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Abstract

Parkinson’s disease (PD) is an overwhelming neurodegenerative disorder caused by deterioration 

of a neurotransmitter, known as dopamine. Lack of this chemical messenger impairs several brain 

regions and yields various motor and non-motor symptoms. Incidence of PD is predicted to double 

in the next two decades, which urges more research to focus on its early diagnosis and treatment. 

In this paper, we propose an approach to diagnose PD using magnetic resonance imaging (MRI) 

data. Specifically, we first introduce a joint feature-sample selection (JFSS) method for selecting 

an optimal subset of samples and features, to learn a reliable diagnosis model. The proposed JFSS 

model effectively discards poor samples and irrelevant features. As a result, the selected features 

play an important role in PD characterization, which will help identify the most relevant and 

critical imaging biomarkers for PD. Then, a robust classification framework is proposed to 

simultaneously de-noise the selected subset of features and samples, and learn a classification 

model. Our model can also de-noise testing samples based on the cleaned training data. Unlike 

many previous works that perform de-noising in an unsupervised manner, we perform supervised 

de-noising for both training and testing data, thus boosting the diagnostic accuracy. Experimental 

results on both synthetic and publicly available PD datasets show promising results. To evaluate 

the proposed method, we use the popular Parkinson’s progression markers initiative (PPMI) 

database. Our results indicate that the proposed method can differentiate between PD and normal 

control (NC), and outperforms the competing methods by a relatively large margin. It is 

noteworthy to mention that our proposed framework can also be used for diagnosis of other brain 

disorders. To show this, we have also conducted experiments on the widely-used ADNI database. 
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dgshen@med.unc.edu (D. Shen). 

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2018 March 24.

Published in final edited form as:
Neuroimage. 2016 November 01; 141: 206–219. doi:10.1016/j.neuroimage.2016.05.054.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The obtained results indicate that our proposed method can identify the imaging biomarkers and 

diagnose the disease with favorable accuracies compared to the baseline methods.
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Introduction

Diagnosis of neurodegenerative brain disorders using medical imaging is a challenging task 

due to different factors, including a wide variety of artifacts in the image acquisition 

procedure, the imposed errors due to preprocessing, and the large amount of intrinsic inter-

subject variabilities. Among the neurodegenerative disorders, Parkinson’s disease (PD) is 

one of the most common ones, with a high socioeconomic impact. PD is provoked by 

progressive impairment and deterioration of brain neurons, caused by a gradual halt in the 

production of a vital chemical messenger.

PD symptoms start to appear with the loss of these neurotransmitters in the brain, notably 

dopamine. The neuropathology of PD is pinpointed by a selective loss of dopaminergic 

neurons in the substantia nigra (SN); nevertheless, in recent studies a widespread 

involvement of other structures and tissues is widely researched (Miller and OCallaghan, 

2015). The degeneration of dopaminergic neurons results in decreased levels of dopamine in 

the putamen of the dorsolateral striatum, leading to dysfunction of direct and indirect 

pathways of movement control (Obeso et al., 2000). Furthermore, researchers have 

identified that it can also cause non-motor problems to the subjects (depression, anxiety, 

apathy/abulia) (Chaudhuri et al., 2006; Ziegler and Augustinack, 2013). People with PD may 

lose up to 80% of dopamine before symptoms appear (Braak et al., 2003; Duchesne et al., 

2009; Miller and OCallaghan, 2015). Thus, early diagnosis and treatment are of great 

interest and are crucial to detain progression of PD in its initial stages.

Previous clinical studies (Braak et al., 2003) show that the disease is initiated in the 

brainstem and mid-brain regions; however, with time, it also affects many other brain 

regions. An illustration of PD progression is shown in Fig. 1, derived from the results 

achieved by Braak et al., (2003). In this figure, darker regions are those affected earlier in 

the process of PD progression.

Current diagnosis of PD mainly depends on the clinical symptoms. But, the dopamine 

transporter positron emission computed tomography is very expensive and cannot be 

popularized on the clinical diagnosis of PD patients. Therefore, other neuro-imaging 

techniques could be crucial pathways for PD early diagnosis. For example, SPECT imaging 

is usually considered for the differential diagnosis of PD and often used for people with 

tremor (Duchesne et al., 2009; Prashanth et al., 2014). PET is utilized for PD diagnosis 

(Loane and Politis, 2011), while MRI is often employed for the differential diagnosis of PD 

syndromes (Duchesne et al., 2009; Marquand et al., 2013; Ziegler and Augustinack, 2013), 
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as well as to analyze the structural changes in PD patients (Menke et al., 2009) and their 

differential diagnosis (Focke et al., 2011; Salvatore et al., 2014).

Thus, through analyzing the deep and mid-brain regions, along with cortical surfaces, we 

could potentially identify the imaging biomarkers for PD. Accordingly, we create a PD-

specific atlas and further extract features by non-linearly registering this atlas to each 

subject’s brain image. The extracted features represent the tissue volumes of each labeled 

ROI.

Recently, with the advances in the area of machine learning and data-driven analysis 

methodologies, significant amount of research efforts have been dedicated to diagnosis and 

progression prediction of neurodegenerative diseases using different brain imaging 

modalities (Duchesne et al., 2009; Marquand et al., 2013; Prashanth et al., 2014; Rizk-

Jackson et al., 2011; Thung et al., 2014). Automatic PD diagnosis and progression 

prediction could help physicians and patients avoid unnecessary medical examinations or 

therapies, as well as potential side effects and safety risks (Cummings et al., 2011). Machine 

learning and pattern recognition methods could simplify the development of these automatic 

PD diagnosis approaches. For instance, Prashanth et al. (2014) use intensity features 

extracted from SPECT images along with an SVM classifier, while Focke et al. (2011) use 

the voxel-based morphometry (VBM) on T1-weighted MRI with an SVM classifier to 

identify idiopathic Parkinson syndrome patients. In another work, Salvatore et al. (2014) 

proposes a method based on principal component analysis (PCA) on morphological T1-

weighted MRI, in combination with an SVM for diagnosis of PD and progressive 

supranuclear palsy (PSP) patients. In the past several years, some research has exploited 

MRI in order to analyze changes in different brain regions in PD patients (Duchesne et al., 

2009; Focke et al., 2011; Menke et al., 2009; Salvatore et al., 2014; Ziegler and 

Augustinack, 2013). Along with the impairment of the dopamine production process, many 

brain regions are also affected, leading to several movement problems and sometimes also a 

number of non-motor symptoms (Braak et al., 2003). Literature studies show that these 

influences could be characterized by the information acquired from the MRI data (Duchesne 

et al., 2009).

