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Abstract

FMRI data acquisition under naturalistic and continuous stimuli (e.g., watching a video or 

listening to music) has become popular recently due to the fact that it entails less manipulation and 

more realistic/complex contexts involved in the task, compared to the conventional task-based 

experimental designs. The synchronization or response similarities among subjects are typically 

measured through inter-subject correlation (ISC) between any pair of subjects. At the group level, 

summarizing the collection of ISC values is complicated by their intercorrelations, which 

necessarily lead to the violation of independence assumed in typical parametric approaches such 

as Student’s t-test. Nonparametric methods, such as bootstrapping and permutation testing, have 

previously been adopted for testing purposes by resampling the time series of each subject, but the 

quantitative validity of these specific approaches in terms of controllability of false positive rate 

(FPR) has never been explored before. Here we survey the methods of ISC group analysis that 

have been employed in the literature, and discuss the issues involved in those methods. We then 

propose less computationally intensive nonparametric methods that can be performed at the group 

level (for both one- and two-sample analyses), as compared to the popular method of circularly 

shifting the EPI time series at the individual level. As part of the new approaches, subject-wise 

(SW) resampling is adopted instead of element-wise (EW) resampling, so that exchangeability and 

independence assumptions are satisfied, and the patterned correlation structure among the ISC 

values can be more accurately captured. We examine the FPR controllability and power 

achievement of all the methods through simulations, as well as their performance when applied to 

a real experimental dataset. The new methodologies are shown to be both efficient and robust, and 
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they have been implemented into an open source program, 3dNPT, in AFNI (http://

afni.nimh.nih.gov).

Introduction

In a typical task-related FMRI experiment, the subject is presented with artificial stimuli or 

asked to perform meticulously-designed tasks in the scanner. Each experiment is categorized 

as an event-related design if each trial lasts for one TR or less, or as a block design if the 

duration of each trial is more than one TR; sometimes mixtures of the two are also 

performed. Through abstraction, simplification and reduction, the specification of various 

design features such as scanning parameters (TR, flip angle, etc.), explanatory variables 

(factors and quantitative covariates), and sample sizes (data points, repetitions of trials at the 

individual and number of subjects at the group level), allows the investigator to untangle 

various effects (main effects, interactions, various contrasts, trends, etc.) and to achieve 

proper statistical power in statistical inferences. In the analysis at the individual level, each 

voxel-wise time series is explained in a regression model through the construction of an 

idealized hemodynamic response (HDR) function or linear combinations of multiple basis 

functions, and the effect estimates are then taken to a general linear model at the group level 

to make generalizations about a population. However, in addition to (or, in part due to) the 

absence of distinctive textures of real life events, it has been argued (Hasson et al., 2004, 

2008) that BOLD responses under such typical task FMRI paradigms (e.g., artificial or 

discrete intervals) are not as reliable as under naturalistically, continuously, and dynamically 

evolving conditions. Furthermore, the standard FMRI model-based approach through a 

presumed HDR function (Γ-variate in AFNI, Cohen, 1997; canonical function in SPM/FSL, 

Friston et al., 1998) may fail to capture the subtle shape differences in HDR across 

conditions or groups (e.g., Buxton et al., 2004; Barbé at al., 2012; Chen et al., 2015).

In light of these considerations, over the past decade it has been proposed (Hasson et al., 

2004, 2008) that the presentation of a natural scene (e.g., a whole episode) during most of or 

the entire scanning session may be preferable. This “naturalistic” paradigm allows the 

investigator to explore the extent of synchronization, similarity, or shared processing at the 

same locations in the brain among subjects (e.g., Hasson et al., 2008), or even across species 

(Mantini et al., 2012). The differences in synchronization can be further explored across 

groups or conditions. Such a methodology with natural stimulus presentations has flourished 

and been applied to wide variety of FMRI experiments, such as visuoauditory movie stimuli 

(Hasson et al., 2004, 2008; Golland et al., 2007; Jääskeläinen et al., 2008; Kauppi et al., 

2010; Nummenmaa et al., 2012), the synchronization of emotion (Nummenmaa et al., 2012), 

the impact of mass media coverage on various perceptions of the H1N1 pandemic 

(Schmälzle et al., 2013), real-world thought processing (e.g., educational television viewing 

of Sesame Street) between children and adults (Cantlon and Li, 2013), videos of dance 

performance (Herbec et al., 2015), narratives (Wilson et al., 2008), music (Abrams et al., 

2013; Alluri et al., 2013; Thiede, 2014; Trost et al., 2015, Lillywhite et al., 2015), aesthetic 

performance (Jola et al., 2013), neural responses shared across languages (Honey et al., 

2012), and political speeches (Schmälzle et al., 2015). In addition, applications have been 

seen in other neuroimaging modalities, such as MEG (Thiede, 2014), EEG (Bridwell et al., 
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2015), and ECoG (Potes et al., 2014). The approach has even been adopted by 

neuromarketers in the field of “neurocinematics” (Hasson et al., 2008).

The typical analysis approach to such naturalistic stimuli at the individual subject level 

involves computing the Pearson correlation coefficient of the EPI time series at each voxel 

of the brain in a standard space (e.g., Talairach-Tournoux or MNI) between any pair of 

subjects, leading to the terminology of inter-subject correlation (ISC) (Hasson et al., 2004). 

For one group with n ≥ 2 subjects S1, S2, …, Sn, there are  correlation 

coefficients at each voxel from the ISC analysis, forming an n × n positive semi-definite 

(PSD) matrix,

(1)

where rij denotes the correlation between subjects i and j, rij = rji, i ≠ j (diagonals rii = 1, 

trivially). The symmetry of the ISC matrix means that we can focus on half of the off-

diagonals, e.g., the N elements of the lower triangular part that is shaded in (1).

For statistical convenience, the correlation coefficients in (1) are usually converted to z-

scores through the inverse hyperbolic tangent function arctanh (i.e., Fisher’s Z-

transformation), producing the symmetric matrix,

(2)
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where zij represents the z-score between subjects i and j, zij = zji, i ≠ j, and the dashes on the 

diagonal indicate that the transformation of 1 is indeterminate (and is of no interest). Similar 

to the conventional FMRI data analysis, the focus in the ISC analysis is to make proper 

generalization at the group level based on the N elements {rij, i > j} or {zij, i > j} in the 

lower triangular (shaded area in (1) or (2)) of the matrix Rn or Zn; that is, what is the typical 

ISC value and the associated statistical significance at the group level?

For two groups, G1 and G2, with subject sample sizes of n1 and n2 respectively in each 

group such that n1 + n2 = n, the ISC matrix can be partitioned as,

(3)

where the three colors, blue, red, and green, correspond, respectively, to the three partitions, 

R11, R22, and R21, of the N elements in the lower triangular part of R(n) (see schematic 

representations in Fig. 1): two within-group correlation (WGC) subsets R11 and R22 for 

groups G1 and G2, respectively, as well as the between-group correlation (BGC) subset R21. 

The corresponding z-matrix Zn can be partitioned in the same fashion.

