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Abstract

Functional brain network analysis has become one principled way of revealing informative 

organization architectures in healthy brains, and providing sensitive biomarkers for diagnosis of 

neurological disorders. Prior to any post hoc analysis, however, a natural issue is how to construct 

“ideal” brain networks given, for example, a set of functional magnetic resonance imaging (fMRI) 

time series associated with different brain regions. Although many methods have been developed, 

it is currently still an open field to estimate biologically meaningful and statistically robust brain 

networks due to our limited understanding of the human brain as well as complex noises in the 

observed data. Motivated by the fact that the brain is organized with modular structures, in this 

paper, we propose a novel functional brain network modeling scheme by encoding a modularity 
prior under a matrix-regularized network learning framework, and further formulate it as a sparse 

low-rank graph learning problem, which can be solved by an efficient optimization algorithm. 

Then, we apply the learned brain networks to identify patients with mild cognitive impairment 

(MCI) from normal controls. We achieved 89.01% classification accuracy even with a simple 

feature selection and classification pipeline, which significantly outperforms the conventional 

brain network construction methods. Moreover, we further explore brain network features that 

contributed to MCI identification, and discovered potential biomarkers for personalized diagnosis.
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Introduction

Functional brain network (FBN) analysis has been successfully applied in both mining 

nontrivial topological structures in the healthy brain and revealing sensitive biomarkers for 

identifying neurological and psychological disorders (Stam, 2014; Fornito et al., 2015). 

However, different from the well-defined traditional networks (e.g., computer networks or 

social networks), the FBNs need to be estimated from data, prior to conducting any 

subsequent network analysis. It is generally challenging to construct high-quality FBNs 

because 1) we currently have limited understanding of the human brain, and 2) the observed 

data, e.g., the regional brain activity time series based on functional Magnetic Resonance 

Imaging (fMRI), tend to contain complex noises.

Despite of these challenges, many FBN estimation methods have been developed in the past 

few years (Smith et al., 2011), and most of them can essentially boil down to a graph 
construction problem. A graph G(V,E) provides a mathematical tool to model a network, 

where V is a node (or vertex) set and E is an edge set that can be equivalently described by 

an edge weighting matrix W. In FBN, the nodes, according to different research focuses, 

may range from microscale of neurons to macroscale of brain regions. In this paper, we 

focus on the macroscopic FBN, where the nodes are defined as brain regions of interest 

(ROIs), and the edge between these ROIs can thus be determined by the relationship 

between their blood-oxygen-level dependent (BOLD) time series recorded by fMRI. For 

convenience of presentation, we will interchangeably use the terminologies (including ROIs, 

brain regions, and time series) to denote network/graph nodes, but do not distinguish their 

conceptual differences unless stated otherwise.

Pearson correlation (PC) coefficient is the most popular statistics for measuring the 

relationship between brain regions. However, PC only models the full correlations without 

excluding confounding effects from other brain regions. By contrast, partial correlation 

alleviates this problem by regressing out the potential influence from other brain regions. 

However, estimation of partial correlation involves inverting a covariance matrix, which may 

be ill-posed, especially when the sample size (i.e., the number of fMRI time points) is fewer 

than the dimensionality (i.e., the number of network nodes). To address this problem, a 

regularizer is usually introduced to the corresponding mathematical model (see Functional 

brain network construction section for more details). Such a regularization trick is not only 
for stabilizing the statistical estimation, but also for providing a principled way of 

incorporating priors into a network/graph learning framework (see Matrix-regularized 

network learning framework section for more details). In fact, many current FBN 

construction models can be interpreted in this framework. For examples, Huang et al. 

proposed to learn the brain connectivity by employing a sparsity prior (i.e., L1-norm 

regularizer) in the estimation of inversed covariance matrix (Huang et al., 2009); Lee et al. 

employed the same prior for the reconstruction of brain networks, based on the compressive 

sensing theory (Lee et al., 2011); Varoquaux et al. built FBN using a group sparsity prior 

(L2,1-norm regularizer) that constrains all subjects sharing the same network topology 

(Varoquaux et al., 2010); more recently, Wee et al. applied a similar prior based on a group 

LASSO regression for FBN construction (Wee et al., 2014).
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However, the FBN commonly has more “structures” than just sparsity (Sporns, 2011). In this 

paper, inspired by the fact that the FBN is organized with a modular structure (Valencia et 

al., 2009), we present a novel FBN estimation scheme by encoding a modularity prior in 

form of matrix regularizer. Note that, in a recent work (Varoquaux et al., 2012), Varoquaux 

et al. proposed to describe the FBN by identifying its clique structure (similar to the modular 

structure here) in a decomposable graphical model. However, the clique structure in their 

methods was identified using a greedy approach, which may depend heavily on the initial 
graph and probably lead to local optima. In contrast, we formulate the FBN estimation as a 

sparse low-rank graph learning problem with a convex optimization model, and further 

propose an efficient algorithm to achieve its global optimal solution. Additionally, it is worth 

pointing out that the proposed method is not competing with Varoquaux et al.’s algorithm, 

since Varoquaux et al.’s algorithm can in principle work on any initially-constructed graph, 

including our estimated graph.

