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Abstract

Estimating extended brain sources using EEG/MEG source imaging techniques is challenging. 

EEG and MEG have excellent temporal resolution at millisecond scale but their spatial resolution 

is limited due to the volume conduction effect. We have exploited sparse signal processing 

techniques in this study to impose sparsity on the underlying source and its transformation in other 

domains (mathematical domains, like spatial gradient). Using an iterative reweighting strategy to 

penalize locations that are less likely to contain any source, it is shown that the proposed 

iteratively reweighted edge sparsity minimization (IRES) strategy can provide reasonable 

information regarding the location and extent of the underlying sources. This approach is unique in 

the sense that it estimates extended sources without the need of subjectively thresholding the 

solution. The performance of IRES was evaluated in a series of computer simulations. Different 

parameters such as source location and signal-to-noise ratio were varied and the estimated results 

were compared to the targets using metrics such as localization error (LE), area under curve 

(AUC) and overlap between the estimated and simulated sources. It is shown that IRES provides 

extended solutions which not only localize the source but also provide estimation for the source 

extent. The performance of IRES was further tested in epileptic patients undergoing intracranial 

EEG (iEEG) recording for pre-surgical evaluation. IRES was applied to scalp EEGs during 

interictal spikes, and results were compared with iEEG and surgical resection outcome in the 

patients. The pilot clinical study results are promising and demonstrate a good concordance 

between noninvasive IRES source estimation with iEEG and surgical resection outcomes in the 

same patients. The proposed algorithm, i.e. IRES, estimates extended source solutions from scalp 

electromagnetic signals which provide relatively accurate information about the location and 

extent of the underlying source.
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Introduction

Electroencehalography (EEG)/magnetoencephalography (MEG) source imaging is to 

estimate the underlying brain activity from scalp recorded EEG/MEG signals. The locations 

within the brain involved in a cognitive or pathological process can be estimated using 

associated electromagnetic signals such as scalp EEG or MEG (He et al., 2011; Baillet et al., 

2001). The process of estimating underlying sources from scalp measurements is a type of 

inverse problem referred to as electrophysiological source imaging (ESI) (Michel et al., 

2004b; Michel & He, 2011; He & Ding, 2013).

There are two main strategies to solve the EEG/MEG inverse problem (source imaging), 

namely the equivalent dipole models (Scherg & von Cramon 1985; He et al, 1987) and the 

distributed source models (Hämäläinen et al., 1984; Dale & Sereno, 1993; Pascual-Marqui et 

al., 1994). The dipole models assume that the electrical activity of the brain can be 

represented by a small number of equivalent current dipoles (ECD) thus resulting in an over-

determined inverse problem. This, however leads to a nonlinear optimization problem, 

which ultimately estimates the location, orientation and amplitude of a limited number of 

equivalent dipoles, to fit the measured data. The number of dipoles has to be determined a 

priori (Bai & He, 2006). On the other hand, the distributed source models use a large 

number of dipoles (Hämäläinen et al., 1984; Dale & Sereno, 1993; Pascual-Marqui et al., 

1994) or monopoles (He et al, 2002) distributed within the brain volume or the cortex. In 

such models, the problem becomes linear, since the dipoles (monopoles) are fixed in 

predefined grid locations, but the model is highly underdetermined as the number of 

unknowns is much more than the number of measurements. Given that functional areas 

within the brain are extended and not point-like, the distributed models are more realistic. 

Additionally, determining the number of dipoles to be used in an ECD model is not a 

straightforward process (Michel et al., 2004b).

Solving under-determined inverse problems calls for regularization terms (in the 

optimization problem) or prior information regarding the underlying sources. Weighted 

minimum norm solutions were one of the first and most popular algorithms. In these models, 

the regularization term is the weighted norm of the solution (Lawson & Hanson, 1974). Such 

regularization terms will make the process of inversion (going from measurements to 

underlying sources) possible and will also impose additional qualities to the estimation such 

as smoothness or compactness. Depending on what kind of weighting is used within the 

regularization term, different solutions can be obtained. If a uniform weighting or identity 

matrix is used, the estimate is known as the minimum norm (MN) solution (Hämäläinen et 

al., 1984). The MN solution is the solution with least energy (L2 norm) within the possible 

solutions that fit the measurements. It is due to this preference for sources with a small norm 

that MN solutions are well-known to be biased towards superficial sources (Hämäläinen et 

Sohrabpour et al. Page 2

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 1994). One modification to this setback is to use the norm of the columns of the lead 

field matrix to weight the regularization term in such a manner to penalize superficial 

sources more than the deep sources, as the deep sources do not present well in the scalp 

potential (Lawson & Hanson, 1974). In this manner the tendency towards superficial sources 

is alleviated. This is usually referred to as the weighted minimum norm (WMN) solution. 

Another popular choice is the low resolution brain electromagnetic tomography (LORETA) 

(Pascual-Marqui et al., 1994). LORETA is basically a WMN solution where the weighting is 

a discrete Laplacian. The solution’s second spatial derivative is minimized so the estimation 

is smooth. Many inverse methods apply the L2 norm, i.e. Euclidean norm, in the 

regularization term. This causes the estimated solution to be smooth, resulting in solutions 

that are overly smoothed and extended all over the solution space. Determining the active 

cortical region by distinguishing desired source activity from background activity (to 

determine source extent) proves difficult in these algorithms, as the solution is overly 

smooth and poses no clear edges between background and active brain regions (pertinent or 

desired activity, epileptic sources for instance as compared to background activity or noise). 

This is one major drawback of most conventional algorithms including the ones discussed so 

far.

In order to overcome the extremely smooth solutions, the L2 norm can be supplanted by the 

L1 norm. This idea is inspired from sparse signal processing literature where the L1 norm 

has been proposed to model sparse signals better and more efficiently, specifically after the 

introduction of the least absolute shrinkage selection operator (LASSO) (Tibshirani, 1996). 

While optimization problems involving L1 norms do not have closed form solutions, they 

are easy to solve as they fall within the category of convex optimization problems (Boyd & 

Vandenberghe, 2004).

Selective minimum norm method (Matsura & Okabe, 1995), minimum current estimate 

(Uutela et al., 1999) and sparse source imaging (Ding & He, 2008) are examples of such 

methods. These methods seek to minimize the L1 norm of the solution. Another algorithm in 

this category, which uses a weighted minimum L1 norm approach to improve the stability 

and “spiky-looking” character of L1-norm approaches, is the vector-based spatio-temporal 

analysis using L1-minimum norm (VESTAL) (Huang et al., 2006). These algorithms 

encourage extremely focused solutions. Such unrealistic solutions root from the fact that by 

penalizing the L1 norm of the solution a sparse solution is being encouraged. As discussed 

by Donoho (Donoho, 2006) under proper conditions regularizing the L1 norm of a solution 

will result in a sparse solution; a solution which has only a few number of non-zero 

elements. Sparsity is definitely not a desired quality for underlying sources which produce 

EEG/MEG signals as EEG/MEG signals are the result of synchronous activity of neurons 

from a certain extended cortical region (Baillet et al., 2001; Nunez et al., 2000).

To overcome the aforementioned shortcomings while still benefiting from the advantages of 

sparse signal processing techniques, new regularization terms which encourage sparsity in 

other domains have been proposed. The idea is to find a domain in which the solution has a 

sparse representation. This basically means that while the solution might not be sparse itself 

(as is usually the case for underlying sources generating the EEG/MEG) it still might be 

sparsely represented in another domain such as the spatial gradient or wavelet coefficient 
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domain. This amounts to the fact that the signal still has redundancies that can be exploited 

in other domains.

Haufe et al. (Haufe et al., 2008) penalized the Laplacian of the solution instead and showed 

focal results which are realistically extended. They have shown the effect of considering 

implicit domain sparsity in improving the results by comparing their estimation with that of 

conventional methods using L2 norm regularization terms or simple L1 norm terms. Ding 

(Ding, 2009) has tried penalizing the gradient instead of Laplacian. Due to the selected 

penalization term which penalizes the solution discontinuities or jumps, the solution is 

piecewise constant and needs thresholding to discard the low level semi-constant 

background activity. Liao et al. (Liao et al., 2012) have used the faced-based wavelet in the 

penalty term and have shown focal results. Chang et al. (Chang et al., 2010) and Zhu et al. 

(Zhu et al., 2014) proposed to impose sparsity on multiple domains to better capture the 

redundancies of the underlying sources and have shown positive results. Zhu et al. combined 

the gradient and wavelet transform in the regularization term and Chang et al. used two 

strategies to combine domain sparsity. The first strategy is to impose sparsity on the solution 

and the Laplacian of the solution, and the second strategy is to impose sparsity on the 

solution and its wavelet transform. Another piece of work worthy of mentioning is the 

Elastic Net (ENET) (Zou and Hastie, 2005) and ENET L (Vega-Hernández et al, 2008). In 

the ENET algorithm both the L1 norm and L2 norm of the solution are regularized to obtain 

estimations that are more robust than LASSO-type solutions. ENET L regularizes the L1 and 

L2 norm of the Laplacian to obtain smooth and focal solutions. While imposing sparsity on 

multiple domains improves the results and seems to be a good approach for estimating 

extended sources, the solutions presented in the discussed papers cannot yet determine the 

extent of the underlying source objectively, i.e. still a threshold needs to be applied to reject 

the background activity.

Another successful class of inverse algorithms is Bayesian inverse techniques. In these 

methods, the problem is formulated within a Bayesian framework starting with prior 

distributions (of the dipole current density) to converge to a posterior distribution of the 

underlying source. Wipf and Nagarajan (Wipf and Nagarajan, 2009) have discussed this 

approach thoroughly. In this work many conventional algorithms such as MN, WMN and 

FOCUSS (Gorodnitsky et al., 1995) are re-introduced within this framework. Another well-

known Bayesian algorithm is the maximum entropy on the mean (MEM) approach (Grova et 

al., 2006) where the cortical surface is clustered in a data driven manner to obtain active and 

inactive regions on the cortex by regularizing the mean entropy. The idea of MEM has been 

further pursued by Chowdhury et al. (Chowdhury et al., 2013) and Lina et al. (Lina et al., 

2014) in a parcelization framework, where the cortical surface is divided into segments and 

then it is determined if each parcel is within the active source patch or not (through 

statistical analysis). The proposed method in the present work is not defined within the 

Bayesian framework, but as a series of convex optimization problems, as will be discussed.