In this paper, we use MR images to diagnose PD and analyze the imaging biomarkers. To 

this end, we extract features from predefined brain regions and analyze changes and 

variations between PD and normal control (NC) subjects. In order to build a reliable system, 

we need to take several important issues into account. As mentioned earlier, the quality of 

MR images can be affected by different factors, like patient movements, radiations or device 

limitations. Most existing works manually discard poor subject images, which could 

eventually induce undesirable bias to the learned model. Therefore, it is of great interest to 

automatically select the most reliable samples, boosting up robustness of the method and its 

application under a clinical setting. On the other hand, many studies analyze MR images by 

parcellating them into several pre-defined regions of interest (ROIs) and then extracting 

features from each ROI (Djamanakova et al., 2014; Thung et al., 2014; Tzourio-Mazoyer et 

al., 2002). It is noted that PD, like many other neurodegenerative diseases, highly affects a 

number of brain regions (Braak et al., 2003). Therefore, it is also desirable to select the most 

important and relevant regions for our diagnosis procedure. This also leads to identifying the 
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biomarkers for the disease, as well as initiating studies to the future clinical analysis. Similar 

studies for identification of biomarkers for Alzheimer’s disease (AD) are previously 

conducted in many works (Bron et al., 2014; Oh et al., 2007; Thung et al., 2014). But, such 

studies are scarce for PD, in the literature.

Considering all these factors, we seek to automatically select both a subset of the subjects 

and the most discriminative brain ROIs to construct a robust model for PD diagnosis. Each 

subject will form a sample in our classification task. Samples are described by the features 

extracted from their ROIs. In many previous works, either feature selection (Bron et al., 

2014; Oh et al., 2007) or sample selection (Rohlfing et al., 2004) was performed 

individually, or both were considered sequentially (Thung et al., 2014). We observe that 

these two processes (or two sub-problems) affect each other, and that performing one before 

the other does not guarantee the selection of the best overall subsets for both features and 

samples. Thus, these two sub-problems are overlapping, but do not have optimal sub-

structures (Cormen et al., 2009). In other words, optimal overall solution is not composed of 

optimal solution to each sub-problem. This motivates us to jointly search for the best subsets 

for both features and samples. Specifically, in this paper, we introduce a novel joint feature-

sample selection (JFSS) method based on how well the training labels could be represented 

sparsely by different numbers of features and samples. Then, we further introduce a robust 

classification scheme, specially designed to enhance the robustness to noise. The proposed 

robust classification framework follows the least-squares linear discriminant analysis (LS-

LDA) (De la Torre, 2012) formulation and the robust regression scheme (Huang et al., 

2012).

Many previous researches have been conducted on feature and sample selection (Coates et 

al., 2011; Nie et al., 2010; Peng et al., 2005; Thung et al., 2014). But, few of them consider a 

joint formulation (Mohsenzadeh et al., 2013). Authors in Mohsenzadeh et al. (2013) extend 

the classic relevance vector machine (RVM) formulation by adding two parameter sets for 

feature and sample selection in a Bayesian graphical inference model. They consider 

sparsity in both feature and sample domains, as we do, but instead they solve the problem in 

a marginal likelihood maximization procedure. In contrast, we develop a single optimization 

problem for jointly selecting features and samples. Our formulation is reduced to two simple 

and convex problems and therefore can be efficiently solved.

Fig. 2 illustrates an overview of our proposed method. After preprocessing the subjects’ 

MRI scans, we extract features from their predefined brain ROIs, and select the best subsets 

of features and samples through our proposed JFSS. The joint feature-sample selection 

procedure is able to simultaneously discard irrelevant samples and redundant features. After 

JFSS, there may still be some random noise in the remaining data. To further clean the data, 

we decompose it into two parts, cleaned data and its noise component. This is done in 

conjugation with the classification process, in a supervised manner, to increase the 

classification robustness to noise. Additionally, the testing data is also de-noised through 

representing the data as a locally compact linear combination of the cleaned training data.

The key methodological contributions in our work are multi-fold: (1) We propose a new 

joint feature-sample selection (JFSS) procedure, which jointly selects the best subset of most 
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discriminative features and best samples to build a classification model. (2) We utilize the 

robust regression method in Huang et al. (2012) and further develop a robust classification 

model. In addition, we propose to de-noise the testing data based on the supervised cleaned 

training samples. (3) We apply our method for PD diagnosis, as the diagnosis methods for 

PD are scarce. (4) In order to extract useful features for PD diagnosis, we specifically define 

some new clinically-relevant ROIs for PD. Therefore, finally the automated data-driven 

methods can be developed for PD diagnosis or further analyses.

Data acquisition and preprocessing

The data used in this paper was obtained from the Parkinson’s progression markers initiative 

(PPMI) database1 (Marek et al., 2011). PPMI is the first substantial study for identifying PD 

progression markers to advance the overall understanding of the disease. PPMI is an 

international study with multiple centers around the world designated to identify the 

progression of PD markers, to enhance the understanding of the disease, and to provide 

crucial tools for succeeding in PD modifying therapeutic trials. They seek to establish 

standardized protocols for acquisition, transfer and analysis of clinical, imaging and 

biospecimen data, and investigate novel methods that demonstrate interval changes in PD 

patients, compared to normal controls. All these could be used by the PD research 

community to elevate knowledge about the disease and an understanding of how to cure or 

slow down its progression.

PD subjects in the PPMI study are de novo PD patients, newly diagnosed and unmedicated. 

The healthy/normal control subjects are both age- and gender-matched with the PD subjects. 

The subjects and their stagings are evaluated using the widely used Hoehn and Yahr (H&Y) 

scale (Hoehn and Yahr, 1967). H&Y scale defines board categories, which rate the motor 

function for PD patients. H&Y stages correlate with motor decline, neuroimaging studies of 

dopaminergic loss and deterioration in quality of life (Bhidayasiri and Tarsy, 2012). The 

original version has a 5-point scale (Stages 1–5) measurement. Most of the studies in PD 

evaluated disease progression through analyzing patients and the time taken for them to 

reach one of the H&Y stages. The subjects in the first stage have unilateral involvement 

only, often with the least or no functional impairment. They have mild symptoms, which are 

inconvenient but not disabling. The second stage has bilateral or midline involvements, but 

still with no impairment of balance. For these subjects, the posture and gait are usually 

affected. Stage three shows the first signs of impaired reflexes. The patient will show 

significant slowing of the body movements and moderately severe dysfunction. In the fourth 

stage, the disease is fully developed and is severely disabling; the patient can still walk but to 

a limited extent, and might not be able to live alone any longer. In the fifth (final) stage, the 

patient will have a confinement to bed or will be bound to a wheelchair. The PD subjects in 

this study are mostly in the first two H&Y stages. As reported by the studies2 in PPMI 

(Marek et al., 2011), among the PD patients at the time of their baseline image acquisition, 

43% of the subjects were in stage 1, 56% in stage 2 and the rest in stages 3 to 5.

1http://www.ppmi-info.org/data.
2http://www.ppmi-info.org/wp-content/uploads/2013/09/PPMI-WW-ADNI.pdf.
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In this research, we use the MRI data acquired by the PPMI study, in which a T1-weighted, 

3D sequence (i.e., MPRAGE) is acquired for each subject using 3 T SIEMENS 

MAGNETOM TrioTim syngo scanners. This gives us 374 PD and 169 NC scans. The T1-

weighted images were acquired for 176 sagittal slices, with the following parameters: 

repetition time (TR) = 2300ms, echo time (TE) = 2.98ms, flip angle = 9°, and voxel size = 

1×1×1mm3.