To verify the effectiveness of the proposed algorithm, we employ it in construction of FBN 

based on a real fMRI data set, and then use the estimated FBN to identify mild cognitive 

impairment (MCI) patients, which is important for early diagnosis and medical intervention 

of Alzheimer disease (AD). The experimental results show that the proposed method 

significantly outperforms the state-of-the-art methods. In particular, it achieves 89.01% 

classification accuracy even based on a simple feature selection (by means of t-tests with a 

fixed p value) and classification (via linear support vector machine (SVM)with default 

parameter C = 1) pipeline. Also, we explore the selected features (i.e., network connections) 

in our method and found that most of the selected features tend to be biologically 

meaningful according to recent studies (Greicius, 2008; Albert et al., 2011). For facilitating 

efforts to replicate our results, we have shared both pre-processed data and codes in http://

www.nitrc.org/projects/modularbrain/.

The rest of the paper is organized as follows. In the Functional brain network construction 

section, we review the related FBN estimation methods. In the Estimating brain network by 

incorporating modularity prior section, we present a matrix-regularized network learning 

framework, based on which we propose a novel FBN construction method including 

motivation, modeling, and algorithm. In Experiments section, we conduct experiments for 

corroborating the effectiveness of the proposed method. Finally, in the Conclusions section, 

we conclude our work with brief discussions.

Functional brain network construction

It is generally known that PC is currently the most widely used approach for estimating 

FBNs. According to a recent review (Smith et al., 2013), PC lies at the simplest extreme in a 

spectrum of FBN modeling methods, while dynamic casual modeling (DCM) is at the most 

complex extreme (Friston et al., 2003; Sengupta et al., 2016). Besides these two extremes, 

the popular FBN construction methods, from simple to complex, include partial correlation 

(Marrelec et al., 2006), regularized partial correlation (Friedman et al., 2008), Bayesian 

network (Ramsey et al., 2010), and structural equation modeling (Mclntosh & Gonzalez-

Lima, 1994), etc. Each of these methods, in our view, can be considered a trade-off between 
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PC and DCM by controlling the balance among the biological interpretability, computational 

efficiency, and statistical robustness.

In this paper, we mainly focus on the correlation-based methods, since they are successful in 

practice and have been empirically demonstrated to be more sensitive than the more 

complex or higher-order statistic-based methods (Smith et al., 2011). Below, we review two 

kinds of representative correlation-based methods in the Pearson’s correlation and the Partial 

correlation and sparse representation sections.

Pearson’s correlation

With pre-processing of the fMRI data (see Experiments section for details), we suppose that 

the brain has been parcellated into n ROIs, each of which corresponds to an observed time 

series xi∈Rm, i= 1,2, ⋯,n. Using the language of graph theory, we have a network node set 

 in a m-dimensional space, and, without loss of generality, we rewrite the node set as 

an “ordered” matrix X=[x1,x2, ⋯,xn]∈Rm×n. Then, our goal is to estimate the edge weight 

matrix W∈Rn×n for FBN, given the data matrix X. The simplest way is to use PC coefficient, 

as defined below.

(1)

where x̄i∈Rm has all entries being the mean of the elements in xi. Equivalently, xi–x̄i is a 

centralized counterpart of xi. With the assumption that xi is centralized by xi−x̄i and further 

normalized by , PC can be simply expressed by , or, 

equivalently, W(PC)= XTX, which essentially corresponds to the estimation of covariance 

matrix Σ, with a multivariate normal distribution. Such a solution can also be achieved by 

the following regression problem (Lee et al., 2011).

(2)

To unify the related methods under a general matrix-regularized network learning 

framework (see Matrix-regularized network learning framework section for more details), 

we can equivalently formulate Eq. (2) to its matrix form as follows.

(3)

where ||·||F denotes the F-norm of a matrix.
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Partial correlation and sparse representation

Despite its empirical effectiveness in modeling the FBN, PC, as mentioned in the 

Introduction section, can only detect full correlations, without excluding the confounding 

effect from other brain regions. By contrast, partial correlation is designed to handle this 

problem by regressing out the potential confounding variables. There are several strategies 

in statistics to calculate partial correlation. The widely used one is based on the estimation of 

inverse covariance matrix Σ−1 (a.k.a., precision matrix Θ). In particular, under the condition 

of normal distribution, we have that θij=(Σ−1)ij=0, if and only if the i-th and j-th variables are 

conditionally independent, and the partial correlation can then be defined by 

(Mardia et al., 1979).

However, the estimation of partial correlation can be ill-posed due to the singularity of the 

covariance matrix Σ, for example, when the sample size m (i.e., the number of fMRI time 

points in estimation of FBN) is fewer than the variable dimension n (the number of nodes in 

FBN). To address this problem, an L1-regularizer is generally introduced in the traditional 

estimation model, which results in two representative approaches. One is L1-regularized 

maximum likelihood estimation (Huang et al., 2009; Yuan & Lin, 2007), also known as 

graphical LASSO (Friedman et al., 2008); another is L1-regularized linear regression, which 

shares the same model with sparse representation (SR) and traditional LASSO (Meinshausen 

& Bühlmann, 2006; Peng et al., 2009). In this paper, we employ the latter (i.e., SR-based 

scheme) as one of the baselines for comparison with our proposed method, and its 

mathematical model can be obtained by the following objective function.