Model based algorithms inspired by the sparse signal processing literature have also been 

proposed in recent years. Spatial or temporal basis functions which are believed to model the 

underlying source activity of the brain are defined a priori in a huge data set called the 

dictionary (Bolstad et al., 2009; Limpiti et al., 2006). Later on a solution which best fits the 
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measurements is sought within the dictionary. Haufe et al. proposed a Gaussian basis to 

spatially model extended brain sources (Haufe et al., 2011). These methods can be effective 

in solving the inverse problem as long as the underlying assumption about the basis 

functions holds true (since the solution is basically subsumed within the dictionary 

elements). For instance, the design of the basis function in (Haufe et al., 2011) might include 

very compact Gaussian kernels to provide a chance for the solver to select these kernels and 

give more compact estimates (although extent estimation is not pursued in that work). 

Furthermore, for a given spatial extent for the Gaussian kernel infinitely many different 

standard deviations can be assumed. If the kernel includes a good amount of such cases, in 

order to be unbiased and to avoid selecting parameters a priori (like subjective thresholding,) 

the dictionary can be huge and the problem might become intractable. However similar 

approaches undertaken by other groups have not been able to resolve this issue completely. 

Other studies (Chang et al., 2010; Liao et al., 2014; Zhu et al., 2014) adopted a similar 

approach using wavelets (wavelets that have many levels of precision and spatial extent) and 

their results still needed a minor thresholding to reject the weak sources. The proposed 

method in the present work does not assume any prior dictionaries or basis functions prior to 

solving the inverse problem.

Mixed-norm estimates have also gained attention in recent years (Gramfort et al., 2012; 

Gramfort et al., 2013a). These algorithms have also been incorporated in an iterative 

reweighting scheme (Strohmeier et al., 2014, 2015). These algorithms define two-level (or 

multi-level) mixed norms (usually combining L1 and L2 norms) to obtain focal solutions. 

Since the regularization is enforced on the solution, very focal estimates are obtained. 

Basically not much information regarding the source extent can be extracted from these 

algorithms currently, although it is suggested that newer implementations or combination 

with other algorithms may provide such capabilities in the future (Gramfort et al., 2013a).

Estimating the extent of the underlying source is a challenge but also highly desirable in 

many applications. Determining the epileptogenic brain tissue is one important application. 

EEG/MEG source imaging is a non-invasive technique making its way into the presurgical 

workup of epilepsy patients undergoing surgery. EEG/MEG source imaging helps the 

physician in localizing the location of activity and if it can more reliably and objectively 

estimate the extent of the underlying epileptogenic tissue, the potential merits to improve 

patient care and quality of life are obvious since EEG and MEG are noninvasive modalities. 

Another important application is mapping brain functions, elucidating roles of different 

regions of the brain responsible for specific functional tasks using EEG/MEG (He et al., 

2013).

In order to come up with an algorithm that is able to objectively determine the extent of the 

underlying sources, we move along the lines of multiple domain sparsity and also introduce 

the notion of iterative reweighting within the sparsity framework to achieve this goal. If the 

initial estimation of the underlying source is relaxed enough to provide an overestimation of 

the extent, it is possible to use this initial estimation and launch a series of subsequent 

optimization problems to gradually converge to a more accurate estimation of the underlying 

source. The sparsity is imposed on both the solution and the gradient of the solution. This is 
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the basis of the proposed algorithm, which is called iteratively reweighted edge sparsity 
minimization (IRES).

The notion of edge sparsity or imposing sparsity on the gradient of the solution is also 

referred to as the total-variation (TV) in image processing literature (Adde et al. 2005; Rudin 

et al., 1992). Recently some fMRI studies have shown the usefulness of working within the 

TV framework to obtain focal hot-spots within fMRI maps without noisy spiky-looking 

results (Dohmatob et al., 2014; Gramfort et al., 2013b). The results presented in the 

aforementioned works still need to set a threshold to reject background activity. These 

approaches are similar to the approach adopted in IRES with the difference that IRES 

initiates a sequence of reweighting iterations based on obtained solutions to suppress 

background activity and create clear edges between sources and background. One example 

has been presented in the supplementary materials to show the effect of thresholding on 

IRES estimates (Fig. S1).

A series of computer simulations were performed to assess the performance of the IRES 

algorithm in estimating source extent from the scalp EEG. The estimated results were 

compared with the simulated target sources and quantified using different metrics. To show 

the usefulness of IRES in determining the location and extent of the epileptogenic zone in 

case of focal epilepsy, the algorithm has been applied to source estimation from scalp EEG 

recordings and compared to clinical findings such as resection and seizure onset zone (SOZ) 

determined from intracranial EEG by the physician.

Materials and Methods

Iteratively reweighted edge sparsity minimization (IRES)

The brain electrical activity can be modeled by current dipole distributions. The relation 

between the current dipole distribution and the scalp EEG/MEG is constituted by Maxwell’s 

equations. After discretizing the solution space and numerically solving Maxwell’s 

equations, a linear relationship between the current dipole distribution and the scalp 

EEG/MEG can be derived:

(1)

where φ is the vector of scalp EEG (or MEG) measurements, K is the lead field matrix 

which can be numerically calculated using the boundary element method (BEM) modeling, j 
is the vector of current dipoles to be estimated and n0 models the noise. For EEG source 

imaging, φ is an M x 1 vector, where M refers to the number of sensors; K is an M x D 

matrix, where D refers to the number of current dipoles; j is a vector of D x 1, and n0 is an 

M x 1 vector.

Following the multiple domain sparsity in the regularization terms, the optimization problem 

is formulated as a second order cone programming (SOCP) (refer to Boyd & Vandenberghe, 

2004 for more details) in (2). While problems involving L1 norm minimization do not have 

closed-form solutions and may seem complicated, such problems are easy to solve as they 
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fall within the convex optimization category (Boyd & Vandenberghe, 2004). There are many 

efficient methods for solving convex optimization problems.

(2)

Where V is the discrete gradient defined based on the source domain geometry (T x D, 

where T is the number of edges as defined by (4), later on), β is a parameter to determine 

noise level and Σ is the covariance matrix of residuals, i.e. measurement noise covariance. 

Under the assumption of additive white Gaussian noise (AWGN), Σ is simply a diagonal 

matrix with its diagonal entries corresponding to the variance of noise for each recording 

channel. In more general and realistic situations, Σ is not diagonal and has to be estimated 

from the data (refer to simulation protocols for more details on how this can be 

implemented). Under the uncorrelated Gaussian noise assumption it is easy to see that the 

distribution of the residual term will follow the  distribution, where  is the chi-squared 

distribution with n degrees of freedom (n is the number of recording channels, i.e. number of 

EEG/MEG sensors). In case of correlated noise, the noise whitening process in (2) will 

eliminate the correlations and hence is an important step. This de-correlation process is 

achieved by multiplying the inverse of the covariance matrix (Σ−1) by the residuals, as 

formulated in the constraint of the optimization problem in (2). In order to determine the 

value of β the discrepancy principle is applied (Morozov, 1966). This translates to finding a 

value for β for which it can be guaranteed that the probability (p) of having the residual 

energy within the [0 β] interval is high (p). Setting p=0.99 (Zhu et al., 2014; Malioutov et 

al., 2005), β was calculated using the inverse cumulative distribution function of the 

distribution.

The optimization problem proposed in (2) is an SOCP-type problem that needs to be solved 

at every iteration of IRES. In each iteration, based on the estimated solution, a weighting 

coefficient is assigned to each dipole location. Intuitively, locations which have dipoles with 

small amplitude will be penalized more than locations which have dipoles with larger 

amplitude. In this manner, the optimization problem will gradually slim down to a better 

estimate of the underlying source. The details of how to update the weights at each iteration 

and why to follow such a procedure is given in Appendix A. Mathematically speaking, the 

following procedure is repeated until the solution does not change significantly in two 

consecutive iterations as outlined in (3):

At iteration L:

(3)

where WL and  are updated based on the estimation jL (refer to appendix A for details).
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The procedure is depicted in Fig. 1. The idea of data-driven weighting is schematically 

depicted. Although the number of iterations cannot be determined a priori, the solution 

converges pretty fast, usually within two to three iterations. One of the advantages of IRES 

is that it uses data-driven weights to converge to a spatially extended source. Following the 

idea proposed in the sparse signal processing literature (Candès et al., 2008; Wipf and 

Nagarajan, 2010), the heuristic that locations with smaller dipole amplitude need to be 

penalized more than other locations, will be formalized. In the sparse signal processing 

literature it is well known that under some general conditions (Donoho, 2006) the L1-norm 

can produce sparse solutions; in other words “L0-norm” can be replaced with L1-norm. In 

reality, “L0-norm” is not really a norm, mathematically speaking. It assigns 0 to the 

elements of the input vector when those elements are 0 and 1 otherwise. It is easy to imagine 

that when sparsity is considered, such a measure or pseudo-norm is intended (as this 

measure will impose the majority of the elements of the vector to be zero, when minimized). 

However this measure is a non-convex function and including it in an optimization problem 

makes it hard or impossible to solve, so it is replaced by the L1-norm which is a convex 

function and under general conditions the solutions of the two problems are close enough. 

When envisioning “L0-norm” and L1-norm, it is evident that while “L0-norm” takes a 

constant value as the norm of the input vector goes to infinity, L1-norm is unbounded and 

goes to infinity. In order to use a measure which better approximates the L0-norm and yet 

has some good qualities (for the optimization problem to be solvable), Fazel et al. (Fazel, 

2002; Fazel et al., 2003) proposed that a logarithm function be used instead of the “L0-

norm”. Logarithmic functions are concave but also quasi-convex (refer to (Boyd and 

Vandenberghe, 2004) for the definition and for more properties), thus the problem would be 

solvable. However, finding the global minimum (which is a promise in the convex 

optimization problems) is no more guaranteed. This means that the problem is replaced with 

a series of optimization problems, which could converge to a local minimum; thus the final 

outcome of the problem depends on the initial estimation. Our results in this paper indicate 

that initiating the problem formulated in (3) with identity matrices, provide good estimates 

in most of the cases, hopefully indicating that the algorithm might not be getting trapped in 

local minima. More detailed mathematical analysis is presented in Appendix A.

