statistics before 

and after harmonization for independent validation of the proposed methodology. Our 

experimental results demonstrate that, for nearly identical acquisition protocol across sites, 

scanner-specific differences can be accurately removed using the proposed method.
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Introduction

Multi-site diffusion imaging studies are increasingly being used to study brain disorders, 

such as Alzheimer’s disease, Huntington’s disease, and schizophrenia (Mueller et al., 2005; 

Magnotta et al., 2012). However, inter-site and inter-scanner variability in the acquired data 

sets poses a potential problem for joint analysis of diffusion MRI (dMRI) data (Vollmar et 

al., 2010; Matsui, 2014). This inter-site (or inter-scanner) variability in the measurements 

can come from several sources including number of head coils used (16 or 32 channel head 

coil), sensitivity of the coils, the imaging gradient non-linearity, the magnetic field 

homogeneity, the differences in the algorithms used to reconstruct the data, as well as 

changes made during software upgrades and other scanner related factors (Zhu et al., 2011; 

Jovicich et al., 2014; Teipel et al., 2011). These can cause non-linear changes in the images 

acquired as well as the estimated diffusion measures such as fractional anisotropy (FA) and 

mean diffusivity (MD). Thus, aggregating data sets from different sites are challenging due 

to the inherent differences in the acquired images from different scanners (Veenith et al., 

2013; Giannelli et al., 2014). Although the inter-site variability of neuroanatomical 

measurements can be minimized by acquiring images using similar type of scanners (same 

vendor and version) with similar pulse sequence parameters and same field strength (Cannon 

et al., in press; Lemkaddem et al., 2012; Shokouhi et al., 2011), many recent studies as well 

as our own, have shown that there still exist large differences between diffusion 

measurements from different sites (Foxa et al., 2012; Nyholm et al., 2013; Han et al., 2006). 

Specifically, the inter-site variability in FA and MD is not uniform over the entire brain, but 

is tissue specific as well as region specific. Inter-site variability in FA can be up to 5% in 

major white matter tracts and between 10 and 15% in gray matter areas (Vollmar et al., 

2010). On the other hand, FA differences in diseases such as schizophrenia are often of the 

order of 5%. Thus, harmonizing data across sites is imperative for joint analysis of the data.

Mirzaalian et al. Page 2

Neuroimage. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Broadly, there are two approaches used to combine data sets from multiple sites. One 

approach is to perform the analysis at each site separately, followed by a meta-analysis as in 

(Salimi-Khorshidi et al., 2009). In this case, a z-score is computed for each subject (for a 

given diffusion measure) for the two groups under investigation for each of the sites 

separately; a z-score is a statistical measurement of a score’s (say, FA) relationship to the 

mean in a group of scores; the z-score of a raw score x is z=(x−μ)/σ, where μ and σ are the 

mean and the standard deviation of the population, respectively. A z-score of 0 means the 

score is the same as the mean. A z-score can also be positive or negative, indicating whether 

it is above or below the mean and by how many standard deviations. By combining the z-

scores from all the sites, we can determine statistical differences. However, this method has 

several limitations. For example, the subject population at each site may not be sufficient to 

capture the variance of the entire population, a critical requirement to ensure proper 

computation of the z-score (which depends on the variance and not just the mean). Note that, 

the z-score is a non-linear function of the variance and small changes in variance can result 

in large changes in the estimated z-score. For example, the inter-subject variance of a 

diffusion measure (say, FA) at site #1 may be very different than the variance at site #2. This 

can result in vastly different estimates of the z-score, leading to erroneous results. Another 

limitation is that such an analysis has to be repeated for each measure of interest and each 

region or fiber tract of interest.

As one of the well-known software based on meta and mega analysis, we can point to 

ENIGMA-DTI (Jahanshad and et al., 2013; Kochunov and et al., 2014). This method is very 

similar to the methods using meta-analysis. ENIGMA-DTI allows using site-specific meta-

analysis to compute z-scores to obtain statistical group differences. Alternatively, the 

software also allows to regress-out (using statistical covariates) site-specific variables from 

the data to compute z-scores which are then analyzed in an integrated manner (mega-

analysis). Thus, the ENIGMA-DTI methodology involves several steps, where analysis is 

done several steps downstream from the original data, i.e.: dMRI signal ↦ preprocessing 

↦ model specific analysis (e.g. single tensor) ↦ tensor derived measures (e.g. FA) ↦ 
regression to remove site differences ↦ z-score analysis. While this is a perfectly 

acceptable method to analyze multi-site DTI data, it does not harmonize the data, but rather 

transforms the derived variables of interest (FA) using a series of steps into a common 

coordinate system (z-scores) to finally analyze the data. While this methodology has been 

shown to be quite successful (Jahanshad and et al., 2013; Kochunov and et al., 2014), it does 

have a few limitations: First, the pre-processing steps could be very different (eddy current 

correction, motion correction, tensor estimation, interpolation kernel used, etc.) for each site 

(if each site computes FA independently), which could potentially bias the subsequent 

analysis. Second, such analysis has to be done separately for each variable (such as FA, MD, 

radial diffusivity, kurtosis, etc.). Third, since the acquisition parameters could be different, 

the accuracy of estimating the correct parameters for the dMRI model used (e.g., using 

multi-tensor or multi-compartment models) could affect the final result.

Most importantly, as it relates to the current work, the ENIGMA-DTI method is a nice way 

to compare two groups of populations. However, it cannot be used to purely harmonize the 

data as is the focus of our current work. As explained in Our contributions section, our 

proposed work directly harmonizes the dMRI signal, allowing any type of subsequent 
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analysis to be done in a consistent manner with any type of model used. Consequently, all 

the variability and bias due to the preprocessing and post-processing algorithms used is 

removed (since the same algorithms are used for processing all of the data sets).

Statistical covariate is another standard practice to account for signal changes that are 

scanner-specific (Forsyth and Cannon, 2014; Venkatraman et al., 2015). The first approach 

(meta-analysis) does not allow for a “true” joint analysis of the data, while the second 

method requires the use of a separate statistical covariate for each diffusion measure 

analyzed. Further, the latter method is inadequate to analyze results from tractography where 

tracts travel between distant regions. For example, in the cortico-spinal tract, scanner related 

differences in the brain stem might be quite different from those in the cortical motor region. 

Thus, using a single statistical covariate for the entire tract may produce false positive or 

false negative results. Consequently, region-specific scanner differences should be taken into 

account for such type of analyses. Another alternative is to add a statistical covariate at each 

voxel in a voxel based analysis method. However, such methods are susceptible to 

registration errors and a linear covariate is typically estimated for each voxel in the brain, 

requiring myriad of additional parameters to be estimated, which could potentially reduce 

sensitivity of the diffusion measures. Additionally, it is not clear if a linear covariate is 

adequate for modeling scanner specific differences, which potentially could have a non-

linear component.

Our contributions

In this work, we propose a novel scheme to harmonize diffusion MRI data from multiple 

scanners, taking into account the brain region-specific and tissue specific (e.g., white, gray, 

CSF) differences in the acquired signal from different scanners. Our method harmonizes the 

acquired signal at each site to a reference site using several rotation invariant spherical 

harmonic (RISH) features. A region specific linear mapping is proposed between the 

rotation invariant features to remove scanner specific differences between a group of healthy 

age-matched subjects at each site. The method directly harmonizes the raw signal obtained 

from the scanner, allowing for any type of downstream analysis. Thus, once the data is 

harmonized, any derived quantity from the diffusion data is also automatically harmonized 

and can be pooled from different sites for further analysis. Thus, our approach is 

substantially different than existing methods which correct for scanner-related differences 

directly on the diffusion measures of interest. Further, spherical harmonics form a non-

parametric basis without any particular assumption about the model of diffusion (e.g., single 

tensor, multi-tensor, or multi-compartment models); i.e., there is no a priori assumption 

made with respect to the diffusion process in terms of the compartments or the number of 

fiber bundles. To the best of our knowledge, this is a first work that has explicitly addressed 

the issue of dMRI data harmonization without the use of statistical covariates.

The current study is an extension of our recently published work (Mirzaalian et al., 2015). 

Compared to Mirzaalian et al. (2015), in this study: i) we perform a more extensive 

validation of our method over 7 different sites rather than 4 sites, using more subjects in 

each group; ii) we harmonize gray-matter and sub-cortical structures in addition to the 

white-matter areas; iii) we propose a novel way to correct the Freesurfer parcellated label 
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maps based on the RISH features, which are often inaccurate when mapped to the subject 

specific dMRI space; iv) to remove local scanner-specific differences in large Freesurfer 

regions, we propose a way to sub-divide them into smaller regions, for better tissue 

characterization and robustness in removing scanner differences; and v) using synthetic 

experiments, we show that the signal differences between the disease and control population 

at the target site are preserved after harmonization into the reference site.