(4)

For simplicity, we assume that all the node variables share the same regularized parameter λ 
as in (Meinshausen & Bühlmann, 2006). Similar to PC, we rewrite Eq. (4) to its 

corresponding matrix form as follows.

(5)

where ||·||F and ||·||1 are the F-norm and L1-normof a matrix, respectively. The constraint 

Wii=0 is equivalent to remove the variable xi from X for avoiding trivial solutions. Note that 

the optimal solution W* of Eq. (4) or Eq. (5) may be asymmetric. We empirically test and 

find that the asymmetry does not contribute to the final classification accuracy, and, thus, in 

our experiments we simply define the SR-based FBN as W(SR)= (W*+W*T)/2.
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Estimating brain network by incorporating modularity prior

In this section, we first unify a class of FBN modeling methods under a general matrix-

regularized network learning framework, which may benefit the understanding and 

comparison of the motivations behind different methods, and, more importantly, can provide 

a platform to develop the novel FBN learning method in this paper.

Matrix-regularized network learning framework

Here, we again first take PC and DCM as examples to illustrate what a “good” brain network 

model should be. In particular, PC fits the data well based on a statistical measure and works 

efficiently on modeling large-scale networks, but can only estimate simple linear 

relationship (implicitly based on Gaussian assumption), which lacks a reasonable biological 

meaning. On the other extreme, DCM is based on the biological mechanism, but can only 

model networks with relatively small scales (Smith et al., 2013). Naturally, we expect a good 

network model to achieve both perspectives. That is, it should 1) efficiently fit the data, and 

2) effectively encode biological or physical prior knowledge. In fact, this trade-off between 

data and knowledge can be formulated by a regularized framework, which has been 

intensively studied in both statistics and machine learning fields. Here, we borrow the 

regularization concept for FBN construction, and present a more general framework by 

expressing priors (regularizers) in matrix form.

Based on the above discussion, we formulate a matrix-regularized network learning 

framework as follows.

(6)

where f(X,W) is a data-fitting term, and R(W) is a matrix-regularized term. Δ is a set 

including additional constraints on the network, such as non-negativity, symmetry, and 

positive semi-definiteness. It is worth pointing out that the data-fitting term plays a similar 

role to the loss function involved in some machine learning models, such as support vector 

machine and logistic regression, yet with different physical meanings. Specifically, the loss 

function tends to measure difference between the predicted values and ground truth, while 

f(X,W) here measures which aspects of the data a network aims to capture. For example, 

 in PC aims at capturing the covariance structure in the data; 

 in sparse representation (or f(X,W)= tr(SW)−log |W| in graphical 

LASSO (Friedman et al., 2008)) aims at capturing the inverse covariance structure in the 

data based on a regression estimation (or maximum likelihood estimation).

For the regularized term R(W), it is generally used in machine learning to prevent over-

fitting. Here, such a term plays an important role in encoding biological or physical prior 

knowledge into the network construction. For example, sparsity is the most popular prior 

used in FBN construction, which is reasonable since it has been shown that the FBN is 

intrinsically sparse (Sporns, 2011). However, the FBN commonly has more “structures” than 
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just sparsity, such as small-worldness, scale-free topology, hierarchy and modularity 

(Sporns, 2011). We argue that some of these priors may guide to estimate a better FBN (see 

the toy example in the Model section for an intuitive explanation). In the Model section 

below, we attempt to encode the modularity prior into the FBN construction model, based on 

the matrix-regularized network learning framework, and further formulate it as a sparse low-

rank graph learning problem.

The proposed method: Motivation, model, and algorithm

Motivation—Since Eq. (6) provides a regularized framework to model FBNs, now the 

main problem becomes how to encode the prior (i.e., modularity) in the form of matrix-

regularizer. As we know, the modularity means that there exist some node groups (modules) 

in the network, and, within each group, the nodes are densely connected, while between 

these groups, the connections are sparse. As a result, the nodes within the same module tend 

to connect to each other with high probability, which may lead to some dependent rows/

columns and then the low-rank edge weight matrix. In Fig. 1, we give a toy example to 

illustrate the relationship between the modularity of a network and the rank of its 

corresponding edge weight matrix.

In particular, the networks/graphs in the toy example include 7 nodes. Without loss of 

generality, we arrange the nodes in order, from 1 to 7, corresponding to the rows/columns of 

the edge weight matrix. Additionally, we assume that each node contains a link to itself, 

meaning that the diagonal elements of the edge weight matrix are all ones. As shown in Fig. 

1, the graphs with strong modular structures, such as (c) and (d), generally have low rank. 

On the contrary, the graphs without clear modular structures, such as (b), (e) and (f), tend to 

be full rank. Especially for graph (e), it has the same sparsity as the graph (d), but the rank of 

the graph (d) is lower than (e), due to the modular structure in (d). Another special case is 

the complete or fully connected graph (a), in which any two nodes are linked by an edge, 

resulting in a rank-one matrix. Despite its low rank, such a graph is dense, not economic, 

and contains only a single “module”, which fails to provide any informative structure. 