Selecting the hyper-parameter α is not a trivial task. Selecting hyper-parameters can be a 

dilemma in any optimization problem and most optimization problems inevitably face such a 

selection. It is proposed to adopt the L-curve approach to objectively determine the suitable 

value for α (Hansen et al. 1990; He et al., 2011). Referring to Fig. 2 it can be seen how 

selecting different values for α can affect the problem. In this example a 20 mm extent 

source is simulated and a range of different α values ranging from 1 to 10−4 are used to 

solve the inverse problem. As it can be seen, selecting a large value for α will result in an 

overly focused solution (underestimation of the spatial extent). This is due to the fact that by 

selecting a large value for α the optimization problem focuses more on the L1-norm of the 

solution rather than the domain sparsity (TV term) so the solution will be sparse. In the 

extreme case when α is much larger than 1 the optimization problem turns into a L1 

estimation problem which is known to be extremely sparse, i.e. focused. Conversely 

selecting very small values for α may result in spread solutions (overestimation of the 

spatial extent). Selecting an α value near the bend (knee) of the curve is a compromise to get 
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a solution which minimizes both terms involved in the regularization. The L-curve basically 

looks at different terms within the regularization and tries to find an α for which all the 

terms are small and also changing α minimally along each axis will not change the other 

terms drastically. In other words the bend of the L-curve gives the optimal α as changing α 
will result in at least one of the terms in the regularization term to grow which is 

counterproductive in terms of minimizing (2). In this example an α value of 0.05 to 0.005 

seems to give reasonable results)

Another parameter to control for is the number of iterations. Although this cannot be 

theoretically dealt with now, it is suggested to continue iteration until the estimation of two 

consecutive steps do not vary much. The actual number of iterations needed is usually 2 to 4 

iterations, as our experience with the data suggests. This is also reported by Candès et al 

(Candès et al., 2008). This means that within a few iterations an extended solution with 

distinctive edges from the background activity is reached. Fig. 3 shows one example. In this 

case a 10 mm extent source is estimated and the solution is depicted through 10 iterations. 

As it can be seen, the solution stabilizes after 3 iterations and it stays stable even after 10 

iterations. It is also interesting that these iterations do not cause the solution to shrink and 

produce an overly concentrated solution like the well-known algorithm FOCUSS 

(Gorodnitsky et al., 1995). This is due to the fact that the regularization term in IRES 

contains TV and L1 terms which in turn balance between sparsity and edge-sparsity, 

avoiding overly spread or focused solutions.

Neighborhood and edge definition

In order to form matrix V which approximates some sort of total variation among the dipoles 

on the cortex, it is necessary to constitute the concept of neighborhood. Since the cortical 

surface is triangulated for the purpose of solving the forward problem (using the boundary 

element model) to form the lead field matrix K, there exists an objective and simple way to 

define neighboring relationship. The center of each triangle is taken as the location of the 

dipoles to be estimated (amplitude) and as each triangle is connected to only three other 

triangles via its edges, each dipole is neighbor to only three other dipoles. Based on this 

simple relation, neighboring dipoles can be detected and the edge would be defined as the 

difference between the amplitude of two neighboring dipoles. Based on this explanation it is 

easy to form matrix V (Ding, 2009) as presented in (4):

(4)

The number of edges is denoted by T. Basically each row of matrix V corresponds to an 

edge that is shared between two triangles and the +1 and −1 values within that row are 

located such as to differentiate the two dipoles that are neighbors over that particular edge. 

The operator V can be defined regardless of mesh size, as the neighboring elements can be 
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always formed and determined in a triangular tessellation (always three neighbors). However 

reducing the size of the mesh to very small values (less than 1mm) is not reasonable as 

M/EEG recordings are well-known to be responses from ensembles of postsynaptic neuronal 

activity. Having small mesh grids will increase the size of V relentlessly without any 

meaningful improvement. On the other hand increasing the grid size to large values (>1 cm) 

will also give coarse grids that can potentially give coarse results. It is difficult to give a 

mathematical expression on this but a grid size of 3~4 mm was chosen to avoid too small a 

grid size and too coarse a tessellation.

Computer simulation protocol

In order to analyze IRES performance, a series of computer simulations were conducted in a 

realistic cortex model. The cortex model was derived from MR images of a human subject. 

The MR images were segmented into three layers, namely the brain tissue, the skull and the 

skin. Based on this segmentation a three layer BEM model was derived to solve the forward 

problem and obtain the lead field matrix, constituting the relation between current density 

dipoles and the scalp potential. The conductivity of the three layers, i.e. brain, skull and skin, 

were selected respectively as 0.33 S/m, 0.0165 S/m and 0.33 S/m (Oostendorp et al, 2000; 

Lai et al., 2005; Zhang et al., 2006). The number of recording electrodes used in the 

simulation is 128 channels. 100 random locations on the cortex were selected and at each 

location sources with different extent sizes were simulated, ranging from 10 mm to 30 mm 

in radius size. The amplitude of the dipoles were set to unity, so the cortical surface was 

partitioned into active (underlying source) and non-active (not included within the source) 

area. The orientation of the sources were taken to be normal to the cortical surface, as the 

pyramidal cells located in the gray matter responsible for generating the EEG signals are 

oriented orthogonal to the cortical surface (Baillet et al., 2001; Nunez et al., 2000). The 

orientation of the dipoles was accordingly fixed when solving the inverse problem. Different 

levels of white Gaussian noise were added to the generated scalp potential maps to make 

simulation more realistic. The noise power was controlled to obtain different levels of 

desired signal to noise ratio (SNR), namely 10 dB and 20 dB (another set of simulations 

with 6dB SNR was also conducted as explained in the next paragraph). These SNR values 

are realistic in many applications including epileptic source imaging. The inverse solutions 

were obtained using IRES and the estimated solutions were compared to the ground truth 

(simulated sources) for further assessment. The results of these simulations are presented in 

Figs. 4 to 6.

In order to compare the effect of modeling parameters on the inverse algorithm and also to 

avoid the most obvious form of “inverse crime”, another series of simulations were also 

conducted for which the forward and inverse model was different (in addition to the previous 

results presented in Figs. 4 to 6). The mesh used for the forward problem was very fine with 

1mm spacing consisting of 225,879 elements on the cortex. A BEM model consisting of 

three layers, i.e. brain, skull and skin with conductivities of 0.33 S/m, 0.015 S/m and 0.33 

S/m was used for the forward model. For the inverse model a coarse mesh of 3mm spacing 

consisting of 28,042 elements was used. The inverse BEM model consists of three layers, 

i.e. brain, skull and skin with conductivities of 0.33 S/m, 0.0165 S/m and 0.33 S/m. 

Basically the conductivity ratio is changed by 10% in the inverse model compared to the 
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forward model and also a different and much finer grid is used for the forward model in 

comparison to the inverse model (Auranen et al, 2005; Auranen et al., 2007). In this manner 

we reduced the dependency of IRES performance to modeling parameters such as grid size 

and conductivity values (by using different lead field matrices for forward and inverse). In 

addition to that, we used realistic noise recorded from a human subject as the additive noise 

so as to avoid using only white noise. Low SNR of 5~6 dB was also tested following 

(Gramford et al., 2013), to make sure IRES can be used in noisier conditions. The results of 

these simulations are presented in Fig. 7 and Fig. 8.

To further assess the effect of slight differences in conductivities on inverse algorithms’ 

performance, another inverse model was formed and used as well. This inverse model is the 

same as the inverse model described in the previous paragraph, meaning that in these 

simulations the grids used for the forward and inverse model were different but the 

conductivity values were not. The results of the simulations are presented in Fig. S2 and Fig. 

S3 in the supplementary materials.

Model violations such as non-constant sources (amplitude) and multiple simultaneous active 

sources were also tested. Additionally cLORETA (Wagner et al., 1996) and focal vector field 

reconstruction (FVR) (Haufe et al., 2008) were used to estimate solutions and the results 

from these inverse algorithms were compared with IRES (these results are presented in Figs. 

S4 and S5 of the supplementary materials).

To further evaluate the performance of IRES non-constant sources (for which the dipoles 

within the source patch did not have constant amplitudes and varied in amplitude) and 

multiple simultaneously active sources were also simulated and tested. Results of IRES 

performance are presented in Fig. 9 for multiple cases in these scenarios. More detailed 

results and analyses are presented in Figs. S6 to S9 of the supplementary materials.

Performance measures

In order to evaluate IRES performance, multiple metrics were used. As extended sources are 

being considered in this study, appropriate metrics being able to compare extended sources 

need to be used. The first measure is the localization error (LE). The localization error 

calculates the Euclidean distance between the center of mass of the simulated and estimated 

sources. In order to compare the shape and relative position of the estimated and simulated 

sources the overlap metric is used. The amount of overlap between the estimated and 

simulated sources is calculated and divided by either the simulated source area or the 

estimated source area to derive a normalized overlap ratio (NOR). This normalized overlap 

shows how well the two distributions match each other. These measures should both be as 

close as possible to 1. If an overestimated or underestimated solution is obtained, one of the 

two measures can be close to 1 while the other decreases significantly. Another important 

measure is the area under curve (AUC) analysis (Grova et al., 2006). The curve mentioned is 

the receiver operating characteristics (ROC) curve (Kay, 2011). The AUC enables us to 

compare two source distributions (one is the estimated source distribution and the other one 

is the simulated source). The closer this AUC value is to 1, the better our estimation of the 

simulated source will be.
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Clinical data

In order to determine if IRES could be used in practical settings and ultimately translated 

into clinical settings, the proposed algorithm was also tested in patients suffering from 

partial (focal) epilepsy. Three patients were included in this study. All clinical studies were 

conducted according to a protocol approved by the institutional review board (IRB) of Mayo 

Clinic, Rochester and the University of Minnesota. All patients had pre-surgical recordings 

with multiple inter-ictal spikes in their EEG recording. Two of the patients were suffering 

from temporal lobe epilepsy (TLE) and one was diagnosed with fronto-parietal lobe 

epilepsy. All three patients underwent surgery and were seizure free at one year post-

operation follow-up. Two of the patients also had intracranial EEG recordings (before 

surgery) from which the seizure onset zone (SOZ) and spread activity electrodes were 

determined (Fig. 10). All patients had pre-surgical MRI as well as post-surgical MRI images 

(An example of pre/post-surgical MRI images is presented in Fig. S10 of the supplementary 

materials). The pre-surgical MRI was used to form individual realistic geometry head 

models, i.e. BEM models, for every patient. The BEM model composed of three layers. The 

conductivity of the three layers, i.e. brain, skull and skin, were selected respectively as 0.33 

S/m, 0.0165 S/m and 0.33 S/m (Oostendorp et al, 2000; Lai et al., 2005; Zhang et al., 2006). 

