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The faculty of language depends on the interplay between the production and perception of speech sounds. A
relevant open question is whether the dimensions that organize voice perception in the brain are acoustical or
depend on properties of the vocal system that produced it. One of the main empirical difficulties in answering
this question is to generate sounds that vary along a continuum according to the anatomical properties the
vocal apparatus that produced them. Here we use a mathematical model that offers the unique possibility of
synthesizing vocal sounds by controlling a small set of anatomically based parameters.
In a first stage the quality of the synthetic voice was evaluated. Using specific time traces for sub-glottal pressure
and tension of the vocal folds, the synthetic voices generated perceptual responses, which are indistinguishable
from those of real speech.
The synthesizer was then used to investigate how the auditory cortex responds to the perception of voice
depending on the anatomy of the vocal apparatus. Our fMRI results show that sounds are perceived as human
vocalizations when produced by a vocal system that follows a simple relationship between the size of the
vocal folds and the vocal tract. We found that these anatomical parameters encode the perceptual vocal identity
(male, female, child) and show that the brain areas that respond to human speech also encode vocal identity.
On the basis of these results, we propose that this low-dimensional model of the vocal system is capable of
generating realistic voices and represents a novel tool to explore the voice perception with a precise control of
the anatomical variables that generate speech. Furthermore, themodel provides an explanation of how auditory
cortices encode voices in terms of the anatomical parameters of the vocal system.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Speech perception builds on a cortical structure, extended broadly
across the auditory cortex and localized close to the superior temporal
sulcus, which is sensitive to voices. This cortical region responds to
speech but also to other utterances like laughing, coughing and sighing,
suggesting that it is more generally tuned to a specific human vocal
system (Belin et al., 2000, Mesgarani et al., 2014).
Voice perception has been previously investigated by the analysis of
brain responses to various manipulations of vocal stimuli, including the
comparison of forward and reversed speech (Binder et al., 2000;
Dehaene-Lambertz et al., 2002) or manipulation of parameters of real
speech such as duration, pitch and formants transitions between
consonants and vowels (Kühnis et al., 2013, Chang et al., 2010). These
studies have demonstrated that the continuum of acoustically varying
sounds of speech is represented in the brain as perceptual categories.
Such parsing of the acoustical continuum allows for the recognition of
phonemes (Lee et al., 2012, Chang et al., 2010) and speaker's identity
(Latinus et al., 2013).
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Thus inferences about howhuman vocal sounds are processed in the
brain rely mostly on theories of auditory perception. However, the
faculty of language depends on the interplay between the production
and perception of speech sounds. According to the motor theories of
speech perception, articulatory gestures are the actual basis of the
representation and perception of speech sounds, consisting either in ab-
stract ‘intended gestures’ specific to the speech domain (Liberman and
Mattingly, 1985), or in the actual set of articulatory movements
(Fowler, 2010). Recently, important findings led to the conclusion that
the brain processes complex information such as the speaker's identity
and the articulatory features of the vocal system even at the level of
auditory cortex (Bonte et al., 2014; Correia et al., 2015). A relevant
question is whether the dimensions that organize voice perception at
low levels of processing consist of acoustical, motor, articulatory or
anatomical properties of the vocal system that produced it.

One of the main empirical difficulties in addressing this question is
to generate sounds that vary along a continuum according to the
physical properties the vocal apparatus. Rather than stretching the
duration of sounds, or increasing their pitch, one should be able to
generate synthetic voice stimuli by controlling anatomical and
physiological parameters of the vocal system.

Although the vocal anatomy and physiology are inherently complex,
mathematical models capture a wide range of acoustic features of the
human voice, and they can be tuned to synthesize sounds that
reproduce its main spectral and temporal properties (Story and Titze,
1998; Story, 2013, 2005). These synthetic sounds can effectively convey
a recognizable phonetic content (Bunton and Story, 2009; Story and
Bunton, 2010); nevertheless, whether these sounds could be perceived
as “human” or elicit brain responses comparable to real speech, remain
unknown. One encouraging example of this comes from the field of
birdsong, where by tuning the parameters of a low-dimensional
model it was possible to produce synthesized songs that activated high-
ly selective neurons to the bird's own song, neurons that barely respond
to any other sounds, including conspecific songs or slight perturbations
of the own song (Amador et al., 2013).

Here, the parameters of a low-dimensional model of the vocal folds
(Assaneo and Trevisan, 2013; Lucero and Koenig, 2005) and the vocal
tract (Story, 2013, 2005) are controlled to generate utterances with
phonological content. These synthetic sounds are compared with real
human voices showing that they are perceptually indistinguishable.
The synthesizer is then used to test the hypothesis that brain responses
to voices in the auditory cortex are tuned to specific anatomical param-
eters of the vocal system.

