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Abstract

It has been argued that naturalistic conditions in FMRI studies provide a useful paradigm for 

investigating perception and cognition through a synchronization measure, inter-subject 

correlation (ISC). However, one analytical stumbling block has been the fact that the ISC values 

associated with each single subject are not independent, and our previous paper (Chen et al., 2016) 

used simulations and analyses of real data to show that the methodologies adopted in the literature 

do not have the proper control for false positives. In the same paper, we proposed nonparametric 

subject-wise bootstrapping and permutation testing techniques for one and two groups, 

respectively, which account for the correlation structure, and these greatly outperformed the prior 

methods in controlling the false positive rate (FPR); that is, subject-wise bootstrapping (SWB) 

worked relatively well for both cases with one and two groups, and subject-wise permutation 

(SWP) testing was virtually ideal for group comparisons. Here we seek to explicate and adopt a 

parametric approach through linear mixed-effects (LME) modeling for studying the ISC values, 

building on the previous correlation framework, with the benefit that the LME platform offers 

wider adaptability, more powerful interpretations, and quality control checking capability than 

nonparametric methods. We describe both theoretical and practical issues involved in the modeling 

and the manner in which LME with crossed random effects (CRE) modeling is applied. A data-

doubling step further allows us to conveniently track the subject index, and achieve easy 

implementations. We pit the LME approach against the best nonparametric methods, and find that 

the LME framework achieves proper control for false positives. The new LME methodologies are 

shown to be both efficient and robust, and they will be added as an additional option and settings 

in an existing open source program, 3dLME, in AFNI (http://afni.nimh.nih.gov).
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Introduction

Among various task-related FMRI experiments, one type of design ensures that a task is 

performed in a naturalistic way, in contrast to typical experiment designs in which a highly 

artificial task or condition is repeated with many trials to obtain a reliable effect estimate 

with adequate statistical power. Such naturalistic settings include movie watching, music or 

speech listening, and usually span the whole scanning session from the beginning to the end. 

The emphasis on natural scenes is placed so that more realistic and powerful activations can 

be detected (Hasson et al., 2004, 2008).

Unlike the statistical analysis with the typical task-related experiment, in which the 

activation in the brain is identified through one or more regressors that are associated with 

the explicit task timing, the investigator usually focuses on the synchronization or similarity 

between any pair of subjects. That is, one calculates the Pearson correlation between the EPI 

time series at the same location or voxel of the two subjects who underwent the same 

naturalistic-task scanning, which is termed as inter-subject correlation (ISC).

Two prototypical examples of ISC group analysis

We summarize briefly the background, framework, and structure of the ISC group analysis 

that was introduced in our previous nonparametric work (Chen et al., 2016), referred to 

hereafter as Part I, since the same concepts apply to the parametric modeling introduced 

here.

For one group with n > 2 subjects S1, S2,…., Sn, the total  unique ISC values 

{rij, i > j} at each voxel form a symmetric (rij = rji) n × n positive semi-definite (PSD) matrix 

R(n) with diagonals rii = 1 (Fig. 1). The Fisher transformed version Z(n) (Fig. 1) is usually 

adopted during analysis so that parametric methods may be utilized under the Gaussianity 

assumption. The research of interest herein is focused on the ISC effect at the group level. 

Due to the symmetry of R(n) and Z(n), the group generalization can be made N elements in 

the lower (shaded gray in Fig. 1).

For two groups with n1 and n2 subjects (n1 + n2 = n), respectively, the matrices, R(n) and Z(n) 

would be similar to their counterparts with one group, with the additional consideration of a 

partitioned structure (Fig. 2). Again the focus of analysis is often on Z(n), and then the 

effects of interest could reasonably be selected in several manners: 1) the ISC effect estimate 

for each group or within-group component (WGC), Z11 or Z22; 2) the direct group 

difference of ISC between the two groups, Z11 vs. Z22; 3) the between-groups component 

(BGC), Z21 (or Z12); or 4) the indirect contrasts Z11 vs. Z21, and Z22 vs. Z21.

ISC variance-covariance structure

Throughout this article, regular italic letters in lower (e.g., α) stand for scalars and random 

variables; boldfaced italic letters in lower (a) and upper (X) cases for column vectors and 

matrices, respectively. Major acronyms used in the paper are tabulated in the Appendix A. 

The notation zij is used in this paper with two meanings with respect to two subjects labeled 

as i and j: as the Fisher-transformed counterpart for an ISC value, and as a random variable 
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that can be conceptually thought of as representing the possible Fisher-transformed values1. 

A Fisher-transformed z-value is considered a sample or an instantiation of the associated 

random variable, and the specific usage should be evident in the respective context, even 

though no distinction is made in the notation.