The post-op MRI was used to locate and segment the surgical resection to later compare 

with IRES estimated solution. The EEG recordings were filtered with a band-pass filter with 

cut-off frequencies set at 1 Hz and 50 Hz. Inter-ictal spikes were searched for, through 

patient EEG recordings prior to operation, and were checked for scalp map consistency and 

temporal similarities. The spikes that were repeated more often were included in the 

analysis. The spikes were averaged around the peak of their mean global field power 

(MGFP) to produce a single averaged spike; on average 10 spikes were averaged for this 

study. These averaged spikes were then used for further source imaging analysis. The 

electrode montage used for these patients contained 76 electrodes (Yang et al., 2011) and the 

electrode locations were digitized and used in the inverse calculation. The estimated solution 

by IRES is compared to the surgical resection surface (as IRES is currently confined to 

cortical surface) and SOZ whenever available.

Implementation

The BEM based forward problem was solved using CURRY 7 (Compumedics, Chalotte, 

NC). The cortical surface was triangulated into 1 mm and 3 mm mesh for the computer 

simulations and clinical data analysis. In order to solve the SOCP problem which is the 

backbone of IRES a convex problem solver called CVX (Grant & Boyd, 2008; Grant & 

Boyd, 2013) was used. CVX contains many solvers including the self-dual-minimization 

(SeDuMi) (Strum, 1999) which is a MATLAB (Mathworks, Natick, MA) compatible 

package implementing an interior path method (IPM) for solving the SOCP problems. It 

takes about 2–4 minutes to solve (3) at each iteration on widely available desktop computers 

(3.4 GHz CPU and 4 Gbytes RAM). Although such a computation time is about 20 times 

that of MN-like algorithms, it is not too lengthy and IRES can be solved in reasonable time. 

While we have not developed a specific solver for IRES and used a general solver, i.e. CVX, 

it is reasonable to assume that the running time can be improved with tailored algorithms 

specifically designed for IRES.
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Results

Computer Simulations

Fig. 4 through Fig. 6 show simulation results using the same lead field matrix for forward 

and inverse problem. The results presented in figures 4 and 5 pertain to the case were the 

SNR of the simulated scalp potential is 20 dB and the same results are presented in figure 6 

for the 10 dB case. As it can be seen in Fig. 4 IRES can distinguish between different source 

sizes and estimate the extent with good accuracy. In the left panel of Fig. 4, three different 

cases are presented with extents of 10, 20 and 30 mm, respectively. Comparing the simulated 

sources and estimation results shows that IRES can distinguish between different sources 

reasonably. The right panel in Fig. 4 shows the relation between the extent of the estimated 

and simulated source. The fitted line shows that IRES has small bias and minimal under/

over-estimation on average. The variance of the estimated solutions is comparable to the 

estimated extent (about 50% of source extent). The overall trend is positive and indicates 

that IRES is relatively unbiased in estimating underlying source extent.

Other measures such as LE, NOR and AUC are also important to assess the performance of 

IRES. In Fig. 5 the results of such different metrics can be seen. The localization error in 

sources with different extent is less than 5 mm over all. Note that the simulated sources were 

approximately categorized into three classes with average extent of 10, 20 and 30 mm, 

corresponding to the three colors seen in Fig. 4. This value is less for smaller sources and 

closer to 3 mm. Such a low localization error shows that IRES can localize the underlying 

extended sources with low bias. Actually there a few cases (where the LE is greater than 12 

mm) for which the simulated sources were split between the two hemispheres with an 

unconventional geometry, thus the solution was a bit widespread and not good. However 

some of the cases simulated in deeper regions like the medial temporal lobe or the medial 

wall of the inter-hemisphere have errors in the range of 5–10 mm. Results of some difficult 

simulation cases are provided in Fig. 12 and discussed further in the Discussion section. 

Additionally, to better understand the combined effect of LE and extent estimation, the 

normalized overlaps should be studied. Looking at Fig. 5 one can see that the overlap 

between the estimated and simulated source is relatively high and over 70% for smaller 

sources (on average) and close to 85% for larger sources. The fact that both NOR values are 

high show that not only the estimated and simulated sources overlap extensively with each 

other, but the estimation is neither an overestimation nor an underestimation of the spatial 

extent (in either case only one of the NOR values would be high and the other would be 

small). The high AUC values for various source sizes also indicate the overall high 

sensitivity and specificity of IRES as an estimator.

Fig. 6 shows the same results for the 10 dB case. Comparing Fig. 6 with Fig. 5 and Fig. 4 

similar trends can be observed.

Fig. 7 and Fig. 8 show simulation results when different forward and inverse models (in 

terms of grid size and conductivity) are used for two cases of 6 dB and 20 dB SNR. The 

results in Fig. 7 show an underestimation for the extent. The localization error is as low as 5 

mm and the NOR is ~60%–70% on average. Comparing the same results when SNR is set to 

20 dB, much better results can be obtained. Referring to Fig. 8 it can be seen that the extent 
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estimation is with minimal bias with localization error of 3 mm (on average) and high NOR 

metrics (80% for both values on average). The slight decline in IRES performance in noisier 

conditions (Fig. 6 and Fig. 7) is expected due to increased levels of noise interference.

A few examples when source amplitude is not constant and also when multiple sources are 

simultaneously active, are presented in Fig. 9. The variation of source amplitude was 

governed by a normal distribution, meaning that the amplitude of the dipoles decreased 

exponentially as the distance of the dipoles increased from the center of the source 

distribution (patch). More detailed analysis and explanations are presented in supplementary 

materials.

These simulation results show that IRES is robust against noise and changes in model 

parameters such as grid size and conductivity. IRES can perform well when multiple sources 

are active or when source amplitude varies within the source extent.

Clinical Data Analysis

The patient data analysis is summarized in figures 10 and 11. Fig. 10 shows the results of a 

temporal lobe epilepsy patient who underwent invasive EEG recording and ultimately 

surgical resection. In this case different timing was tested to examine the effect of estimation 

results at different time instances around the peak. It can be seen in Fig. 10a, that five 

different timings (instances) were tested, two prior to peak time, the peak time and two after 

the peak corresponding to 50% and 70% rising phase, peak and 70% and 50% falling time. 

Looking at the estimated solution at different timings, it is clear that the solution is stable 

within tens of milliseconds around the peak and the epileptic activity does not propagate too 

much. This might be due to the fact that the averaged inter-ictal spikes arise from the 

irritative zone which is larger than the SOZ, so the propagation of activity might not even be 

observable using the average spike. Comparing the results of IRES with the resection in Fig. 

10b it can be seen that the estimated solution coincides within the resection very well. 

Looking at the SOZ electrodes colored pink in Fig. 10b it is also observed that the SOZ 

electrodes are covered by the solution. SOZ region is very focal so it is challenging to obtain 

a solution which can be in full concordance with it and as it can be seen, sometimes the SOZ 

region is not continuous (electrodes are not always right next to each other); nonetheless the 

estimated solution by IRES is in concordance with the clinical findings.

In order to further test the proposed IRES approach two more patients were studied; one 

temporal case with anterior tip of temporal lobe resection (and thus a smaller resection area) 

and an extra-temporal case (fronto-parietal). Referring to Fig. 11a it can be seen that the 

estimated solution includes most of the SOZ electrodes and coincides well with the 

resection. This implies that IRES does well for extra-temporal lobe cases as well as temporal 

cases. Given the fact that not all the SOZ electrodes are close to the resection, the estimated 

solution is a bit spread towards those SOZ electrodes and the neighboring regions thus 

extending beyond the resected region. In Fig. 11b the results of the second temporal case can 

be found. This patient did not have any intra-cranial EEG recordings. Fig. 11c reports the 

quantitative analyses for these three patients. In order to assess how well the estimated 

results match the clinical findings, the overlap between the solution and the resection and the 

SOZ was calculated. Then this overlap area was either divided by the solution area or the 
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resection/SOZ area. The results are classified as resection and SOZ indicating the clinical 

finding, i.e. SOZ or resection, used to assess the estimated solutions.

Looking at Fig. 11c it can be seen that the IRES solution generally covers the SOZ very well 

but also extends beyond the SOZ giving an overestimated solution. Looking at the right bar-

plot it can be seen that this is not the case when comparing the IRES solution to resected 

area.

Note that for temporal lobe epilepsy cases, due to more geometrical complexity of the cortex 

in the temporal region (compared to other locations within the brain) and the fact that mesio-

temporal region is not directly recorded by the electrodes over the temporal region, Vector-

based IRES (VIRES) was used instead of IRES (mathematical details of VIRES are given in 

Appendix B). VIRES basically relaxes the orientation constraint of the dipoles (being 

orthogonal to the cortical surface as implemented by IRES) and leaves that as a variable to 

be estimated.

In this paper the clinical analysis presented was intended as a proof-of-concept study to 

show the feasibility of using IRES for epilepsy source imaging. Further investigation in a 

large number of patients and also with different number of electrodes, needs to be done in 

the future. Careful comparison of the IRES results to existing techniques is also necessary 

for future studies, although we have presented a comparison with cLORETA in one case (as 

an example) (Fig. S11 supplementary materials). Some recent literature in identifying 

extended sources of inter-ictal spikes is noteworthy (Chowdhury et al., 2013; Heers et al., 

2015). In these works the MEM-type optimization alongside cortical parcelization is 

proposed to find extended sources.

Testing IRES on Public Data Sets

In order to further evaluate IRES, the algorithm was tested on the Brainstorm epilepsy data 

(Tadel et al., 2011) which is publicly available at (http://neuroimage.usc.edu/brainstorm). 

This tutorial includes the anonymous data of a patient suffering from focal fronto-parietal 

epilepsy, who underwent surgery and is seizure-free within a 5 year follow-up duration 

(http://neuroimage.usc.edu/brainstorm/Tutorials/Epilepsy). The data in this tutorial were 

originally analyzed and published in a paper by Dümpelmann et al. (Dümpelmann et al., 

2012). The patient underwent iEEG recording prior to surgery. The iEEG study results as 

well as the post-operational MRI are not available in the data set but are presented in the 

published paper (Dümpelmann et al., 2012). The procedure outlined in the Brainstorm 

tutorial was followed to get the average spikes and the head model, with the exception of the 

head model conductivity (ratio) for which we used the conductivities we have used so far, 

throughout the paper.