Therefore, the modularity needs to be described by combining low-rank with sparsity. In 

other words, modularity is a more powerful constraint on the network structure, compared to 

sparsity, since modularity implies sparsity, not vice versa (see graph (e) in Fig. 1 for 

example). Now we can draw a preliminary conclusion that both sparsity and low-rank priors 

may contribute to estimate a reasonable brain network. Note, however, that this intuitive 

result is only illustrated by a toy problem with binary adjacent matrices. In the Experiments 

section, we will experimentally verify our model based on real data that 1) low-rank can 

help improve the network modularity structure, and 2) the sparse and low-rank combination 

works better than the model with only sparse (or low rank) regularizer in terms of 

classification.

Model—Based on the matrix-regularized network learning framework, we propose a novel 

functional brain network model by incorporating a modularity prior, as follows.
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(7)

Here, we use  as the data-fitting term, aiming to capture the inverse covariance 

structure in the data, due to its empirical effectiveness (Smith et al., 2011). According to the 

matrix-regularized framework, we can in principle use any reasonable options, such as 

 involved in PC, to fit the data based on different motivations or applications. 

For the regularized terms, ||W||0 in Eq. (7) indicates the number of non-zero elements in W 
for measuring the sparsity of the network, and rank(W) is the rank of matrix W, which 

cooperates with ||W||0 for modeling the modularity of the network. Unfortunately, the two 

regularizers are both non-convex with respect to W. Thus, we relax them to L1-norm ||W||1 

and trace norm ||W||* (a.k.a., nuclear norm), respectively, and obtain the following 

optimization model.

(8)

where λ1 and λ2 are regularized parameters used to control the balance among the three 

terms in the objective function. Specially, when λ2=0, Eq. (8) reduces to the network 

learning model based on the traditional sparse regression (Lee et al., 2011) given in Eq. (5); 

when λ1=0, Eq. (8) reduces to the low-rank representation problem (Liu et al., 2010; 

Richard et al., 2012; Zhuang et al., 2012; Liu et al., 2013). In the Experiments section, we 

also include these two special cases for validating which prior (i.e., sparsity or low rank) 

contribute more to FBN construction and eventually MCI identification. Note that the 

proposed method shares a similar mathematical model with some machine learning 

algorithms (Liu et al., 2010; Richard et al., 2012; Zhuang et al., 2012; Liu et al., 2013), but 

has completely different explanation in both physical and statistical perspectives.1 More 

specifically, Eq. (8) in machine learning, such as in (Zhuang et al., 2012), is used to capture 

the subspace structure in samples for clustering or semi-supervised learning, while, in our 

method, the model is used to capture the modular structure in variables for conducting 

correlation analysis. Furthermore, to our best knowledge, this is the first time that the 

technique is used to encode the modularity prior for estimating functional brain networks 

and identifying neurological disorders.

Algorithm—Although the objective function in Eq. (8) is convex, the L1 and trace norm 

regularizers are both non-differentiable, which makes the problem nontrivial. Many 

algorithms have been developed in recent years to deal with this kind of problems (Richard 

et al., 2012; Zhuang et al., 2012). In this paper, we solve Eq. (8) based on proximal method 

1This is similar to the L1-regularized least square model, which is called LASSO for feature selection in statistics, but called sparse 
representation (SR) for signal recovery in signal processing field. In mathematics, LASSO and SR share the same model, yet with 
totally different meaning in both statistical and physical views.
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(see (Combettes & Pesquet, 2011) and references therein) due to its simplicity and 

efficiency.

More specifically, according to the definition of proximal operator (e.g., Definition 10.1 in 

(Combettes & Pesquet, 2011)), the proximal operator of λ1||W||1 is equivalent to the 

following soft thresholding operation on W,

(9)

Similarly, the proximal operator of λ2||W||* corresponds to a shrinkage operation on the 

singular values of W (Ji & Ye, 2009), as follows.

(10)

where Udiag(σ1, ⋯,σn)VT is the singular value decomposition (SVD) of matrix W.

Then, we consider the data-fitting term  in Eq. (8). Since f(X,W) is 

differentiable and its gradient (w.r.t. W) is ∇f(X,W)=−2XTX+2XTXW, we have the 

following gradient descent step,

(11)

where αk is the step size. To avoid the current Wk falling outside of the “feasible region” 

regularized by L1-norm ||W||1 and trace norm ||W||*, we orderly impose proximal operation 

on Wk by proxλ1||·||1(Wk) and proxλ2||·||* (Wk) given in Eqs. (9) and (10), respectively. 

Consequently, we have a simple algorithm for solving Eq. (8) as given in Table 1.

According to (Bertsekas, 2011), we can change the order of the two proximal operations 

involved in Steps 2 and 3 to update W, or simply conduct the min a random order, both of 

which can ensure convergence of the proposed algorithm. Additionally, in this paper, we 

employ the step size estimation strategy developed in (Ji & Ye, 2009) for achieving an 

optimal convergence rate. The source codes of this algorithm (with a cross validation 

procedure for parameter selection and performance evaluation) can be downloaded from 

http://www.nitrc.org/projects/modularbrain/.