Suppose that zij and zkl are two z-values associated with the ISCs of rij and rkl (i.e., zij = 

arctanh(rij)) As in Part I, we denote the correlation between zij and zkl that pivots around one 

subject (e.g., if i = k or i = l) as ρ. That is, ρ is the “correlation of the correlation”. To 

consider the group-wide set of ISCs, we further define z = vec({zij, i > j}) to be the vector of 

length N whose elements are the column-stacking of the lower triangular part of the matrix 

Z(n) in Fig. 1 or its two-sample version. That is, z is the half-vectorization of Z(n) excluding 

the main (or principal) diagonal: z = vech(Z(n)) \ diag(Z(n)). The variance-covariance matrix 

of z can be expressed as the N × N matrix,

(1)

where σ2 is the variance of zij, i > j, and P(n) is the correlation matrix that is composed of 1 

(diagonals), ρ and 0 (Chen et al., 2016). As revealed in the variance-covariance structure (1) 

and discussed in Part I, the independence assumption typically required in the conventional 

parametric method, such as Student’s t-test, does not hold for the group-wide dataset {zij, i > 

j}, with the nondiagnonal matrix P(n) characterizing the degree to which the assumption of 

independence is violated (unless ρ = 0).

Previously, both parametric and nonparametric methods have been adopted in the literature 

and, for example, implemented in the Matlab package ISC Toolbox (Kauppi et al., 2014; 

https://www.nitrc.org/projects/isc-toolbox/). However, among the nonparametric approaches 

examined in Part I, the element-wise (EW) methods adopted in the literature mostly achieve 

poor or even unacceptable false positive rate (FPR) controllability, and should not be 

adopted in any ISC group analysis. In contrast, subject-wise bootstrapping (SWB) works 

relatively well for both cases with one and two groups (including the BGC R21) and group 

comparisons (including R11 / R22 versus R21), although its FPR controllability is sensitive to 

the correlation magnitude ρ (Part I). Lastly, subject-wise permutation (SWP) testing is 

virtually ideal for group comparisons, but performs poorly for the one-group scenario. 

However, even with the success of the nonparametric methods, they have the limitation of 

not allowing the analyst to include additional explanatory variables easily.

The ISC data structure is simply beyond the scope of the conventional parametric methods 

such as t-test, ANOVA and general linear model (GLM), which is evidenced by the 

adoptions of Student’s t-test in the early days, with concomitant failures in controlling for 

FPR (Chen et al., 2016). Here, we start with the two prototypical examples, and partition 

each ISC value into the linear combination of three sources: unknown but fixed effects, the 

deviation/fluctuation for each of the two involved subjects from the fixed effects, and the 

1Mathematically we may define the random variable zij here as a measurable function that maps two EPI time series to the real-valued 
space R1.
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residual or noise. This decomposition leads to relating the ISC data analysis to a special 

category of linear mixed- effects (LME) models, LME, with crossed random effects. We 

present both theoretical and practical features of utilizing these models, and then examine 

the FPR controllability and power for LME through simulations. A real experimental dataset 

is then used to assess its applications and performance. These performances are then 

compared to the best nonparametric approaches explored in Part I. We further explore the 

extendability of LME from the two prototypes, and discuss its interpretational power and 

other analytical benefits.

Methods

Effect partitioning of ISC data

In a typical FMRI analysis, the general interest at the group level is not about particular 

subjects nor their specific fluctuations, but rather focuses on hypotheses about the population 

effect or group difference. The situation and aim is the same with the ISC group analysis. 

The main challenge, after a recruitment of a large random sample, is to select an appropriate 

model to adequately characterize the variations embedded in the data while accounting for 

the intrinsic correlations of the basic quantitive unit, zij or rij. To construct a model with ISC 

data at the group level, we start with the simplest, one group case, by decomposing a given 

zij into multiple effects as follows:

(2)

where b0 is the fixed effect (an unknown constant), representing the group ISC effect; θi and 

θj are additive and independent random effects attributable to subjects i and j, respectively, 

that are deviations from (or adjustments to) b0; and εij is the residual or error term for each 

subject pair (i, j).

The inclusion of both fixed and random effects within the model lead to the general 

classification of (2) as being LME. We first describe the conceptual setup and analysis of 

this model in the standard LME context. While this approach is informative, we show that 

difficulties with both interpretation and practical implementation occur. We then proceed to 

examine the model within the specific category of LME modeling with crossed random 

effects (CRE), into which the relation of θi and θj allows it to be placed. We show how the 

CRE framework bypasses several issues which occur in the standard LME, and, in terms of 

its own practical considerations, how a balanced structure within the CRE model can be 

achieved. The latter framework is then tested on simulations and implemented on real FMRI, 

allowing comparisons to non-parametric methods from Paper I.