Fig. S12 (supplementary materials) shows the IRES solutions in this data set. Comparing 

these results with the clinical findings reported in (Dümpelmann et al., 2012), the obtained 

results are in well accordance with such findings. Additionally the source localization is 

performed using the cMEM algorithm (Grova et al., 2006) on another Brainstorm tutorial 

(http://neuroimage.usc.edu/brainstorm/Tutorials/EpilepsyBest?highlight=%28cMEM%29). 

Comparing IRES and cMEM results, it can be seen that the two solutions are concordant.
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Discussion

In this paper a new inverse algorithm is proposed, namely the iterative reweighted edge 

sparsity (IRES). As the simulation results suggest, this algorithm is capable of distinguishing 

between sources with different sizes. The simulation results suggest that IRES not only 

localizes the underlying source but can also provide an estimate of the extent of the 

underlying source, as well. Moreover one of the main merits of IRES is that it produces 

extended sources without the need for any kind of thresholding. The initial clinical 

evaluation study in focal epilepsy patients also shows good concordance between clinical 

findings (such as resection and SOZ) with IRES solution. This suggests the practicality of 

IRES in clinical applications such as pre-surgical planning for pharmacoresistant focal 

epilepsy. Although we tested the IRES in imaging focal epilepsy sources, IRES is not 

limited to epilepsy source localization, but is applicable to imaging brain sources in other 

disorders or in healthy subjects from noninvasive EEG (or MEG).

Merits and novelty of IRES and parameter selection

Many algorithms have been proposed in the recent years that work within the sparse 

framework and are thus capable of producing relatively focal solutions. Some of these 

methods enforce sparsity on multiple domain like IRES (Chang et al., 2010; Haufe et al., 

2008; Zhu et al., 2014), but neither of the aforementioned algorithms provide solutions with 

clear edges between background and desired activity and thus determining how to discard 

the tails of the solution distribution, i.e. thresholding, is difficult. IRES, on the other hand, 

achieves this by imposing sparsity on the spatial gradient which in turn creates visible edges. 

It is essential to note that some of the aforementioned algorithms do not intend to find the 

extent of the underlying sources like IRES and instead aim to model other physiologically 

plausible characteristics. Furthermore, it should not be assumed that all the existing methods 

in the literature resort to thresholding to separate brain activity from noisy background 

activity. Examples of these methods are the Gaussian dictionary based method by Haufe et 

al. (Haufe et al., 2011) and the Bayesian methods (Grova et al., 2006; Chowdhury et al., 

2013; Lina et al., 2014).

Algorithms formulated and operating within the Bayesian framework seem to be promising 

algorithms, such as MEM-type algorithms (Grova et al., 2006). Additionally the 

combination of cortex parcelization with these algorithms (Chowdhury et al., 2013; Lina et 

al., 2014) makes it even stronger. These algorithms use Otsu’s thresholding method (Otsu, 

1979) to separate the background noise from active sources objectively. However, there is an 

implicit assumption in Otsu’s method that classes (say, background and desired signal) are 

distinguished enough, to be separated well with a threshold. In our experience this depends 

on the inverse method used. Most conventional methods do not provide strong discriminants. 

This means that the threshold might not be “unique” in practice. Furthermore, no 

parcelization is used in IRES. Additionally IRES does not work within the Bayesian 

framework and is formulated as a series of convex optimization problems. Bayesian methods 

usually have complex formulations and take long to run.

Mixed norm methods have also proven to be effective in analyzing spatio-temporal activity 

of underlying brain sources (Gramfort et al., 2012; Gramfort et al., 2013a). However as 
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mentioned before these methods enforce sparsity on solution and are thus highly focused 

(Gramfort et al., 2013a).

IRES basically operates within a TV-L1 framework. This means that the sparsity is enforced 

on the edges as well as the solution itself. Within this framework data driven iterative 

reweighting are applied to IRES estimates at each step to get rid of small amplitude dipoles 

to obtain more accurate estimates. The formulation of IRES is simple yet effective and as 

tested by our extensive simulations, provides useful information about the source extent.

Solutions derived based on sparse signal theory are proven to be mathematically optimal 

under certain mathematical conditions (Candès et al., 2006a) whether sparsity is applied on 

the solution or another appropriate domain such as wavelet coefficients (Candès et al., 

2006b). This means that no other algorithm can provide solutions that are fundamentally 

better. Although these mathematical conditions do not hold for the electrophysiological 

source imaging (ESI) problem (due to ill-conditioned lead field matrices), still there is an 

increasing trend in applying sparse methods to ESI problems in recent years as indicated by 

the recent literature and the results presented in this work.

Another feature of IRES is its iterative reweighting technique. This procedure has enabled 

IRES to improve the estimation by disregarding the locations that are more probable to lie 

outside the extent of the underlying source. Since the amplitude of the dipoles corresponding 

to locations outside the underlying source is smaller than dipoles closer to or within the 

underlying source (this is due to the formulation of the problem where spatially focused 

sources with zero background are preferred) it is reasonable to focus less on locations for 

which the associated dipoles have very low amplitudes. Additionally, after a few iterations, 

IRES converges to a solution which is zero in the background, i.e. a focused solution is 

obtained, so an extended solution is reached without applying any threshold. Due to the 

limited number of iterations and mostly due to the way existing convex optimization 

problems solvers work (Bolstad et al., 2009) a perfect zero background might not be 

obtained but the amplitude of dipoles located in the background is typically less than 3% of 

dipoles with maximum amplitude.

The two features of IRES, namely the iteration and use of sparse signal processing 

techniques, makes IRES unique and can also explain the good performance of IRES in 

providing extended solutions which estimate the extent of the underlying source well. The 

parameters of the SOCP optimization problem in (3) need to be selected carefully, for IRES 

to work well. As discussed previously the L-Curve approach is adopted to determine α. The 

L-Curve in general is a tool to examine the dependency of level sets of the optimization 

problem to a certain parameter of the problem when the constraints are fixed. In our problem 

when β is determined (β intuitively determines noise level and is calculated based on the 

discrepancy principle) the constraint is fixed and then for different values of α the 

optimization problem is solved to find the optimum solution of the optimization problem for 

the given α. For the obtained solution j* the pair (||j||1* and ||Vj||1*) are graphed in a plot like 

Fig. 2 (||j||1 and ||Vj||1are the two terms of the goal function in (2)). The curve obtained for 

different values of α (level set of the goal function) which are the best pair of (||j||1, ||Vj||1) 

that can be achieved given a fixed constraint and a fixed α value, can show the dependency 
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of the two terms on parameter α. If the curve has a clear pointed bending (knee), selecting 

the value of α around the knee is equal to selecting the Pareto-optimal pair (this means that 

for any other value of α that is selected, either ||j||1 or ||Vj||1 will be larger than the values of 

||j||1 or ||Vj||1 of the knee). In this manner the (Pareto) optimal value of α is selected (Boyd 

and Vandenberghe, 2004). Another way to think about this is to imagine that for a fixed 

budget (β) the dependence curve of costs (||j||1 and ||Vj||1) are obtained (also called “utility 

curve” in other fields such as microeconomics). The best way to minimize costs is to find the 

cost pair (||j||1* and ||Vj||1*) for which all other pairs are (Pareto) greater, meaning that either 

one will be larger (compared to ||j||1* and ||Vj||1*). In the framework of Pareto-optimality the 

L-Curve formed from the level sets of the optimization problem, can determine the optimal 

value of α. The hyper-parameter β is determined using the discrepancy principle (Morozov, 

1966). β ultimately determines the probability of capturing noise. Another way to look at 

this is to note that β determines how large the constraint space will be. In other words, 

selecting a larger β corresponds to searching for an optimal solution within a larger solution 

space; this translates into relaxing the parameters of the optimization problem. The manner 

in which the hyperparameters of IRES are defined is intuitive and bares physical meaning 

and thus tuning the hyperparameters can be done easily and objectively (as opposed to 

hyperparameters that are merely mathematical).

Model Validity

Considering the domain in which sparsity is imposed in IRES one might wonder if this 

model is completely right, that is to assume that underlying sources are spatially focused 

activities with constant value within their extent. It is not easy to answer this question. In 

practice EEG/MEG signals arise from the mass response of a large number of neurons which 

fire synchronously. Thus it is reasonable to assume that variations within the source extent, 

are hard to be detected from EEG/MEG recordings. Even in data recorded from intracranial 

EEG the region defined as SOZ by the physician seem to have a uniform activity, i.e., 

piecewise continuous activity over the recording grid (Lu et al., 2012b). From a simplistic 

modeling point of view (and as a first step) the assumption is defendable. Face-based 

wavelets (Zhu et al., 2014) and spherical wavelet transforms (Chang et al., 2010) have also 

been used to model sources but none of the clinical data analysis presented in these papers 

shows solutions with varying amplitudes.

Ill-posedness of the problem and geometrical complexities of the cortex

Note that while IRES provides information regarding the extent of the underlying source, it 

is still dealing with an underdetermined system and thus the extent information is not exact. 

Referring to Figs. 4 to 8 it can be seen that there is still a noticeable amount of variance in 

extent estimation (almost half of the true extent). Yet the fact that the general trend of IRES 

in estimating the extent is correct and distinguishes between sources with extents as small as 

8 mm to as large as 50 mm is encouraging.

Sensitivity to source location, depth and orientation

The accuracy of ESI results can vary depending on the source location and orientation. It is 

well-known that deep sources are more difficult to resolve than superficial sources. 

Additionally tangential source orientations might be more difficult for EEG to detect (as 
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normal orientations are more difficult to be detected by MEG). This adds further complexity 

to the already difficult inverse problem. IRES is not different from all other ESI algorithms 

in this aspect and will not function well under every circumstance. Some difficult cases 

where the simulated sources were deep or more tangentially located (in the inter-hemisphere 

wall or on the medial wall of the temporal lobe) are presented as examples in Fig. 12 (these 

cases are included in the statistical results presented so far). As it can be seen, specifically in 

the first row image, in highly noisy conditions (SNR of 6 dB, third column), IRES did not do 

very well in determining the extent or shape of the source. Still IRES does not totally fail in 

determining the location and extent of the source in these very difficult conditions. In less 

noisy conditions (second row), IRES does well.