Method

Fig. 1 shows an outline of the proposed dMRI data harmonization method, where we 

describe the entire methodology succinctly with details about each step in the subsequent 

sections. Our goal is to map the dMRI data from a target site to an arbitrarily chosen 

reference site. We start by computing a set of RISH features from the estimated SH 

coefficients (Diffusion MRI and RISH features section). Then, using the RISH features, we 

refine the Freesufer label maps (Optimizing Freesurfer label map and Refining large regions 

into smaller regions sections), followed by computing a region-specific linear mapping 

between the RISH features of the two sites (Mapping RISH features between sites section), 

i.e., a separate mapping is computed for each Freesurfer defined region. Next, a secondary 

mapping is computed that appropriately updates each of the SH coefficients at each voxel in 

the Freesurfer parcellated region-of-interest (ROI) (Mapping RISH features between sites 

section). From the mapped SH coefficients, the mapped diffusion signal is computed at a 

canonical set of gradient directions for each subject in the target site (Mapping RISH 

features between sites section).

Diffusion MRI and RISH features

Let S=[s1 … sG]T represent the dMRI signal along G unique gradient directions at a single 

b-value. In the spherical harmonic (SH) basis, the signal S can be written as (Descoteaux et 

al., 2007):

(1)

where Yij is a SH basis function of order i and phase j and Cij are the corresponding SH 

coefficients. Since the signal S is symmetric, the SH basis used in this study has only real 

part.

It is well-known that the “energy” or l2 norm of the SH coefficients for each order forms a 

set of rotation invariant (RISH) features (Kazhdan et al., 2003):

(2)
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One can think of the RISH features ||Ci||2 as the total energy in a particular frequency band 

(order) in the SH space. We compute region-wise RISH features denoted by  for each 

subject n as the average of the voxel-wise RISH features over all the voxels of each region of 

the brain, where brain regions are obtained using Freesurfer (Fischl et al., 2001). Given the 

RISH features for Nt subjects for the tth site, we approximate the expected value of the 

region-wise RISH features as the sample mean:

(3)

where n is an index for the subject number, i.e.  represents averaged RISH features 

computed at order i for the nth subject.

In this work, we computed the RISH features for i∈{0,2,4,6,8} orders1 and ignored the 

higher order terms as they are the high frequency terms primarily capturing noise in the data. 

However, if required, the proposed methodology is quite general and can be extended to SH 

of any order. Note that to include SHs up to the 8th order, we need to have at least 45 

measurements.

Figs. 2 and 3 show maps of the computed voxel-wise and region-wise RISH features, 

respectively. From Fig. 2 it is clear that a large portion of the signal energy is contained in 

the lower-order RISH features. In Fig. 3, it can be seen that the region-wise RISH features 

vary significantly between sites as well as for different regions, showing that a regionally 

specific mapping is required to ensure proper harmonization of the diffusion data.

As we will see in Mapping RISH features between sites section, the extracted means ( ) are 

used to compute a set of mappings between the RISH features of the target and reference 

sites. These maps depend on the brain label map provided by any brain parcellation 

algorithm, which may not be accurate at the boundary between gray-white or white-CSF 

areas. In general, the label maps are transported from the T1-space in which the parcellation 

is done to dMRI space using a non-rigid registration algorithm. However, due to geometric 

distortions common in dMRI acquisitions as well low contrast in the b = 0 images, 

registration errors can occur while obtaining an appropriate map in the dMRI space. One of 

the most popular method to obtain brain parcellation is Freesurfer, which we use in this 

work. However, some of the Freesurfer ROI’s obtained using the standard Desikan atlas are 

too large, consisting of several different types of tissue, which makes them heterogeneous in 

composition. Additionally, such large regions (e.g., centrum-semiovale white matter) are 

non-linearly affected by scanner specific inhomogeneities, which cannot be modeled using a 

single linear mapping. To ensure proper mapping and removal of tissue-specific differences, 

we consequently refine the brain label maps and sub-segment the large ROI’s into smaller 

regions. This procedure results in the computation of a better and more accurate 

1Note that the coefficients at odd orders are zero because of the symmetricity of the signals.
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harmonization of the data. In the next section, we explain our optimization approach, which 

aims to maximize the homogeneity of brain features within each region.

Updating Freesurfer label map

At this step in our pipeline, we first sub-segment large regions into smaller regions (Refining 

large regions into smaller regions section). Then, based on a set of RISH features computed 

at each voxel, we apply a simple region-based clustering algorithm to sub-divide large 

regions of the Freesurfer label map (Optimizing Freesurfer label map section).

Refining large regions into smaller regions

To break down a large region, e.g. centrum-semiovale, into smaller regions, we first start by 

finding the regions that form neighbors of the given region of interest (ROI). Then, each 

voxel within the ROI is assigned a feature vector, whose entries are the minimum Euclidean 

distance of the current voxel to the neighboring regions of the ROI. In fact, these features 

encode spatial location of each voxel with respect to the nearby regions. In Fig. 4, a voxel 

within centrum-semiovale region (our ROI) is shown in white, which is connected to the 

nearby regions of the centrum-semiovale by a number of edges.

After computing these features for all the voxels within the ROI, we perform k-means 

clustering over the voxels with the assigned features to segment the voxels into k different 

groups. Note that we expect to extract continuous blocks of regions since the features used 

are based on physical distances. An example output of the k-mean clustering applied over 

the centrum-semiovale region is shown in Fig. 4(c). The number of clusters k was chosen for 

each ROI separately in a heuristic fashion depending on the size of the original ROI. For 

example, k worked well for the centrum-semiovale region, where the size of the subdivided 

regions is smaller than 400 voxels.

Optimizing Freesurfer label map

Registering the Freesurfer label map into the dMRI subject space can lead to mislabeling 

due to registration errors. This is specifically the case due to the lower resolution and 

geometric distortions of the dMRI data set. As such, several tissue types are labeled 

incorrectly leading to large variations in the estimated RISH features for each ROI. Thus, it 

is imperative to correct for these errors before proceeding with the harmonization step.

Given the dMRI data and its corresponding Freesurfer label map L, we start by updating the 

labels of the voxels on the boundary of each region. To do so, at each voxel on the boundary 

of our ROI, we extract a set of RISH feature vector as:

(4)

Using the current label map L, we compute the average RISH features of all the nearby 

regions of the voxel v belonging to the boundary of the ROI. Let {R1 … RK} and {ϕ̄(R1) … 

ϕ̄(RK)} represent the nearby regions of voxel v and their corresponding region-wise RISH 
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features, respectively. Then, we relabel v to the region whose feature vector is the closest to 

ϕ(v), i.e.:

(5)

This procedure is repeated until the variance of the parameters at the current ROI does not 

change much compared to the previous iteration.

As shown in the Results section, this refining of the label map leads to better tissue 

characterization and lower variance in the RISH features for each ROI. Given the refined 

label map, we compute the expected value  of the RISH features per region of the brain 

using Eq. (3). Then, the next step in our pipeline is mapping these RISH features between 

the target and reference sites, which is explained in the following section.

Mapping RISH features between sites

Given two groups of subjects who are matched for age, gender, handedness and socio-

economic status, we expect that at a group level, they should have similar diffusion profiles 

and hence none of the RISH features should be statistically different between the two 

groups, barring differences due to scanner. In other words, the diffusion measures such as 

FA, between the two groups of matched healthy subjects are statistically different only due 

to scanner related differences. Thus, our aim is to find a proper mapping Π(·) between the 

RISH features such that all scanner related group differences between two sites are removed, 

i.e.,

(6)

where r is the reference site and t is the target site. Any difference in the sample mean for the 

two sites (or scanners) t and r can be computed as the difference Δ  = r− t. By linearity of 

the expectation operator, the mapping for each subject n and RISH feature i is given by:

(7)

Note that, this mapping for feature i, Πi(·), only gives the amount of shift required to remove 

any scanner specific group differences for a given ROI. Thus, this mapping is only at the 

region level and a separate mapping is required that will change the individual SH 

coefficient at each voxel such that Eq. (7) is satisfied. For a subject n in a given ROI (to keep 

the notation simple, we disregard the indexing for each subject), we have the following map 

for each voxel in that ROI:
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(8)

Thus, our aim is to determine an appropriate mapping function πi which satisfies equation 

Eq. (8), allowing to update each SH coefficient individually. We extend this mapping to each 

voxel in an ROI, by uniformly changing the SH coefficients at each voxel v. There are two 

possible ways to obtain a mapping πi(·) for each SH coefficient Cij. One possibility is to use 

πi(Cij)= Cij + δ (for all j) such that Eq. (8) is satisfied. However, this would entail adding a 

positive or negative constant δ to all coefficients (i.e. shifting the coefficients), which could 

potentially lead to a change in sign for coefficients that are smaller than δ. The effect of such 

a “shifting” operation is shown in Fig. 5(b), where the sign of some of the coefficients was 

changed by adding a small constant δ. This leads to a change in orientation and shape of the 

signal, which is erroneous and undesirable.