All the MR images were preprocessed by skull stripping (Wang et al., 2011), cerebellum 

removal, and tissue segmentation into white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF) (Lim and Pfefferbaum, 1989). The anatomical automatic labeling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002), parcellated with 90 predefined regions, was 

registered using HAMMER3 (Shen and Davatzikos, 2002; Wang et al., 2011) to the native 

space of each subject. We further added eight regions in the template to be transferred to the 

subject native space using the deformation fields obtained in the previous step. Those 

regions include four regions in the brainstem such as midbrain, pons, medulla oblongata and 

superior cerebellar peduncle (see Fig. 3b), together with the left and right red nucleus and 

the left and right SN (see Fig. 3c). These regions have been shown as clinically important 

regions for PD. All the 98 ROIs are depicted in Fig. 3.

We, then, computed WM, GM and CSF tissue volumes in each of the regions and used them 

as features, leading to 98 WM, 98 GM and 98 CSF features, for each subject. Table 1 shows 

the details of the subjects used in our experiments. As can be seen, subjects from PD and NC 

groups have closely similar distributions of age and education characteristics.

Overview of the method

As discussed earlier, we first process the MR images and obtain tissue segmented images, 

after which the anatomical automatic labeling (AAL) atlas is non-linearly registered to the 

original MR image space of each subject. From each of the ROIs, we extract the WM, GM 

and CSF volumes as features. These features form, and the corresponding labels form. To 

formulate the problem, we consider N training samples, each with d=98×3=294 dimensional 

feature vector. Note that we have 98 ROIs, each of which are represented by 3 tissue-volume 

features. Let X ∈ ℝN×d denote the training data, in which each row indicates a training 

sample, and y∈ℝN their corresponding labels. The goal is to determine the labels for the 

testing samples, .

Using our proposed joint feature-sample selection (JFSS), some uninformative features and 

samples are discarded, leading to  and . Note  samples and  features are selected, 

resulting in a new data matrix,  and training labels, . It is important to 

remark that the same Ntst testing samples will now have  features each,. . 

After obtaining the subset of features and samples, we train a robust linear discriminant 

analysis (RLDA) to learn a classification model. In this process, we jointly decompose 

into cleaned data,  and its noise component, E. The classification model is learned on the 

3Could be downloaded at http://www.nitrc.org/projects/hammerwml.
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cleaned data, in order to avoid any probable noise effects. This procedure is visualized in 

Fig. 2.

Note that, throughout this paper, bold capital letters denote matrices (e.g., X). All non-bold 

letters denote scalar variables. xij denotes the scalar in the row i and column j of X. 〈x1,x2〉 

denotes the inner product between two vectors x1 and  denotes the 

squared Euclidean Norm of x. ‖X‖* designates the nuclear norm (sum of singular values) of 

X. ‖x‖1=Σi |xi| denotes the ℓ1 norm of the vector x.

The proposed joint feature-sample selection (JFSS) algorithm

The first task is to reliably select the most discriminative features, along with the best 

samples to build a classification model. During this process, since the poorly shaped samples 

are discarded and most discriminative features are selected, it can not only improve the 

generalization capability of the learned model, but also speed up the learning process. In 

many real-world applications, it is a cumbersome task to acquire samples and features for 

the learning task. Particularly in our application, feature vectors extracted from MRI data are 

quite prone to noise. Therefore, the data from some of the subjects might not be useful and 

might mislead the learning procedure. This motivates us to select the best samples for 

learning a diagnosis model. On the other hand, as described before, we parcellate brain 

images into a number of ROIs and represent each subject by concatenating the features from 

these ROIs. However, brain neurodegenerative diseases are not reflected on all these ROIs. 

This further motivates us to select the most discriminative features. Since, features are 

extracted from ROIs, selecting the most discriminative features also reveals the most crucial 

brain ROIs related to the specific disease (such as PD in our case).

Formulation

As discussed earlier, these two sub-problems (feature selection and sample selection) were 

generally targeted separately. However, feature selection and sample selection affect each 

other, making separate selections open to more defective feature-sample subsets. In other 

words, separate selections might limit the subsequent classification performance in terms of 

overall learning model accuracy. In this subsection, we propose a novel feature-sample 

selection framework in a joint formulation, to guarantee the selection of best and most 

discriminative subsets in both domains.

To this end, the selected samples and features should best describe a regression model, in 

terms of the overall accuracy. Without the loss of generality, we employ a linear regression 

model. In order to select the most discriminative subset, we consider sparsity both in feature 

and sample domains. Recently, the linear sparse regression model has been widely used for 

feature selection (Nie et al., 2010), in which a sparse weight vector β is learned to best 

predict the training labels. More formally, we would like to minimize , while 

keeping the coefficient vector, β, sparse. But, this feature selection procedure might be 

misled if there were noisy features and poor samples. In this way, we propose to jointly 

select features and samples through constructing a linear regression model. This would 

account for the noisy/redundant information in both domains, simultaneously.
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For this purpose, we introduce two vectors α and β, used to select samples and features, 

respectively. To get the most compact and sparse set in both domains, we need to impose ℓ0 

regularizations on both α and β Our joint feature-sample selection (JFSS) is thus formulated 

as

(1)

The first term controls the overall data fitting error only for the selected samples indicated 

by α. The second and third terms are to ensure the selection of the smallest number of the 

most meaningful samples and features. λ1,λ2>0 are the optimization hyperparameters, 

controlling the level of contribution of each term in the entire optimization process.

The minimization process of the objective function in (1) is not computationally tractable. 

This is because the ℓ0 term is not a convex function and optimizing its associated variable is 

as difficult as trying all possible subsets of the measurements. Therefore, we need to 

consider approximations of the ‘0 norms. One of the most common approximations of the ℓ0 

regularization for sparse representation is the ℓ1 norm (Wright et al., 2009). Another feasible 

approximation is to project the solution onto a simplex (Duchi et al., 2008). As a result, the 

above objective function could be rewritten as the following, using ℓ1 approximations for 

sparsity:

(2)

As we would like our method to at least select a minimum number of samples, to avoid 

overfitting and prevent from getting trivial solutions, we propose to interpret the coefficients 

in α as probabilities and impose the condition that ∀i αi ≥0 and . This is equal to 

projecting the ℓ1-ball onto the simplex as in (Duchi et al., 2008; Huang et al., 2013). 

Moreover, this constraint makes the third regularization term in (2) constant, and thus the 

problem reduces to:

(3)

Note that the solution to the above objective function for α is indeed sparse, because of the 

simplex constraints (Duchi et al., 2008; Huang et al., 2013). It is also noteworthy that with 

this formulation, the algorithm is dependent on less hyperparameters, making it quite 

appealing for applications with large and diverse data, in which selecting the hyperparameter 

is burdensome.
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Optimization

The solution to the objective function in (3) is not very easy to achieve, as the first term 

introduces a quadratic optimization term. In order to solve the optimization problem, we use 

an alternating optimization procedure, in which we break the problem down into two sub-

problems and then solve them iteratively. When fixing each of the associated variables, the 

resulting sub-problems would be convex. As studied in the literature, in such problems, the 

main objective function can converge to the optimal point (Gorski et al., 2007).