Future works and improvements on IRES

In this work the focus was not to develop a specific solver for IRES. It is more a proof-of-

concept project where the capabilities and usefulness of IRES are evaluated. As a result the 

CVX software which is a general solver for convex optimization problems was used. To 

name a few of the recent solvers and algorithms that have gained attention in the recent years 

one should mention the alternating direction method of multipliers (ADMM) (Boyd et al., 

2011) and the fast iterative shrinkage thresholding algorithm (FISTA) (Beck and Teboulle, 

2009). Implementing these algorithms for solving IRES can improve the speed and 

efficiency of the solver (compared to general solvers such as CVX).

Referring to the clinical data analyzed in this study it is observed that the area of the 

estimated source is on average 2 times the SOZ area while comparable to resected area. 

Although we did not attempt to directly answer whether IRES can provide estimates that are 

comparable to SOZ or not, this is an important question that needs further investigation. This 

does not solely depend on IRES or the inverse algorithm per se, but also to the input fed into 

the inverse algorithm. In the clinical data analysis presented here, inter-ictal spikes have 

been analyzed. It is generally agreed upon that inter-ictal spikes arise from the irritative zone 

which is known to be larger than the SOZ (Rosenow & Luders, 2001). High frequency 

oscillations on the other hand are shown to be very focal and more concordant with SOZs 

compared to inter-ictal spikes (Worrell et al., 2008). Lu et al. performed a study to show that 

source localization based on HFO’s detected in scalp EEG are more accurate than inter-ictal 

spikes (Lu et al., 2014). Thus it is interesting to extract HFOs from scalp EEG recordings of 

focal epilepsy patients and feed them into IRES to see if better results can be achieved; 

better in the sense that the estimated solution area is comparable to SOZ.

The idea of trying to determine the underlying epileptic source is important since one third 

of epilepsy patients do not respond to medication (Cascino, 1994). Surgical resection is a 

viable option for patients with focal epilepsy within this pharmacoresistant population. 

Currently the gold standard is to use intracranial EEG to determine SOZ (Engel, 1987). This 

is highly invasive with all the risks associated with such procedures. Being able to non-

invasively determine the SOZ and assist the physician in determining the location and size of 

the epileptogenic tissue can improve the quality of life for many patients.

In the current work, only a limited number of patients were studied as a proof-of-concept for 

potential clinical application of IRES to localize and image epileptogenic zone in patients. 
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Further investigation in a large number of patients is needed to determine the usefulness of 

IRES in aiding pre-surgical planning in epilepsy patients. Additionally, it would be 

interesting to study the effect of electrode number on solution precision (within the new 

framework). While there are several studies suggesting that increasing the number of 

electrodes helps improve source localization results significantly (Brodbeck et al., 2011; 

Lantz et al., 2003; Michel et al., 2004a; Sohrabpour et al., 2015; Srinivasan et al., 1998), 

determining the relation between the number of electrodes and solution precision awaits 

future experimentation. Whether plateauing effects will be observed as suggested by 

Sohrabpour et al. (Sohrabpour et al., 2015) or not, can only be determined after further 

investigations (specifically in clinical data).

In the current work, the solution space was limited to the cortical space. It is necessary to 

investigate if IRES can be generalized to include a solution space that encompasses the three 

dimensional brain volume.

The presented form of IRES in this paper was intended for single time-points as opposed to 

spatio-temporal analysis. This is due to the fact that it was intended to show the feasibility of 

this algorithm and its applicability in real data recordings. Spatio-temporal algorithms 

(Gramfort et al., 2013a; Ou et al., 2009) are important as the dynamics of the underlying 

brain sources captured by EEG/MEG has to be studied properly to better understand brain 

networks. Following Ou et al. (Ou et al., 2009), a temporal basis can be extracted from the 

EEG recordings onto which the data is projected. This basis can be derived from principle 

component analysis (PCA), independent component analysis (ICA) and time-frequency 

analysis of the data (Gramfort et al., 2013a; Yang et al, 2011). In any case, IRES can be 

incorporated into the spatio-temporal basis and by no means is limited to single time-points, 

at all. We present here the IRES strategy and results for single time-points source imaging as 

this problem is fundamental to spatio-temporal source imaging. Spatio-temporal IRES 

imaging needs further investigation and will be pursued in the future.

Conclusion

We have proposed the iteratively reweighted edge sparsity minimization (IRES) strategy for 

estimating the source location and extent from EEG/MEG. We demonstrated, using sparse 

signal processing techniques, that it is possible to extract information about the extent of the 

underlying source objectively. The merits of IRES have been demonstrated in a series of 

computer simulations and tested in epilepsy patients undergoing intracranial EEG recordings 

and surgical resections. The present simulation and clinical results indicate that IRES 

provides source solutions that are spatially extended without the need to threshold the 

solution to separate background activity from active sources under study. This gives IRES a 

unique standing within the existing body of inverse algorithms. The present results suggest 

that IRES is a promising algorithm for source extent estimation from noninvasive EEG/

MEG, which can be applied to epilepsy source imaging, determining the location and extent 

of the underlying epileptic source, as well as other brain source imaging applications.

Sohrabpour et al. Page 20

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank Dr. Benjamin Brinkmann and Cindy Nelson for assistance in clinical data 
collection, and Dr. Lin Yang for useful discussions. This work was supported in part by NIH EB006433, 
EY023101, HL117664, and NSF CBET-1450956, CBET-1264782.

References

Adde G, Clerc M, Keriven R. Imaging methods for MEG/EEG inverse problem. International Journal 
of Bioelectromagnetism. 2005; 7(2):111–114.

Auranen T, Nummenmaa A, Hämäläinen M, Jääskeläinen I, Lampinen J, Vehtari A, Sams M. Bayesian 
inverse analysis of neuromagnetic data using cortically constrained multiple dipoles. Human brain 
mapping. 2007; 28(10):979–994. [PubMed: 17370346] 

Auranen T, Nummenmaa A, Hämäläinen M, Jääskeläinen I, Lampinen J, Vehtari A, Sams M. Bayesian 
analysis of the neuromagnetic inverse problem with p-norm priors. NeuroImage. 2005; 26(3):870–
884. [PubMed: 15955497] 

Bai X, He B. Estimation of independent brain electric sources from the scalp EEGs. IEEE Trans 
Biomed Eng. 2006; 53(10):1883–1892. [PubMed: 17019851] 

Baillet S, Mosher J, Leahy R. Electromagnetic Brain Imaging. IEEE Trans Signal Process. 2001; 
18:14–30.

Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. 
SIAM J Imaging Sci. 2009; 2(1):183–202.

Bolstad A, Van Veen B, Nowak R. Space-Time event sparse penalizaion for magneto-/
electroencephalography. NeuroImage. 2009; 46:1066–1081. [PubMed: 19457366] 

Boyd, S.; Vandenberghe, L. Convex Optimization. Cambridge: Cambridge University Press; 2004. 

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via 
the alternating direction method of multipliers. Found Trends Mach Learn. 2011; 3:1–122.

Brodbeck V, Spinelli L, Lascano A, Wissmeier M, Vargas M, Vulliemoz S, Seeck M. 
Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. 
Brain. 2011; 134(10):2887–2897. [PubMed: 21975586] 

Candès E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measurements. 
Commun Pure Appl Math. 2006a; 59:1207–23.

Candès E, Romberg J, Tao T. Robust Uncertainty Principle: Exact Signal Reconstruction From Highly 
Incomplete Frequency Information. IEEE Trans Inf Theory. 2006b; 52:489–509.

Candès E, Wakin M, Boyd S. Enhancing Sparsity by Reweighting L1 Minimization. J Fourier Anal 
Appl. 2008; 14:877–905.

Cascino GD. Commentary: how has neuroimaging improved patient care? Epilepsia. 1994; 35:S103–7. 
[PubMed: 8206009] 

Chang W, Nummenmaa A, Hsieh J, Lin F. Spatially sparse source cluster modeling by compressive 
neuromagnetic tomography. Neuroimage. 2010; 53:146–160. [PubMed: 20488248] 

Chowdhury R, Lina J, Kobayashi E, Grova C. MEG source localization of spatially extended 
generators for epileptic activity: comparing entropic and hierarchical Bayesian approaches. PLoS 
ONE. 2013; 8:1–9.

Dale A, Sereno M. Improved localization of cortical activity by combining EEG and MEG with MRI 
cortical surface reconstruction: a linear approach. J Cog Neurosci. 1993; 5:162–176.

Ding L, He B. Sparse Source Imaging in EEG with Accurate Field Modeling. Human Brain Mapping. 
2008; 29:1053–67. [PubMed: 17894400] 

Ding L. Reconstructing cortical current density by exploring sparseness in the transform domain. Phys 
Med Biol. 2009; 54:2683–2697. [PubMed: 19351982] 

Sohrabpour et al. Page 21

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dohmatob, E.; Gramfort, A.; Thirion, B.; Varoquaux, G. Benchmarking solvers for TV-l1 least-squares 
and logistic regression in brain imaging. PRNI. 2014. http://dx.doi.org/10.1109/PRNI.
2014.6858516

Donoho DL. Compressed Sensing. IEEE Trans Inf Theory. 2006; 52:1289–1306.

Dümpelmann M, Ball T, Schulze-Bonhage A. sLORETA allows reliable distributed source 
reconstruction based on subdural strip and grid recordings. Hum Brain Mapp. 2012; 33(5):1172–
1188. [PubMed: 21618659] 

Engel, J, Jr. Approaches to localization of the epileptogenic lesion. In: Engel, J., Jr, editor. Surgical 
treatment of the epilepsies. New York: Raven Press; 1987. p. 75-9.

Fazel, M. PhD thesis. Electrical Engineering Department, Stanford University; 2002. Matrix rank 
minimization with applications. 