A brief description of ISC structure

The platform (2) offers an appealing feature that the correlation structure among {zij} can be 

captured through the two random effects, θi and θj, and the error term εij. With the basic 

assumption of Gaussian distributions for each individual term, θi,  and 

, we have a natural partitioning interpretation in the model (2): the resulting 
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variance of zij, σ2, is additively composed of variance components from the random effects 

and residuals, σ2 = 2ζ2 + η2; and the factor of 2 in front of the cross-subject variability 

reflects the fact that the variability of each ISC comes from two independent sources, the 

two subjects. Furthermore, the covariance between two ISC values is conditionally 

describable, based on the pairs of subjects:

Therefore, the correlation of a subject’s z-values with two other subjects (e.g., zij, zjl: 

cardinality of 3, i > j > l) can be expressed as the ratio of the cross-subjects variability 

relative to the total variance; specifically, with three subjects,

(3)

This leads to the same overall correlation structure characterized earlier in P(n) for {zij} 

However, a benefit of the present modeling strategy, starting from the simple model (2), is 

this further description of ρ in terms cross- and within-subject variances, ζ2 and η2.

By inspections of (3), the allowed interval for the correlation ρ is seen to be

(4)

This is the same interval previously adopted for simulations in Part I using separate 

mathematical arguments based on the necessary and sufficient conditions for the positive 

semi-definiteness of P(n); we note that the description in Part I also had contained an extra, 

vanishing interval  that was not considered of general interest, as the negative 

correlation between pairs of z-values from a given subject was not a realistic scenario. 

Furthermore the present derivation and description of ρ provides additional information on 

the boundary values in (4), ρ = 0 and 0.5, which correspond to the two extreme scenarios of 

having no cross-subjects variance (ζ2 = 0 and σ2 = η2) and no error term (η2 = 0 and σ2= 

2ζ2), respectively.

It is known that the Fisher-transformed Z-value for the correlation coefficient between two 

time series that are white noise approximately follows a Gaussian distribution 

 (Sheskin, 2004), where r is the Pearson correlation of two time series 

each having T time points. In brain regions where no BOLD signal is expected (e.g., white 

matter, particularly after regression of eroded WM signal and low order polynomials), we 
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would therefore expect the variance to be approximately σ2 = (T – 3)−1; additionally, the 

ISC (and associated Z-) values are expected to be approximately 0, with group effect b0 = 0 

in the LME model (2) and cross-subjects variance ζ2 = 0, leading to an approximate within-

subject variance

(5)

If a voxel’s time series contains BOLD signal, then serial (temporal) correlation is expected 

to be present, and the within-subject variance η2 would likely be higher than the value in (5), 

which effectively serves as an approximate lower bound for η2 in the brain.

A preliminary ISC model at the group level

Through column-stacking of the lower triangular subset of the Z matrix in Fig. 1 into a 

vector zN×1 = vec(zij, i > j), we can directly express the relationship (2) among the individual 

ISC data in a matrix format relevant for group analysis,

(6)

where XN×N = IN, βN×1 = b0lN, πn×1 = λn×1 = (θ1,θ2,…θn)T, εN×1 = vec(εij,i > j), and vec is 

the vectorization function. The model matrices K and L are structured to code which two 

indexed subjects i and j in π and λ, respectively, added to the fixed effects for the outcome 

zij. While π and λ are identical in this case, we express these contribution separately for 

modeling and implementation purposes, as discussed for them in the next paragraph and 

subsection.

In preceding discussions, the condition of having subject indices i > j was simply imposed to 

focus on the lower triangular half of the symmetric matrix Z. However, in the effect partition 

(2), this restriction has the practical consequence of leading to an unbalanced allotment of 

indices between the two random effect components. One way to address this imbalance 

would be to rearrange the index pairings through the specification of the model matrices for 

the two random effects; however, among the N elements in {zij, i > j}, each index pair (i, j) 
cannot always be evenly allotted between π and λ: since there are n – 1 occurrences of each 

index number, each subject index i cannot be evenly distributed between the two random 

effect components when the number of subjects, n, is even. Since it is not possible to 

generally balance the two model matrices for the random effects in this case, we simply 

structure the model matrices so that the first and second indices in each pair (i, j) are 

assigned to the first and second random-effects components π and λ, respectively. This 

approach results in the following random-effect model matrices,

(7)
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where ki = (0(n–i)×i, In–i)T, and ⊕ is the direct sum operator for matrices.

Relationship of the preliminary ISC model with the conventional linear mixed-effects (LME) 
modeling

Linear mixed-effects (LME) modeling has been adopted in many disciplines, including 

neuroimaging (Chen et al., 2013; Bernal-Rusiel et al., 2013), because of its flexibility to deal 

with settings such as 1) when data are acquired from related (or “clustered”) measuring units 

(e.g, the levels of a within-subject or repeated-measure factor), or 2) when missing data 

occur at random. For example, the conventional one-way, within-subject (or repeated-

measures) ANOVA can be modeled under the LME platform as a special case having a 

random intercept. Directly relevant to the ISC context is the LME capability of specifying a 

correlation structure P(n) for the ISC values that are associated with the same subjects, as 

each zij is generated by two subjects. Specifically, one can conceptualize that the ISC 

observations at the first level (i.e., the ISC pair) are clustered or even crisscrossed at the 

second level (i.e., subject) under the multilevel or hierarchical LME framework2. The 

second-level clusters (e.g., subjects) are often not of direct interest, but their random effects 

and correlation structures should be properly accounted for.