Here we focus on separate prototypes of statistical tests for ISC data with one and two 

groups of subjects, corresponding to the conventional one- and two-sample t-tests, 

respectively. We note that the paired t-test can be reduced to a one-sample t-test, and 

comparisons among multiple groups can be performed using multiple two-sample t-tests. 

Using the framework introduced here, there are two types of between-group analysis – a 

standard “direct” comparison between the two WGC subsets R11 and R22, and a novel 

“indirect” comparison for the difference between a WGC component R11 (or R22) and the 

BGC subset R21 (Fig. 1).

One major concern affecting the choice of statistical approach with ISC data at the group 

level is that {rij, i > j} (or, equivalently, {zij, i > j}) are not statistically independent samples. 

Previously, both parametric and nonparametric methods have been seen in the literature and, 

for example, implemented into an analytical package ISC toolbox in Matlab (Kauppi et al., 

2014; https://www.nitrc.org/projects/isc-toolbox/). Here, we first strive to explicitly 

characterize the relatedness among the ISC values through a structured variance-covariance 

matrix described in the Methods section, and we then propose a set of new nonparametric 

methods in light of the variance-covariance structure. We further compare these, along with 
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various existing approaches, by analyzing ISC data in their ability to control false positive 

rates (FPRs) using simulations, and we explore the performances of each approach on a real 

experimental dataset. This paper mainly focuses on nonparametric approaches to ISC group 

analysis, while an upcoming article, referred to as “Part II” hereafter, will explore the 

applicability of a novel parametric method in handling the ISC variance-covariance 

structure; the complementary parametric methods will be shown to have the additional 

capability for estimating several of the parameters introduced here, as well as providing 

further, useful interpretations for them.

Methods: Theory

ISC variance-covariance structure

Throughout this article, regular italic letters in lower (e.g., α) and upper (Z) case stand for 

scalars and random variables, respectively; boldfaced italic letters in lower (a) and upper (X) 

cases for column vectors and matrices, respectively. Major acronyms used in the paper are 

tabulated in Appendix A. Suppose that zij and zkl are two z-values associated with the ISCs 

of rij and rkl, and Zij and Zkl are the corresponding random variables1 from which zij and zkl 

are sampled or instantiated. Let ψ denote the correlation between Zij and Zkl that pivot 

around one subject (i.e., the two index pairs (ij, kl) share one and only one common index 

such as (3 2, 4 2) or (3 1, 4 3)). In other words, ψ characterizes the interrelatedness of Zij 

and Zkl among three subjects. It is reasonable to assume that the correlation matrix P(n) for 

{Zij, i > j} has the following structure,

(4)

We further define z = vec({Zij, i > j}) to be the vector of length N whose elements are the 

column-stacking of the lower triangular part of the matrix Z(n) in (2) or its two-sample 

version. That is, z is the half-vectorization of Z(n) excluding the main (or principal) diagonal: 

z = vech(Z(n))\diag(Z(n)). The variance-covariance matrix of z can be expressed as2 the N × 

N matrix,

(5)

1The random variable Zij can be conceptually thought of as representing the possible values that zij may take. Mathematically we may 
define it as a measurable function that maps two EPI time series to the real-valued space ℝ.
2If the two voxel-wise time series follow a bivariate Gaussian distribution, Zij can be approximated by a Gaussian distribution 

G(arctanh(r), σ2), , where r is the true correlation coefficient, T is the number of data points in the voxel-wise time series, 
and k is the number of confounding effects accounted for in the ISC analysis.
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where σ2 is the variance of Zij, i > j. For example, with n = 5 subjects, the correlation matrix 

P(n) for z with the  ISC z-values has the following form,

Among the N lower triangular elements in Z(n), n − 2 of them carry index i (or j), excluding 

the term zij for each ij index pair (i > j). Therefore, the numbers of ψ and 0 in each row (or 

column) in the matrix P(n) are 2(n − 2) and , respectively. While the correlation 

amplitude ψ is generally unknown a priori, the necessary and sufficient condition to 

guarantee the PSD property of P(n) with n > 3 is (Appendix B)

(6)

Despite including the small, extra interval of negative values [ , 0), which uniformly 

vanishes as n increases, the domain of interest for ψ here is [0, 0.5], because negative 

correlation between two Zij samples from each subject, while mathematically possible, is 

highly unlikely in reality. Moreover, the two boundary values are associated with two 

extreme scenarios: ψ = 0 corresponds to the situation of complete independence among the 

zij, while ψ = 0.5 means that any two z-values of a subject are maximally correlated, which 

would correspond to the special case of no noise in a parametric model (see Part II).

The independence assumption in the conventional parametric method such as Student’s t-test 

would be violated for dataset {zij, i > j}, with the nontrivial matrix of P(n) (i.e., it is not 

necessarily the identity matrix) characterizing the degree to which the assumption of 

independence is violated unless ψ = 0. In other words, even with the assumption of 

multivariate Gaussianity for z, it would still be a challenge to appropriately handle the 

variance-covariance matrix Σ(n) = σ2P(n) under conventional parametric paradigms. On the 

other hand, nonparametric methods such as permutation testing and bootstrapping become 

desirable because they can enable inferences on the statistic of interest when: a) the true 

distribution of this statistic (e.g., the structure in P(n)) is unknown or too complicated, or b) 

only a weaker assumption than independence is required. The crucial mechanism by which 

the nonparametric method acts is the generation of a null distribution against which the 

observed effect of interest can be inferred. Notice that, since nonparametric methods do not 
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assume a particular distribution, it is not necessary to use the Fisher-transformed ISC, and 

we can focus on the original correlation coefficients {rij, i > j} instead of {zij, i > j}. 

Additionally, we can adopt the median as the chosen centrality measure for ISC, instead of 

the mean as in parametric methods, which has mathematical and practical advantages (see 

Discussion).

Permutations

In general, permutation testing only requires that exchangeability is satisfied when randomly 

permuting (or reassigning) the units; that is, exchangeability assumes independence between 

the potential outcomes and the permutation (or assignment) mechanism (i.e. each unit is not 

differentiable from other units before the units are assigned). In the case of having only one 

group of subjects, the typical permutation strategy is to randomly flip the sign for some 

members; for two groups, one can establish the exchangeability by randomly shuffling the 

membership between the groups. In the end, the magnitude of the chosen centrality measure 

of the observed data (e.g., median) can be statistically inferred against the null distribution 

generated through an appropriate number of permutations (e.g., 5000).

The crucial choice to be made is how to select the pivoting units. If we perform element-

wise (EW) permutation (EWP) by pivoting around the N individual elements of {rij, i > j}, 

the exchangeability would be broken because: a) the integrity of the correlation matrix R(n) 

(e.g, its PSD property) may be lost; and b) each element in {rij, i > j} or each slot in the 

shaded area of R(n) in (1) is not non-differentiable when permuting, as characterized by the 

pattern in the correlation structure P(n) when ψ ≠ 0. On the other hand, if we execute 

subject-wise (SW) permutation (SWP) by pivoting at the subject level (e.g., flipping signs in 

the case of one group, or shuffling group memberships - exchanging rows and columns in 

R(n) - between two groups), we will be able to maintain the integrity of the resulting 

correlation matrix as well as the independence between the permuted correlation matrices. In 

other words, general exchangeability can only be met with SWP, and not with EWP, and the 

differences are exemplified in the EWP and SWP rows of Table 1.