Methods

Articulatory voice synthesizer

The human vocal system consists of twomain anatomical blocks: the
vocal folds and the vocal tract. The vocal folds are a pair of membranes
located at the glottis. During the production of vowels, the air coming
from the lungs transfers energy to the vocal folds, giving rise to
oscillations. Sound is produced by the pressure perturbations generated
by these oscillations, determining acoustical properties of the vowel
such as its pitch, jitter and shimmer. The vocal tract acts as a wave
guide for the sound, emphasizing specific resonant frequencies
(formants) that depend on its shape and length, which defines the
identity of each vowel. In other cases, the vocal tract itself acts as the
sound source. For instance, a turbulent sound source is created as the
air is forced to pass through a constriction of the tract, giving rise to
the fricative consonants such as /s/ or /f/. Other consonants such as
the stops /p/ or /t/ are created when the vocal tract rapidly passes
from a completely occluded to an open configuration.

The model of the vocal system consists of the differential equations
describing the dynamics of the vocal folds and a wave-reflection vocal
tract model.
A two-mass model was used to approximate the dynamics of the
vocal folds: the cover of each membrane is modeled as two masses m1

and m2, one on top of the other, connected with each other and with
the glottal tissue. The following are the equations of motion for the
displacements x1 and x2, that measure the distance of each of the two
masses of one of the membranes to the sagittal plane (see Fig. 1A):

x
0
i ¼ yi

y
0
i ¼ Q=mi f i lg; di;Ps

� �
–Ki xið Þ–Bi xi; yið Þ–Qkc xi–xj
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The dynamics of the opposite membrane are assumed to be
symmetrical with respect to the sagittal plane. The indices i, j= 1 or 2 in-
dicate the lower and uppermassesm respectively. Elastic and dissipative
forces acting on the folds' tissue are modeled through the non-linear
functions K, kc and B respectively. The parameter Q controls the tension
of the folds, and f is the force exerted by the airflow passing through
the folds, which depends on their dimensions (lg and di in the sagittal
and transverse planes respectively) and on the subglottal pressure Ps.
The explicit functional forms of these functions can be found elsewhere
(Assaneo and Trevisan, 2013; Lucero and Koenig, 2005).

This simple system captures some of the main features of the vocal
folds' dynamics, reproducing speech data as the oscillations' onset and
hysteresis (Lucero and Koenig, 2005) and the transversal wave
propagating along the surface of the folds (Boessenecker et al., 2007).

Perturbations in glottal airflow produced by these oscillations are
injected into the vocal tract, whose shape can be approximated by a
series of N concatenated tubes of cross-sectional areas A(i) and lengths
l(i), 1 ≤ i ≤ N, for a total vocal tract length L = Σ l(i), 1 ≤ i ≤ N (Fig. 1A).
Propagation of these perturbations through the tubes is solved by
splitting the incoming sound wave into reflected and transmitted
waves at each interface, with reflection and transmission coefficients
depending on the adjacent areas A(i) and A(i+ 1). This approximation
is called a wave-reflection model, with a long tradition in the literature
of voice synthesis (Liljencrants, 1985; Meyer et al., 2010; Murphy et al.,
2007; Smith, 2007; Story, 1995; Strube, 1982; Titze and Alipour, 2006).
Although the vocal tract can be configured in virtually infinite different
shapes, restrictions are imposed by the articulators (jaw, tongue and
lips). Taking advantage of this, Story and Titze (Story and Titze, 1998;
Story, 2005; Story et al., 1996) developed a representation in which
the cross sectional area A of tube i can be described as:

A ið Þ ¼ π=4 Ω ið Þ þ q1φ1 ið Þ þ q2φ2 ið Þ½ �2 ck ið Þ ð2Þ

where Ω is a fixed shape called neutral vocal tract, and {φ1, φ2} are the
first two spatial modes of an orthogonal decomposition calculated over
a corpus of MRI anatomic data. This first squared factor in Eq. (2) repre-
sents the vowel substrate. The factor ck represents a constriction, i.e. a
uniform tube of cross section 1 except for a small interval around the
k-th tube, where the section smoothly reduces to 0, representing the
stop consonant substrate. In this way, the dimensionality of the vocal
tract, which can virtually reconfigure into infinite different shapes, is
drastically collapsed to a small number of parameters noted in bold
type in Eq. (2).

The system of Eqs. (1) and (2) therefore constitute a basic mathe-
matical model capable of reproducing the physics of the vocal system
during the production of vowels and plosive consonants.

Stimuli and tasks

Three types of stimuli were used in our experiments:

1. Non-speech sounds. The audio samples were downloaded from
(Font et al., 2013). These recordings included sounds of nature,
animal vocalizations, machine sounds and musical instruments
in equal proportions. The duration of the stimuli varied between
0.2 and 0.9 s.