In the next section, we apply the algorithm to construct FBNs, and then use the constructed 

functional connectivity as features for identifying MCI from normal aging.

Experiments

MCI is generally considered as a prodromal state of Alzheimer’s disease (AD). Thus, 

reliable detection of MCI is important for early medical intervention and may delay the 
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dementia. However, as an intermediate stage between normal aging and AD, MCI only 

involves subtle changes in functional connectivity, thus challenging effective identification. 

Therefore, MCI cohort provides a proper test bed to validate the proposed method.

Participants, data acquisition and pre-processing

The participants enrolled in this study were recruited via advertisements in local newspapers 

and media. All participants were right handed, with a normal or corrected-to-normal visual 

acuity, with no history of any neurological or psychiatric disorders, and without alcohol or 

drug abuse. Subjects with regular use of psychotropic, stimulants and beta-blockers were not 

included. Informed written consent was obtained from all participants, and experimental 

protocols were approved by local ethical committee. All recruited subjects underwent 

standard neuropsychological assessments, and were diagnosed by expert consensus panels.

Raw fMRI images were acquired using an echo-planar imaging sequence on a routine 

clinical whole-body 3 TMR scanner (TRIO, Siemens, Germany). The imaging parameters 

include: acquisition matrix size = 74 × 74 with 45 slices; voxel size = 2.97 × 2.97 × 3 mm3; 

TE = 30 ms; TR = 3000 ms with 180 repetitions. During data acquisition, a simple CO2 

challenge, as in (Richiardi et al., 2015), was involved for another researching purpose on 

cerebrovascular reactivity (Richiardi et al., 2015; Cantin et al., 2011). Since the current 

study mainly focuses on classification rather than the biological meaning of “pure” resting-

state networks, we conducted only the standard pre-processing for the acquired raw fMRI 

images, using the Statistical Parametric Mapping (SPM)2 and DPARSFA (version 2.2) (Yan 

& Zang, 2010).

In particular, the first 10 fMRI images of each subject were discarded to allow signal 

stabilization. The remaining images were first corrected for different slice acquisition timing 

and head motion. The corrected images were registered to standard space, de-trended, and 

band-pass filtered (0.01–0.08 Hz) to remove the extremely low- and high-frequency 

artifacts, and further regressed out nuisance signals, including ventricle and white matter 

signals, as well as head motion parameters (Friston et al., 1996). Of note, the filtering also 

reduces the task-related block-shaped signals. Finally, a scrubbing operation was applied to 

the data for alleviating the impact of micro-head-movements on functional connectivity by 

removing the time points with frame-wise displacement larger than 0.5 (Yan et al., 2013). 

Since the scrubbing may remove large proportion of frames for some subjects, we exclude 

subjects with the remaining time points <80, thus leaving us 91 subjects3 (i.e., 45 MCIs and 

46 NCs) with adequate data (i.e., >4 min) to model brain network. In Table 2, we list the 

main demographic information of the subjects included in this study.

Functional brain network construction

For each subject, we parcellate the above pre-processed BOLD signals into 90 ROIs based 

on the anatomical automatic labeling (AAL) atlas. Then, we use the mean signals on each 

2http://www.fil.ion.ucl.ac.uk.spm.
3Here, we select the subjects with >80 time points mainly due to consideration of balance between valid time points and subjects. That 
is, there would be no sufficient subjects if only requiring sufficient time points. Also, we just use the first 80 time points of each 
subject to be consistent with each other, which actually provides an experimental condition for validating the FBN construction in 
small sample size cases.
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ROI to estimate the FBN using different methods, e.g., PC, SR, and the proposed sparse 

low-rank (SLR) method. Note that, according to a recent survey (Smith et al., 2011), PC and 

SR are two of the most successful FBN construction methods. To investigate the 

contribution of different regularizers, we also include the low-rank (LR) method in our 

experiments by simply setting the regularized parameter λ1 = 0 in Eq. (8). In Table 3, we list 

all the comparison methods under the matrix-regularized brain network learning framework.

In Fig. 2, we visualize the edge weight matrices4 of the FBNs constructed by four different 

methods. Here, we use the values of the regularization parameters as λ=20 for SR, 23 for 

LR, and λ1=2−1, λ2=23 for SLR, respectively. We select these parametric values according 

to the best classification accuracies based on 1) all the network connections as features5 and 

2) linear SVM (with C = 1) as the classifier. For example, SR-constructed networks reach 

maximum accuracy when λ=20. From the results shown in Fig. 2, it can be observed that the 

combination of sparse and low-rank regularizers improves the network modularity, and the 

sparsity prior plays an important role in removing some weak (possibly noisy) connections.

Note that Fig. 2 just shows the edge weight matrices from a randomly selected subject. A 

natural problem is whether the FBNs from different subjects have similar structures (thus 

biologically more meaningful). Here, we simply measure this by the mean and the standard 
deviation of each edge weight across all subjects. Specifically, we define the mean edge 

weight , and the standard deviation , 

where W(k) corresponds to the network of k-th subject constructed by SLR. In Fig. 3, we 

provide a visualization of the “mean network6” (left panel) and a statistics of the standard 

deviations of edge weights across all connections and all subjects (right panel). From Fig. 3, 

we can observe that the network structures tend to be consistent across subjects, since 1) the 

(positive) mean network preserves similar structures as the one shown in Fig. 2, and 2) most 

of the edges have relatively small standard deviations in connectivity strength across 

subjects.