In each iteration, we optimize the objective function by fixing one of the optimization 

variables, while solving for the other, until convergence. Specifically, optimizing for β, while 

fixing α and therefore  would reduce to

(4)

Similarly, the optimization step for α, while fixing β, is:

(5)

The first sub-problem is similar to the standard sparse regression formulation, and very easy 

to solve with any standard solver or with the alternating direction method of multipliers 

(ADMM) (Boyd et al., 2011). We introduce an auxiliary variable, b, and form the 

Lagrangian function as below:

(6)

where γ1 is the Lagrangian multiplier and ρ1> 0 is a penalty hyperparameter. Therefore, the 

optimization steps would be formulated as

(7)

Here,  is the soft thresholding operator or the proximal 

operator for the ℓ1 norm (Boyd et al., 2011), and is the identity matrix. Note that r+= max(r,
0).

In order to solve the second sub-problem, (5), we rewrite it as the following:
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(8)

The most critical step is the projection of the solution onto the probabilistic simplex, which 

is formulated as:

(9)

where is the probabilistic simplex, onto which we want to project the α weight vector, as 

also defined in Duchi et al. (2008), Huang et al. (2013), and Michelot (1986). This can be 

solved using the accelerated projected gradient, as in Duchi et al. (2008), and Michelot 

(1986), by writing the Lagrangian function as:

(10)

Solving for α while keeping the K.K.T. conditions would give us the optimal projection onto 

the probabilistic simplex (Duchi et al., 2008; Huang et al., 2013). Therefore, the objective 

function in the sub-problem (8) could be optimized through the projected quasi-Newton 

algorithm proposed in Schmidt et al. (2009). We initialize the vector α inversely related to 

the prediction power of the samples:

(11)

where δ is a small positive number to avoid devision by zeros and σ is a scaling factor. In the 

experiments, these two parameters are fixed as δ= 0.0001 and σ=0.01, respectively.

Subsequently, the solution to the main problem, as in Eq. (3), is obtained by alternatively 

solving each of the sub-problems until convergence. The stopping criterion is that the 

changes in the two variables α and β in two consecutive iterations is less than a threshold 

(‖αk
−αk−1‖ < ε and ‖βk − βk−1‖< ε). The penalty hyperparameter ρ1 in (6) controls the 

convergence rate of the optimization process. It serves as a step size on how fast to move 

towards the optimum. If we select a very small value, the solution will converge very slowly, 

whereas, if it has a large value, the step will be very big and might jump over the optimum. 

Therefore, a good choice of this hyperparameter could reduce the convergence time. Many 

different strategies are used in the literature to deal with this hyperparameter. Similar to 

Adeli-Mosabbeb et al. (2015) and Liu et al. (2013), we first set the hyperparameter to a 

small value  to take small steps at the beginning. In each next iteration, we 

increase its value by , so that we take a larger step towards the optimum. This is 

because, at the beginning, the optimization process starts with randomly initialized variables 
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and, if we take a larger step, we might mislead the direction to the optimum and increase the 

convergence time. But, after a number of iterations, larger steps would lead to faster 

convergence.

JFSS as a classifier (JFSS-C)

The above procedure of selecting features and samples could also be used directly for the 

classification task. As it is obvious, the first term learns a linear regression model, in which 

the weights β construct the mapping from the features spaces, X, to the space of the labels, 

y. This could be used as a classification tool by discretizing the values y into classes.

To build the linear classification model (i.e., y=Xβ +b, where b is the bias), we add a single 

column of 1s to the matrix X (i.e., X=[X 1]). This classification scheme is used as a baseline 

method in the experiments, referred to as JFSS-C.

Robust classification (robust LDA)

Even with selection of the most discriminative features and best samples, there might still be 

some noises present in the data. These noise elements of data can adversely influence the 

classifier learning process. This is the case for almost all real-world applications, where the 

data is precepted through inaccurate or noise-prone sensors. This issue has been recently 

explored in the areas of subspace methods (De la Torre, 2012; Liu et al., 2013), machine 

learning (Goldberg et al., 2010) and computer vision (Huang et al., 2012).

In this section, we introduce a robust classification technique based on the least-squares 

formulation of linear disciriminant analysis (LS-LDA). Then, we will apply it to learn a 

model, classifying our selected samples and features. Note that the feature and sample 

selections were performed on the training data. This procedure discarded the entire features 

or samples (columns or rows) in X. But the selected subset might still have some amounts of 

noisy elements. Furthermore, it is quite probable that the testing data were also contaminated 

with noise. Therefore, a de-noising procedure, for both training and testing data, could play 

a very important role on the testing stage and the overall performance. Note that the de-

noising of testing samples is less studied in the literature, or is simply performed in an 

unsupervised manner. We introduce a procedure to de-noise the testing samples based on the 

cleaned training data.

Training

To suppress the possible noise in the data, while learning the classification model, we need 

to model the noise in the feature matrix. In other words, we account for the intra-sample 

outliers in  to further reduce the influences of noise elements in the data. For this purpose, 

following Goldberg et al. (2010) and Liu et al. (2013), we assume that the data matrix 

could be spanned on a low-rank subspace and, therefore, should be rank-deficient. This 

assumption supports the fact that samples from the same class are correlated (Goldberg et 

al., 2010; Huang et al., 2012). In order to achieve a robust classifier, we use a similar idea as 

in Huang et al. (2012), which was proposed for robust regression. In our case, classification 

is posed as a binary regression problem, in which a transform, w, maps each sample in  to 
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a binary label in . In the linear case, this could be modeled with a linear discriminant 

analysis (LDA) through learning a linear mapping to minimize the intra-class discrimination 

and maximize the inter-class variation. An extension of LDA, namely LS-LDA (De la Torre, 

2012), models the LDA problem in a least-squares formulation:

(12)

where w∈ℝd is a projection of 

to the space of labels, . Note that  is a weighing factor to compensate for an unbalanced 

number of samples in each of the two classes (De la Torre, 2012).

If the data matrix  is corrupted by noise, we can model the noise by considering , 

where  is the underlying noise-free component and  is the noise 

component. To model this noise in the above formulation and learn the mapping w from the 

clean data, D, we utilize the scenario in Huang et al. (2012). Analogous to the robust 

principal component analysis (RPCA) formulation (Candès et al., 2011), it could be assumed 

that the noise-free component of the data is spanned on a low-rank subspace. 

Correspondingly, the error matrix is assumed to be a sparse matrix, as we are not expecting a 

huge amount of elements to be contaminated by noise. This is because the JFSS procedure 

selects the most relevant features and the best samples. Therefore, lots of original data 

contaminated with noise are already removed. The remaining data are those with the most 

correlation to the labels. But, there is still a possibility that some random noise is remaining 

in the selected features. Considering these, we can rewrite our problem as:

(13)

where the first term learns the mapping from the clean data and projects the samples to the 

label space. The second and the third terms guarantee the rank-deficiency of the data matrix 

D and the sparsity of the matrix E, respectively. These two terms are similar to RPCA 

(Candès et al., 2011).

Note that RPCA is an unsupervised method, which de-noises the data matrix without 

considering the data labels. Whereas, the above formulation cleans the data in a supervised 

manner. Particularly, matrix D retains the subspace of , which is most correlated to the 

labels .

The solution to problem (13) could be achieved by writing the Lagrangian function, and 

iteratively solving for, w, D, , E and one at a time, while fixing others (Huang et al., 2012), 

using the augmented Lagrangian method (ALM) of multipliers technique.
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Testing

In the testing phase, the probable noise present in the samples can dramatically affect the 

classification accuracy. De-noising the testing samples is a challenging task, as we do not 

have any label and class information for them; thus we cannot perform the supervised de-

noising procedure, as we did for the training samples.