A more appropriate mapping πi(·) is to uniformly scale the SH coefficients belonging to a 

given SH order so that Eq. (8) is satisfied. Such a mapping is given by:

(9)

Such scaling only changes the “size” and “shape” of the signal and not its orientation (or 

equivalently, the orientation of ODF), as seen in Fig. 5 and as shown via experiments in the 

Results section. Note that, shape changes are indeed desirable and required as this is what is 

different between the data acquired on the scanners. This is amply evident from the fact that 

FA (shape change in tensor) is statistically different between two matched groups (see Fig. 

7) from different scanners. Thus, the proposed methodology changes the “shape” of the 

signal in such a way that scanner related changes are removed (see Fig. 7), but the 

orientation of the fiber bundle is kept intact. Consequently, this will necessarily change any 

measure derived from the diffusion signal. For example, if a single tensor model is used, 

then, FA, linear and planar diffusion measures will necessarily change so that group 

differences are removed, which is the goal and desirable feature of the algorithm. However, 

the proposed method does not lead to any change in orientation (as we show in the 

Experiments section).

An important point to note is that the scaling above via the πi function is at a voxel level, 

while the amount of shift introduced by Πi function is at a region level, which is shown in 

Fig. 6.

Thus, for a given site t, and subject n, the harmonized diffusion signal at a voxel v of a given 

ROI can be computed using:
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(10)

Using the above equation, the harmonized signal at each voxel is recomputed for each 

subject in the target site.

Experiments

We used our method on a data set acquired from 7 different sites and scanners, acquired as 

part of the InTRUsT mild TBI consortium; see Table 1 for details about each of the scanners 

as well as the number of subjects from each site. A nearly identical dMRI scan protocol was 

used at each site with the following acquisition parameters: spatial resolution of 2 × 2 ×2 

mm3, maximum b-value of b = 900 s/mm2 and TE/TE = 87/10000 ms. For the GE sites, the 

data was acquired with a 5/8 partial Fourier encoding, while the Siemens and Philips used 

6/8 partial Fourier acquisition. Subjects from each site were age-matched to the group at the 

reference site. In all our experiments, we chose the Siemens site at the Brigham and 

Women’s hospital as the reference site since it had the most number of subjects.

We performed eddy current and motion correction prior to our harmonization procedure for 

each subject, by registering each individual diffusion weighted volume to the corresponding 

non-diffusion weighted volume using FSL FLIRT software (Jenkinson and Smith, 2001). 

Thus, most physiological noise was removed retrospectively, as is routinely done as a 

standard procedure in all dMRI data processing pipelines (Van Essena et al., 2012).

As mentioned in Mapping RISH features between sites section, we consider SH 

decomposition up to order 8 although the b-values of our dataset are rather low. It is known 

from several earlier works (Tuch, 2004; Tuch et al., 2002, 2003; Descoteaux et al., 2006) 

that multiple fiber crossings can be detected even at low b-values of 900 to 1000. Thus, the 

information content in the signal is more than just that of a single tensor (since SH of order 2 

is essentially equivalent to a tensor). Further, our method does not depend on the b-value 

used. If not much energy is seen in higher order RISH features, those could be easily 

discarded (as we did by discarding RISH features higher than order 8).

Results

Statistical group differences before and after harmonization

Since the subjects were age-matched healthy controls across all the sites/scanners, at a 

statistical group level, we do not expect to see biological differences. Therefore, it is 

reasonable to hypothesize that the differences in the RISH features and standard diffusion 

measures are only due to scanner related inconsistencies.

To validate our hypothesis, we used a paired t-test to compute p-values of RISH features and 

standard diffusion measures (such as, FA, MD, and generalized fractional anisotropy (GFA)) 

between the reference site and all of the target sites. These tests were performed both before 

and after harmonizing the data using the proposed method. An appropriate mapping was 
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computed for each of the ROIs, after correcting the Freesurfer regions for mislabeling, as 

well as after dividing the larger ROIs into smaller regions (as described earlier). Overall a 

total of 211 ROIs were used. For each ROI, we first determined if RISH features were 

statistically different between the reference site and the target sites (sites: #1, #2, #3, #4, #5, 

#6) and then used the algorithm described above to harmonize the signal if statistical 

differences were seen (p < 0.05; not corrected for multiple comparison).

Table 2 gives the p-values for each of the ROIs (nomenclature is —lFrontal is left-frontal 

and rFrontal is right-frontal lobe) before and after the harmonization of the data. Notice that 

MD was statistically different for almost all regions and sites as compared to the reference 

site, but these differences were completely removed. The p-value after mapping is almost 1 

in this case following Eq. (9) and the fact that MD is directly proportional to the l2 norm of 

the SH coefficients. All statistical group differences between FA and GFA were also 

removed for each of the sites after harmonization. We should note that, the group differences 

were removed for each of the 211 ROIs, but for brevity, we have only reported results in this 

table for a selected set of anatomical regions (by combining several ROIs) of the brain.

To test the efficiency of our method, we created two distinct data sets, one for training and 

one for test. Although our dataset in this study is not large enough to run such leave-many-

out experiments for all the sites, we set up an experiment using the data from Site#1 and the 

reference site (where we could afford to remove some subjects for testing purposes). We 

used 70% of the subjects in the reference and the target sites (Site#1) to learn the parameters 

and computed the p-values before and after harmonization for rest of the 30% of the 

subjects, which were excluded from the training stage. Note that, in this experiment, the 

images in the training/testing groups of the two sites were age-matched. Computed p-values 

are reported in Table 3, which are very similar to results shown in Table 2. Thus, the 

proposed method could be used in a true data harmonization scenario, at least when the 

acquisition protocol is the same across sites.

In Fig. 6, we show scalar maps of the various RISH features. Also shown is the estimated 

shift function Πi for different Freesurfer regions of the brain. The figure also shows the 

scaling function πi that scales each SH coefficient at each voxel. An important point to note 

is that, the scaling function πi is spatially quite consistent despite the region-based shift 

function Πi showing discontinuities between the different ROIs. Note that, the signal change 

is caused by a change in the SH coefficients, driven by the scaling function πi, which, as 

mentioned, is spatially smooth. Thus, the harmonization process does not introduce sharp 

spatial discontinuity in the signal between neighboring regions.

Another observation from Fig. 6 is that the scanner related differences are substantially 

different for sub-cortical gray, versus the neighboring white matter region or the distant 

cortical gray matter region. Further, these differences vary substantially in the different 

frequency bands of the SH basis (i.e., in different RISH features). Consequently, it is clear 

that several non-linear effects due to magnetic field inhomogeneities, coil sensitivity, and 

other scanner related effects can cause non-linear changes in the signal in different tissue 

types.
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TBSS results before and after harmonization

To validate our results using an independent approach, and also to ensure that small 

statistical differences are also removed, we computed the statistical group difference in FA 

between each of the target and the reference site using the standard Tract-based-spatial-

statistical (TBSS) algorithm (Smitha et al., 2006). Fig. 7 shows widespread group 

differences between the subjects from the reference site (Siemens scanner) and the target 

sites. After data harmonization, all white matter group differences were removed confirming 

the results seen in Table 2.

Evaluation of the refined brain label map

In Fig. 8, we show some qualitative results for the updated Freesurfer label map after 

applying our algorithm (Optimizing Freesurfer label map section) where the number of 

iterations is limited to 5. It can be seen that several voxels near the gray-white tissue 

boundary in the cortical region are labeled incorrectly; see Fig. 8(b) and (e). After applying 

our correction algorithm to relabel the voxels based on the RISH features (note — we did 

not use FA to relabel the voxels), a more accurate labeling of the Freesurfer ROIs is 

obtained, see Fig. 8(c) and (f).

To provide some quantitative results, we computed the mean and standard deviation of FA 

and the RISH features in different brain regions of the Freesurfer label map, before and after 

updating the label map. As can be seen in Fig. 9, the variance of these features in each ROI 

is significantly reduced after update (green) compared to the original label-map (red).

Fiber orientation changes and intra-site variability before and after harmonization

In order to ensure that our harmonization process does not in any way change the fiber 

orientation, we also compared the average error in degrees in the orientation of the fibers. 

Change in angle was computed using the standard DTI model and SH-based orientation 

distribution function (ODF) at each voxel, before and after data harmonization. For the 

tensor and ODF based models, the average change in orientation at each voxel was always 

less than 1°; changes in the orientations averaged over the entire brain are reported in Table 

4. We also computed the coefficient of variation (CoV) in FA (Vollmar et al., 2010) for each 

site before and after the harmonization procedure. The CoV per site is computed as the ratio 

between the standard deviation and mean of FAs over the whole brain as summarized in 

Table 5. It can be seen that, the within site CoV did not change much after the mapping. 