Fig. 1. | Elements of the articulatory synthesizer and voice samples. A. Sketch of the two main blocks that constitute the vocal system: vocal folds and vocal tract. The mean length of the
vocal folds is 0.14 cmwhile the vocal tract is 17 cm for a typicalmale vocal system (Titze, 1988). Each vocal fold ismodeled as a pair of massesm1 andm2 coupled by elastic and dissipative
forces characterized by the functions K and B respectively. Integrating the equation of motion (Eq. (1)) of the folds leads to oscillations when values of subglottal pressure Ps exceed a
critical threshold. The air perturbation caused by these oscillations travels along the vocal tract, approximated by a concatenation of N = 44 cylindrical tubes of different cross-
sectional areas A(i) and lengths l(i), 1 b i b N. A sketch of this discretization is show in grey. When the wave reaches an interface between consecutive tubes, one part is reflected and
the other is transmitted, with amplitudes depending on the values of the consecutive cross-sections A(i) and A(i + 1). B. Real and synthetic samples of the utterance /ego/. Upper
panel: sound intensity, pitch, sound pressure and spectrogram for a real vocalization (R). Middle panel: Ps and Q time traces, sound pressure and spectrogram for an optimal synthetic
vocalization (O). Ps is driven to match the mean intensity of the two vowels and the rise and fall times of R (~0.03 s). The tension Q is a scaling of the pitch contour extracted from R.
Lower panel: Ps and Q time traces producing intelligible, robot-like speech samples (flat stimuli F). In this case, Q = 1 and Ps is a step-like function fixed at 800 Pa with a rapid rise and
fall of 0.01 s.
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2. Real speech samples. Two native Spanish speakers, a female (age 30)
and a male (age 40) pronounced, with different intonations and du-
rations, isolated Spanish vowels (/a/, /e/, /i/, /o/ and /u/), diphthongs
(/ai/, /ae/, /au/, /ea/, /ei/, /eu/, /ia/, /io/, /oa/, /oi/, /ua/, /ui/ and /uo/)
and vowel-consonant-vowel (VCV) structures (/aba/, /abi/, /abo/, /
eba/, /ede/, /edi/, /ego/, /igo/, /igu/, /obe/, /odu/, /ogo/ and /uga/).
The reasons of this selection of stimuli is that they are simple, short
time vocalizations with no meaning, preventing possible brain pro-
cessing of semantic content. Also, the samples contain vowels and
consonants that represent the complex acoustic repertoire of voice.

3. Synthetic speech samples. Synthetic sounds were generated by nu-
merical integration of Eqs. (1) and (2) using standard Runge-Kutta
functions coded in MATLAB. The parameters of the vocal folds and
the vocal tract were set at values described elsewhere (Assaneo
and Trevisan, 2013; Lucero and Koenig, 2005) except for the time-
dependent parameters of subglottal pressure Ps, vocal fold tension
Q and vocal tract shape q1, q2 and ck (i) (Eqs. (1) and (2) in bold
type) that were varied to construct the different audio samples.
Following (Story, 2005), the vocal tract was discretized in N = 44
tubes. The phonetic content of the synthetic sounds was the same
as the real samples, built as follows: the five Spanish vowels /a/, /e/,
/i/, /o/ and /u/ were synthesized using a vocal tract of coefficients
q1 and q2 of Eq. (2) at constant values (see Assaneo et al., 2013).
Diphthongs were synthesized by driving the coefficients q1 (t) and
q2 (t) linearly from the initial to the final vowel for every pair of
different vowels. Voiced stop consonants were produced in between
vowels by occluding and releasing a small section of the vocal tract
(Story, 2013). This was done by multiplying ck(i) in Eq. (2) by a
temporal function that controls the height of the constriction. The
consonants /b/, /d/ and /g/ were synthesized for occlusions at tubes
k = 44, k = 39 and k = 29 respectively. The final acoustic pressure
signals sampled at 44.1 kHz were converted to wav format and
used as stimuli for our experiments (audio samples are available at
Supplementary materials).

To avoid acoustic clues that could bias the judgments of the partici-
pants, the real stimuli were recorded in a sound booth. The three types
of audio stimuli were set to the same overall energy (RMS) and present-
ed to the participants with a white noise baseline of 2% of the maximal
intensity.

In the fMRI experiments, the auditory stimuli were played binaurally
at a mean 90 dB sound pressure, using foam earplugs and noise-
attenuated MRI-compatible headphones (Resonance Technology Inc.).
In behavioral tasks performed outside the scanner, mono audio files at
a sampling rate of 44.1 kHz were presented to the participants via
headphones Logitech B530 USB Headset MS Linc Optimi.

The experiments were written in MATLAB, using the Psychophysics
Toolbox extensions (Brainard, 1997).
Experiment 1
In order to test the quality of the synthesized speech, an experiment

wasdesigned to compare the responses to non-speech sounds (NS), real
speech samples (R), and two sets of synthetic speech samples: flat
(F) and optimal (O).