Two additional features of SWP are worth noting here. First, in the case with one group, 

double sign flipping, which is equivalent to no sign change, happens under SWP where a 

row and column of two flipped subjects intersect (e.g., for elements r41, r61, r64 on the row 

SWP of the “One Group” column in Table 1 where subjects S1, S4, and S6 have been 

flipped). Second, a unique feature of SWP with two groups is that the BGC values (from the 

green submatrix in (1), R21 in Fig. 1) are involved in generating the null distribution, as 

illustrated3 with the green correlation values in the “SWP, Two Groups” case in Table 1.

Bootstrapping

Bootstrapping is an alternative nonparametric approach that resamples the data with 

replacement within each group so that each resampled dataset has the same size as the 

original one. It employs the assumption that the observed data are randomly drawn from an 

3Even though it is demonstrated in Table 1 with equal number of subjects across the two groups, such a constraint of balance is not 
required.
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independent and identically distributed population, from which it estimates the distribution 

of the observed data. Applied to the ISC context, we can again choose to focus on the 

centrality of each resampled dataset (e.g., median) at each iteration, and, with enough 

number of repetitions (e.g., 5000), obtain an empirical population distribution from which a 

null distribution is constructed through shifting the sampled distribution by the observed 

centrality measure. In the same vein as in permutation testing, we may select from two 

choices of resampling: element-wise bootstrapping (EWB) and subject-wise bootstrapping 

(SWB). In the manner as described above in the permutation case, so does EWB violate the 

resampling assumption of independence, while SWB does not.

When applied to ISC data, bootstrapping with replacement for SWB may lead to a situation 

with one subject occurring more than once, leading to an off-diagonal correlation coefficient 

of 1 (e.g., highlighted with squares in the “SWB” row in Table 1). The appearance of this 

feature necessitates the direct use of correlation coefficients {rij, i > j} instead of their 

transformed z-values, as the transformation value is undefined when r = 1. Both simulations 

and real experimental data are used in the next section to show the consequences of the 

various assumptions and the measurable differences of each approach.

Simulations and Real Experiment Results

Simulations of group analysis with different testing methods

We performed simulations in a 2 × 4 × 6 × 5 factorial design with our focus on:

a. 2 types of ISC group analysis: one- (one group) and two-sample (two 

groups);

b. 4 sample sizes: 10, 20, 40, and 80 subjects in each group;

c. 6 parameter values: Six ψ values were selected from the interval of [0, 

0.5] with a step size of 0.1; and

d. 5 testing methods: 1) Student’s t-test (T), 2) element-wise permutations 

(EWP), 3) element-wise bootstrapping (EWP), 4) subject-wise 

permutations (SWP), and 5) subject-wise bootstrapping (SWB). For the 

two-sample scenario, three comparisons were performed: direct contrast 

between the two WGCs (R11 vs R22), and indirect contrast of each WGC 

versus the BGC (R11 vs R21 and R22 vs R21).

To examine the FPR controllability and power attainment for each of the 2×4×5 scenarios, 

5000 simulated datasets were generated, each of which was an instantiation of z, containing 

N values4 of {zij} drawn from an N-variate Gaussian distribution G(μ, Σ), with the variance-

covariance matrix Σ defined per the structure (5), where σ2 = 1. For FPR, μN = 0N for all 

cases, while for power analyses,  (one group) or  (two 

groups,  is the number of elements in Z(n) for the second group). The z-

4For these simulations, data {zij} (the instantiations of Zij) were drawn from a Gaussian distribution, and rij were calculated using the 
inverse Fisher transformation; in practice, when analyzing ISC data non-parametrically, one would calculate the correlation 
coefficients rij directly from the EPI time series.
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values from the 5000 simulated datasets were directly adopted for the parametric test (i.e., 

Student’s t), but were inverse Fisher-transformed (to mimic actual correlation ceofficients) 

through hyperbolic tangent function tanh before being fed into the nonparametric methods, 

in which the median was the selected centrality measure. The FPR for each scenario was 

estimated by counting the number of realizations out of the simulated 5000 datasets that 

reached the nominal significance level of 0.05.

The FPR and power estimates for each method are shown in Fig. 2. For the one-sample case 

(upper row in Fig. 2), the FPR increases across all the five methods when the correlation 

parameter ψ goes from 0 to 0.5 across all the sample sizes. When ψ = 0, all the methods 

except for SWB are aligned with the nominal FPR of 0.05. This phenomenon is expected, 

especially for the Student’s t (red), EWB (orange), and EWP (black diamonds) because the 

ISC values of a subject with two other subjects are independent of each other when ψ = 0. 

On the other hand, for ψ = 0 SWB (blue) is too conservative: in this special case, the 

“bundling” of ISC values per subject, when they are actually independent of each other, 

leads to overly conservative identifications. As ψ increases from 0, all the methods except 

for SWB quickly become too liberal. In contrast, even though moderately liberal when ψ is 

close to 0.5, SWB performs reasonably well for a broad range of ψ, particularly as the 

number of subjects increases.

For the two-sample case (second row in Fig. 2), permutation testing at the subject level 

(SWP, black) is uniformly well-behaved in terms of FPR controllability across all sample 

sizes and across the whole range of ψ values. In contrast, permutations at the element level 

(EWP, purple) tended to be too conservative when the correlation parameter ψ is low and 

too liberal when ψ is above 0.2. All the other three methods (Student’s t, EWB, and SWB) 

show expected over-conservative controllability of FPR when ψ = 0, because this represents 

the special case in which all the ISC values are independent of each other, even from the 

same subjects. While EWB and Student’s t demonstrate unacceptable FPR controllability, 

SWB for two groups shows similar behavior to the one group case, and offers an alternative 

to SWP even though it fares less well with a small sample size or when ψ ≤ 0.1. Unlike the 

case with one group, in which having the permutations at the subject level does not appear to 

provide much gain relative to its EW counterpart, the BGC values (the elements in the R21 

submatrix) in the two-group case provide a crucial leverage for the null distribution, leading 

to the well-balanced performance of SWP.

We emphasize the dramatically different performance between SWP for two-group 

comparison and all other cases, including SWP with one group: SWP controls FPR 

uniformly well across all ψ values and sample sizes for the two-group comparison, while 

FPR for all other cases monotonically increases as the extent of correlation among {zij} 

increases. The essentially ideal FPR performance and the immunity of SWP to the 

magnitude of ψ in the two-group case are achieved probably through the combination of two 

unique features: the subject-wise execution and the involvement of BGC (green elements in 

(3), R21 of Fig. 1), the latter of which is absent from all other scenarios.