Thus, within-site or intra-site variability in diffusion measures is preserved while inter-site 

scanner-related variability is removed. Consequently, we believe that this methodology can 

be quite useful for pooling large data sets for joint analysis.

Synthetic experiments to demonstrate the effect of signal abnormalities due to disease on 
the harmonization procedure

Since we only “shift” the energy in the RISH features, the changes done to the signal are 

relative, i.e., the signal at each voxel is changed relative to the original signal at that location. 

Thus, if the FA at a particular location is lower due to disease, it will only be shifted (or 

changed) by an amount as determined from a set of healthy subjects and not to an absolute 
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value. Thus, lower FA will still stay lower after harmonization. We demonstrate this 

synthetically using the following experiment.

We generate three synthetic images called {Sr,St,1,St,2}, where i) Sr is the control image at 

the reference site; ii) St,1 is the control image at the target site; and iii) St,2 is a synthetically 

generated diseased image at the target site. We generate St,1 by adding some bias to the 

second order RISH features of Sr; the bias is added to the voxels within a mask denoted by 

Mask1 (Fig. 10). This will generate a data set where the data acquired at the target and 

reference site is different, as is typically the case in in-vivo data. In particular, the FA in the 

simulated white matter region for Sr is 0.79, for St,1 is 0.82, while for the St,2 is 0.79.

The data, St,2 is generated by adding some bias to the second order RISH features of St,1 

using another mask denoted by Mask2; in fact, we assume that the voxels within Mask2 are 

affected due to the disease. The second order RISH features of {Sr,St,1,St,2} and the masks 

are shown in Fig. 10. We use {Sr,St,1} to learn Π parameters in our pipeline, which are used 

to harmonize the images in the target site {St,1,St,2}. Let’s denote the harmonized images by 

{Ŝt,1,Ŝt,2}, respectively. Examples of the generated noisy images after adding rician noise are 

shown in Fig. 11. The noise-level is the standard deviation of noise ranging from 0 to 0.2.

In Fig. 12, for the voxels within Mask2 with different levels of rician noise, we report the 

difference of ||C2||2, FA, and GFA between: i) Sr and Ŝt,1; ii) iii) St,1 and St,2; and iii) Ŝt,1 and 

Ŝt,2. Each of these are respectively the differences between i) the reference image and the 

harmonized image obtained at the reference site, ii) difference between the original control 

and disease images at target site, and iii) difference between the harmonized control and 

disease image at the reference site. Our ideal outcome is to see similar differences between 

the control and disease at the target and reference site. It can be seen that within Mask2 (the 

part of the brain affected by disease), our method preserves the changes due to the disease; 

i.e. the difference between the features of the normal and the disease case at the target site 

are preserved in the harmonized images as well. In this experiment, we modified the signal 

so that it represents typical variations in signal (and in FA and GFA) that are expected in 

diseases such as schizophrenia or mild traumatic brain injury. While a controlled study 

where data are truly acquired and validated at two different site would be ideal, yet due to 

lack of any such existing data set, we believe that the synthetic experiment above is a good 

initial evaluation of our method.

Validation on a traveling subject

To further validate our method, we used data from a traveling human subject. The dMRI 

data was acquired on six different sites {Site#1, Site#2, Site#4, Site#5, Site#6, Ref.site} in 

quick succession (within 1 month). Using the learnt parameters in our pipeline, we 

harmonized the images of the traveling subject from all of the target sites. To see if scanner 

related statistical differences were removed, we computed the p-values for {MD, FA, GFA} 

between voxels from each Freesurfer ROI before and after data harmonization. The p-values 

are reported in Tables 6–9, with all statistical differences removed after harmonization. 

These results indicate that the harmonization parameters can safely remove scanner related 

differences even in a single traveling subject, for each of the brain regions defined by the 

Freesurfer ROIs.
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Conclusion and limitations

In this work, we proposed a novel method that allows to harmonize the dMRI signal 

acquired at different sites in a region-specific, subject-dependent manner, while maintaining 

the intra-subject variability at each site, but removing scanner specific differences in the 

signal across sites. Once such a mapping is computed for healthy subjects, it can then be 

potentially used to map another cohort of diseased subjects allowing for a joint analysis of 

the data using any type of diffusion derived measure. The proposed method is model 

independent and directly maps the signal to the reference site. The method can be of great 

use to aggregate data from multiple sites making it feasible to do joint analysis of a large 

sample of data sets. We should note that, to the best of our knowledge, this is the first work 

that has explicitly addressed the issue of dMRI data harmonization by modifying the 

acquired signal directly, as opposed to adding linear statistical covariates to detect group 

differences in diffusion derived measures. This methodology ensures that once the data is 

harmonized, any type of subsequent analysis can be done by pooling the data, regardless of 

the analysis technique or model used. This is one of the key advantages of our method. 

Using several experiments, we demonstrated the efficacy of our method in removing scanner 

related differences from each of the 7 sites analyzed in this study. Further, the proposed 

method can be used to separately harmonize each b-value shell for multi-shell diffusion data.

Note that in our pipeline, RISH features are used as the basis although there are other tensor-

based RI features (Kindlmann, 2003; Ennis and Kindlmann, 2006) such as the eigenvalues, 

MD, FA, and other fourth-order tensor invariants (Fuster et al., 2011). While one can use the 

fourth-order tensor invariants (Fuster et al., 2011) instead of the RISH features, yet using the 

eigenvalues, FA and other measures from the single tensor model would only be acceptable 

in case the original raw data has very few gradient directions (e.g. less than 15 gradient 

directions).

Nevertheless, our methodology has a few limitations, which we will address in our future 

work. First, an ideal scenario for our method to work optimally would be the availability of a 

few traveling subjects who are scanned at each site (in quick succession), ensuring that little 

anatomical differences in dMRI data exist between the scans acquired at each site. The 

harmonization parameters obtained from such a set of subjects could then be used to 

harmonize data across all sites. Thus, this is the optimal experimental design to use this 

method, for prospective harmonization of the data, with similar acquisition parameters used 

at all sites. However, in many scenarios such a cohort of data does not exist. In such cases, 

we have to provide a cautionary note that the number of healthy subjects (used for the 

harmonization data) should be sufficient enough (at each site) to capture most of the 

anatomical variability. We should however note that, our method relies on computing the 

average difference in RISH features and does not depend on the variance of a particular 

diffusion measure as is the case when using meta-analysis. Thus, our method is less sensitive 

to the number of subjects used to harmonize the data at each site. Another limitation of our 

method, is that it can be used in its current form, only for similar acquisition parameters 

across all sites (scanners). For example, a data set with 60 gradient directions cannot be 

exactly harmonized with the one having only 10 gradient directions as the higher order 

RISH features cannot be computed from the latter one. Consequently, harmonization can 
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only be done for RISH features up to order 2. Thus, while some differences in the number of 

gradient directions can be tolerated, the same is not true about the b-value or the spatial 

resolution. In our future work, we will address these challenges.

Our work is still a first step towards a full-fledged methodology for comparing two groups 

of subjects acquired from different scanners. While we have shown the robustness of our 

method on synthetic data in preserving the group effect after harmonization, yet, a 

comprehensive validation needs to be done involving several acquisitions and scans on 

multiple sites. This will form part of our future work. However, the work done in this paper 

is a necessary first step to take the field forward so that a comprehensive method is available 

that can harmonize the dMRI signal directly, allowing for any type of model based analysis 

at a later stage.

Scanner related artifacts, such as table vibration can influence statistical results in our 

pipeline. If such artifacts consistently exist in the data acquired at the target site (not the 

reference site), these might be partially removed. However, we do not have access to such 

data and hence can’t demonstrate this using experiments. Nevertheless, if such artifacts exist 

in the “reference” site, then this could potentially “add” artifacts to the data, which is 

certainly undesirable. This limitation can be mitigated by careful inspection and choice of 

the reference site data.