We could adopt the conventional, standard LME platform for the ISC data by merging the 

two random-effect components in the expression in (2) and (6). The vectorized expressions 

for the group would then be written as

(8)

where the vector of random effects is θn×1 = π = λ, and the model matrix that relates two 

subjects per outcome element in z is YN×n = K + L = (y1,y2, … , yn−1)T, where yi = 

(0(n−1)×(i−1), 1n−i, I n−i)T. In general, the components of Y are a column-wise subset of the 

fixed-effects model matrix X, and the distributional assumptions are then that θ ~ G(0, V), ɛ 
~ G(0, η2I), θ and ε are independent of each other (i.e., θ⊥ε), and V is the variance-

covariance matrix for the random effects Yθ.

However, while this standard LME, formulation is algebraically concise, the generalization 

is usually excessive, and the merger of the separate model matrices from (6) tends to be 

statistically “Procrustean,” essentially masking the inherently independent relationship 

between the two random effect components. More importantly, the framework in (8) 

presents significant challenges and complications in calculating the multiple random effects 

Y θ. In contrast, it is the formulation at the subject level such as (2) that reveals the subject-

specific details. Therefore, while broadly appealing at the outset, the consequences of the 

standard LME formulation lead to difficulty in both interpretation and implementation. In 

the next subsection we show how extensions of LME can address these difficulties.

2Note that we follow the statistics convention when adopting phrases such as “first level” and “second level” in the context of 
multilevel or hierarchical LME. Such phases are unrelated to the connotation of individual (or first level) and group (or second level) 
analysis commonly used in the neuroimaging community.
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Theoretical generalization of the preliminary ISC model to the LME with CRE

One special characteristic of the LME model for ISC is being able to account for the 

combination of two random effect components: θi and θj in (2), or π and λ in (6). That is, 

each observation zij is associated with the combination of two independent random effects, 

which are usually termed as crossed3 random effects, in contrast to the conventional 

multilevel or hierarchical LME models in which the random effects are nested and 

correlated. LME models with crossed random effects have been explored and applied to 

psycholinguistic studies in recent years (e.g., Baaven et al., 2008), and for simplicity of 

notation here, we refer what is generally termed “linear mixed-effects models with crossed 

random effects” as “CREs,” to clearly distinguish from standard LMEs. The generic 

formulation for two crossed random effects can be expressed at the individual element level 

(analogous to (2)) as

(9)

where we note explicitly that, as in (2) the indicies i and j in (9) do not refer to vector/matrix 

elements, but instead to two measuring units (e.g., subjects, in the ISC case); the boldface 

quantities that they are labeling are vectors and matrices because, unlike in (2), this more 

general formulation may include multiple observations for given indices i and j, which track 

the levels of two crossed factors, such as subjects (or sites) and items (or time points).

Just as in the general LME formulation, the components of the model matrices Ki and Ljfor 

the two crossed random effects are either the same as or a column-wise subset of the model 

matrix Xij for the fixed effects. Similarly, the distributional assumptions for (9) are that 

, and ε ~ G(0, η2 I), and also that πi λj and εij are 

independent of each other. The subscripts i, j, and ij in the model matrices Ki, Lj, and Xij are 

presented in (9) for generic situations in which there may be different repetitions, covariate 

values, or missing data.

Our ISC formulation (2) can be subsumed and applied under the CRE platform (9) with only 

one observation per combination: zij = zij, Xij = Ki = Lj = 1, πi = θi, λi = θi, and . 

In other words the specific basic formulation (2) would still be stacked into a group 

formulation and expressed with the same model (6), but with the aim to analyze it as a CRE. 

The practical implementation of the model (9) as a CRE is described in the following 

subsection.

Considerations in numerically solving the LME models with CRE

Even though an LME system appears to be linear, in practice nonlinear solvers are required 

because the variances for the random effects are unknown a priori. For this reason, the LME 

3The concept of crossed random effects is similar to that of factorial design in an ANOVA structure. As opposed to nested effects, for 
which each measuring unit (e.g., subject) of a factor (e.g., sex) occurs only under one level (e.g., female) of the factor, crossed effects 
are modeled when all the possible level combinations of the involved factors are present. For example, this is the case when there are 
deviations or calibrations θi and θj of subjects i and j from the fixed effects (except for the trivial case of i = j or self correlation) in the 
LME framework (2)
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model is typically solved through iteratively optimizing the corresponding restricted 

maximum likelihood (REML) function (e.g., Bates et al., 2015) with regard to both fixed- 

and random-effects parameters. This produces a best linear unbiased estimate (BLUE) for 

the fixed effects β in (8) and a best linear unbiased predictions (BLUP) for the random 

effects θ in (8). Specifically for the CRE model (9), once the estimates for β, , , and η2 

are obtained, omnibus F- and t-tests for fixed effects and their linear combinations can be 

constructed in the statistical conventional venue (Pinheiro and Bates, 2004). In practice, 

using any numerical solver introduces constraints on the user, such as input format, data 

structure, etc. Here, we implement the publicly available R package lme4 (Bates et al., 

2015), and we discuss various practical issues and solutions within this framework; 

importantly, final validation of these methods are provided by the numerical simulations.