Furthermore, for quantitatively evaluating the modularity, we employ Newman’s spectral 

algorithm (Newman, 2006) to calculate the modularity scores of differently constructed 

brain networks. Considering that the sparsity of a network may affect the modularity 

measures significantly, we report the results in Fig. 4 by sparsifying the networks based on 

different thresholds (from0 to 0.99with an increment of 0.1). Note that, since negative edge 

weights are invalid for Newman’s algorithm, we simply apply thresholds to the absolute 

values of the edge weights. That is, we remove the edge if its corresponding edge weight |

Wij | is less than a certain threshold. Such an operation can not only remove some potentially 

noisy connections for improving the reliability of Newman’s algorithm, but also provide a 

platform to conduct fair comparison, especially for PC and LR, since their models do not 

include L1- regularized terms for controlling the sparsity. In addition, for avoiding the 

4For convenience of comparison among different methods, all the weights are normalized to the interval [−1 1].
5Here, we use all the network connections as features since our goal is for visualization. In the Feature extraction/selection and 
classification section, we select the most discriminative features for classification and biological explanations.
6Since the positive and negative edge weights can offset each other, we only consider the positive edge weight when calculating the 
mean network for better interpretability.
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randomness, we average the modularity scores on all the subjects for each method, with 

error bars denoting the standard deviation. It can be empirically observed from Fig. 4 that 

the combination of sparse and low-rank constraints can achieve better modularity (in terms 

of the best modularity score and the area under the curve). Note that the threshold operation 

here in fact plays a similar role as the L1- regularizer used for obtaining sparse networks.

Feature extraction/selection and classification

Once we obtain the functional brain networks (FBNs) for all subjects, the subsequent task is 

to classify MCI from NC according to the estimated FBNs. Then, the problem turns to 

determine which features should be used for classification. In practice, two kinds of 

strategies are often employed for FBN-based disorder identification. One is to extract 

features based on some graph measures, such as local clustering coefficients (Wee et al., 

2014), and the other is directly using the network edge weights as features (Huang et al., 

2009). Since different graph measures capture different aspects of network properties, it 

requires tricks or extra knowledge to design effective features. Therefore, in our 

experiments, we use the second strategy (i.e., using the raw edge weights as features), which 

can avoid the influence of differently extracted features on the validation of the FBN itself. 

Although the edge weight matrix theoretically includes all information of the network, it 

leads to the issue of high dimensionality. For example, an undirected network/graph with n 
nodes may generate n(n−1)/2 edges. In our study, n=90, and thus the feature dimensionality 

is 4005. To alleviate the curse of dimensionality, we first screen features by t-test with the 

empirically fixed p values7 before conducting classification using the linear SVM with 

default parameter (i.e., C=1). In our experiments, we do not employ any sophisticated 

feature extraction/selection and classifier design pipeline due to the two following 

considerations.

1. The main goal of these experiments is to verify the effectiveness of the proposed 

FBN estimation method. A complex feature extraction/ selection and 

classification pipeline may confuse the validation of the network construction 

methods per se. For example, in a recent study (Wee et al., 2014), Wee et al. 

selected features sequentially using two filter-based approaches and one 

wrapper-based approach. We argue that it is hard to distinguish whether the 

feature selection strategies or network construction methods contribute to the 

ultimate classification accuracy.

2. It tends to over-fit the data if a complex classification pipeline is applied to 

limited training samples. In statistical learning theory, the sample size needs to 

increase exponentially with the model complexity (Bishop, 2006). For example, 

in our experiments, we have only 90 samples for training, even using leave-one-

out (LOO) scheme. Besides the risk of overfitting, it is exceedingly challenging 

to select suitable values for the hyper-parameters involved in the feature selection 

and classification models, without sufficient training samples.

7In our experiments, we tested different p values from a candidate set {0.001, 0.005, 0.01, 0.05, 0.1}, and empirically found that 0.005 
is the best value for PC, while 0.01 is the best value for SR, LR and SLR. Therefore, we simply fixed the p = 0.005 for PC, while 0.01 
for other methods.
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In Fig. 5, we show the basic procedure to conduct MCI vs. NC classification, which includes 

three main steps labeled by (1)–(3). In Step (1), we construct FBNs based on PC, SR, LR 

and SLR, respectively. Then, we conduct the LOO scheme for validating the effectiveness of 

different FBN construction methods. In particular, our dataset includes 91 subjects. In each 

LOO run, we use 90 samples (i.e., subjects or networks) for training and leave 1 sample for 

testing. The final performance is summarized by averaging the results from all 91 runs.