To summarize, we propose a model-independent method for harmonizing diffusion MRI 

data acquired at multiple sites with almost similar acquisition parameters. This will allow for 

pooling data acquired from multiple sites by removing scanner specific differences. In 

particular, we recommend that a set of traveling heads be used to acquire data from all sites 

in quick succession, which can then be used to harmonize data across these sites. Such a 

data set will be the most ideal data for application of the proposed algorithm.
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Fig. 1. 
Outline of the proposed method for inter-site dMRI data harmonization and the section 

numbers where we discuss the related sub-problems. In our pipeline, the reference and the 

target sites are shown in green and red, respectively. Given the input images represented by 

their corresponding SH coefficients, we start by extracting a set of RISH features followed 

by updating the Freesurfer label map and finding a proper region-wise mapping for the 

RISH features as well as a voxel-wise mapping for the SH coefficients. The mapped 

coefficients are then used to estimate the harmonized dMRI signal of the target site making 

it statistically similar to the reference site.
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Fig. 2. 
Visualization of the voxel-wise RISH features for spherical harmonics of different orders.
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Fig. 3. 
Freesurfer region based RISH features for different SH orders and sites.
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Fig. 4. 
Representation of the distance based features used to segment large regions into smaller 

regions. (a) A voxel within centrum-semiovale (large dark region), is connected to the 

nearby regions by a number of edges. The entries of the feature vector assigned to this voxel 

represent the minimum distance of the edges connecting the white voxel to the nearby 

regions. (b) 3D surface representation of the left and right centrum-semiovale regions, (c) 

segmented smaller regions by performing k-mean clustering (k = 3).
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Fig. 5. 
Effect of using different mapping functions π — shift vs scale. (a) Original dMRI signal. (b) 

π used as a shift map, (c) Estimated signal with π as a scaling map Eq. (9).
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Fig. 6. 
First row (left to right): RISH features of order {0, 2, 4, 6, 8}. Second row: amount of shift 

for each region introduced by Πi ( r − k); different columns correspond to different order of 

spherical harmonics {0, 2, 4, 6, 8}. Third row: Scale computed at each voxel by πi; different 

columns correspond to SH of order {0, 2, 4, 6, 8} respectively.
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Fig. 7. 
TBSS results for the target sites before (a–f) and after (g) applying our method. The yellow-

red colormap displays p-values less than 0.05.
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Fig. 8. 
Comparison between the Freesurfer parcellated label map and the updated one after 

applying our algorithm (Optimizing Freesurfer label map section). A part of the brain with 

low FA labeled as WM (b) is relabeled to GM (c). A part of the brain with high FA 

originally labeled as GM (e), but is relabeled to WM (f) using our method. Note that in 

subfigures (b, c, e, f) the images on the left side visualize crisp labels, which are transparent 

on top of FA on the right side.
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Fig. 9. 
The bars in red and green represent the mean and variance of the parameters (||C0||2, ||C2||2, 

etc.) before and after modifying the Freesurfer label map. Note that Site#7 is our reference 

site.
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Fig. 10. 
Visualization of the generated synthetic images {Sr,St,1,St,2} to study the effect of applying 

our method on diseased based biological effects (Synthetic experiments to demonstrate the 

effect of signal abnormalities due to disease on the harmonization procedure section). The 

feature differences of the diseased and control subjects at the target site before (i.e. St,1 vs 

St,2) and after harmonization (i.e. Ŝt,1 vs Ŝt,2) are reported in Fig. 12, which indicate that our 

method would preserve the differences.
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Fig. 11. 
Representation of the images in Fig. 10 with added rician noise.
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Fig. 12. 
Difference of ||C2||2, FA, and GFA between: i) Sr and Ŝt,1; ii) St,2 and St,2; and iii) Ŝt,2 and 

Ŝt,2 for different levels of rician noise added to the images. It can be seen that the differences 

computed between the normal and patient cases at the target site are preserved after applying 

our harmonization method.

Mirzaalian et al. Page 29

Neuroimage. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 30

Ta
b

le
 1

Sc
an

ne
r 

de
ta

ils
 a

nd
 s

ub
je

ct
 n

um
be

rs
 f

or
 e

ac
h 

si
te

 (
M

 —
 M

al
e,

 F
 —

 F
em

al
e,

 R
 —

 r
ig

ht
 h

an
de

d,
 L

 —
 le

ft
 h

an
de

d)
.

Si
te

#
M

an
uf

ac
tu

re
r

F
ie

ld
 s

tr
en

gt
h

M
od

el
So

ft
w

ar
e 

ve
rs

io
n

# 
of

 c
ha

nn
el

s
# 

of
 s

ub
je

ct
s

# 
of

 d
ir

ec
ti

on
s

A
ge

H
an

de
dn

es
s

G
en

de
r

1
Ph

ili
ps

3 
T

A
ch

ie
va

2.
6.

3
8

20
64

35
 ±

 1
1

20
R

 0
L

10
F 

10
M

2
Ph

ili
ps

3 
T

A
ch

ie
va

2.
6.

3
8

20
64

35
 ±

 1
2

17
R

3L
14

F 
6M

3
Ph

ili
ps

3 
T

A
ch

ie
va

2.
6.

3
8

7
64

36
 ±

 1
2

7R
0L

4F
 3

M

4
G

E
3 

T
M

R
75

0
20

xM
4

8
6

86
37

 ±
 1

0
6R

0L
1F

5M

5
G

E
3 

T
M

R
75

0
M

4
8

16
86

37
 ±

 9
14

R
 2

L
12

F 
4M

6
Si

em
en

s
3 

T
T

im
 T

ri
o 

(1
02

 ×
 3

2)
vb

17
12

24
87

35
 ±

 1
2

23
R

 1
L

6F
 1

8M

R
ef

.
Si

em
en

s
3 

T
T

im
 T

ri
o 

(1
02

 ×
 1

8)
V

B
15

12
23

87
36

 ±
 1

1
20

R
 3

L
13

F 
10

M

Neuroimage. Author manuscript; available in PMC 2017 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 31

Ta
b

le
 2

P-
va

lu
es

 b
ef

or
e 

an
d 

af
te

r 
ha

rm
on

iz
at

io
n 

fo
r 

M
D

, F
A

, G
FA

 f
or

 d
if

fe
re

nt
 s

ite
s 

an
d 

R
O

Is
.

Si
te

#1
Si

te
#2

Si
te

#3
Si

te
#4

Si
te

#5
Si

te
#6

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

M
D

lF
ro

nt
al

7.
7e

-0
2

1
9.

9e
-0

2
1

8.
0e

-0
3

1
2.

9e
-0

2
1

8.
5e

-0
5

1
1.

7e
-0

1
1

lP
ar

ie
ta

l
2.

6e
-1

1
1

2.
7e

-1
0

1
8.

4e
-0

7
1

1.
2e

-0
3

1
1.

1e
-0

9
1

2.
2e

-0
2

1

lT
em

po
ra

l
6.

8e
-0

4
1

1.
2e

-0
1

1
2.

6e
-0

3
1

7.
1e

-0
4

1
7.

8e
-0

5
1

1.
3e

-0
2

1

lO
cc

ip
ita

l
2.

6e
-0

7
1

1.
9e

-0
9

1
7.

2e
-0

3
1

1.
0e

-0
1

1
6.

5e
-0

4
1

2.
2e

-0
1

1

lC
en

tr
um

Se
m

io
va

le
5.

9e
-1

6
1

4.
2e

-1
4

1
1.

9e
-0

9
1

9.
2e

-0
6

1
4.

2e
-1

3
1

6.
0e

-0
6

1

lC
er

eb
el

lu
m

2.
3e

-0
9

1
3.

9e
-1

5
1

2.
6e

-0
5

1
9.

5e
-0

5
1

2.
2e

-0
5

1
3.

4e
-0

3
1

rF
ro

nt
al

1.
8e

-0
5

1
1.

3e
-0

3
1

5.
8e

-0
3

1
1.

6e
-0

2
1

3.
9e

-0
5

1
1.

7e
-0

1
1

rP
ar

ie
ta

l
3.

8e
-1

0
1

2.
9e

-0
9

1
4.

7e
-0

6
1

6.
1e

-0
2

1
2.

3e
-0

6
1

2.
1e

-0
1

1

rT
em

po
ra

l
6.

4e
-0

4
1

8.
5e

-0
3

1
4.

4e
-0

2
1

3.
4e

-0
2

1
4.

4e
-0

5
1

8.
9e

-0
2

1

rO
cc

ip
ita

l
1.

5e
-0

3
1

3.
2e

-0
2

1
6.

6e
-0

2
1

2.
6e

-0
1

1
6.

2e
-0

1
1

6.
4e

-0
1

1

rC
en

tr
um

Se
m

io
va

le
5.

6e
-1

5
1

9.
9e

-1
4

1
1.

3e
-0

8
1

1.
5e

-0
5

1
9.

4e
-1

5
1

1.
3e

-0
7

1

rC
er

eb
el

lu
m

1.
4e

-0
4

1
5.

7e
-1

0
1

8.
4e

-0
4

1
4.

9e
-0

2
1

8.
8e

-0
1

1
2.

1e
-0

3
1

C
or

pu
s 

ca
llo

su
m

9.
0e

-1
4

1
1.

3e
-0

9
1

4.
7e

-0
7

1
3.

8e
-0

2
1

4.
1e

-0
9

1
1.

7e
-0

1
1

FA lF
ro

nt
al

2.
9e

-0
2

4.
2e

-0
1

5.
0e

-0
2

4.
3e

-0
1

1.
1e

-0
2

6.
3e

-0
1

5.
8e

-0
1

6.
7e

-0
1

7.
8e

-0
2

5.
2e

-0
1

2.
3e

-0
1

6.
1e

-0
1

lP
ar

ie
ta

l
4.

3e
-1

0
2.

5e
-0

1
7.

5e
-1

0
2.

1e
-0

1
2.

6e
-0

5
4.

7e
-0

1
8.

0e
-0

2
6.