The two sets of synthetic samples had the same phonetic content
and duration as the R stimuli but differed in the profiles of subglottal
pressure Ps(t) and vocal folds' tension Q(t). The flat stimuli (F) were
synthesized using constant values for Q and Ps, as shown in Fig. 1B. On
the other hand, the optimal stimuli (O) were generated using time
traces for Ps(t) and Q(t) that approximate the intensity and pitch
contours of real vocalizations (Fig. 1B). For the sound intensity, Ps was
set to a phonation value of 800 Pa for the first vowel, and the intensity
of the second was adjusted to match R. Experimental recordings show
an attack time (i.e. the interval from silence to mean intensity of the
first vowel) of about 0.03 s. This was reproduced by linearly increasing
Ps from 0 to 800 Pa in 0.03 s. The same procedure was used to approxi-
mate the sound offset.

The relationship between vocal folds' tension and fundamental
frequency is almost lineal for Ps around 800 Pa (Assaneo and Trevisan,
2013). In this way, the time trace of Q(t) was simply a scaling of the
experimental pitch contour, extracted with Praat software (Boersma
and Weenink, 2013).

For this experiment we used a fMRI block design. Stimuli were
arranged in 9 blocks. Each block contained 8–10 stimuli of each category
(NS, R, F and O). Blocks were 9 s long, separated by silences of 4.5 s.

Participants inside the scanner were instructed to listen to the
stimuli and to grade them, at the end of each block, by pressing one of
four fiber-optic triggers held in the right hand according to the follow-
ing code: button 0 if “I am sure that the voice is not human”; button 1
if “The voice is likely to be non-human”; button 2 if “The voice is likely
to be human”; button 3 if “The voice was definitely human”.

Four catch blocks with an extra task were included to encourage
subjects to maintain the attention until the end of each block. Those
blocks were inhomogeneous, the first 80% of the stimuli consisted of
phonetic (O, F or R) and the last 20% to non-speech (NS) stimuli, or
vice versa. Subjects were instructed not to respond after catch blocks.
Thus, the subjects needed to pay attention until the end of the block
to complete the task properly. Each participant performed two scanning
runs of Experiment 1 (each 540 s long) in a single session, with a pause
of about 2 min between runs. The stimuli were separately randomized
for each run.
Experiment 2
Experiment 2 was designed to explore behavioral and brain re-

sponses across different dimensions of the vocal system. A scaling factor
λwas defined for the vocal tract length L (see Fig. 1A) such as L = λLo,
with Lo=0.17 m. Controlling the laryngeal dimensions require a more
subtle treatment, as it implies scaling the glottal dimensions and also
the vocal fold masses and tissue stiffness. Following (Lucero and
Koenig, 2005), a single scaling factor βwas adopted. The glottal dimen-
sions were scaled according to the simple rule di= doi/β and lg= lgo/β
(see Fig. 1A); the masses of the vocal folds scale asmi = moi/β3, where
β3 compensate the volume variation. Finally, assuming a constant
elasticity modulus, the stiffness scale according to the rules ki = koi/β
and kc = kco/β. The reference values are mo1 = 0.125 g, mo2 =
0.025 g, kco = 25 N/m, ko1 = 80 N/m, ko2 = 8 N/m, lgo = 1.4 cm,
do1 = 0.25 cm and do2 = 0.05 cm.

Following (Fitch and Giedd, 1999; Lucero and Koenig, 2005), typical
vocal tract scaling values are λ = 1 for males, λ = 0.9 for females and
λ = 0.7 for 9–10 years old children, and typical laryngeal factors are
β = 1 for males and β = 1.4 for females (no values reported for
children). The vocal tract was scaled in the range 0.6 ≤ λ ≤ 1.3, and the
larynx in the range 0.5 ≤ β ≤ 2.0, spanning the vocal system
dimensions beyond typical values. Each range was divided in seven
equally spaced sites, forming a 2-dimensional grid of 7 × 7 = 49 sites.
Four types of vocalizations were synthesized at each site: the VCV
structures /ego/ and /aba/, synthesized for two pitch contours with
different durations (0.6 s and 0.9 s). Synthetic samples are available as
Supplementary materials.

For this experiment we used an event-related fMRI design. In
addition to the above 7 × 7 × 4 = 196 stimuli, we included 38 silence
trials of 0.75 s, and 19 randomly selected stimuli were presented
twice in immediate succession. The resulting 253 stimuli were present-
ed in random order with an inter-stimulus interval of 2 s.

Participants were instructed to listen to the stimuli while making a
1-back repetition task. In this task, participants should press any of the
four fiber-optic triggers held in their right hand when the stimulus
they heard was identical to the previous one. This task was included
with the sole purpose ofmaintaining the subjects' attention on the stim-
uli. Each participant performed four runs (each 695 s long) in one single
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scanning session with a duration of about 1 h. The stimuli were
separately randomized for each run.