The following overall trends are evident across all the methods in power performance. For a 

given ψ, power increases monotonically with sample size in all cases, as expected. When ψ 
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= 0, the power of each method reaches the highest because full independence allows for 

relatively easy detection among the elements. In contrast, when ψ = 0.5, the power is the 

lowest because it is most difficult to tease apart the intercorrelations among the elements and 

to eliminate false positives. Consistent with the FPR controllability, SWB produced the 

lowest power with one group, while the other four methods had roughly equivalent power 

attainment. Similarly for two groups, the order of power achievement was reversed relative 

to their FPR performance. Also similar to their FPR comparison, SWP outperformed/

underperformed relative to EWP when ψ was low/high.

In summary, all the methods, except SWP with two groups, render worsening FPR control as 

the independence assumption becomes more severely violated albeit to varying degrees. For 

comparing two groups SWP is ideal and SWB can be a suboptimal alternative, while all 

other methods do not fare well in FPR. With one group, SWB offers the best solution among 

the alternatives for one group: it controls FPR reasonably well when the amount of 

correlation is moderate, but it does tend to be slightly conservative/liberal when ψ is small/

big. On the other hand, the power monotonically increases for all methods with a bigger 

sample size, and all the methods had reversed order in the power relative to their FPR 

performance; the power gain comes at the cost of poor FPR control.

Performance comparisons with experimental data

To demonstrate and compare the various modeling approaches for ISC analysis at the group 

level in real FMRI data, we utilize here the same experimental data used in Shin et al. (under 

review). Briefly, n = 48 healthy volunteers (n1 = 24 males, n2 = 24 females, age mean ± SD 

= 33.6 ± 5.7 and 34.7 ± 6.0 years old for males and females, respectively) watched six movie 

clips, each with an average length of two and half minutes, in a 3.0-T Siemens Trio scanner. 

Half of the six clips depicted mostly positive emotional episodes while the other half were of 

negative emotional valence. The series of clips were separated by a black screen for 10–30s 

and preceded by a fixation cross for 30s, leading to a total scanning time of 1,050 seconds. 

Parameters for the acquired whole brain BOLD EPI data were: voxel size of 3.8 × 3.8 × 4.0 

mm3, 36 axial slices, TR = 2,000 ms, TE = 30 ms, in plane FOV = 240 × 240 mm2, flip 

angle = 90°.

The EPI time series went through the following preprocessing steps in AFNI (Cox, 1996) 

using afni_proc.py: de-spiking, slice timing and head motion corrections, affine spatial 

alignment to a Talairach template (TT_N27) at a voxel size of 2.0×2.0×2.0 mm3, smoothing 

with an isotropic FWHM of 8 mm, and removal of physiological noise such as cardiac and 

breathing effects using ANATICOR (Jo et al., 2010). ISC was computed over 205 time 

points (having excluded the periods of fixation and blank screen) at the voxel level between 

all pairs of the n = 48 subjects using 3dTcorrelate in AFNI, leading to N = 48 × 47/2 = 21, 

128 ISC values per voxel.

Of interest here were statistical inferences of the ISC for each group (i.e., one-sample tests 

for each of R11 and R22), the difference between the two sexes (direct comparison of WGC, 

R11 vs R22), and each WGC in contrast to the BGC (indirect comparisons of R11 vs R21 and 

R22 vs R21); that is, five tests: two within-group, one between-group comparison, and two 

within-versus between-group, were performed using AFNI programs 3dttest++ (for 
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Student’s t) and 3dNPT (for EWP, SWP, EWB, and SWB). The results of the within-group 

(male) and between-group comparison are illustrated in Fig. 3 while the SWP performance 

for the other two comparisons (R11 vs R21 and R22 vs R21) are shown in Fig. 4 of Appendix 

C. The computation time for the nonparametric methods was approximately 6 hours for each 

group analysis case of one group (n = 24 subjects with 12 CPUs) and two groups (n = 48 

subjects with 24 CPUs) on a Linux system (Fedora 14) with Intel® Xeon® X5650 at 

2.67GHz.

We note the following two aspects of the results with our real experimental data. First, the 

performances of the five methods were consistent with the FPR controllability and power 

achievement from the simulations in Fig. 2. As typically seen in the ISC literature, the 

volume of statistical significance for a single group was overwhelming even for a small p-

value threshold (p ≤ 0.001, upper panel, Fig. 3A). In contrast, the two-group comparison 

(lower panel, Fig. 3A) was similar to the conventional FMRI results in the sense that the 

statistically significant regions are largely localized. Relative to SWB, all the other five 

methods are largely inflated for one group (upper panel in Fig. 3A and voxel counts in Fig. 

3B). For two-group comparison, Student’s t-test and EWB had the worst inflation (lower 

panel in Fig. 3A and voxel counts in Fig. 3B).

Secondly, we note that the full set of results in Fig. 3 indicate that ψ > 0, otherwise all the 

methods except SWB (or EWP) would have roughly the same FPR and detection power, 

corresponding to similar thresholded volumes, for the case of single group or two-group 

comparison with 20 or more subjects (cf. Fig. 2). In other words, the special case of having 

independence among the ISC values does not appear to generally hold in real data, and 

therefore it must be accounted for in both modeling and analysis. More subtly, as shown in 

the simulations above, SWP was more/less powerful than EWP probably depending on the 

smaller/larger magnitude of the correlation parameter ψ, which is consistent with the 

simulation results of SWP vs. EWP (cf. the intersecting lines of black and purple on the 

second and fourth rows in Fig. 2). Furthermore, SWP is largely more powerful than SWB in 

comparing two groups (voxel counts in Fig. 3B), suggesting 0 < ψ < 0.2 (cf. the intersecting 

lines of black and blue in the second column on the second and fourth rows in Fig. 2) in 

most - but not all - regions in the brain. This deduction will be further confirmed by the 

estimations of ψ through a parametric approach in Part II.

For direct comparisons, we applied the permutation approach implemented in the ISC 

Toolbox (version 2.1, using the recommended default with 100 million randomizations; 

Kauppi et al., 2014) in Matlab (version R2015b) to the male group of 24 subjects (two group 

comparison is currently not available in the toolbox). The runtime with 64 CPUs and 1 TB 

of RAM was 34.7 hours on a 64-bit CentOS server (Intel® Xeon® X7560 at 2.27GHz). The 

result in the sixth column in Fig. 3A shows the output from the ISC Toolbox, which is the 

average voxel-wise ISC r-value (unlike the results from other nonparametric tests, which are 

median r-values; the output from the t-test is the inverse transform of the mean z-values). 