One practical subtlety is that the numerical solver for CREs is typically implemented (for 

example, in the R package lme4) with the general formulation (9), in which πi and λj are not 

assumed to necessarily be the same and thus are solved for as two separate random effect 

components. We note that the use of the lme4 package will not allow combining the two 

random effects directly, as in (8). As a consequence, without the explicit imposition of 

, we will in general have two unequal variance estimates for ζ2; specifically, the 

empirical estimate for the θi in π would likely be different for the same θi in λ. 

Nevertheless, the fact with two unequal estimates of ζ2 is not of a concern per se because the 

property of variance partitions means that we can practically utilize the average of the two 

estimates as the estimate for ζ2.

Another aspect that needs consideration is the proper assignment for the degrees of freedom 

(DF) in an LME system. Statistical inferences through the conventional modeling 

approaches (Student’s t-test, ANOVA, GLM) are typically made through some standard and 

exact distributions. The temptation of extending those well-behaved distributions to LME, 

although natural in real practice, cannot always be justified. Despite its great modeling 

flexibility and capability, one hindering (and hotly debated) aspect of LME is the daunting 

job of assigning DF or a p-value to each significance test. Unlike the conventional ANOVA 

or GLM, in which the effect partitioning is relatively straightforward and orthogonal most of 

the time, LME heavily relies on asymptotic properties, leading to a situation with no clearcut 

definition of DF, especially when a small or moderate sample size is combined with having 

1) partially crossed random effects (here due to the index constraint i > j, or to the absence 

of combinations with i < j from the upper triangular subset of Z); 2) unbalanced structure; or 

3) missing data. In addition, the shrinkage estimation through REML means that each 

individual random effect θi cannot be treated as an independent parameter. This DF 

difficulty is evidenced by the absence of degrees of freedom from the output in the function 

of lmer() in the R (R core team, 2016) package lme4 (Bates et al., 2015)4. One solution is to 

estimate the significance level based on the empirically sampled distribution (e.g., Markov 

chain Monte Carlo simulations) or nonparametric methods such as bootstrapping (Baaven et 

al., 2008). However, such methods are currently limited in applicability and computationally 

4Also see http://glmm.wikidot.com/faq
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too costly for the tens of thousands of voxels in neuroimaging data. Therefore here, we strive 

for an approach with reasonable computational time.

Practical LME formulation with fully crossed random effects and a balanced structure

To circumvent the impact of partially crossed random effect, here we loosen the index 

constraint of i > j in (2) to i ≠ j, thereby incorporating both the upper and lower triangular 

portions of the Z matrix in Fig. 1 into the formulation (8), which doubles the amount of ISC 

data (with redundancy) as input:

(10)

where

and ⊗ is the Kronecker product operator to matrices. A concrete example is that, with n = 3 

subjects, we have

.

The data-doubling step essentially means that the whole data correlation matrix (except for 

the diagonals) is taken to the group analysis. One consequence of this is that the LME model 

(6)+(10) is symmetric, balanced5 and fully crossed in the senses that: 1) for each index pair 

(i, j) or random effect pair (θi, θj) associated with zij there is a counterpart (j, i) or (θj, θi) 

because of the symmetric nature of the ISC matrix; 2) each subject is equally associated with 

the two random components, π and λ, n − 1 times; and 3) even though K and L appear to be 

different in terms of matrix structure, there are exactly two 1s in each column for both K and 

L, with each of the two matrices being a row-permuted version of the other. With this 

organization, the platform (6) can be easily implemented and the bookkeeping of indices is 

5An LME system is balanced if the model matrices for the random effects are the same across subjects.
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straightforward for the two crossed random effects. Furthermore, the balanced design with 

fully crossed random effect components between K and L should lead to exactly the same 

estimate for ζ2, the shared variance of the two random effect components.

The CRE implementation for two groups of subjects closely follows that of the one group 

case. The basic platform (9) with one observation per combination can be formulated with 

fixed-effects model matrix Xij of a row vector with two numbers, 1 (for the intercept) and 

another number coding the group membership, and again Ki = Lj = 1 (subset of Xij), πi = λi 

= θi, and . Lastly, the modeling approach with (6) is directly applicable to any tests 

involving the BGC subset Z12 or Z21. Such tests include Z21, Z1 − Z21, Z2 − Z21, and Z21 − 

(Z1 + Z2)/2. The data duplication in these cases translates to the utilization of both lower and 

upper counterparts (e.g., Z12 and Z21) as input.