In addition, in order to obtain a subjective rating of the stimuli, we
also performed a purely behavioral task with the same set of 196
sound stimuli on another set of 30 participants. Stimuli were presented
randomly, and subjects were instructed to grade the stimuli according
to the same scale of voice quality as described in Experiment 1.

Participants

A total of 47 participants completed the experiments. We scanned
17 adults (7 females) aged 20–40 (mean 30 years), native Spanish
speakers. All subjectswere free of communication, neurological ormed-
ical disorders, passed audiometric screening, and had normal structural
MRI scans. An independent second group of 30 native Spanish speakers
(18 females, mean age=34 years, min=28,max=40) performed the
behavioral tests of experiment 2 outside the scanner.

All subjects were paid for their participation in the study and signed
an informed consent form approved by the regional ethical committee.

fMRI data acquisition and processing

Subjects were scanned on a Siemens 3T Verio MRI, 12-channel TIM
system. First, high-resolution T1-weighted 3D volumes were acquired
for anatomical localization (TR = 2.3 s, TE = 2.98 ms, matrix size
240 × 256 × 176, voxel size 1 × 1 × 1 mm). Second, whole brain func-
tional images were collected using a T2*-weighted EPI sequence, sensi-
tive to BOLD contrast (TR=2.02 s, TE=25ms,matrix size 66×66×40,
voxel size 3 × 3 × 3 mm). The first four scans of all EPI series were not
included in the analysis.

Data processing and analyses were conducted using the SPM8 soft-
ware (WellcomeTrust Centre forNeuroimaging, London, UK) and custom
Fig. 2. | Experiment 1: synthetic vs. real voices. A: ratings of voice naturalness (mean± SE), for
pressure and tension (O), synthesized speech using flat time-dependent parameters (F) and n
(uncorrected p b 0.005, number of vowels N 300). The activated volume was used as a ROI
elements marked * correspond to no supra-threshold voxels within the ROI (p uncorrected b

display the activations for the contrasts F N R (corrected clusterwise p = 0.054) and F N O
differences between R and O synthetic stimuli.
MATLAB code. Functional images were pre-processed as follows:
slice timing, motion correction by realignment, co-registration of the
T1-weighted image to the mean functional image, normalization of the
T1-weighted image to the MNI template, normalization of functional im-
ages (resampled voxel size 3 × 3 × 3mm) by applying the parameters of
the anatomical normalization, and Gaussian smoothing (5 mm FWHM).

Each voxel time series was fitted with a linear combination of func-
tions derived by convolving a standard hemodynamic response function
with the time series of the stimulus categories. The six movement
parameters were entered as regressors of non-interest. The individual
contrast images were smoothed (FWHM = 5 mm) and entered in a
second level group ANOVA.

Results

Experiment 1

Behavior
Mean ratings for real voices (R), synthetic voices (F and O) and non-

vocal sounds (NS) are shown in Fig. 2A. There was a significant
difference across the different types of stimuli (R, O, F, NS), as
determined by a Kruskal-Wallis test (χ2(3,1223) = 544, p b 0.001). A
post-hoc analysis revealed that the rating for the flat stimuli (1.20 ±
0.07) was lower than optimal and real stimuli (Wilcoxon rank-sum
test, p b 0.05 Bonferroni corrected), while the optimal (2.44 ± 0.05)
and the real (2.52 ± 0.04) stimuli did not differ.

fMRI
To identify brain areas involved in phonetic processing, the

condition corresponding to natural sounds (NS) was subtracted
from all the conditions corresponding to voices (O,F and R). This con-
trast showed three brain areas (uncorrected p b 0.005, number of
real speech samples (R), synthesized speech using natural time-dependent parameters for
on-speech sounds (NS). B: activation by phonetic (O, F and R) minus non-speech stimuli
in subsequent analyses. C: design matrix showing all the tested contrasts. The matrix
0.01). The elements marked ** show active voxels (uncorrected p b 0.001). Axial views
(corrected clusterwise p = 0.016). Both the behavioral and imaging tests show no



Table 1
Experiment 1. Anatomical location, stereotaxic location, t-value of peak activations and
voxel volume of activation clusters (p uncorrected b 0.001).

Anatomical location Talairach coordinates t-value Voxels

x y z

Phonetic N non-phonetic (ROI)
Left STG −66 −25 4 14.6 500

−69 −7 −2 10.8
Left precentral G −51 −7 46 6.5 320
Right STG 60 −19 −2 7 503

66 −10 1 6.9

Flat N optimal
Right STG 54 −10 4 5.9 52

FlatN real
Right STG 54 −10 4 4 17
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voxels N 300) shown in Fig. 2B and Table 1. In consonancewith previous
results, the superior and middle temporal gyrus and the temporal pole
were bilaterally activated (Belin et al., 2000). Another active region
was found, extended along left pre and post central gyrus, which
showed no overlap with the more superior region corresponding to
the button presses (see Supplementary materials: Estimation of the
somatotopic representation of the right hand). This region has been
previously reported as being involved in speech production and also
in listening to meaningless monosyllables (Wilson et al., 2004).