Fazel, M.; Hindi, H.; Boyd, S. Log-det heuristic for matrix rank minimization with applications to 
Hankel and Euclidean distance matrices. Proceedings of Am. Control Conf; June 2003; 

Gorodnitsky IF, George JS, Rao BD. Neuromagnetic source imaging with FOCUSS: a recursive 
weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol. 1995; 95(21):231–
251. [PubMed: 8529554] 

Gramfort A, Kowalski M, Hämäläinen M. Mixed-norm estimates for the M/EEG inverse problem 
using accelerated gradient methods. Phys Med Biol. 2012 Mar; 57(7):1937–1961. [PubMed: 
22421459] 

Gramfort A, Strohmeier D, Haueisen J, Hmlinen M, Kowalski M. Time– frequency mixed-norm 
estimates: sparse M/EEG imaging with non-stationary source activations. NeuroImage. 2013a; 
70:410–422. [PubMed: 23291276] 

Gramfort, A.; Thirion, B.; Varoquaux, G. Identifying predictive regions from fMRI with TV-L1 prior. 
Workshop on Pattern Recognition and NeuroImaging; 2013b. 

Grant, M.; Boyd, S. Graph implementations for non-smooth convex programs, Recent Advances in 
Learning and Control (a tribute to M. Vidyasagar). In: Blondel, V.; Boyd, S.; Kimura, H., editors. 
Lecture Notes in Control and Information Sciences. Springer; 2008. p. 95-110.

Grant, M.; Boyd, S. CVX: MATLAB Software for Disciplined Convex Programming. 2013. http://
cvxr.com/cvx/

Grova C, Daunizeau J, Lina J, Bénar C, Benali H, Gotman J. Evaluation of EEG localization methods 
using realistic simulations of interictal spikes. Neuroimage. 2006; 29:734–53. [PubMed: 
16271483] 

Hämäläinen, M.; Ilmoniemi, R. Interpreting measured magnetic fields of the brain: estimates of current 
distribution. Helsinki: University of Technology, Dept. of Technical Physics; 1984. Report TKK-F-
A559

Hämäläinen M, Ilmoniemi R. Interpreting magnetic fields of the brain: Minimum norm estimates. 
Medical and Biological Engineering and Computing. 1994; 32:35–42. [PubMed: 8182960] 

Hansen PC. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-
determined numerical rank. SIAM J Sci Stat Comput. 1990; 11:503–518.

Haufe S, Nikulin V, Ziehe A, Muller K, Nolte G. Combining sparsity and rotational invariance in 
EEG/MEG source reconstruction. NeuroImage. 2008; 42:726–38. [PubMed: 18583157] 

Haufe S, Tomioka R, Dickhaus T, Sannelli C, Blankertz B, Nolte G, Müller K. Large-scale EEG/MEG 
source localization with spatial flexibility. Neuroimage. 2011; 54:851–859. [PubMed: 20832477] 

He B, Musha T, Okamoto Y, Homma S, Nakajima Y, Sato T. Electric dipole tracing in the brain by 
means of the boundary element method and its accuracy. IEEE Trans Biomed Eng. 1987; 34:406–
14. [PubMed: 3610187] 

He B, Yao D, Lian J, Wu D. An Equivalent Current Source Model and Laplacian Weighted Minimum 
Norm Current Estimates of Brain Electrical Activity. IEEE Trans on Biomed Eng. 2002; 49:277–
288.

He B, Yang L, Wilke C, Yuan H. Electrophysiological imaging of brain activity and connectivity – 
challenges and opportunities. IEEE Trans Biomed Eng. 2011; 58:1918–31. [PubMed: 21478071] 

He, B.; Ding, L. Electrophysiological mapping and neuroimaging. In: He, B., editor. Neural 
Engineering. New York: Springer; 2013. p. 499-544.

Sohrabpour et al. Page 22

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1109/PRNI.2014.6858516
http://dx.doi.org/10.1109/PRNI.2014.6858516
http://cvxr.com/cvx/
http://cvxr.com/cvx/


He B, Coleman T, Genin G, Glover G, Hu X, Johnson N, et al. Grand challenges in mapping the 
human brain: NSF workshop report. IEEE Trans Biomed Eng. 2013; 60:2983–92. [PubMed: 
24108705] 

Heers M, Chowdhury R, Hedrich T, Dubeau F, Hall J, Lina J, … Kobayashi E. Localization accuracy 
of distributed inverse solutions for electric and magnetic source imaging of interictal epileptic 
discharges in patients with focal epilepsy. Brain topography. 2015:1–20. [PubMed: 25526854] 

Huang MX, Dale AM, Song T, Halgren E, Harrington DL, Podgorny I, Canive JM, Lewise S, Lee RR. 
Vector-based spatial-temporal minimum L1-norm solution for MEG. NeuroImage. 2006; 31:1025–
1037. [PubMed: 16542857] 

Kay, S. Fundamentals of Statistical Signal Processing: Detection Theory. 15. Prentice-Hall; New 
Jersey: 2011. 

Lai D, Drongelen W, Ding L, Hecox K, Towle V, Frim D, He B. Estimation of in vivo human brain-to-
skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. J 
Clin Neurophysiol. 2005; 116:456–65.

Lantz G, Grave de Peralta R, Spinelli L, Seeck M, Michel C. Epileptic source localization with high 
density EEG: how many electrodes are needed. Clin Neurophysiol. 2003; 114:63–9. [PubMed: 
12495765] 

Lawson, CL.; Hanson, RJ. Solving Least Squares Problems. Prentice Hall; New York: 1974. 

Liao K, Zhu M, Ding L, Valette S, Zhang W, Dickens D. Sparse representation of cortical current 
density maps using wavelets. Phys Med Biol. 2012; 57:6881–6901. [PubMed: 23038163] 

Limpiti T, Van Veen B, Wakai R. Cortical patch basis model for spatially extended neural activity. 
IEEE Trans Biomed Eng. 2006; 53(9):1740–1754. [PubMed: 16941830] 

Lina J, Chowdhury R, Lemay E, Kobayashi E, Grova C. Wavelet-based localization of oscillatory 
sources from magnetoencephalography data. IEEE Trans Biomed Eng. 2014; 61(8):2350–2364. 
[PubMed: 22410322] 

Lu Y, Yang L, Worrell G, He B. Seizure source imaging by means of FINE spatio-temporal dipole 
localization and directed transfer function in partial epilepsy patients. Clin Neurophysiol. 2012a; 
123:1275–83. [PubMed: 22172768] 

Lu Y, Yang L, Worrell G, Brinkmann B, Nelson C, He B. Dynamic imaging of seizure activity in 
pediatric epilepsy patients. Clin Neurophysiol. 2012b; 123:2122–29. [PubMed: 22608485] 

Lu Y, Worrell G, Zhang H, Yang L, Brinkmann B, Nelson C, He B. Noninvasive imaging of the high 
frequency brain activity in focal epilepsy patients. IEEE Trans Biomed Eng. 2014; 61:1660–67. 
[PubMed: 24845275] 

Malioutov D, Çetin M, Willsky AS. A sparse signal reconstruction perspective for source localization 
with sensor arrays. IEEE Trans Signal Proces. 2005; 55:3010–3022.

Matsuura K, Okabe Y. Selective minimum-norm solution of the biomagnetic inverse problem. IEEE 
Trans Biomed Eng. 1995; 42:608–615. [PubMed: 7790017] 

Michel C, Lantz G, Spinelli L, Grave dePeralta R, Landis T, Seeck M. 128-Channel EEG Source 
Imaging in Epilepsy: Clinical Yield and Localization Precision. Clin Neurophysiol. 2004a; 21:71–
83.

Michel C, Murray M, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R. EEG Source Imaging. Clin 
Neurophysiol. 2004b; 115:2195–2222. [PubMed: 15351361] 

Michel, C.; He, B. EEG Mapping and Source Imaging. In: Schomer, D.; Lopes da Silva, F., editors. 
Niedermeyer’s Electroencephalography. 6. Vol. Chapter 55. Wolters Kluwer & Lippincott 
Williams & Wilkins; Philadelphia: 2011. p. 1179-1202.

Morozov VA. On the solution of functional equations by the method of regularization. Soviet Math 
Dokl. 1966; 7:414–417.

Nunez PL, Silberstein RB. On the relationship of synaptic activity to macroscopic measurements: Does 
co-registration of EEG with fMRI make sense? Brain Topogr. 2000; 13:79–96. [PubMed: 
11154104] 

Oostendorp TF, Delbeke J, Stegeman DF. The conductivity of the human skull: results of in vivo and in 
vitro measurements. IEEE Trans Biomed Eng. 2000; 47:1487–1492. [PubMed: 11077742] 

Otsu N. A threshold selection method from gray-level histograms. Automatica. 1975; 11(285–296):
23–27.

Sohrabpour et al. Page 23

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ou W, Hämäläinen M, Golland P. A distributed spatio-temporal EEG/MEG inverse solver. 
Neuroimage. 2008; 44:932–946. [PubMed: 18603008] 

Pascual-Marqui RD, Michel C, Lehmann D. Low resolution electromagnetic tomography: a new 
method for localizing electrical activity in the brain. Int J Psychophysiol. 1994; 18:49–65. 
[PubMed: 7876038] 

Rosenow F, Luders H. Presurgical evaluation of epilepsy. Brain. 2001; 124:1683–1700. [PubMed: 
11522572] 

Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: 
Nonlinear Phenomena. 1992; 60(1):259–268.

Scherg M, von Cramon D. A new interpretation of the generators of BAEP waves I-V: results of a 
spatio-temporal dipole model. Electroencephalogr Clin Neurophysiol. 1985; 62:290–299. 
[PubMed: 2408875] 

Sohrabpour A, Lu Y, Kankirawatana P, Blount J, Kim H, He B. Effect of EEG Electrode Number on 
Epileptic Source Localization in Pediatric Patients. Clin Neurophysiol. 2015; 126(3):472–480. 
[PubMed: 25088733] 

Srinivasan R, Tucker D, Murias M. Estimating the spatial Nyquist of the human EEG. Behavior 
Research Methods, Instruments, & Computers. 1998; 30:8–19.

Stohmeier, D.; Hauiesein, J.; Gramfort, A. Improved MEG/EEG source localization with reweighted 
mixed-norms. Pattern Recognition in Neuroimaging (PRNI). 2014 International Workshop on. 
IEEE; 2014; 2014. 

Stohmeier, D.; Gramfort, A.; Hauiesein, J. MEG/EEG source imaging with a non-convex penalty in the 
time-frequency domain. Pattern Recognition in Neuroimaging (PRNI); 2015 International 
Workshop on. IEEE; 2015; 2015. 

Sturm JF. Using SEDUMI 1.02, a MATLAB toolbox for optimization over symmetric cones. 
Optimization Methods and Software. 1999; 11–12:625–653.

Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for 
MEG/EEG analysis. Comput Intell Neurosci. 2011; 2011:879716. http://dx.doi.org/
10.1155/2011/879716 (Epub 2011 April 13). [PubMed: 21584256] 

Tibshirani R. Regression Shrinkage and Selection via Lasso. J R Statist Soc. 1996; 58:267–88.

Uutela K, Hämäläinen M, Somersalo E. Visualization of magnetoencephalographic data using 
minimum current estimates. NeuroImage. 1999; 10:173–180. [PubMed: 10417249] 

Vega-Hernández M, Martínez-Montes E, Sánchez-Bornot J, Lage-Castellanos A, Valdés-Sosa P. 
Penalized least squares methods for solving the EEG inverse problem. Stat Sin. 2008; 18:1535–
1551.

Wagner M, Fuchs M, Wischmann H, Drenckhahn R, Köhler T. Smooth reconstruction of cortical 
sources from EEG or MEG recordings. NeuroImage. 1996; 3(3):S168.

Wipf D, Nagarajan S. A Unified Bayesian Framework for MEG/EEG Source Imaging. NeuroImage. 
2009; 44(3):947–966. [PubMed: 18602278] 

Wipf D, Nagarajan S. Iterative reweighted l1 and l2 methods for finding sparse solutions. IEEE J Sel 
Top Sign Proces. 2010; 4(2):317–329.

Worrel G, Gardner A, Stead S, Hu S, Goerss S, Cascino G, Meyer F, Marsh R, Litt B. High frequency 
oscillations in human temporal lobe: Simultaneous microwire and clinical macroelectrode 
recordings. Brain. 2008; 131:928–37. [PubMed: 18263625] 

Zhang Y, van Drongelen W, He B. Estimation of in vivo human brain-to-skull conductivity ratio with 
the aid of intracranial electrical stimulation. Appl Phys Lett. 2006; 89:1–3.

Zhu M, Zhang W, Dickens DL, Ding L. Reconstructing spatially extended brain sources via enforcing 
multiple transform sparseness. NeuroImage. 2014; 86:280–93. [PubMed: 24103850] 

Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B Stat 
Methedol. 2005; 67:301–320.

Sohrabpour et al. Page 24

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1155/2011/879716
http://dx.doi.org/10.1155/2011/879716


Appendix A

Weighting Strategy for IRES

Assuming that our problem is the following, where C is a convex set:

(A1)

It is reformulated as follows where ε is a positive number,

(A2)

In order to solve (A2) we linearize the logarithm function about the solution obtained in the 

previous step using the Taylor expansion’s series as follows,

(A3)

Substituting the linearized logarithm into the optimization problem and noting that xk is 

treated as a constant (as the minimization is with respect to x) the following optimization 

problem is achieved,

(A4)

Note that x was treated as a scalar here. In our case where x is a vector the weighting is 

derived for each element individually and finally placed into a diagonal matrix format. This 

is how (3) is derived. Treating (Vj)as a vector, i.e. y = Vj, the same procedure can be 

followed to update Wd.

Appendix B

Vector-based iteratively reweighted edge sparsity minimization (VIRES)

Applying the same idea as in IRES to the case where the orientation is not fixed can be 

easily done. It is also possible to assume that each of the three dimensions of the dipole is an 

independent variable; in that case following the procedure described in Appendix A and (3) 
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needs to be followed. Another way to approach the problem is to penalize the amplitude of 

the vector in the penalization terms as the variable under study is a vector now. It is 

necessary to note that matrix V which approximates the discrete gradient must be expanded 

three time using the Kronecker product, VNew = V ⊗ I3 where I3 is the 3×3 identity matrix. 

Following what was derived in (3) it is easy to get the following,

(B1)

Where T is the number of edges and n is the number of dipole locations. Also VNew(i,:) 

denotes the rows of VNew that correspond to the ith edge. These correspond to the 3*i-2th to 

the 3*ith rows of VNew.

Following the steps in Appendix A it is easy to obtain the update rule for the weights at 

iteration L as follows,

(B2)

(B3)
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Highlights

• A new inverse imaging strategy suitable for estimating extended 

sources from EEG/MEG is proposed.

• The sparsity of the source is exploited in multiple domains using an 

iterative method.

• No thresholding is required to obtain extended-source solutions.

• The proposed algorithm can estimate the source extent within 

reasonable error bounds.

• A potential application of the method is to estimate the source extent in 

epilepsy patients.
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Fig. 1. 
Schematic diagram of the proposed method. Two novel strategies (edge sparse estimation 

and iterative reweighting) were proposed to accurately estimate the source extent. The edge 

sparse estimation is based on the prior information that source is densely distributed but the 

source edge is sparse. The source extent can thus be obtained by adding the edge-sparse term 

into the source optimization solution. The iterative reweighting is based on a multistep 

approach. Initially an estimate of the underlying source is obtained. Consequently the 

locations which have less activity (smaller dipole amplitude) are penalized based on the 

solutions obtained in previous iterations. This process is continued until a focal solution is 

obtained with clear edges.
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Fig. 2. 
Selecting the hyper-parameter α using the L-curve technique. In order to select α which is a 

hyper-parameter balancing between the sparsity of the solution and gradient domain, the L-

curve technique is adopted. As it can be seen a large value of α will encourage a sparse 

solution while a small value of α encourages a piecewise constant solution which is over-

extended. The selected α needs to be a compromise. Looking at the curve it seems that an α 
corresponding to the knee is optimum as perturbing α will make either of the terms in the 

goal function grow and thus would not be optimal. The L-curve in this figure is obtained 

when a source with an average radius of 20 mm was simulated. The SNR of the simulated 

scalp potential is 20 dB.
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Fig. 3. 
The effect of iteration. A 10 mm source is simulated and IRES estimation at each iteration, 

is depicted. As it can be seen the estimated solution converges to the final solution after a 

few iterations and more so the continuation of the iterations does not affect the solution, i.e. 

shrink it. The bottom right graph shows the norm of the solution (blue) and the gradient of 

the solution (green) and also the goal function (red) at each iteration. The goal function 

(penalizing terms) is the term minimized in (2).
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Fig. 4. 
Simulation results. In the left panel three different source sizes were simulated with extents 

of 10 mm, 20 mm and 30 mm (lower row). White Gaussian noise was added and the inverse 

was solved using the proposed method. The results are shown in the top row. The same 

procedure was repeated for random locations over the cortex. The extent of the estimated 

source is compared to that of the simulated source in the right panel. The SNR is 20 dB.
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Fig. 5. 
Simulation statistics. The performance of the simulation study is quantified using the 

following measures, localization error (upper left), AUC (upper right) and the ratio of the 

area of the overlap between the estimated and true source to either the area of the true source 

or the area of the estimated source (lower row). The SNR is 20 dB in this study. The 

simulated sources are roughly categorized as small, medium and large with average radius 

sizes of 10 mm, 20 mm and 30 mm, respectively. The LE, AUC and NOR are then 

calculated for the sources within each of these classes. The boxplots show the distribution of 

each metric to provide a brief statistical review of the distribution of these metrics for all of 

the data. For more explanation about the metrics and how to interpret them please refer to 

the methods section of the paper.
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Fig. 6. 
Simulation statistics and performance of the simulation study when the SNR is 10 dB. 

Results are quantified using the following measures, localization error, AUC and the ratio of 

the area of the overlap between the estimated and true source to either the area of the true 

source or the area of the estimated source. The statistics are shown in the left panel. In the 

right panel, the relation between the extent of the estimated and simulated source is 

delineated (top row). Two different source sizes namely, 10 mm and 15 mm, were simulated 

and the results are depicted in the right panel (bottom row).
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Fig. 7. 
Monte Carlos simulations for differing BEM models with 6 dB SNR (IRES). The estimated 

source extent is graphed against the true (simulated source) extent (A). Two examples of the 

target (true) sources (B) and their estimated sources (C) are provided. The localization Error 

(D), Normalized overlaps defined as overlap area over estimated source area (F) and overlap 

area over true source area (F), are presented to evaluate the performance of IRES (all data). 

The boxplots show the distribution of each metric to provide a brief statistical review of the 

distribution of these metrics for all of the data. For more explanation about the metrics and 

how to interpret them please refer to the methods section of the paper.
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Fig. 8. 
Monte Carlos simulations for differing BEM models with 20 dB SNR (IRES). The estimated 

source extent is graphed against the true (simulated source) extent (A). Two examples of the 

target (true) sources (B) and their estimated sources (C) are provided. The localization Error 

(D), Normalized overlaps defined as overlap area over estimated source area (F) and overlap 

area over true source area (F), are presented to evaluate the performance of IRES (all data). 

The boxplots show the distribution of each metric to provide a brief statistical review of the 

distribution of these metrics for all of the data. For more explanation about the metrics and 

how to interpret them please refer to the methods section of the paper.
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Fig. 9. 
Model violation scenarios. Examples of IRES performance when Gaussian sources (left 

panels) and multiple active sources (right panel) are simulated as underlying sources for a 6 

dB SNR. Simulated (true) sources are depicted in the top row and estimated sources on the 

bottom row. More detailed analysis is provided in the supplementary materials.
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Fig. 10. 
Source extent estimation results in a patient with temporal epilepsy. (A) Scalp EEG 

waveforms of the inter-ictal spike in butterfly plot on top of the mean global field power (in 

red). (B) The estimated solution at Peak time (by VIRES) is shown on top of the ECoG 

electrodes and SOZ (left) and the surgical resection (right). (C) Scalp potential maps and 

estimation results of source extent at different latency of the interictal spike.
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Fig. 11. 
Source extent estimation results in all patients. (A) Estimated results by IRES in a parietal 

epilepsy patient compared with SOZ determined from the intracranial recordings (middle) 

and surgical resection (right). (B) Estimation results of source extent computed by VIRES in 

another temporal epilepsy patient compared with surgical resection. (C) Summary of 

quantitative results of the source extent estimation by calculating the area overlapping of the 

estimated source with SOZ and resection. The overlap area is normalized by either the 

solution area or resection/SOZ area.
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Fig. 12. 
IRES sensitivity to source location and depth. Simulation results for four difficult cases are 

presented in this figure for two SNRs, i.e. 20 and 6 dB. The sources were simulated in the 

medial wall located in the interhemispheric region, medial temporal wall and sulci wall. The 

orientation of some of these deep sources is close to tangential direction.
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