To clean the testing data, one can use RPCA (Candès et al., 2011; Huang et al., 2016), but as 

discussed before, it is an unsupervised approach. To this end, we utilize the samples cleaned 

in the training stage, D, in a supervised manner. The de-noising procedure for the testing 

data, , would consist of representing the testing sample as a linear combination of the 

training data samples:

(14)

where Ztst is the coefficient matrix for the combination. But, to account for the noise in the 

testing samples, we add a noise element and reformulate the combination as:

(15)

where  is the noise component of the testing data. To acquire the best linear 

combination, for representing the testing samples, it is important to ensure that each sample 

is represented only by a small number of the training samples. Because samples come from 

different classes and the samples could best be de-noised if they are represented by the most 

similar samples to them. As a result, in order for the linear combination to be locally 

compact, we further impose the low-rank constraint on the coefficients, as in Lin et al. 

(2011) and Liu et al. (2013):

(16)

This optimization problem could be solved using linearized ALM method as in (Lin et al., 

2011). After cleaning the testing data, the prediction for the classification output is 

calculated as

(17)

Same as in LS-LDA (De la Torre, 2012), ytst is used as the decision value, and the binary 

class labels are produced using the k-nearest neighbor strategy.
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Experiments

As discussed earlier, the proposed JFSS discards poor samples and irrelevant features to 

build a linear regression model that can predict subject categories. In order to validate the 

proposed JFSS procedure, we first construct a set of synthetic data to evaluate the behavior 

of the method against noisy samples and redundant features. Then, the proposed procedure 

is used to diagnose PD patients. As described earlier, subjects from the PPMI database are 

used for this study.

All results are generated using a 10-fold cross validation strategy. The best hyperparameters 

for our method are selected using a grid search with all possible values for each 

hyperparameter. To be fair, the results for the baseline methods were also generated using a 

similar 10-fold cross validation strategy and, similar to our method, the best 

hyperparameters for each of the methods were selected. Specifically, the hyperparameters 

were set using an inner 10-fold cross validation, where the training data itself was split into 

10 partitions and then a 10-fold cross validation procedure determined the best set of the 

hyperparameters for the method. The best values for each of the hyperparameters in Eqs. (3), 

(13) and (16) are separately optimized in the range [10−5, 1].

In order to evaluate the proposed approach, different baseline methods are incorporated. 

Baseline classifiers under comparison include linear support vector machines (SVM), sparse 

SVM (Bi et al., 2003), matrix completion (MC) (Goldberg et al., 2010), sparse regression 

(SR), JFSS as a classifier (JFSS-C) as described in Section 4, and the original least-squares 

linear discriminant analysis (LS-LDA) (De la Torre, 2012). Matrix completion is a 

transductive classification approach that deals with the noise in feature values and can 

suppress a controlled amount of sparse noise in both training and testing feature vectors 

(Goldberg et al., 2010). It has shown a good performance in many applications recently 

(Adeli-Mosabbeb and Fathy, 2015; Cabral et al., 2015). MC, like our method, incorporates a 

sparse noise model to de-noise the data. On the other hand, it de-noises both training and 

testing data. Therefore, in order to provide extensive and fair comparative studies, we 

compare the results from MC against the results obtained by our approach.

As for feature and sample selection, to evaluate the proposed JFSS procedure, we compare 

the results with separate feature and sample selections (FSS), sparse feature selection (SFS), 

and no feature sample selection (no FSS). These three methods provide direct baseline 

methods for the proposed JFSS, since they use a similar approach for selecting samples and 

features. Note that for the SR classification scheme, as described above, we only report 

results for FSS and SFS. Furthermore, we report results using other prominent methods for 

feature transform or reduction like the popular min-redundancy max-relevance (mRMR) 

(Peng et al., 2005), principal component analysis (PCA), robust principal component 

analysis (RPCA) (Candès et al., 2011), autoencoder-restricted Boltzmann machine (AE-

RBM) (Coates et al., 2011), and non-negative matrix factorization (NNMF) (Berry et al., 

2007). These five methods are of the state-of-the-art methods widely used for feature 

reduction or transformation, compared to which we can demonstrate the significant 

improvements by the proposed method.
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An important characteristics of the proposed JFSS method was to select the best set of 

samples (along with features) to build a classification model. One of the most popular 

approaches for removing outliers is RANSAC (Fischler and Bolles, 1981). RANSAC is a 

consensus resampling technique, which randomly subsamples the input data and constructs 

models, iteratively. In each iteration, if the selected samples result in a smaller inlier error, 

the classification model parameters are updated. The procedure starts by randomly selecting 

the minimum number of samples (denoted by m) required to build the classification model, 

after which the classifier is trained, using the randomly selected samples. Then, the whole 

set of samples from the training set is examined with the built model and the number of 

inliers is determined. If the fraction of the number of inliers over the total number of 

samples exceeds a certain threshold τ, the classifier is again built using all the identified 

inliers and the procedure is terminated. Otherwise, this procedure is iterated at least 

times to ensure the selection of an appropriate set of samples.  is chosen as a high enough 

number, such that, with probability p = 0.99, at least one set of the selected samples does not 

include an outlier (Fischler and Bolles, 1981). Let u represent the probability of a sample 

being an inlier. , the number of iterations, is set by:

(18)

The hyperparameters for RANSAC are chosen with the same strategy as all other methods, 

through 10-fold cross-validation. m is set to 1/4 of the total number of samples , 

and the hyperparameters τ and u are optimized in the sets [0.5,1.0] and [0.1,1.0], 

respectively. As a baseline method, we also report results on RANSAC to demonstrate the 

JFSS ability in removing poor samples.

Synthetic data

The first set of experiments runs on the synthetically created toy data to observe behavior of 

the proposed method against different levels of noise in both samples and features. We first 

sample some data points from a number of subspaces and then gradually add noisy features 

and samples, comparing the performance of the proposed method with the competing 

methods. This experiment creates a good testbed to analyze how our method can select the 

best samples and features and suppress noise, compared to different baseline methods.

To this end, we construct two independent subspaces of dimensionality 100, same as 

described in Liu et al. (2013), and sample 500 samples from each subspace, which could 

create a binary classification problem. The two subspaces S1, S2 are constructed with bases 

U1 and U2. U1 ∈ℝ100×100 is a random orthogonal matrix and U2=TU1, in which is T a 

random rotation matrix. Then, 500 vectors are sampled from each subspace through 

Xi=UiQi,i={1,2} with Qi, a 100×500 matrix, independent and identically distributed (i.i.d.) 

 from to (0, 1).

In order to evaluate the robustness of the method in both sample and feature spaces, we 

gradually add a certain number of additional noisy samples and features to the data. 
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Specifically, we add ρ randomly generated features and ρ randomly generated samples to the 

data, and then run the proposed and the baseline methods. All noisy data are drawn i.i.d. 

from (0, 1). Since our method jointly performs both and feature selections, we increase 

the noise level in both domains. Fig. 4 shows the mean accuracy results of three different 

runs, as a function of the additional number of noisy features and samples, with a 10-fold 

cross-validation strategy. The mean and standard deviation values could be found in Table 2, 

as well. The reported results for all the methods are achieved with their best tuned 

hyperparameters. To analyze the effects of the only hyperparameter (λ1) associated with 

JFSS, we plot the accuracy of two classification techniques (SVM and RLDA) as a function 

of the parameter in Fig. 5. The diagram is plotted for the case that the number of added 

noisy features and sample, ρ, is equal to 100. As can be seen, the classification performance 

is partially independent from the hyperparameter and, in a sensible range of the values for 

the hyperparameter, we consistently achieve reasonable results.