The overall active network is in agreement with the dual-stream
model of speech processing (Hickok and Poeppel, 2007), were a dorsal
stream maps acoustic speech signals into articulatory gestures. These
three brain areas involved in phonetic processing were defined as the
region of interest (ROI). All further analyses were restricted to, and
corrected for multiple comparisons within this activation volume.

Additionally, all pairwise contrasts among phonetic conditions were
analyzed (see Fig. 2C). Only the F N R and the F N O contrasts yielded
significant activations (uncorrected p b 0.001). O and R sounds were in-
distinguishable even at a lower p b 0.01 threshold, for which there were
no activated voxels. A cluster in the right STG, including Heschl's gyrus,
showed more activation for F than O (clusterwise p = 0.016, corrected
within the ROI). The same trend emerged in the contrast F N R
(clusterwise p = 0.054, corrected within the ROI) as shown in Fig. 2
and Table 1. Interestingly, even for synthetic speech that is perceived
as ‘unnatural’ (F stimuli), temporal vocal areas were active and indeed
showed higher activity than ‘natural’ speech.

Analysis of distributed patterns of activity for the different types of
auditory stimulations can be found at Supplementary materials:
Multivariate pattern analysis.
Experiment 2

The results of experiment 1 support themodel as a pertinent tool for
the study of voice and speech perception at the neural level. The model
was then used as an encoding tool to examine our working hypothesis
that brain responses to vocal sounds are tuned to a specific anatomical
relationship between the vocal tract and vocal folds dimensions. Our
procedure serves to identify which specific regions of a broad brain
network responding to human vocalizations specifically encode
anatomical properties of the vocal tract. We then hypothesize that this
region should participate in the recognition of vocal identity, since
anatomical properties of the vocal system are a landmark of an
individual's voice signature (Lopez et al., 2013). To this end, participants
were asked to rate the naturalness of the synthetic voices generated in
the 2-dimensional grid of the anatomical parameters λ and β (vocal
tract and vocal folds dimensions respectively). We then used the brain
responses to these voices in order to identify brain activity that
correlates with the naturalness of human vocal sounds.

Behavior
Fig. 3A shows the ratings (averaged over the 30 participants) of

‘naturalness’ of the synthesized voices in the grid of parameters β and
λ (larynx and vocal tract scaling factors respectively). High levels of
naturalness (in shades of red) lie in a narrow region that extends
roughly from the upper left to the lower right corner of the grid. To
characterize this region, a weighted least squares regression λ =
mβ+bwasfitted using themean grades as the correspondingweights.
The line λ = −0.27β + 1.26 is the best linear approximation
(m∈(−0.2685, −0.04919) and b∈(0.9798, 1.285) with a confidence
of 95%). We named this the ‘voice line’.

fMRI
The identification of a line in parameter space corresponding to

human-like utterances allowed to search for brain regions whose activ-
ity varies monotonically with the distance to that line. To this end, an
anatomical model was set up using the Euclidean distance to the voice
line as a main regressor. A significant cluster emerged, localized to the
right STG. The symmetrical left-hemispheric region showed the same
modulation but only in a much smaller cluster (Table 2), for which
activation increased with the distance to the voice line (uncorrected
p b 0.001, clusterwise p b 0.05, corrected within the ROI). No cluster
was found for which activity decreased for increasing distance to the
voice line.

One step more was needed to confirm that this vocal encoding is
indeed specific to anatomical features. There are in fact two competing
models: the anatomicalmodel, represented by the distance to the voice
line, and the behavioral or perceptual model, represented by the raw
naturalness ratings. If the two models did not differ, the results could
be explained as accurately without any recourse to the anatomy of the
vocal system.

To address this point, two distinct analyses were performed. First,
the original analysis was repeated using the behavioral ratings (instead
of the anatomical model parameters) as main regressors for the fMRI
activity. This analysis showed no significant activations.

Even though having significant activations for the anatomical model
and non-significant activations for the behavioral model favors the first
one, it could still be the case that the difference between the twomodels
would be non-significant. Therefore a second analysis was performed in
order to test whether the meta-contrast (computed as the difference
between the anatomical and the behavioral model) was significant in
the regions activated according to the anatomical model. Indeed, this
contrast showed activation areas very similar to the anatomical
model, implying that this model represents activations more efficiently
than the behavioral model (see Supplementary materials: Behavioral vs
Anatomical model).