Since the regularized parameters involved in the FBN models may significantly affect the 

network structures and then the ultimate classification results (see Sensitivity to network 

model parameters section for more details), in Step (2) we select optimal parametric values 

by a grid search in a large range. For each regularized parameter (λ in SR, and λ1,λ2 in 

SLR), we use 11 candidate values in [2−5,2−4, ⋯,20, ⋯,24,25]. Note, however, that PC is 

parameter-free. For improving its flexibility and conducting fair comparison, we introduce a 

thresholding parameter in PC by preserving a proportion of strong edge weights. To be 

consistent with other methods, we also employ 11 candidate values [100%,90%, ⋯,10%,1%] 

in our experiments. For example, 100% means all edges are preserved, and 90% means 10% 

weak edges are removed. Specifically, given a parameter (or parameter pair for SLR), we use 

89 of the current training samples to select features (based on t-test with p=0.005 for PC and 

p =0.01 for other methods) and train a classifier (i.e., linear SVM with C=1). Then, we 

employ the remaining 1 sample to validate the classification performance. The optimal 

parameter (pair) is the one corresponding to the best validation performance (i.e., the 

average accuracy from the 90 inner LOO runs).

Note that the optimal network parameters (e.g., regularized parameters for SLR, and 

thresholding parameter for PC) may vary with different training sets. Therefore, in Step 

(3)we re-select features (also based on t-test) and re-train classifier (also linear SVM with 

C=1) based on the current training set with optimal network parameters. Finally, we classify 

the test sample using the selected features and trained classifier.

Classification results

In Table 4, we list the classification performance corresponding to 4 different FBN 

construction methods.

As shown in Table 4, the proposed FBN construction scheme with modularity prior achieves 

the best classification performance, outperforming even the result reported in a recent study 

(Wee et al., 2014) which used complex feature selection and classification pipeline. Here, we 

use only the simplest t-test and linear SVM for feature selection and classification, 

respectively. Therefore, we argue that the modularity prior, realized by combing sparse and 

low-rank regularizers, plays an important role in modeling and constructing functional brain 

networks. Also, we note that 1) PC involves less number of features because of using 

smaller p value of 0.005; 2) with the same p value of 0.01 for other methods, the networks 

estimated by SLR tend to include more discriminative features (i.e., edges); 3) the number of 

features used in SLR is relatively stable, since it has the smallest standard deviation across 

all LOO runs.
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Sensitivity to network model parameters

For all methods, the ultimate classification accuracy is particularly sensitive to the network 

model parameters (i.e., thresholding values for PC, and regularized parameters for SR, LR 

and SLR). Therefore, in our above classification experiments, we conduct parameter 

selection in a large range by the inner LOO cross validation on an independent validation set 

separated from each training set. As an example, in Fig. 6 we show the classification 

accuracy corresponding to different parametric combination in the proposed method. Note 

that we simply compute the classification accuracy based on LOO test on all the subjects, 

since no parametric selection task is involved. It can be observed from Fig. 6 that 1) the 

ultimate results are extremely sensitive to the regularized parameters; 2) the modularity prior 

(i.e., combination of sparsity and low-rank priors) helps improve performance. In particular, 

we achieve the best accuracy (91.21%) with λ1=2−2 (for sparsity) and λ2=21 (for low rank).

Besides the regularized parameters, the number of nodes in a network can also be considered 

as a free parameter. Therefore, we further conduct experiments for estimating and 

classifying FBNs with more nodes (including 200 ROIs (Craddock et al., 2012)). The 

experimental results show that SLR achieves a 72.53% accuracy, which also outperforms PC 

(68.13%), SR (51.65%) and LR (71.43%). Thus, we argue that the use of modularity (as a 

biologically inspired prior, or at least an assumption) can help learn better brain networks in 

terms of classification accuracy. Compared with the results on networks with 90 nodes, 

however, the performance of the methods (except PC) drops significantly. In our view, there 

are two main factors leading to this result. First, SR, LR and SLR all need to estimate the 

network by inverting a covariance matrix, as discussed previously. As we know, estimating 

an inverse covariance matrix with size of 200 × 200 is more challenging than that with size 

of 90 × 90. In contrast, PC merely involves the estimation of a covariance matrix, and thus 

scales well. See the data-fitting terms in Table 3 for the difference between PC and other 

models. Second, with such a large-scale brain network, we need to select features from 200 

× (200 − 1) / 2 = 19,900 edge weights, which is also more challenging based on the limited 

number of training samples (subjects). Therefore, for modeling larger-scale brain networks, 

e.g., voxel-based complex network (Zuo et al., 2012), the combination of covariance 

estimation (involved in PC) and modularity prior may be a feasible solution, and our 

proposed network learning framework in Eq. (6) provide a platform for doing this, which is 

an interesting research topic in the future.

Top discriminative features (network connections)

With the empirically optimal network parameters (i.e., λ1=2−2, λ2=21) as shown in Fig. 6, 

we construct functional brain networks using the proposed method, and then employ t-test to 

sort features (i.e., network “connections”) according to their p-values. Consequently, we 

obtain 74 most discriminative connections with p-values < 0.01, as shown in Fig. 7. Note 

that 1) the thickness of each arc in Fig. 7 represents the discriminating power of the 

corresponding connection (instead of its actual connectivity strength), which is inversely 

proportional to the corresponding p-value; 2) the color of each arc in Fig. 7 is randomly 

assigned just for better visualization. From such a set of connections, we find that several of 

them are biologically associated with MCI identification. Specifically, regions in the default 

mode network, such as the middle temporal gyrus, hippocampus, parahippocampus, superior 
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medial frontal gyrus, medial orbitofrontal gyrus, inferior parietal lobules, supramarginal 

gyrus and the precuneus, have strong discriminative ability, which is consistent with the 

previous neuroimaging biomarker reports and the pathology studies on MCI (Greicius, 2008; 

Albert et al., 2011).