8e
-0

1
9.

5e
-0

6
2.

3e
-0

1
2.

9e
-0

2
5.

4e
-0

1

lT
em

po
ra

l
2.

5e
-0

5
3.

5e
-0

1
5.

1e
-0

5
3.

7e
-0

1
2.

8e
-0

2
5.

8e
-0

1
3.

8e
-0

1
7.

4e
-0

1
7.

0e
-0

2
4.

6e
-0

1
4.

8e
-0

1
6.

1e
-0

1

lO
cc

ip
ita

l
1.

5e
-0

2
2.

9e
-0

1
3.

3e
-0

2
3.

7e
-0

1
6.

3e
-0

2
6.

1e
-0

1
2.

0e
-0

1
7.

1e
-0

1
5.

7e
-0

1
2.

8e
-0

1
5.

9e
-0

1
5.

7e
-0

1

lC
en

tr
um

Se
m

io
va

le
1.

1e
-1

2
1.

3e
-0

1
8.

9e
-1

1
2.

3e
-0

1
1.

0e
-0

8
3.

9e
-0

1
2.

9e
-0

3
5.

1e
-0

1
1.

6e
-0

7
2.

8e
-0

1
7.

1e
-0

3
3.

4e
-0

1

lC
er

eb
el

lu
m

9.
6e

-0
6

9.
5e

-0
2

7.
6e

-0
7

6.
3e

-0
2

2.
0e

-0
7

7.
8e

-0
2

2.
4e

-0
1

4.
2e

-0
1

8.
2e

-0
1

4.
1e

-0
1

6.
2e

-0
1

2.
3e

-0
1

rF
ro

nt
al

5.
3e

-0
4

3.
9e

-0
1

3.
8e

-0
3

5.
0e

-0
1

1.
3e

-0
2

5.
8e

-0
1

3.
5e

-0
1

6.
5e

-0
1

6.
1e

-0
2

4.
8e

-0
1

1.
7e

-0
1

6.
5e

-0
1

rP
ar

ie
ta

l
1.

6e
-0

8
2.

5e
-0

1
6.

4e
-0

8
3.

3e
-0

1
3.

3e
-0

5
5.

2e
-0

1
2.

4e
-0

1
7.

7e
-0

1
2.

7e
-0

4
3.

4e
-0

1
2.

5e
-0

1
5.

8e
-0

1

rT
em

po
ra

l
2.

5e
-0

5
3.

4e
-0

1
3.

3e
-0

5
4.

0e
-0

1
9.

5e
-0

3
5.

7e
-0

1
5.

2e
-0

1
7.

0e
-0

1
1.

3e
-0

1
5.

1e
-0

1
4.

2e
-0

1
6.

3e
-0

1

rO
cc

ip
ita

l
3.

1e
-0

4
4.

0e
-0

1
1.

1e
-0

5
3.

0e
-0

1
1.

5e
-0

4
3.

6e
-0

1
5.

8e
-0

1
7.

9e
-0

1
3.

9e
-0

1
3.

9e
-0

1
9.

2e
-0

1
8.

2e
-0

1

rC
en

tr
um

Se
m

io
va

le
1.

1e
-1

1
1.

0e
-0

1
7.

3e
-1

0
1.

1e
-0

1
2.

3e
-0

7
4.

0e
-0

1
3.

9e
-0

2
5.

8e
-0

1
9.

0e
-0

7
2.

4e
-0

1
1.

7e
-0

2
2.

9e
-0

1

rC
er

eb
el

lu
m

1.
8e

-0
6

1.
1e

-0
1

3.
4e

-1
0

2.
5e

-0
1

4.
2e

-0
6

1.
1e

-0
1

1.
7e

-0
1

4.
2e

-0
1

4.
5e

-0
2

9.
4e

-0
1

8.
8e

-0
1

3.
7e

-0
1

Neuroimage. Author manuscript; available in PMC 2017 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 32

Si
te

#1
Si

te
#2

Si
te

#3
Si

te
#4

Si
te

#5
Si

te
#6

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

C
or

pu
s 

ca
llo

su
m

7.
4e

-1
3

1.
0e

-0
1

4.
5e

-1
0

2.
0e

-0
1

4.
2e

-0
5

5.
6e

-0
1

2.
5e

-0
1

5.
1e

-0
1

8.
5e

-0
4

8.
6e

-0
1

1.
3e

-0
1

8.
1e

-0
1

G
FA

lF
ro

nt
al

5.
8e

-0
2

5.
6e

-0
1

5.
0e

-0
2

5.
3e

-0
1

1.
0e

-0
1

7.
2e

-0
1

9.
1e

-0
2

6.
4e

-0
1

2.
1e

-0
1

5.
9e

-0
1

4.
0e

-0
1

6.
8e

-0
1

lP
ar

ie
ta

l
6.

3e
-0

3
3.

9e
-0

1
3.

3e
-0

3
3.

7e
-0

1
8.

0e
-0

2
5.

1e
-0

1
2.

6e
-0

1
6.

1e
-0

1
4.

4e
-0

1
2.

2e
-0

1
3.

2e
-0

1
4.

3e
-0

1

lT
em

po
ra

l
1.

6e
-0

2
3.

5e
-0

1
1.

1e
-0

1
3.

8e
-0

1
3.

4e
-0

1
5.

8e
-0

1
1.

9e
-0

1
7.

8e
-0

1
5.

0e
-0

1
5.

4e
-0

1
1.

5e
-0

1
6.

7e
-0

1

lO
cc

ip
ita

l
3.

1e
-0

1
5.

4e
-0

1
6.

4e
-0

1
4.

2e
-0

1
3.

2e
-0

1
7.

4e
-0

1
1.

2e
-0

1
7.

4e
-0

1
2.

1e
-0

1
4.

5e
-0

1
4.

9e
-0

1
6.

7e
-0

1

lC
en

tr
um

Se
m

io
va

le
1.

2e
-0

5
1.

7e
-0

1
7.

9e
-0

6
2.

2e
-0

1
2.

1e
-0

4
3.

3e
-0

1
2.

8e
-0

1
6.

4e
-0

1
6.

3e
-0

1
5.

1e
-0

1
2.

7e
-0

1
4.

6e
-0

1

lC
er

eb
el

lu
m

6.
7e

-0
3

1.
9e

-0
1

1.
7e

-0
3

1.
3e

-0
1

2.
9e

-0
6

1.
9e

-0
1

4.
4e

-0
1

6.
3e

-0
1

2.
8e

-0
2

5.
6e

-0
1

4.
9e

-0
2

4.
8e

-0
1

rF
ro

nt
al

1.
9e

-0
3

5.
5e

-0
1

2.
7e

-0
4

6.
2e

-0
1

8.
4e

-0
2

6.
4e

-0
1

8.
5e

-0
2

6.
7e

-0
1

1.
1e

-0
1

5.
7e

-0
1

2.
9e

-0
1

7.
6e

-0
1

rP
ar

ie
ta

l
1.

1e
-0

3
4.

3e
-0

1
6.

8e
-0

4
4.

9e
-0

1
8.

0e
-0

2
5.

3e
-0

1
4.

2e
-0

1
7.

1e
-0

1
2.

1e
-0

1
3.

3e
-0

1
3.

7e
-0

1
6.

5e
-0

1

rT
em

po
ra

l
8.

1e
-0

4
3.

0e
-0

1
1.

1e
-0

5
3.

8e
-0

1
3.

3e
-0

2
4.

7e
-0

1
1.

6e
-0

1
6.

7e
-0

1
9.

3e
-0

2
3.

8e
-0

1
2.

1e
-0

1
7.

1e
-0

1

rO
cc

ip
ita

l
2.

7e
-0

4
4.

6e
-0

1
9.

2e
-0

6
4.

0e
-0

1
8.

4e
-0

4
4.

5e
-0

1
5.

7e
-0

1
7.

6e
-0

1
3.

5e
-0

1
4.

2e
-0

1
8.

2e
-0

1
8.

6e
-0

1

rC
en

tr
um

Se
m

io
va

le
5.

2e
-0

6
1.

7e
-0

1
3.

6e
-0

5
1.

6e
-0

1
6.

6e
-0

4
3.

6e
-0

1
1.

1e
-0

1
7.

1e
-0

1
5.

2e
-0

2
4.

5e
-0

1
3.

1e
-0

2
4.