The large size of the suprathreshold volume (Fig. 3A) and the number of suprathreshold 

voxels (Fig. 3B) suggest that the approach of permuting at the time series level in the ISC 

Toolbox led to similarly inflated significance and poor FPR control as EWP, SWP, and 

EWB.
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Discussion

Compared to the conventional task-related FMRI experiments in which the investigator 

usually assumes a pre-fixed HDR function, the paradigm with naturalistic stimuli usually 

elicits more robust results from a model-free ISC analysis without involving any prior 

knowledge about HDR (Hansson et al., 2008a). To make generalizations about ISC-based 

inference at the group level, a major challenge is the fact that, even though the n subjects 

involved are independent samples, their N = n(n − 1)/2 ISC values {rij, i > j} are typically 

not independent. This interdependence is characterized here by the correlation structure of 

P(n) with ψ having a value within [ , 0.5], where independence of the N ISC values 

would be represented by the special circumstance of ψ = 0. The comparisons of the methods 

in the real experimental data analyzed here (Fig. 3) strongly suggest that the value of ψ is 

both positive and non-negligible, and so the interrelatedness of ISC values needs to be 

accounted for in any group analysis. We emphasize that the correlation structure P(n), as an 

assumption and parameterization for {zij, i > j}, is not required for actually implementing 

thenonparametric methods, but it has been motivated and presumed here in order to provide 

a framework for discussion and for our simulations (Fig. 2). We note that ψ was introduced 

here as being constant across a group, which reasonably reflects the basic fact that, in 

general, subjects are recruited as statistically equivalent representatives of a population; 

moreover, this is consistent within the context of nonparametric testing, as all units in the 

permutation tests are assumed to be indistinguishable and exchangeable. Additionally, 

comparisons of the simulation and real data result strongly suggest that ψ is nonzero in 

practice, meaning that there is nontrivial variance-covariance structure across a typical group 

in FMRI studies. These assumptions and structures will be further explored with parametric 

approaches in Part II, which offers further means to interpret and even estimate these 

structural parameters.

The typical FMRI parametric group analysis tools such as Student’s t-test, ANOVA or GLM 

would have difficulty in accurately handling the special correlation structure of P(n), which 

has been shown to be highly likely to exist within a group in practice. This difficulty is 

evidenced by the huge inflations of FPR in the simulations and real experimental results 

presented here. Instead, nonparametric methods such as permutation testing have long been 

adopted in neuroimaging (Nichols and Holmes, 2002; Mériaux et al., 2006; Winkler et al., 

2014; Winkler et al., 2015). In the context of ISC data, they become a natural choice thanks 

to their meager assumptions about data distribution. However, the intercorrelations among 

{rij, i > j} or {zij, i > j} remain a hurdle even for nonparametric approaches. For example, 

exchangeability is required when resampling the data with permutations. For bootstrapping, 

the observations - ISC values in our case - are assumed to come from an independent and 

identically distributed population, in addition to the assumption of independent resampling. 

We have presented and evaluated new approaches that meet these requirements for the 

nonparametric methods.

In addition to the advantages of having less human intervention in the tasks, natural and 

complex stimuli may reveal more reliable, selective and time-locked responses that might be 

difficult to detect in the conventional FMRI experiments (Hasson et al., 2010). Such an 

experimental design could be generally applied more broadly to paradigms that contain 
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blocks of data under one task or condition. The consideration of the correlation structure 

represented by P(n), and the subject-wise permutations/bootstrapping, would be equally 

relevant in these situations, as well.

Methodology survey

In the early days, the pioneering work with naturalistic stimuli were performed either within 

each subject when the natural stimulus was repeated several times (Hasson et al., 2008b) or 

through ISC for each subject pair separately without summarization at the group level 

(Hasson et al., 2004), in which case the ISC results were typically verified through seed-

based correlation analysis (Hasson et al., 2004; Hasson et al., 2008b; Schmälzle et al., 2013). 

Later on, some investigators simply ran one-sample (Bartels and Zeki, 2004; Hasson et al., 

2008a; Wilson et al., 2008; Abrams et al., 2013; Kauppi et al., 2014), two-sample 

(Schmälzle et al., 2013; Cantolon and Li, 2013) or paired (Abrams et al., 2013; Schmälzle et 

al., 2015) t-tests on z-values {zij, i < j} of correlation coefficients, while it was generally 

acknowledged that the N elements {zij, i > j} were not independent, as illustrated in the 

correlation structure of P(n) in (4), thereby violating the independence assumption in the 

Student’s t-test and leading to the inflated degrees of freedom for the t-distribution. The 

approach was mainly justified based on the observation that the null results generated by 

shifting each pair of time series by random steps roughly fitted to a t(N − 1)-distribution 

curve (Wilson et al., 2008).

Nonparametric methods have also been adopted in the previous ISC literature. For example, 

one popular approach for one condition was to acquire a null distribution for the whole brain 

by randomizing the time series across voxels and time points (e.g., circularly shifting each 

subject’s time series by a random lag so that they were no longer aligned in time across the 

subjects) (Kauppi et al., 2010; Nummenmaa et al., 2012; Abrams et al., 2013; Kauppi et al., 

2014; Pajula and Tohka, 2014; Trost et al., 2015; Herbec et al., 2015; Bridwell et al., 2015). 

For comparing two conditions, a different permutation test was used on the N elements {zij, i 
< j} through element-wise sign flipping (Kauppi et al., 2014). Yet another permutation 

strategy was to generate a null distribution of group-wise ISCs by randomly shuffling the 

subjects between two groups at the ROI level (Schmälzle et al., 2013). One variation of this 

ISC approach is to first calculate the ISC value of a subject between a voxel’s BOLD time 

course in the subject and the average of that voxel’s BOLD time course in the remaining 

subjects (Kauppi et al., 2010; Honey et al., 2012; Schmälzle et al., 2013; Schmälzle et al., 

2015). Then, at the group level, EWB was adopted to make inferences through phase-

randomization in the EPI time series (Honey et al., 2012; Schmälzle et al., 2015). 

Bootstrapping was also implemented through scrambling the frequency bands and channels 

in ECoG data (Potes et al., 2014). Some of these methods discussed above have been 

implemented in a publicly available analytical package ISC Toolbox (Kauppi et al., 2014); 

however, the results produced by this toolbox with the real experimental data here indicates 

that its FPR is likely to be largely inflated (Fig. 3), just as EWB, EWP, and SWP are.

Relatedly, permutation testing has been utilized in the context of a distance matrix, where 

the distance of two random variables with a correlation coefficient r is defined as, for 

example,  (Gower and Krzanowski, 1999). The distance matrix is then analyzed 
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through multivariate distance matrix regression (MDMR) with the flexibility of 

incorporating multiple between-subject explanatory variables such as groups and 

quantitative covariates (Anderson, 2001; Zapala and Schork, 2006; Reiss et al., 2010). More 

relevantly, MDMR has been applied to voxel-wise distance matrices of two groups that were 

computed from the seed-based correlation of resting-state data in gray matter (Shehzad et 

al., 2014). It would be intriguing to see how MDMR, when applied to ISC data, compares to 

the nonparametric methods explored here in terms of FPR and power achievement.