Although ‘naturalness’ ratings are consistently high for the voices
along the voice line, they sound very differently: going from top left to
bottom right of the line, voices change from an adult male to an adult
female and finally to children's voices (audio samples are provided as
Supplementary materials). To investigate how brain responses vary
along the line, an identity regressor was constructed as follows: first, a
coordinate was defined along the voice line with a given fixed origin;
for each point on the line, the distance to the origin was assigned to
every point perpendicular to the line at that point (see first panel of
Fig. 4A). Given that our goal in this case was to evaluate the brain
activity associated with vocal identity, the analysis was restricted to
the grid elements above the mean of Fig. 3A by using the mask shown
in the second panel of Fig. 4A. The resulting map was then used as a
regressor (third panel of Fig. 4A).

A regression of brain activity to the position along the voice line (as
shown in Fig. 4) revealed two clusters (voxelwise p b 0.001, clusterwise
p b 0.05, correctedwithin the ROI): one in the right STG and another one



Fig. 3. | Experiment 2: voice identity in anatomical space. A:mean ratings of ‘naturalness’ for the voices synthesized in the space of anatomical parametersβ andλ (representing the scaling
factors for the larynx and vocal tract, respectively). The ratings were averaged over the responses of 30 participants. The scale used to rate the voices was 0: the voice is not human, 1: the
voice is not likely to be human, 2: the voice is likely to be human and 3: the voice is definitely human. To characterize the region of high level of naturalness (reds in the color map), a
weighted least squares regression was applied using the ratings as weights, obtaining the line λ = −0.27 β + 1.26. B: the map of Euclidean distance d to the optimal line λ(β) was
used as contrast (top) to obtain the brain regions showing a positive correlation with the distance to the voice line (bottom, uncorrected p b 0.001, corrected clusterwise p b 0.05).
These brain regions were most active for sounds modeled after unlikely combinations of larynx and vocal tract dimensions. C: mean activity in the peak-voxel MNI 66 −4 1, for each
point on the grid.
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more extended along the left STG (Table 1). The clusters obtained in the
regression along the line (Fig. 3 and Table 2) were slightly more
posterior and dorsal, but highly overlapping with the ones obtained in
the regressions of brain activity to the distance to the voice line in the
anatomical space of vocal tract and vocal folds dimensions.

Taken together, these results indicate that the brain region that
encodes whether a sound is produced by a human (based on the line
in anatomical space) also encodes speaker-specific parameters (based
on the position along that line). To check that this topographical overlap
is not simply due to a correlation between the regressors, we verified
that they are orthogonal (the correlation coefficient between the
weights of the two regressors, z-scored and restricted to the elements
above the mean was 0.0064 with a p-value of 0.97).
Table 2
Experiment 2. Cf Table 1 approximate anatomical and stereotactic location formaximal ac-
tivation, t-values and voxel extension for each cluster (uncorrected p b 0.001, cluster-
corrected p b 0.05).

Anatomical location Talairach coordinates t-value Voxels

x y z

Distance to the typical voice line
Left STG −57 13 1 4.2 30
Right STG 66 −4 1 6.1 163

Position along the typical voice line
Left STG −60 −22 7 4.9 110

−66 −31 13 4
Right STG 66 −19 7 4.4 90

57 −1 −2 4.2
Discussion

Voice manipulations and vocal perception

There is wide evidence indicating that speech perception is assisted
by internal motor and articulatory models at different stages of brain
processing, including the low level auditory cortex (Kuhl et al., 2014;
Correia et al., 2015). However, there is still an ongoing debate about
the degree of modulation between the processes of production and per-
ception of voice and how exactly this interaction is implemented. This
has been difficult to solve in part because brain responses to voice
have been probed using acoustically manipulated speech that cannot
be mapped directly to specific changes in the vocal system. Here we
tried to overcome this difficulty by using a mathematical model of
voice production that integrates the physics of the vocal system,
generating synthetic voice samples controlled by physiologically
inspiredparameters. Thismodel offers a unique opportunity to generate
synthetic voices for a continuum of anatomical and physiological
properties of the vocal system. Operationally, this is performed by
changing parameters which can be roughly classified in two families:
anatomical parameters and time-dependent parameters. The former
specify the sizes of the different parts of the virtual vocal system,
while the latter control the instructions that generate the repertoire of
sounds over time.

The presentwork dealt with both families, but deliberately excluded
the systematic exploration of the time-dependent parameters that
control the changes of shape of the vocal tract during the utterances.
This articulatory timing is a key element to impart naturalness to the
voice. It could be used to explore the representation of articulatory fea-
tures in the brain during voice perception, which would be a natural



Fig. 4. | Experiment 2: Identity coding in anatomical space. A. The contrast mapwas obtained by superimposing twomaps: one is themap that measures the distance along the voice line
from an arbitrary origin, and the other is the mask of the behavioral ratings above the mean. B: transverse view displaying areas showing significant positive activation at group level
(p uncorrected b 0.001 p cluster-corrected b 0.05) for this contrast. These areas are most active for sounds at the right-hand extreme of the voice line, which corresponds to child-like
vocalizations with small larynges and vocal tracts.
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follow-up to this work. In this first stage, the focus was set on the repre-
sentation of anatomical properties of the vocal system during voice
perception.