9e
-0

1

rC
er

eb
el

lu
m

3.
2e

-0
7

1.
6e

-0
1

7.
4e

-0
9

4.
6e

-0
2

1.
3e

-0
5

2.
2e

-0
1

6.
3e

-0
1

5.
7e

-0
1

1.
4e

-0
1

8.
0e

-0
1

1.
8e

-0
2

6.
3e

-0
1

C
or

pu
s 

ca
llo

su
m

2.
7e

-0
5

8.
1e

-0
1

5.
8e

-0
4

8.
2e

-0
1

1.
8e

-0
1

6.
6e

-0
1

2.
0e

-0
1

2.
5e

-0
1

5.
4e

-0
1

5.
3e

-0
1

4.
3e

-0
1

7.
0e

-0
1

Neuroimage. Author manuscript; available in PMC 2017 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 33

Ta
b

le
 3

P-
va

lu
es

 b
ef

or
e 

an
d 

af
te

r 
ha

rm
on

iz
at

io
n 

fo
r 

M
D

, F
A

, G
FA

 f
or

 d
if

fe
re

nt
 s

ite
s 

an
d 

R
O

Is
 u

si
ng

 te
st

 d
at

a 
ex

cl
ud

ed
 f

ro
m

 tr
ai

ni
ng

.

M
D

FA
G

FA

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er

lF
ro

nt
al

8.
3e

-0
3

0.
84

3.
4e

-0
5

0.
35

3.
4e

-0
7

0.
20

lP
ar

ie
ta

l
1.

2e
-0

6
0.

77
6.

4e
-0

7
0.

22
3.

6e
-0

5
0.

12

lT
em

po
ra

l
9.

3e
-0

8
0.

97
1.

8e
-0

6
0.

53
4.

3e
-0

4
0.

48

lO
cc

ip
ita

l
2.

4e
-0

3
0.

67
6.

3e
-0

5
0.

20
4.

9e
-0

5
0.

31

lC
en

tr
um

Se
m

io
va

le
1.

0e
-1

0
0.

48
7.

5e
-0

9
0.

73
6.

6e
-0

3
0.

30

lC
er

eb
el

lu
m

1.
0e

-0
4

0.
45

5.
5e

-0
8

0.
69

3.
7e

-0
6

0.
96

rF
ro

nt
al

3.
3e

-0
3

0.
73

1.
5e

-0
5

0.
18

4.
3e

-0
7

0.
14

rP
ar

ie
ta

l
1.

1e
-0

3
0.

73
3.

3e
-0

7
0.

21
1.

2e
-0

8
0.

20

rT
em

po
ra

l
3.

9e
-0

4
0.

73
1.

5e
-0

6
0.

25
2.

9e
-0

8
0.

57

rO
cc

ip
ita

l
9.

5e
-0

2
0.

69
8.

0e
-0

4
0.

45
3.

5e
-0

8
0.

55

rC
en

tr
um

Se
m

io
va

le
1.

9e
-0

8
0.

68
1.

5e
-0

7
0.

25
8.

5e
-0

5
0.

53

rC
er

eb
el

lu
m

0.
26

0.
87

7.
5e

-0
5

0.
31

2.
3e

-1
0

0.
69

B
ra

in
 S

te
m

2.
7e

-1
3

0.
08

2.
5e

-0
9

0.
17

9.
7e

-0
1

0.
53

C
or

pu
s

1.
6e

-0
6

0.
49

9.
9e

-0
5

0.
83

2.
1e

-0
3

0.
39

Neuroimage. Author manuscript; available in PMC 2017 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 34

Ta
b

le
 4

C
ha

ng
es

 in
 th

e 
or

ie
nt

at
io

n 
of

 th
e 

fi
be

rs
 (

es
tim

at
ed

 u
si

ng
 th

e 
si

ng
le

 te
ns

or
 m

od
el

 a
nd

 O
D

F)
 b

ef
or

e 
an

d 
af

te
r 

ap
pl

yi
ng

 o
ur

 h
ar

m
on

iz
at

io
n 

m
et

ho
d.

Si
te

#1
Si

te
#2

Si
te

#3
Si

te
#4

Si
te

#5
Si

te
#6

Si
ng

le
 te

ns
or

0.
76

 ±
 0

.1
2°

0.
14

 ±
 0

.0
8°

0.
72

 ±
 0

.2
1°

0.
79

 ±
 0

.0
3°

0.
10

 ±
 0

.0
0°

0.
95

 ±
 0

.0
5°

O
D

F
0.

24
e–

5 
±

 0
.0

3e
–5

°
0.

17
e–

5 
±

 0
.0

2e
–5

°
0.

26
e–

5 
±

 0
.0

7e
–5

°
0.

79
 ±

 0
.0

3°
0.

10
 ±

 0
.0

0°
0.

95
 ±

 0
.0

5°

Neuroimage. Author manuscript; available in PMC 2017 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 35

Ta
b

le
 5

C
ha

ng
es

 in
 th

e 
co

ef
fi

ci
en

t o
f 

va
ri

at
io

n 
(C

oV
) 

in
 F

A
 f

or
 e

ac
h 

si
te

 b
ef

or
e 

an
d 

af
te

r 
th

e 
ha

rm
on

iz
at

io
n 

pr
oc

ed
ur

e.

Si
te

#1
Si

te
#2

Si
te

#3
Si

te
#4

Si
te

#5
Si

te
#6

C
oV

 (
be

fo
re

)
0.

56
73

0.
61

19
0.

62
31

0.
49

39
0.

54
06

0.
58

35

C
oV

 (
af

te
r)

0.
56

52
0.

59
56

0.
60

38
0.

50
26

0.
57

87
0.

59
06

Neuroimage. Author manuscript; available in PMC 2017 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 36

Ta
b

le
 6

P-
va

lu
es

 c
om

pu
te

d 
fo

r 
th

e 
tr

av
el

in
g 

su
bj

ec
t (

Si
te

#1
).

M
D

FA
G

FA

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er

lF
ro

nt
al

1.
1e

-0
1

9.
1e

-0
1

2.
1e

-0
1

7.
0e

-0
1

1.
8e

-0
1

5.
6e

-0
1

lP
ar

ie
ta

l
4.

0e
-0

4
1.

8e
-0

1
2.

7e
-0

1
8.

6e
-0

1
4.

8e
-0

1
7.

3e
-0

1

lT
em

po
ra

l
7.

1e
-0

2
5.

5e
-0

1
3.

7e
-0

2
3.

0e
-0

1
6.

7e
-0

2
2.

7e
-0

1

lO
cc

ip
ita

l
3.

1e
-0

1
8.

3e
-0

1
1.

1e
-0

1
4.

2e
-0

1
1.

9e
-0

1
7.

8e
-0

1

lC
en

tr
um

Se
m

io
va

le
4.

6e
-0

2
7.

2e
-0

1
2.

8e
-0

2
4.

8e
-0

1
4.

3e
-0

1
3.

7e
-0

1

lC
er

eb
el

lu
m

8.
6e

-0
2

9.
5e

-0
2

2.
5e

-0
2

8.
6e

-0
2

9.
4e

-0
1

2.
4e

-0
1

rF
ro

nt
al

2.
2e

-0
1

5.
6e

-0
1

1.
4e

-0
1

5.
4e

-0
1

9.
2e

-0
2

3.
4e

-0
1

rP
ar

ie
ta

l
3.

4e
-0

1
1.

2e
-0

1
2.

5e
-0

1
8.

5e
-0

1
1.

9e
-0

1
4.

7e
-0

1

rT
em

po
ra

l
3.

3e
-0

1
4.

8e
-0

1
4.

7e
-0

3
6.

2e
-0

2
6.

3e
-0

3
7.

3e
-0

2

rO
cc

ip
ita

l
5.

1e
-0

1
6.

8e
-0

1
2.

6e
-0

1
7.

4e
-0

1
2.

4e
-0

1
9.

2e
-0

1

rC
en

tr
um

Se
m

io
va

le
7.

7e
-0

1
3.

3e
-0

1
6.

3e
-0

1
9.

3e
-0

1
6.

5e
-0

1
8.

6e
-0

1

rC
er

eb
el

lu
m

2.
3e

-0
1

2.
7e

-0
1

1.
3e

-0
1

1.
1e

-0
1

8.
3e

-0
1

2.
8e

-0
1

B
ra

in
 S

te
m

8.
1e

-0
1

6.
8e

-0
1

7.
9e

-0
1

8.
3e

-0
1

2.
2e

-0
2

8.
3e

-0
2

C
or

pu
s

1.
7e

-0
1

7.
4e

-0
1

9.
9e

-0
2

5.
8e

-0
1

8.
3e

-0
2

2.
8e

-0
1

Neuroimage. Author manuscript; available in PMC 2017 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 37

Ta
b

le
 7

P-
va

lu
es

 c
om

pu
te

d 
fo

r 
th

e 
tr

av
el

in
g 

su
bj

ec
t (

si
te

#2
).

M
D

FA
G

FA

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er

lF
ro

nt
al

3.
4e

-0
2

1.
4e

-0
1

2.
3e

-0
1

6.
3e

-0
1

2.
9e

-0
1

9.
6e

-0
1

lT
em

po
ra

l
1.

2e
-0

2
7.

5e
-0

1
3.

3e
-0

2
4.

1e
-0

1
2.

3e
-0

1
6.

7e
-0

1

lO
cc

ip
ita

l
2.

1e
-0

2
4.