Issues with previous ISC group analysis methodology

Group ISC average—One common practice in the literature is to obtain the group mean 

directly by averaging the ISC values across N subject pairs {rij, i > j} (Kauppi et al., 2010; 

Nummenmaa et al., 2012; Honey et al., 2012; Pajula and Tohka, 2014; Kauppi et al., 2014; 

Bridwell et al., 2015; Lillywhite et al., 2015; Herbec et al., 2015). However, mathematically, 

the averaging as implemented in the ISC Toolbox (Kauppi et al., 2014) is problematic for the 

following reason. Correlation coefficients are not additive in the sense that correlation is not 

a linear function of the strength of the relation between the two random variables (or time 

series, in the context of FMRI data). Simply averaging them would lead to biases or 

underestimation in representing the whole group in the sense that estimates tend to be closer 

to 0 whether positive or negative (Silver and Dunlap, 1987). Specifically, averaging among 

correlation coefficients renders the interpretation of the final result difficult or even without 

technical meaning. As the correlation coefficient between two random variables X and Y is 

defined as  X and Y or  between two time 

series {xi} and {yi}, averaging the r-values across subjects is equivalent to averaging the 

covariance and the two variances across subjects. This cannot be justified because the group 

variance and covariance are usually larger than or different from the weighted sum of 

variances and covariances (due to between-subject differences) unless, very specifically, the 

means of all subjects on both variables or time series are exactly the same.

The bias introduced through simple averaging can be demonstrated using an arithmetic 

example: With two correlation coefficients r1 = 0.5 and r2 = 0.9, the different results from 

the simple average and from Fisher’s transformation lead to estimates of 0.7 and 0.77, 

respectively, showing a greatly skewed value for the simple averaging toward r1. Such biased 

estimates were also revealed in the output from the ISC Toolbox (Fig. 3, though hardly 

identifiable from the color coding).

Instead of simple averaging, what is needed for summarizing is to approximately 

Gaussianize the correlation coefficients through transformation (e.g., Fisher’s Z or squaring 

to the coefficients of determination, R2). A more rigorous approach would be to go through 

three steps: Fisher’s Z-transformation, averaging, and converting the z-values back to 

correlation coefficient. Yet another alternative, as implemented here with our bootstrapping 

and permutation testing, is to use a centrality measure such as median, eschewing the back-

and-forth transformation processes.
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Difficulty of validations—As noted above, the basic assumption of statistical 

independence in several of the existing methods surveyed above is largely questionable 

when applying Student’s t-tests. Additionally, a strict assessment of some methods such as 

permutations or bootstrapping at the level of EPI time series remains elusive because it is 

difficult to assess their ability in controlling FPR. That is, whether the current approaches 

properly account for the correlation structure represented in P(n) remains unaddressed. As 

shown here, methods which ignore the underlying correlation structure tend to be highly 

susceptible to having an inflated FPR. It is difficult, if not unlikely, to examine FPR 

controllability with simulated time series data at the individual subject level. For example, 

time series with simple white noise or even autoregressive or autoregressive-moving-average 

models would correspond to ψ = 0 in (4), leading to unrealistic simulations. Another 

potential issue for some permutation tests is the procedure of circularly shifting the sequence 

of the EPI time series at the individual level: it remains unclear whether the exchangeability 

criterion is met, considering the fact that the temporal integrity is kept through the process.

Without direct evaluation of FPR controllability, the validity (e.g., inflated significance) of 

the results using any method remain undetermined. In the ISC literature, one approach to 

dealing with the resultant widespread detections (Hasson et al., 2004; Schmälzle et al., 2013; 

see also the upper panel in Fig. 3), which are potentially overinflations due to poor FPR 

control, has been to apply a secondary conservative safeguard against false positives. For 

example, Bonferroni correction or an extremely low false discovery rate (e.g., q = 10−7) has 

been combined with a minimum cluster threshold (e.g. 10-voxel contiguity) (Schmälzle et 

al., 2013). However, while such an option may be available with one group under one 

condition, it usually does not carry over to the contrast between two groups or conditions, as 

illustrated in our experimental results of group comparison (Fig. 3). The permutation test 

implemented in the ISC Toolbox through sign flipping between two condition is equivalent 

to EWP for one group; as shown here, the EWP approach violates the exchangeability 

assumption and leads to largely inflated FPR (top row, Fig. 2)

Advantages of nonparametric methods through subject-wise resampling

Among the nonparametric approaches examined here, the EW methods mostly achieve poor 

FPR controllability, and they should not be adopted in any ISC group analysis. In contrast, 

SWB works relatively well for both the one-group case (including the BGC subset R12) and 

group subsets (including each of R11 and R22 versus R12) although its FPR controllability is 

sensitive to the correlation magnitude ψ. Lastly, SWP is virtually ideal for group 

comparisons but performs poorly for the one-group scenario.

Within the subject-wise resampling methods there were interesting differences in 

performance observed, most likely due to the consequences of each distinct resampling 

mechanism on R(n). In bootstrapping, there is a chance that a single subject is sampled more 

than once (as resampling is performed with replacement), which leads to the presence of 

artificial “1”s (i.e., perfect correlation, see last row in Table 1) in the resamplings. Such 

artificial values would introduce biases into the median estimation, as well as skewness 

toward the right tail in the resulting median distribution of the SWB. Even though the 

chosen centrality measure, the median, is less sensitive to such biases than the mean would 
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be, still the occurrence of multiple artificial values results in overly conservative inferences 

when ψ = 0 (i.e., the case corresponding to all elements being fully independent of each 

other), regardless of the number of subjects. In addition, the biases lead to liberal inferences 

at the other extreme ψ = 0.5, though the impact here tends to asymptotically vanish as the 

number of subjects increases. On the other hand, the virtually ideal performance of SWP 

with two groups and its insensitivity to ψ may be due to the utilization of the between-group 

subset R12 as a leverage, while the lack of such a leverage in the case with one group is 

likely the cause for the unacceptable performance in terms of FPR controllability when ψ ≠ 

0.

There are several benefits to the nonparametric methods for ISC analysis proposed here. 

Unlike conventional parametric inferences such as the Student’s t-test, ANOVA and GLM, 

the new nonparametric approaches bear fewer assumptions about the data structure at the 

group level, and they also have no need of any prior information about the time series at the 

individual level. For example, the Gaussianity assumption is not required. They are also less 

sensitive (and possibly immune) to data anomalies such as skewed distribution, outliers, etc. 

Furthermore, nonparametric methods also allow the option to include additional family-wise 

error control (Eklund et al., 2015) through approaches such as threshold-free cluster 

enhancement (Smith and Nichols, 2008).

The new nonparametric methods proposed here have further advantages over existing 

approaches. For example, they require significantly less computational time, as they 

resample ISCs rather than reshuffling the time series themselves. Additionally, the proposed 

nonparametric tests are executed directly on the ISC values {rij, i > j}, without the need of z-

transformation, leading to less memory demand and lower computation cost than the 

previous approaches through resampling at the time series level. Additionally, bootstrapping 

on z-values may pick up some diagonals in (2), leading to a difficult situation with 

indeterminate values that are avoided when using z-values. Using the median as a centrality 

measure instead of averaging on the Fisher’s z-values avoids further potential pitfalls of 

mean values if data are skewed or lopsided. The proposed approaches here also allow us to 

directly explore and evaluate the FPR controllability with the patterned correlation structure 

P(n), unlike others that randomize the time series at the individual level, where it would be 

difficult to generate realistic ISC data of {rij} (or its associated {zij}) that bear the 

correlation structure P(n). Furthermore, to our best knowledge, the following approach of 

ours to group ISC and group comparisons have not been explored in the literature: 1) group 

analysis for BGC, R21, through SWB, 2) the comparison of ISCs through SWP between two 

groups (R11 vs R22), and 3) the comparison of WGC and BGC (R11 vs R21, or R22 vs R21) 

through SWP.