Finally, with a system of inherently and fully crossed random effects having specifically 

balanced structures, we must address the issue of assigning the general concern about the 

degrees of freedom in a consistent manner. Firstly, to compensate for the potential inflation 

due to the data redundancy of including both lower and upper triangular subsets of Z, which 

double the number of elements from N to 2N, we make an adjustment from 2N − k to N − k 
in the DF of the standard error, where k is the column rank of the fixed-effect model matrix. 

Secondly, as there are only n independent measuring units (subjects), we discount the 

nominal number of DF directly from the model from 2N – k for each t-test. The validity of 

our DF assignment scheme will be explored quantitatively through simulations in the section 

Simulations and Real Experiment Results.

Results: Simulations and Real Experiment

Simulations of group analysis with different testing methods

We performed simulations in a 2 × 4 × 6 × 3 factorial design with our focus on:

a. 2 types of ISC group analysis: one- and two-sample (one and two groups, 

respectively);

b. 4 sample sizes: 10, 20, 40 and 80 subjects in each group;

c. 6 parameter values: Six ρ values were selected from the interval of [0, 0.5] with a 

step size of 0.1; and

d. 3 testing methods: (1) subject-wise permutations (SWP) from Part I, (2) subject-

wise bootstrapping (SWB) from Part I, and (3) CRE. For the two-sample 

scenario, four tests were performed: direct contrast between the two WGCs (Z11 

vs Z22), the BGC effect of Z21, and indirect contrast of each WGC versus the 

BGC (Z11 vs Z21 and Z22 vs Z21).

To examine the FPR controllability and power attainment for each of the 2 × 4 × 6 × 3 

scenarios, 5000 simulated single voxel datasets were generated, each containing 

 values drawn from an N-variate Gaussian distribution G(μ, Σ), with the 

variance-covariance matrix Σ defined per the structure (1), where σ2 = 1. For FPR 
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evaluation, μN = 0N for all cases. The same datasets were adopted for power assessment 

except that the mean was shifted to  (one group) or 

(two groups, where  is the number of elements in Z(n) for the second 

group). FPR and power for each scenario were estimated by counting the number of 

realizations out of the simulated 5000 datasets that reached the nominal significance level of 

0.05.

Initial simulations with standard LME indicated that, without duplication of zij(i > j), some 

of the tests (e.g., one group, Z11 − Z22 for two groups, not shown here) were largely inflated 

in FPR when ρ ≥ 0.1 (FPR ∊ [0.1, 0.16] with a nominal significance level of 0.05) and over-

conservative when ρ ≈ 0. Therefore, standard LME results are not considered further, and 

hereafter, we discuss only the simulation results with the duplication approach for LME/

CRE.

The FPR and power estimates for the three methods are shown in Fig. 3, and they tend to 

follow a similar pattern: a conservative FPR control is usually associated with a lower 

performance in power. For the one-group case (upper row in Fig. 3), LME (green) in general 

shows better FRP controllability than SWB (blue). Specifically, the FPR for SWB (blue) 

monotonically increases as the correlation parameter ρ goes from 0 to 0.5 across all the 

sample sizes, while LME’s FPR starts conservatively and then matches reasonably well with 

the nominal significance level once ρ reaches 0.1. When ρ = 0, SWB is too conservative: as 

noted in Part I, in this special case, the “bundling” of ISC values per subject, when they are 

actually independent of each other, leads to overly conservative identifications. When ρ is 

around 0.15, SWB is well-behaved in FPR; but when ρ >0.2, SWB becomes moderately 

liberal. LME is conservative as well ρ is close to 0, but in contrast the severity quickly tapers 

off when the number of subjects increases, and the FPR performance is basically satisfactory 

when ρ > 0.05. In contrast, the power attained by LME and SWB is consistent with their 

respective FPR controllability. Specifically, SWP slightly outperforms LME in general 

(except when ρ < 0.1 with 10 subjects), but the differences vanish when the number of 

subjects gets close to 80. On the other hand, with two groups LME is slightly more powerful 

for all ρ values and all sample sizes than SWP.

For the case with two groups (second row in Fig. 3), SWP (black) is uniformly well-behaved 

in terms of FPR controllability across all sample sizes and across the whole range of ρ 
values. While LME is again slightly conservative when ρ is very close to 0, its FPR is within 

the 95% confidence band when ρ ≥ 0.1 and there are 20 or more subjects in each group.

An important feature which is not available from the nonparametric SWB/SWP modeling is 

that, with LME, both the cross- and within-subject variances, ζ2 and η2, can also be 

estimated (Fig. 4) from the simulations. The effect partitioning guarantees that the sum of 

the variances equals the assumed total variance σ2 (=1, in these cases). In addition, the 

retrieved ρ values based on (4) with the estimates of ζ2 and η2 show consistency with their 

counterparts of the simulation parameter.
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In summary, with one group of subjects, LME provides a better choice for FPR control than 

SWP across the whole range of ρ values. On the other hand, even though SWP is virtually 

ideal in comparing two groups, LME offers a reasonably well-behaved alternative especially 

when there are 20 or more subjects in each group or when ρ is not too close to 0 (both of 

which are standard cases in MRI studies focusing on GM). Finally, the DF adjustments in 

the LME implementation appear appropriate.