Our JFSS coupled with any of the classifiers has the ability to select better subset of features 

and samples and achieve satisfactory results. However, when the RLDA classification 

scheme is used, it acts more robust against the increase of noise elements (as can be seen in 

Fig. 4). This is attributed to the de-noising process introduced by our RLDA. As discussed 

earlier, with RLDA, we de-noise the testing samples as well, while for other classifiers the 

testing samples are intact. Note that, these testing samples do not go through the JFSS 

procedure, and outlier samples cannot be discarded, as we did for the training samples. 

Therefore, de-noising the data plays an important role in achieving better overall 

performance.

Parkinson’s disease diagnosis

For this experiment, we have used the subjects acquired from the PPMI dataset. The details 

of the data are described in Section 2. For quantitative evaluations, we first compare our 

proposed JFSS and robust LDA on this dataset in terms of accuracy, true positive rate (TPR), 

false positive rate (FPR) and area under the ROC curve (AUC). TPR is a measure indicating 

the proportion of positive subjects with PD that are correctly categorized as such. On the 

other hand, FPR is the rate of occurrence of positive testing results in subjects known to be 

free of the disease (normal controls or NC in our case). These two measurements are very 

important for disease diagnosis applications. Fig. 6 depicts the results for all these four 

metrics, in comparisons to the baseline methods. As could be seen, the proposed JFSS 

coupled with our RLDA outperforms all other methods with a significant margin.

In a more comprehensive set of comparisons, Table 3 shows the diagnosis accuracy of the 

proposed technique (RLDA + JFSS) against different approaches for feature or sample 

selection, reduction or transformation. All experiments are conducted through a 10-fold 

cross-validation strategy. The optimization hyperparameters are chosen by a grid search for 

the best performance, using the same cross-validation strategy on the training data. The 

proposed method outperforms all other approaches.

The Second, third and fourth columns in Table 3 include the results from feature or sample 

selection techniques, which can be regarded as direct baseline methods for the proposed 

JFSS approach. Clearly, one can conclude that the joint selection of the features and samples 
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(JFSS: first column in the table) results in better accuracies than selecting features and 

samples separately (FSS: second column in the table). The fifth through ninth columns 

include results with some state-of-the-art feature reduction/transformations. It is evident 

from the results that our JFFS outperforms all these methods as well. This is simply 

attributed to the fact that our method performs the selection in both feature and sample 

domains in a supervised manner, while all other methods included here are unsupervised 

feature reduction or transformation techniques. Furthermore, for our application, the features 

come from the brain ROIs. Since not all the brain regions are associated with PD, many of 

the features are redundant. This is why these feature reduction techniques perform worse 

than our feature selection scheme. In the context of feature selection, we only select the most 

relevant features, while the feature reduction techniques transform the whole set of features 

(all with equal contributions) to a lower dimension space. The last column in the table shows 

the results from the RANSAC technique for outlier sample removal (Fischler and Bolles, 

1981). Again, the proposed JFSS shows to select a much better set of samples along with 

their respective features for the task of PD diagnosis.

It is worth noting that the SR classification technique, which is used as a baseline method, is 

directly derived from the weights learned in FSS and SFS. Therefore, when using SFS and 

FSS, we can report results for SR. We further ran the sparse regression on the outputs of 

other feature reduction techniques and reported results in Table 3. In addition, the last row of 

the table contains results form JFSS as a classifier (JFSS-C), explained in Section 4. JFSS-C 

is, in fact, the original JFSS, which can be directly used to build the classification model. So, 

JFSS and JFSS-C are not two separate procedures, and that’s why we do not couple JFSS-C 

with other feature selection methods. As can be seen, JFSS-C can produce comparable 

results with LDA or SVM coupled with our JFSS, while it is much better than LDA, SVM or 

even RLDA when no feature or sample selection is conducted.

One of the most important baselines to the de-nosing aspect of the proposed method could 

be the RPCA approach, which de-noises the data through the same low-rank assumption on 

the data matrix. Therefore, we apply RPCA on the training data to de-noise the samples and 

their feature vectors and then apply a variety of classifiers to classify them. The results could 

be seen in the seventh row of Table 3. The RLDA and MC classifiers implicitly de-noise the 

data through a same low-rank minimization procedure, and therefore we did not couple 

RPCA with them.

Additionally, a statistical analysis is performed on the results and reported in Table 3. In 

order to statistically analyze the significance of the achieved results, a cross-validated 5×2 t-
test (Dietterich, 1998) is performed on the accuracy results of each competing method 

against our proposed method (JFSS + RLDA). As discussed in detail in Dietterich (1998), 

Ojala and Garriga (2010) and Stelzer et al. (2013), this statistical test yields more reliable 

results for statistically analyzing the classifier performances, compared to the conventional 

paired t-tests. In particular, we perform 5 different replications of a 2-fold cross-validation. 

In each of the replications, the data is randomly split into two sets. The results from the first 

set of the five replications are used to estimate the mean difference, and the results of all 

folds are incorporated to estimate the variance. Then, a t-statistic is calculated to achieve the 

p-value, showing the significance of the comparison on the results. The details of the test are 
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explained in Dietterich (1998). In Table 3, the methods with a p-value of p<0.05 are 

indicated with a * symbol and the results with p<0.01 are indicated with a † symbol. As can 

be seen, our proposed method achieves statistically significant results compared to all other 

methods. Furthermore, we also perform a permutation test (Ojala and Garriga, 2010) on the 

proposed method, which is a non-parametric method without assuming any data distribution, 

to assess whether the proposed classifier has found a class structure (a connection between 

the data and their respective class labels), or the observed accuracy was obtained by chance. 

In order to perform this test, we repeat the classification procedure by randomly permuting 

the class labels for τ different times (τ=100, in our experiments). The p-value can then be 

calculated as the percentage of runs for which the obtained classification error is better than 

the original classification error. After performing the test, we get a p-value smaller than 0.05, 

which indicates that the classification error on the original data is indeed significantly small 

and, therefore, the classifier is not randomly generating those results (Ojala and Garriga, 

2010).

In addition, to analyze the effect of the hyperparameter on the accuracy of the methods, the 

proposed JFSS method was put together with all classifiers and the best achieved accuracy 

for each set of hyperparameters and classifiers is plotted in Fig. 7. As can be seen, the first 

two methods, which perform de-noising while learning the classifier model, behave 

similarly, while JFSS + RLDA leads to a better performance. In general, changing the 

hyperparameter influences the selected features, and that is why the classifiers perform 

differently under different hyperparameter settings. In order to further investigate the effect 

of the hyperparameters, we plot the performance of the competing classifiers, with the JFSS 

parameters fixed, as a function of their respective hyperparameter.