Conclusions

Although various modeling methods have been developed in the past decades, it is still, to 

our best knowledge, an open problem to construct a reasonable functional brain network 

(FBN) from fMRI data. Thus, it is a potentially valuable topic to explore FBN construction 

based on different motivations, priors, or assumptions. In this paper, we propose to estimate 

FBN based on a matrix-regularized graph learning framework, in which the data-fitting term 

aims to capture the fMRI data distribution, while the regularized term encodes physical or 

biological prior into the network. More specifically, inspired by the modular structures of 

brain networks, we present a novel FBN construction method by incorporating modularity 

prior (via a combination of the sparse and low-rank regularizers) into the matrix-regularized 

graph learning framework. Finally, we use the constructed FBN for MCI identification, and 

achieve an encouraging accuracy (89.01%) even with simple feature selection and 

classification pipeline. It has been investigated that the brain networks exhibit more 

structures or properties than just the sparsity and modularity as discussed in this paper, such 

as assortativity, centrality, efficiency, hierarchy, synchronizability, hubs, rich club, small-

worldness, and scale-free topology, etc. Additionally, we empirically found that the data-

fitting term may affect the results significantly. Therefore, the next direction is to evaluate 

more data fitting terms and more priors under the proposed graph learning framework 

towards better human brain connectome.
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Fig. 1. 
A toy example for illustrating the relationship between the modularity of a network and the 

rank of its corresponding edge weight matrix. Top panels: six networks with different 

sparsity and modularity; bottom panels: the edge weight matrices corresponding to the 

networks in the top panel. From the figure, it can be observed that the networks with 

modularity, such as (c) and (d), tend to be both sparse and low-rank.
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Fig. 2. 
Four edge weight matrices of the same subject estimated by four different methods, i.e., PC, 

SR, LR and SLR. Compared with the first three methods, SLR can capture clearer modular 

structures by combining the sparse and low-rank regularizers.
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Fig. 3. 
Left: The mean of positive edge weights across all subjects; right: The statistics of standard 

deviations of edge weights across different subjects.
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Fig. 4. 
Modularity scores of networks constructed by different methods. All the networks are 

sparsified using different thresholds shown on the horizontal axis. Each modularity score is 

the average on all subjects, with a bar denoting the respective deviation. It can be easily 

observed that both sparsity and low-rank contribute to the modularity score.
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Fig. 5. 
MCI identification pipeline used in our experiments.
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Fig. 6. 
Classification accuracy based on the networks estimated by the proposed method with 

different regularized parametric values in the interval [2−5,25]. The results are obtained by 

LOO test on all subjects.
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Fig. 7. 
The most discriminative features (network connections) selected using t-test (p < 0.01). The 

thickness of each arc denotes the discriminating power of the corresponding connection. 

This Figure is created by a Matlab function, circular Graph, shared by Paul Kassebaum. 

http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph.
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Table 1

Algorithm for solving Eq. (8).

Initialize W

Iterate:

1 W ←W−α(−2XTX+2XTXW)

2 W←proxλ1||·||1(W)=[sgn(Wij)· max{|Wij |−λ1,0}]n×n

3 W←proxλ2||·|| * (W)=Udiag(max{σ1−λ2, 0}, ⋯,max{σn−λ2,0})VT
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Table 2

Demographic information of the used subjects.

MCI NC

# of subjects (male/female) 25/20 14/32

Age (mean ± SD) 74.13 ± 6.68 73.5 ± 3.50

MMSE (mean ± SD) 27.71 ± 1.73 28.10 ± 1.35
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Table 3

Functional brain network construction methods, presented under the matrix-regularized network learning 

framework.

Method Data-fitting term Regularized term (prior)

Pearson’s correlation (PC) N/A

Sparse representation (SR) λ||W||1 (sparsity)

Low-rank representation (LR) λ||W||* (low-rank)

Sparse + low-rank rep. (SLR) λ1||W||1+λ2||W||* (modularity)

Neuroimage. Author manuscript; available in PMC 2017 March 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Qiao et al. Page 28

Table 4

Comparison on classification performance and the number of involved features for 4 different methods. The 

last column shows the mean±standard deviation of the feature numbers used in all 91 LOO runs. The bold 

numbers indicate the best results for the accuracy, sensitivity and specificity, respectively.

Method Accuracy (%) Sensitivity (%) Specificity (%) #Features

Pearson’s correlation (PC) 69.23 71.11 67.39 45.1 ± 8.0

Sparse representation (SR) 71.43 71.11 71.74 60.4 ± 7.9

Low-rank (LR) 79.12 80.00 78.26 62.5 ± 4.0

Sparse low-rank (SLR) 89.01 86.67 91.30 72.4 ± 3.3
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