Performance comparisons with experimental data

To demonstrate the performance of LME and to compare it with the best nonparametric 

methods from Part I for ISC analysis at the group level in real FMRI data, we utilize here the 

same experimental data from a naturalistic task FMRI session (Chen et al., 2016). Briefly, n 
= 48 healthy volunteers (n1 = 24 males, n2 = 24 females, age mean ± SD = 33.6 ± 5.7 and 

34.7 ± 6.0 years old for males and females, respectively) watched six movie clips, each with 

an average length of two and half minutes, in a 3.0-T Siemens Trio scanner. Half of the six 

clips depicted mostly positive emotional episodes while the other half were of negative 

emotional valence. The series of clips were separated by a black screen for 10-30 s and 

preceded by a fixation cross for 30 s, leading to a total scanning time of 1,050 seconds. Scan 

parameters for the acquired whole brain BOLD EPI data were: voxel size of 3.8 × 3.8 × 4.0 

mm3, 36 axial slices, TR = 2,000 ms, TE = 30 ms, in plane FOV = 240 × 240 mm2, flip 

angle = 90°.

The EPI time series went through the following preprocessing steps in AFNI (the precise 

afni_proc.py command which was used for processing is provided in Appendix B): de-

spiking, slice timing and head motion corrections, affine alignment with anatomy, nonlinear 

alignment to a Talairach template (TT_N27) using 3dQwarp (all transformations were 

combined, per time point, to avoid repeated interpolation) at a voxel size of 3.5 × 3.5 × 3.5 

mm3, and smoothing with an isotropic FWHM of 6 mm. FreeSurfers recon-all command 

was used to estimate tissue maps for each subject, and the lateral ventricle and white matter 

(WM) maps were then eroded. Regressors were created from the first three principal 

components of the ventricles, and fast ANATICOR (Jo et al., 2010) was implemented to 

provide local WM regressors. Additionally, the subject’s 6 motion time series, their 

derivatives and linear polynomial baselines for each of the 6 movie runs were included as 

regressors, for a total of 28. Censoring of time points was performed whenever the per-time 

motion (Eucliean norm of the motion derivatives) was > 0.3 mm or when ≥ 10% of the brain 

voxels were outliers.

ISC was computed over 406 time points (having excluded the periods of fixation and blank 

screen) at the voxel level between all pairs of the n = 48 subjects using 3dTcorrelate in 

AFNI, leading to N = 48 × 47/2 = 1,128 ISC values per voxel. The computation time for the 

SWB/SWP was approximately 0.5 hours for the case of one group (n = 24 subjects, with 24 

CPUs) and 1.3 hours for two groups (n = 48 subjects, with 24 CPUs) on a Linux system 

(Fedora 14) with Intel textsuperscript® Xeon® X5650 at 2.67GHz. The runtime for 3dLME 

execution was about 15 mins for each of the one and two group cases (using 12 CPUs).

Of interest here were statistical inferences of the ISC for each group (i.e., one-sample tests 

for each of R11 and R22), the difference between the two sexes (direct comparison of WGC, 
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R11 vs R22), the BGC, and each WGC in contrast to the BGC (indirect comparisons of R11 

vs R21 and R22 vs R21); that is, totally there six tests: two WGCs, one between-group 

comparison, one BGC, and two within- versus between-group, were performed using AFNI 

programs 3dLME. The results of the within-group (male) and between-group comparison 

are illustrated in Fig. 5 while the performance for BGC and the other two comparisons (R11 

vs R21 and R22 vs R21) are shown in Fig. 8 of Appendix C.

For the male group, LME detected slightly more voxels than SWB under the voxel-wise 

significance level of 0.001 (the first two images in the upper panel, Fig. 5). Interestingly, 

those extra voxels from LME (yellow in the second image one the first row, Fig. 5) had 

small (below 0.1) group ISC values, and they corresponded to low (below 0.1) correlation 

parameter ρ values (green in the third image on the first row Fig. 5.). Nevertheless, most of 

those extra voxels detected by LME, despite their low ISC values, were robust and effective, 

considering the voxel-wise significance level of 0.001 and the large cluster sizes. We note 

that the whole brain is largely synchronized across the subjects. And we also emphasize that 

the higher detection power of LME than SWB is consistent with the simulation results (first 

and third rows in Fig. 3): even though both methods tend to be over-conservative when ρ < 

0.1, LME is less so than SWB.