The first necessary step for the use of mathematical models to
explore voice perception is to evaluate the quality of the synthetic
voice. All musical instruments (the human vocal system included) are
based on a set of physical attributes that provide a ‘signature’ of the
instrument. This signature is known as timbre, a most elusive perceptu-
al attribute that have been associated with a corpus of acoustical
dimensions, including temporal features such as attack-time, jitter and
shimmer and spectral features such as brightness and formant distribu-
tions (Baumann and Belin, 2010; Caclin et al., 2005). Instead of
exploring these timbric dimensions in the acoustical space, in
Experiment 1 we focused in the temporal variables that are actively
driven during speech and vocal production: the sub-glottal pressure
and vocal folds' tension profiles.

High ratings of naturalness for “optimal” synthetic stimuli, which
participants confounded with actual human vocal sounds, showed
that we succeeded in generating high-quality utterances. This goes be-
yond previous evidence that this class of models produces intelligible
speech (Bunton and Story, 2009; Story and Bunton, 2010). By showing
that synthetic sounds are confused (both behaviorally and in the fMRI
responses) with real human vocalization, we demonstrate that the
model faithfully captures basic timbre properties of the human voice.

This first step allowed us to study, in Experiment 2, which combina-
tions of the two core anatomical parameters (length of the vocal tract
and dimensions of the vocal folds) result in human-like vocalizations.
We showed that for utterances to be perceived as human, these two
variables have to show a specific linear relationship. We identified a
line in parameter space along which voices are perceived as typically
human, while voices distant from the line are not. In the next section
we will discuss why different positions along the optimal vocal line
map to speakers of different identities, ages or gender. In summary,
(1) we showed that the proposed mathematical model is capable of
generating synthetic voices within a wide range of individual variabili-
ty; (2) the construction of thismodel allows to investigate in a paramet-
ric manner how the cortex responds to sounds depending on the vocal
apparatus that produced them.

Vocal recognition and identity

Speech carries information through two different channels: one of
them communicates semantic content, and the other one information
about the identity of the speaker. The identity information depends on
extrinsic factors such as the speaker's accent and speaking habits and,
more critically, on intrinsic factors such as the anatomy and physiology
of the vocal system. The extraction of identity information can be as
specific as recognizing a speaker from a database of known voices
(Formisano et al., 2008; Lopez et al., 2013), but also includes more
general tasks such as the recognition of the gender and approximate
age of an unknown speaker (Smith and Patterson, 2005).

This broader sense of identity information has been recently
explored (Latinus et al., 2013) using morphing techniques, showing
that voices are perceived as more atypical (and elicit more activation
in the temporal vocal areas) as they become more distant from a male
or a female prototypical voice in a 3-dimensional acoustical space.
Although the dimensions of that space were derived from acoustic
features of the voices, two of them are related to anatomical properties
of the vocal system: the pitch and the formant dispersion, which
correlate with the dimensions of the vocal folds β and the vocal tract
λ respectively (Fitch, 1997).

Using a generative model of human voice, we found a cluster
localized in the STG (mostly in the right hemisphere) that distinctively
responded as the model drifts towards anatomically unrealistic
parameters (distance to the typical voice line). This is consistent with
(Latinus et al., 2013) who showed that atypical voices produce larger
responses in the STG, but here, instead of using complex acoustical
parameters, we directly manipulated in our model the mathematical
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representation of anatomical parameters. Moreover, we found that
these brain regions overlap with those encoding speaker's identity
(regions whose activity varies as stimuli move along the typical vocal
line).

Conclusion

In thisworkwe investigated voice perception processes using a low-
dimensional mathematical model of the vocal system. The equations of
motion for the vocal folds and the propagation of the airflow perturba-
tion along the vocal tract are numerically integrated to generate
synthetic voices.

Our two most important findings are that (1) using profiles for sub-
glottal pressure and tension of the vocal folds (Ps, Q) matching
experimental pitch profiles, the synthetic voices generate perceptual
responses which are indistinguishable from those of real speech at
behavioral and fMRI levels, and (2) the synthetic sounds are perceived
as human vocalizations when the scaling parameters of the vocal folds
and vocal tract (β, λ) follow a linear relationship. Voices are judged
more atypical and neural activation is stronger as the distance from
that line increases.

On the basis of these results, we propose that the low-dimensional
model of the vocal system analyzed in this work has the necessary
ingredients to generate realistic voices, which makes it a pertinent
tool in the study of voice perception. The results presented here are
consistent with previous works on voice coding. More importantly, in
the framework of a unified sensory-motor program for speech (Cogan
et al., 2014, Kuhl et al., 2014, Assaneo et al., 2013), our results allow
for a straightforward interpretation of the problem of voice identity in
terms of simple relations between anatomical scaling factors.
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