Fig. 8 shows these results for three major methods in comparison. Specifically, the diagram 

on the left analyzes the hyperparameter λ of matrix completion, as in Goldberg et al. (2010). 

This hyperparameter controls the amount of induced noise in the data. The middle diagram 

shows the performance of the sparse SVM (Bi et al., 2003) classifier, with respect to the 

hyperparameter λ, which controls the amount of sparseness in the learned weight vector. 

Finally, the diagram on the right shows the performance of the conventional SVM classifier 

as a function of its hyperparameter C, which is a trade-off hyperparameter affecting the 

generalization capability of SVM.

Discussions

The clinical symptoms of PD start to emerge after the degeneration of a considerable 

number of dopaminergic neurons. Therefore, at this stage, it could already be counted as the 

nearly-advanced stage. As a result, the disease-modifying therapies might be ineffective to 

hinder the neurodegeneration progression. Accordingly, identification of specific and 

sensitive biomarkers is extremely important to facilitate early and differential diagnosis by 

monitoring the disease progression and assessing effectiveness of current and future 

treatments. Hence, there is a calling need of automated approaches and techniques as prior 

tools to detect gray and white matter alterations in the cortex (Patenaude et al., 2011). Our 

method provides a detailed analysis on each single ROI in the brain and opens the path for 

further analysis and early diagnosis of PD.
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To analyze the most relevant brain regions for PD, we setup a new experiment. In this 

experiment, the JFSS hyperparameter is set such that the best performance in terms of 

diagnosis rate is achieved. As discussed earlier, with the parameters set, we perform a 10-

fold cross validation, where, for each fold, 9 other folds are considered as training data and 

the test is conducted on that left-out fold. The final accuracy reported is the average of all 

these 10 different runs, which usually has better generalization capabilities. With this setting, 

for each separate fold we possibly get different sets of features. We observe that the selected 

features for each of the folds using JFSS is almost consistent in most folds. The most 

frequently selected ROIs in the process of joint feature-sample selection for PD diagnosis 

are the red nucleus (left and right), substantial nigra (left and right), pons, middle frontal 

gyrus (left and right), superior temporal gyrus (left), which are also visualized in Fig. 9. 

These regions are the ones that were selected at least for 80% of the times in 10 repetitions 

of the 10-fold cross validation runs. These selected regions are consistent with previously 

reported results (Braak et al., 2003; Worker et al., 2014), and are also shown to be the 

important regions for PD diagnosis. In order to have a closer look at the regions and their 

tissue types, the detailed set of ROIs and their tissue types selected by at least 10% of the 10 

repetitions of the 10-fold cross validation runs are also listed in Table 4. As can be seen, the 

gray matter tissue densities play the most important role for most regions. In the deep brain 

regions, the white matter tissue densities also contribute to the classification and improve the 

overall performance. The selected brain regions could be further investigated in future 

clinical studies.

It is worth noting that RLDA alone does not provide very good performance, as the results in 

Table 3 suggest. This could be caused by the large amount of noisy and irrelevant features in 

the data. RLDA and most robust methods can deal with a controlled amount of noise, as they 

assume a sparse noise element in the data, and model it with an ℓ1 regularization. That may 

be the reason why RLDA with no FSS does not achieve satisfactory results. Furthermore, if 

we apply RLDA before our proposed JFSS-C, the obtained accuracy is 73.6% for PD 

classification. This lower accuracy can be attributed to the fact that the ℓ1 regularization on 

the noise element in RLDA fails to discard the huge amount of noise in the original data. On 

the other hand, RLDA de-noises the testing data (Section 5.2), while JFSS-C does not. This 

could be another reason why RLDA results in a better classification model. Using JFSS, we 

first discard the redundant features and poor samples, and then utilize RLDA to de-noise the 

remaining features, while classifying the data.

The PD-related pathology studies showed that the progression of the lesions are initiated in 

the brainstem (which includes pons), and substantial nigra (Braak et al., 2003). Our research 

also confirms that the morphological changes of red nucleus are important in the initial PD 

pathology course (Colpan and Slavin, 2010; Habas and Cabanis, 2006). The brainstem 

pathology takes an upward course to the temporal lobe, and then to the frontal lobe areas. It 

should be noted that the most frequently selected brain ROIs for PD diagnosis in our 

research are associated with the initial PD-related pathology, which makes early diagnosis of 

PD possible.

Furthermore, as confirmed by the results, we can distinguish PD from NC using only MRI. 

With the progression of PD, patients’ brains are affected heavily with time. So, these data-
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driven methods could be of great use for early diagnosis, or prediction of the disease 

progression. MRI techniques could be used to monitor disease progression and to detect 

brain changes in preclinical patients or in patients at risk of developing PD. However, to 

date, these techniques suffer from the lack of standardization, particularly the methods for 

extracting quantitative information from images, and the lack of validation in large cohorts 

of subjects in longitudinal studies. Our research partly resolved the bottleneck restriction.

Our proposed method for classifying the neuroimaging data could be easily employed for 

analysis and identification of other brain diseases. To demonstrate that, we setup another 

experiment using the widely researched Alzheimer’s disease neuroimaging initiative (ADNI) 

database4. The aim is to identify the subjects status, diagnosing AD and its prodormal stage, 

known as mild cognitive impairment (MCI). For this purpose, we used 396 subjects (93 AD 

patients, 202 MCI patients and 101 NC subjects) from the database, which had complete 

MRI and FDG-PET data. To process the data, tools in Dai et al. (2013) and Wang et al. 

(2014) are used for spatial distortion, skull-stripping, and cerebellum removing. Then, the 

FSL package Zhang et al. (2011) was used to segment each MR image into three different 

tissues, gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). The subjects 

are further processed with 93 ROIs (Kabani et al., 1998) parcellated for each (Shen and 

Davatzikos, 2002) with atlas warping. The volume of GM tissue in each ROI was calculated 

as the image feature. For FDG-PET images, a rigid transformation was employed to align it 

to the corresponding MR image and the mean intensity of each ROI was calculated as the 

feature. All these features were further normalized in a similar way as in Zhang et al. (2011). 

As a results, each subject has 2×93=186 features. Table 5 lists the results achieved by our 

proposed method (JFSS + RLDA) on this data, compared with some baseline methods. Two 

different sets of experiments are conducted to first discriminate NC from MCI subjects and 

then NC from AD subjects. Therefore, NC subjects form our negative class, while the 

positive class is defined as AD in one experiment and MCI in another experiment. Table 5 

shows the results for the two separate experiments, AD NC and MCI NC classifications.

Similar to the experiment conducted on PD, the top selected regions with the best 

parameters are listed in Table 6. The top selected regions are defined as those selected by at 

least 50% of the times in 10 repetitions of the 10-fold cross validation runs. Note that these 

selected regions are consistently reported as important in the previous AD/MCI studies 

(Pearce et al., 1985; Thung et al., 2014), as well.