7e
-0

1
4.

6e
-0

2
1.

8e
-0

1
2.

8e
-0

1
5.

5e
-0

1

lC
en

tr
um

Se
m

io
va

le
3.

2e
-0

5
8.

6e
-0

2
1.

2e
-0

2
4.

3e
-0

1
6.

0e
-0

1
1.

6e
-0

1

lC
er

eb
el

lu
m

6.
9e

-0
3

6.
5e

-0
2

2.
3e

-0
2

9.
4e

-0
2

3.
2e

-0
1

1.
6e

-0
1

rF
ro

nt
al

1.
1e

-0
2

1.
7e

-0
1

1.
8e

-0
1

5.
4e

-0
1

2.
5e

-0
1

8.
1e

-0
1

rP
ar

ie
ta

l
8.

7e
-0

5
1.

1e
-0

1
5.

7e
-0

2
3.

3e
-0

1
1.

1e
-0

1
3.

7e
-0

1

rT
em

po
ra

l
1.

3e
-0

1
5.

6e
-0

1
1.

7e
-0

3
5.

1e
-0

2
4.

4e
-0

3
8.

7e
-0

2

rO
cc

ip
ita

l
1.

6e
-0

2
6.

7e
-0

2
3.

9e
-0

2
1.

7e
-0

1
5.

9e
-0

2
5.

3e
-0

1

rC
en

tr
um

Se
m

io
va

le
1.

8e
-0

1
3.

1e
-0

1
7.

1e
-0

1
9.

4e
-0

1
7.

8e
-0

1
9.

6e
-0

1

rC
er

eb
el

lu
m

2.
0e

-0
1

2.
7e

-0
1

5.
9e

-0
1

8.
9e

-0
1

4.
9e

-0
1

1.
6e

-0
1

B
ra

in
 S

te
m

9.
4e

-0
1

7.
0e

-0
1

4.
4e

-0
2

8.
5e

-0
2

9.
9e

-0
1

9.
3e

-0
1

C
or

pu
s

5.
6e

-0
3

8.
9e

-0
2

1.
5e

-0
2

9.
8e

-0
2

2.
5e

-0
2

1.
9e

-0
1

Neuroimage. Author manuscript; available in PMC 2017 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 38

Ta
b

le
 8

P-
va

lu
es

 c
om

pu
te

d 
fo

r 
th

e 
tr

av
el

in
g 

su
bj

ec
t (

si
te

#5
).

M
D

FA
G

FA

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er

lF
ro

nt
al

9.
6e

-0
4

5.
0e

-0
1

5.
8e

-0
1

8.
9e

-0
1

7.
2e

-0
1

7.
2e

-0
1

lP
ar

ie
ta

l
1.

8e
-0

3
3.

9e
-0

1
3.

9e
-0

1
6.

7e
-0

1
7.

2e
-0

1
5.

9e
-0

1

lT
em

po
ra

l
1.

8e
-0

2
8.

2e
-0

1
1.

9e
-0

1
8.

8e
-0

1
8.

9e
-0

1
3.

1e
-0

1

lO
cc

ip
ita

l
3.

5e
-0

1
5.

3e
-0

1
7.

7e
-0

1
6.

4e
-0

1
8.

6e
-0

1
5.

9e
-0

1

lC
en

tr
um

Se
m

io
va

le
4.

4e
-0

1
3.

9e
-0

1
3.

7e
-0

1
9.

5e
-0

1
3.

3e
-0

1
7.

9e
-0

1

rF
ro

nt
al

2.
6e

-0
3

4.
3e

-0
1

7.
7e

-0
1

9.
1e

-0
1

6.
3e

-0
1

8.
6e

-0
1

rP
ar

ie
ta

l
1.

6e
-0

1
1.

3e
-0

1
6.

9e
-0

1
9.

6e
-0

1
7.

3e
-0

1
3.

7e
-0

1

rT
em

po
ra

l
2.

5e
-0

1
7.

3e
-0

2
9.

1e
-0

1
2.

7e
-0

2
7.

5e
-0

1
7.

3e
-0

1

rO
cc

ip
ita

l
8.

8e
-0

1
2.

4e
-0

1
8.

9e
-0

1
9.

2e
-0

1
9.

0e
-0

1
3.

9e
-0

1

rC
en

tr
um

Se
m

io
va

le
8.

1e
-0

1
9.

6e
-0

1
7.

5e
-0

1
8.

1e
-0

1
9.

7e
-0

1
4.

2e
-0

1

rC
er

eb
el

lu
m

7.
3e

-0
3

5.
0e

-0
2

1.
7e

-0
1

7.
2e

-0
2

8.
1e

-0
1

1.
8e

-0
1

B
ra

in
 S

te
m

2.
3e

-0
1

5.
3e

-0
1

7.
3e

-0
2

5.
9e

-0
2

7.
8e

-0
1

9.
4e

-0
1

C
or

pu
s

2.
8e

-0
1

7.
6e

-0
1

9.
7e

-0
1

6.
8e

-0
1

5.
2e

-0
1

9.
9e

-0
1

Neuroimage. Author manuscript; available in PMC 2017 July 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mirzaalian et al. Page 39

Ta
b

le
 9

P-
va

lu
es

 c
om

pu
te

d 
fo

r 
th

e 
tr

av
el

in
g 

su
bj

ec
t (

si
te

#6
).

M
D

FA
G

FA

B
ef

or
e

A
ft

er
B

ef
or

e
A

ft
er

B
ef

or
e

A
ft

er

lF
ro

nt
al

2.
6e

-0
4

5.
2e

-0
1

3.
9e

-0
1

8.
5e

-0
1

8.
7e

-0
1

8.
4e

-0
1

lP
ar

ie
ta

l
1.

0e
-0

2
7.

8e
-0

1
2.

0e
-0

1
6.

4e
-0

1
5.

5e
-0

1
5.

7e
-0

1

lT
em

po
ra

l
2.

6e
-0

2
1.

5e
-0

1
7.

6e
-0

2
1.

8e
-0

1
4.

4e
-0

1
7.

3e
-0

1

lO
cc

ip
ita

l
1.

3e
-0

1
9.

1e
-0

1
4.

2e
-0

1
7.

1e
-0

1
6.

9e
-0

1
6.

8e
-0

1

lC
en

tr
um

Se
m

io
va

le
2.

4e
-0

4
5.

1e
-0

2
3.

8e
-0

3
8.

3e
-0

2
6.

3e
-0

1
8.

9e
-0

1

lC
er

eb
el

lu
m

4.
0e

-0
2

1.
2e

-0
1

1.
2e

-0
1

9.
8e

-0
1

9.
9e

-0
1

2.
4e

-0
1

rF
ro

nt
al

4.
3e

-0
4

3.
0e

-0
1

6.
7e

-0
1

9.
9e

-0
1

6.
2e

-0
1

8.
0e

-0
1

rP
ar

ie
ta

l
6.

4e
-0

2
1.

1e
-0

1
5.

6e
-0

1
7.

8e
-0

1
7.

1e
-0

1
6.

8e
-0

1

rT
em

po
ra

l
7.

1e
-0

3
1.

0e
-0

1
8.

8e
-0

1
3.

2e
-0

1
6.

9e
-0

1
6.

4e
-0

1

rO
cc

ip
ita

l
7.

7e
-0

1
1.

3e
-0

1
9.

9e
-0

1
6.

2e
-0

1
8.

0e
-0

1
9.

4e
-0

1

rC
en

tr
um

Se
m

io
va

le
9.

5e
-0

1
7.

7e
-0

1
7.

8e
-0

1
9.

9e
-0

1
9.

5e
-0

1
7.

3e
-0

1

rC
er

eb
el

lu
m

4.
6e

-0
1

7.
8e

-0
1

8.
7e

-0
1

8.
8e

-0
1

4.
8e

-0
1

5.
9e

-0
2

B
ra

in
 S

te
m

9.
8e

-0
2

1.
7e

-0
1

2.
6e

-0
1

2.
1e

-0
1

9.
8e

-0
1

5.
3e

-0
1

C
or

pu
s

1.
3e

-0
1

8.
9e

-0
1

4.
5e

-0
1

7.
4e

-0
1

9.
6e

-0
1

5.
8e

-0
1

Neuroimage. Author manuscript; available in PMC 2017 July 15.


	Abstract
	Introduction
	Our contributions
	Method
	Diffusion MRI and RISH features
	Updating Freesurfer label map
	Refining large regions into smaller regions
	Optimizing Freesurfer label map
	Mapping RISH features between sites

	Experiments
	Results
	Statistical group differences before and after harmonization
	TBSS results before and after harmonization
	Evaluation of the refined brain label map
	Fiber orientation changes and intra-site variability before and after harmonization
	Synthetic experiments to demonstrate the effect of signal abnormalities due to disease on the harmonization procedure
	Validation on a traveling subject

	Conclusion and limitations
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9