Importantly, the presented methodology with SW resampling, as opposed to the EW version, 

keeps the integrity of the variance-covariance structure as well the independence 

assumption. In contrast, sign flipping at the element level, for example as implemented for 

comparing two conditions in the ISC Toolbox, would break the patterned correlation 

structure in P(n), leading to negative variances or a variance-covariance matrix that is not 

PSD (mathematically, SWP keeps constant eigenvalues of the correlation matrix P(n) while 
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EWP does not). Another problematic aspect of EW sign flipping is that the difference of two 

ISC values is not inherently interpretable (e.g., it may lie beyond [−1, 1]).

Limitations of nonparametric approaches

With the advantage of having a parsimonious distribution assumption also come a few 

shortcomings and limitations. 1) None of the proposed methods work for all scenarios. 

Specifically, even though SWP shows near perfect FPR control with the two-sample case, its 

FPR performance is very poor for one group. On the other hand, SWB provides a reasonable 

FPR performance among alternatives, but it does not work well with two groups. 2) 

Although SWB showed the best performance among the methods tested for one group, it 

leaves some room for better alternatives. For example, it is too conservative in terms of FPR 

when ψ is quite close to 0, probably because bundling each subject’s elements distorts the 

null distribution when those within-subject elements are virtually independent with each 

other. It is also too liberal when ψ is close to 0.5 (though specificity increases with sample 

size). 3) Even though the nonparametric approaches explored here are less computationally 

intensive than those implemented at the EPI time series level, the computational cost is still 

high compared to conventional parametric methods. 4) The methodology is not flexible in 

the sense that each scenario (e.g., one or more groups, inclusion of explanatory variables) 

would have to be dealt with separately. 5) The significance in a nonparametric test has a 

ceiling value limited by the number of resampling. For example, 5000 realizations of 

permutations or bootstrapping would lead to the lowest voxel-wise p-value down to 2 × 

10−4. 6) Little information could be pulled out from the nonparametric analyses other than 

simple inferences. For example, these approaches cannot offer a specific estimate or 

interpretation of the relatedness parameter ψ (e.g., what does it mean in terms of data 

variability when ψ = 0.5? Is ψ homogeneous across the brain?). 7) It is well known that 

serial correlation intrinsically exists in the residuals or unaccounted-for part of the time 

series model for FMRI data due to physiological (cardiac and respiratory) confounds and 

thermal fluctuations in the scaner, which may lead to biased ISC estimates when 

heterogeneity of serial correlation occurs across subjects or brain regions (Arbabshirani et 

al., 2014). Nevertheless, recent investigation indicates that the impact of biased estimations 

on statistical inferences is minimal or even negligible (Arbabshirani et al., 2014).

In light of these limitations, we will address several such issues in Part II, exploring the 

possibility of employing some new parametric approaches to the ISC data structure that 

provide a finer characterization, through proper parameterization and effects partitioning.

Conclusion

By framing the ISC group analysis with the specific variance-covariance structure among the 

elements, we have been able to lay out a patterned correlation matrix P(n) among the ISC 

values, and to rigorously examine the FPR controllability and power achievement among a 

variety of methods through simulations. Through subject-wise instead of element-wise 

resampling of the ISC values, we found that 1) subject-wise permutation (SWP) testing is an 

ideal approach for handling the comparison between two within-group ISC components, 

between one within-group ISC and the between-group ISC component, and 2) subject-wise 
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bootstrapping (SWB) is the best choice when inferring ISC for one group. An open source 

AFNI program, 3dNPT, is available to perform these approaches (http://afni.nimh.nih.gov).
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Appendix A. List of acronyms used in the paper

ANOVA analysis of variances

BGC between-group correlation

EW element-wise

EWB element-wise bootstrapping

EWP element-wise permutations

FPR false positive rate

GLM general linear model

HDR hemodynamic response

ISC inter-subject correlation

PSD positive semi-definite

SW subject-wise

SWB subject-wise bootstrapping

SWP subject-wise permutations

WGC within-group correlation
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Appendix B. Necessity and sufficiency for the positive semi-definiteness of 

the matrix P(n)

Here, we demonstrate and prove an allowed interval of ψ values for the matrix P(n) to be 

positive semidefinite (PSD) for any n ≥ 2. We note the following four important properties 

for a real symmetric matrix A (e.g., Seber, 2008)):

A. A is PSD if and only if all of its eigenvalues are non-negative (λi ≥ 0);

B. If the matrix A is PSD, then all its principal submatrices are PSD;

C. If A is diagonally dominant with non-negative diagonal entries (i.e., within 

each row, the magnitude of the non-negative diagonal element is greater 

than or equal to the sum of the magnitudes of all off-diagonal elements), 

then A is PSD.

D. If A is a correlation matrix, then A is PSD.

First, the PSD property holds trivially when the number of subjects is n = 2, as P(2) = [1] and 

is independent of ψ. For n = 3, there are N = 3 z-values (z21, z31 and z32), and their 

correlation matrix is,

The characteristic polynomial for this matrix is f(λ) = (λ−2ψ−1)(λ2 +λ+1), which can be 

solved to provide a necessary condition on ψ for having only positive eigenvalues λ: −0.5 ≤ 

ψ ≤ 1. By Property A, P(3) is PSD for this interval of ψ.

We note that matrix rows and columns can be rearranged without changing the eigenvalues. 

Therefore, for any n ≥ 4 (with N ≥ 6), we choose to start the list of columns and rows of 

P(n≥4) with the values z31, z41, z32 and z42, so that the 4 × 4 principal submatrix is always

This submatrix has the characteristic polynomial f(λ) = (λ − 1)2(λ + 2ψ − 1)(λ − 1 − 2ψ), 

for which λ > 0 (⇒  is PSD, by Property A) when: −0.5 ≤ ψ ≤ 0.5. Due to Property 

B, this provides a condition that must also be met for the full P(n). We further investigate the 

positive and negative subintervals of this bounding range separately.
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We first show that 0 ≤ ψ ≤ 0.5 is a sufficient condition for P(n≥4) to be PSD. Since the set of 

PSD symmetric matrices is known to be convex, we investigate the boundary values of ψ in 

this positive subinterval. When ψ = 0, then P(n) is simply the identity matrix, which is PSD. 

For ψ = 0.5, we note that we can recognize the structure of P(n) is equivalent to a matrix 

derived in the following way. Let {Xi, i= 1, 2, …n} be independent and identically 

distributed with equal probability of taking the value 1 or −1. Then define the variable 

,1 ≤ j < i ≤ n. If we flatten the N = n(n−1)/2 values of {Yij, 1 ≤ j < i ≤ n}, 

the correlation matrix of the resulting vector will have the same structure as P(n≥4) with ψ = 

0.5. Any correlation matrix of real random variables will be PSD (e.g., by Property D), 

thereby proving the property for P(n≥4) with ψ = 0.5.