Conclusions

In this paper, we have introduced a joint feature-sample selection (JFSS) framework, along 

with a robust classification approach for PD diagnosis. We have established robustness in 

both training and testing phases. We verified our method using subjects excerpted from the 

PPMI dataset, a first large-scale longitudinal study of PD. Our method outperforms several 

baseline methods on both synthetic data and the PD/NC classification problem, in terms of 

the accuracy of the classification task. Furthermore, we investigated the biomarkers for PD 

and have also confirmed the results reported in the recent and ongoing researches. As a 

4http://www.loni.ucla.edu/ADNI.
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direction for future work, one can use clinical scores and other imaging modalities to predict 

PD progression, or to improve prediction accuracy. More effective features can also be 

extracted to further enhance the diagnosis accuracy.

Appendix A. Augmented Lagrangian method (ALM)

Augmented Lagrangian methods are sets of algorithms for solving problems of constrained 

optimization (Boyd et al., 2011). In these methods, usually the constrained optimization 

objective is replaced with one or a series of unconstrained objectives, by adding penalty 

terms. These terms are added to mimic a Lagrange multiplier. The general form of an 

equality-constrained convex optimization problem would be

(A:1)

where x∈ℝn, A∈ℝm×n, b∈ℝm and f: ℝn→ℝ is a convex function. The Lagrangian function 

for the above objective would form as follows, by incorporating a Lagrangian multiplier or a 

so-called dual variable, y∈ℝm:

(A:2)

This problem could be solved using the dual ascent method (Boyd et al., 2011; Boyd and 

Vandenberghe, 2004), by writing the dual function and solving for that. But to ensure the 

convergence, f should be strictly convex and finite. To solve the problem under more relaxed 

conditions, the augmented Lagrangian method of multipliers could be incorporated, by 

adding a penalty term to the Lagrangian:

(A:3)

where ρ >0 is a penalty hyperparameter that controls the rate of convergence towards the 

satisfaction of the constraint, used as a step size. Note that when ρ = 0,  is the standard 

Lagrangian function. The advantages of considering the penalty term is that the dual 

function would be differentiable under rather mild conditions for problem Eq. (A.1). 

Therefore, applying dual ascent to the new problem with the penalty term leads to the 

following optimization steps on each variable, at each kth iteration:

(A:4)

(A:5)
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A.1. Alternating direction method of multipliers (ADMM)

When there are more than one optimization variables associated with the problem, we can 

take advantage of the decomposability of the dual ascent (Boyd et al., 2011) method and the 

convergence superiority of the ALM to solve the problem in a similar way. Suppose we have 

a problem modeled as:

(A:6)

where x∈ℝn, z∈ℝm, A∈ℝp×n, B∈ℝp×m and c∈ℝp. The two functions f: ℝn→ℝ and g: 

ℝm→ℝ are assumed to be the convex functions. As can be seen in Eq. (A.6), there are two 

variables to be optimized in this new formulation. Similarly, we can write the augmented 

Lagrangian as:

(A:7)

Here, to optimize the above function, we need to iteratively update each variable while 

keeping others fixed. Therefore, the x-minimization, z-minimization, and Lagranigiuan 

multiplier update steps at the kth iteration have the following forms:

(A:8)

(A:9)

(A:10)

In this method, the augmented Lagrangian function is minimized jointly with respect to the 

two associated variables. Each of the variables is updated in a sequential order or a so-called 

alternating fashion. If we have more variables, same strategy can be incorporated, as long as 

the problem can be decomposed into sub-problems and the sub-problems (like in Eqs. (A.8) 

and (A.9)) are convex. The stopping criterion in this situation would the convergence of the 

main objective, while the constraint(s) are satisfied. For a more detailed discussion on the 

methods and their convergence properties, please refer to Boyd et al. (2011) and Boyd and 

Vandenberghe (2004).
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Table 6

Top selected ROIs for the ADNI experiments.

MRI FDG-PET

AD/NC Hippocampal formation right, hippocampal 
formation left, middle temporal gyrus left, middle 
frontal gyrus right, middle temporal gyrus left, 
perirhinal cortex left, superior parietal lobule left, 
lateral occipitotemporal gyrus right, inferior 
frontal gyrus left

Precuneus right, precuneus left, globus palladus left, 
temporal pole right, frontal lobe WM left, middle 
temporal gyrus left, postcentral gyrus left, temporal 
lobe WM left, postcentral gyrus right, medial frontal 
gyrus right, amygdala left, amygdala right, thalamus 
right, occipital pole left

MCI/NC Middle frontal gyrus right, lateral front-orbital 
gyrus right, precuneus right, precuneus left, 
medial front-orbital gyrus right, inferior frontal 
gyrus left, inferior occipital gyrus left, inferior 
frontal gyrus right, precentral gyrus left, temporal 
pole left

Globus palladus right, frontal lobe WM right, 
subthalamic nucleus left, inferior occipital gyrus left, 
superior occipital gyrus right, supramarginal gyrus 
left, caudate nucleus right, lingual gyrus left, 
postcentral gyrus left, parietal lobe WM right, 
postcentral gyrus right, angular gyrus left
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Fig. 1. 
An illustration of the brain regions affected by PD in different stages of the disease. Darker 

blue denotes the earlier and more severely affected regions.
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Fig. 2. 
Overview of our proposed method. First, the MR images are processed and tissue-

segmented. Then, the anatomical automatic labeling (AAL) atlas is non-linearly registered to 

each subject’s original MR image, and then the WM, GM and CSF volumes of each ROI are 

calculated as features. These features form X and the corresponding labels form Y. Through 

our proposed joint feature-sample selection (JFSS), we discard some uninformative features 

and samples, leading to  and . Then, we train a robust classifier (i.e.,, Robust LDA), in 

which we jointly decompose  into cleaned data  and its noise component E, and classify 

the cleaned data.
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Fig. 3. 
All 98 ROIs used in this study: 90 ROIs from the AAL atlas (Tzourio-Mazoyer et al., 2002), 

4 ROIs defined in brainstem, 2 ROIs in substantial nigra (L/R), and 2 ROIs in red nucleus 

(L/R).
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Fig. 4. 
Comparisons of results on synthetic data, for three different runs. The diagram shows the 

mean accuracy for different methods as a function of ρ.
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Fig. 5. 
Accuracy as a function of the JFSS hyperparameter (λ1), experimented on synthetic data, 

with ρ=100.
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Fig. 6. 
Comparisons of results by the proposed (JFSS + RLDA) and the baseline methods.
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Fig. 7. 
Accuracy as a function of the JFSS hyperparameter (λ1), for the Parkinson’s disease 

diagnosis experiment.

Adeli et al. Page 33

Neuroimage. Author manuscript; available in PMC 2018 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Accuracy of the competing methods, as a function of their hyperparameter.
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Fig. 9. 
Top and most frequent selected ROIs by our method.
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Table 2

Results comparisons on synthetic data, for three different runs. Mean and standard deviation for different 

number of added noisy samples and features (ρ).

Method ρ mean ± std ρ mean ± std

JFSS + RLDA 100 96.1 ± 1.0 200 93.1 ± 1.9

JFSS + SVM 100 94.3 ± 1.5 200 87.2 ± 2.7

JFSS + SR 100 91.5 ± 2.4 200 83.1 ± 4.1

SFS + RLDA 100 90.3 ± 2.3 200 74.1 ± 3.9

SFS + SVM 100 90.1 ± 1.4 200 70.0 ± 2.1

RLDA 100 90.1 ± 2.6 200 67.6 ± 4.4

SVM 100 89.3 ± 2.1 200 63.2 ± 4.3
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