Lastly, we investigate where the negative subinterval of ψ values provides a PSD P(n≥4). 

Since ψ = 0 has already been shown to produce a PSD matrix, we search for a lower bound 

of ψ. By Property C, P(n) will be PSD if it is diagonally dominant, which can be explored in 

general by counting the number of elements per row/column having a given value. The set of 

{zij, i > j} has a cardinality of N = n(n − 1)/2, so that each row or column of P(n) has length 

N. Of this number, for any allowed pair of indices {i1, j1}, there are n − 2 sets of allowed {i2, 
j2} containing exclusively i1 or j1 (that is, where the cardinality of {i1, j1} ∩ {i2, j2} is 1; see 

the definition of P(n) in (4) of the main text); hence, there are exactly 2(n − 2) elements with 

value ψ in any row or column of P(n). The diagonal element is always unity, and the 

remaining N − 2(n − 1) − 1 = (n − 2)(n − 3)/2 elements in a row or column are 0. Therefore, 

P(n) is diagonally dominant for negative ψ wherever 1 ≥ 2(n−2)ψ, or where −1/[2(n−2)] ≤ ψ 
< 0. Regarding further negative ψ values within the original subinterval, we note that the 

matrix P(n) has an eigenvector of 1N associated with eigenvalue λ = 1+2(n−2)ψ, as P(n)1N = 

[1+2(n−2)ψ]1N. For values of ψ < −1/[2(n−2)], this eigenvalue becomes negative, so that 

P(n) is not PSD for these ψ values.

In summary, the sufficient and necessary condition for the PSD property of P(n) can be 

written as:
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Appendix C. Results for the novel indirect group comparisons

Figure 4. 
Performances of subject-wise permutations (SWP) on the comparisons of within-group 

versus between-group ISCs (i.e., indirect comparisons) are shown in terms of FPR 

controllability (left) and inferences (right) with an experimental dataset. The simulation 

parameters and experimental dataset are the same as in Fig. 2 and Fig. 3, respectively, but 

the scale for FPR (left) is different from Fig. 2. The gray line of FPR = 0.05 indicates the 

95% confidence band of the target (or nominal) value (with a band width of 0.012 for each 

simulation with 5000 realizations).
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Highlights

• Inter-subject correlation shows similarities of response to naturalistic 

conditions

• A patterned matrix is formulated to characterize the relationship among 

ISC values

• Previous methods of ISC group analysis are problematic in controlling 

for FPR

• Subject-wise permutation testing is ideal for comparing two groups of 

ISC

• Bootstrapping is the best nonparametric method to make ISC 

inferences for one group
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Figure 1. 
Schematic illustration of ISC data R(n) from two groups. With n1 and n2 subjects, 

respectively, in the two groups G1 and G2, the  elements in R11 (blue dots) 

and  elements in R22 (red lines) are WGC values while the N12 = n1n2 

elements in R21 (green) show the BGC values. Three meaningful comparisons can be 

formulated: R11 vs R22, R11 vs R21, and R22 vs R21, as discussed in the text.
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Figure 2. 
Simulation parameters and results are shown here for five methods: SWP, EWB, SWP, EWP, 

and Student’s t. False positive rate (FPR) performances are illustrated in the first two rows, 

and power achievement in the last two rows. Each of the four columns represents the number 

of subjects in each group (one group, n = 10, 20, 40, 80; two groups, n1 = n2 = 10, 20, 40, 

80). The gray band of FPR = 0.05 in the first two rows indicates the 95% confidence interval 

of the target (or nominal) value (with a width of 0.012 for each simulation with 5000 

realizations†), which is barely visible for the case of two groups (second row) due to its 

overlap with the results of SWP. The curves for FPR were fitted to the simulation results 

(plotting symbols) through a cubic smoothing spline. Among the three possible comparisons 

for the two-group scenario, only the direct contrast between the two WGCs, R11 vs R22, is 

shown here, but the results for other two indirect contrasts (R11 vs R21 and R22 vs R21) with 

SWP were similar (see Fig. 4 in Appendix C). The SWP testing is uniformly well-behaved 
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and essentially ideal for two groups (black in the second row). On the other hand, in the one-

group case, SWB offers a better compromise than any of the nonparametric alternatives 

considered here, particularly as n increases, even though it can be a little liberal or over-

conservative (blue in the first row) depending on the amplitude of correlation (0 ≤ ψ ≤0.5). 

The comparisons of FPR and power among the five methods with the BGC component R21 

(not shown here) are similar to the one group scenario (first row).
†The confidence band is computed with the assumption of a binomial distribution B(n, p), 

where n = 5000, p = PFR = 0.05.
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Figure 3. 
Performance comparisons with an experimental dataset. (A) Axial views (Z = 5 mm; 

radiological convention: left is right) of ISC group results (thresholded by p-values, below) 

of an experimental dataset are illustrated for the five methods as well as the approach 

implemented in the ISC Toolbox. The colors code for the magnitude of correlation 

coefficients. For both one- and two-sample tests, the results are consistent with their FPR 

controllability. Specifically, for the male group (n = 24, upper panel, two-tailed significance 

level p = 0.001) all the other five methods are more liberal than SWB. Although not visually 

obvious in the color coding, the group ISC estimates through averaging across subjects in 

the ISC Toolbox tend to be biased relative to the medians from the other four nonparametric 

methods. For two-group comparison (n = 48, lower panel, two-tailed significance level p = 

0.05; group comparison testing currently not available in the ISC Toolbox), EWP was much 

more liberal relative to SWP for some regions, while being over-conservative for others; 

EWB was too liberal, SWB tended to be slightly more conservative, and both rendered 

noisier results; and Student’s t-test was the worst. The SWP performance for the other two 

indirect contrasts (R11 vs R21 and R22 vs R21) are shown in Fig. 4 of Appendix C. We note 

that 1) multiple testing correction was not performed so that voxel-wise comparisons among 

the methods could be directly visualized; and 2) except for the ISC Toolbox, which adopts 

direct averaging across ISC values, all other methods rendered virtually the same group 

estimate for ISC, but differed in significance detection (i.e., the color at each voxel is 
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roughly the same across the first five testing methods if the significance survives the 

corresponding threshold). The performance comparisons among the five methods with the 

BGC component R21 (not shown here) are similar to the one group scenario for males (first 

row), R11. (B) List of voxels that pass five significance levels. The default setting in ISC 

Toolbox does not provide thresholding at voxel-wise significance levels of 0.005 and 0.0005 

(marked with * in the table).
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Table 1

Illustrative comparisons among nonparametric methods (permutation and bootstrapping, each at the element- 

and subject-wise level) for an example of R(6). All samples, sign flips and group reassignments, are randomly 

chosen. For EWB and EWP, the matrix structure becomes broken by the randomization and no longer matters. 

The randomization process for the BGC subset R21 (not demonstrated here), even though formulated in the 

case of two groups, is similar to the scenario with one group.
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