On the other hand, for the comparison between males and females, LME and SWT achieved 

roughly the same level of detection (voxel-wise significance of 0.05, the first two images in 

the lower panel, Fig. 5). The tests involving the BGC are shown in Appendix C. More 

revealingly, the estimates of the cross- and within-subject variances, ζ2 and η2) can be 

directly estimated through LME (the last two columns in Fig. 5). The cross-subjects variance 

ζ2 tended to roughly follow the same pattern of the ISC map (the first image in the upper 

panel, Fig. 5)), indicating that the regions that were highly synchronized across subjects had 

more heterogeneities than those that were slightly synchronized or unsynchronized. On the 

other hand, the within-subject (or residual) variance η2 also had a similar spatial pattern as 

that of the group ISC map (i.e., large values in similar locations), but to a lesser extent than 

ζ 2. As expected, most voxels in WM and CSF had estimated η2 values which were in the 

neighborhood of the approximate lower bound, , derived in (5). In addition, voxels with 

statistically significant ISC values typically had estimated η2 values that were much greater 

than the lower bound, except for a small proportion that had .

In part I, we had to guess the rough range of ρ values in the brain by comparing the 

detection power across various nonparametric methods relative to the simulation results. In 

contrast, the LME approach can directly estimate the correlation parameter ρ value at each 

voxel (the third column in Fig. 5), and, with the real experimental dataset, the estimated ρ 
values in the brain show an interestingly similar pattern to the ISC map (the first image in 

the upper panel, Fig. 5. Specifically, ρ is in the interval of [0.3, 0.5] in the highly 

synchronized regions, around 0.25 in the moderately synchronized regions, and below 0.1 in 

the rest of the brain. We note that the relative magnitude of group ISC values followed a 

similar pattern to ρ, with largest ISC in locations of highest ρ, etc.
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Discussion

LME as an extension to GLM

In the conventional regression or GLM, the data are typically assumed to come from a 

similar, homogeneous sample (or samples), in the sense that the residuals are presumed to be 

identically and independently distributed. However, under some scenarios (e.g., the ISC 

paradigm) the acquired data are stratified with various subjects across which heterogeneities 

may occur, and a more adequate model would include and account for subject-specific 

adjustments (or “random intercept” in the LME terminology). It is due to the presence of 

this across-subjects heterogeneity that we prefer to use the subject-specific presentation of 

the LME-CRE formulation (2) or (9) for parametric modeling, as opposed to using t-tests or 

GLMs. Simply ignoring the stratification or clustering would lead to distorted statistical 

inferences, as shown in simulations and analytical results from experimental datasets in Part 

I, as well as in the methods adopted in the literature. Unlike the single source of variance 

(residuals) in regression or GLM, two or more sources of variances are considered in LME. 

In this perspective, the ρ = 0 case reduces the LME to the conventional GLM by removing 

the two random effects, and only in this special circumstance can the Student’s t-test or EW 

nonparametric approaches that have been adopted in the literature can be justified.

As an extension of GLM, LME has the great flexibility to account for various variance-

covariance structures among clustered data, and its modeling techniques still undergo 

constant development in modeling and numerical implementation. The adjective mixed in 

LME reflects the fact that both fixed and random effects are considered and simultaneously 

estimated within the same model. The framework can be viewed as a combination of or 

compromise between Bayesian and frequentist approaches: an LME model is constructed 

through a hierarchical (or conditional) structure where the parameters are considered as 

random variables (Bayesian perspective); however, those parameters are not arbitrarily 

specified a priori as hyperparameters, as in the Bayesian domain, but they are estimated 

from the data itself (frequentist domain) (for more discussion see, for example, Demidenko, 

2013).

Adoption of the LME/CRE approach to ISC data analysis at the group level

By adopting the LME framework here, we decompose the individual ISC values into 

multiple constituent components and develop an analytical scheme that is adaptive to various 

scenarios. Relative to group (fixed) effects, each ISC value is conceptualized as having two 

independent adjustments (or random intercepts, in the LME terminology), associated with 

the respective subjects. The fixed effects obtained through REML reflect the best estimation 

of the model formulation, and they can be extendable to those potential subjects that were 

not recruited for the study on hand. As each individual subject may have a higher or lower 

deviation from the group effects, the random effects serve the purpose of tuning the best 

calibration under the model. Even though CRE can be subsumed into the standard LME 

formalism (8), the explicit platform (9) is more revealing and convenient in terms of the 

presentation and implementation, thanks to its distinctive independence property among the 

random components.
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Specifically, as each ISC observation zij is associated with the combination of subjects i and 

j, we adopt the CRE framework (6), with double random intercepts and with both lower and 

upper triangular subsets in the ISC matrix Z as input data for the response variable. For the 

case with one group, the data doubling step means that the whole ISC matrix (except the 

diagonals) are incorporated in the LME model. With two groups, whenever Z21 or the lower 

triangular subset of Z11/Z22 is involved, their counterpart Z21 or the upper triangular subset 

of Z11/Z22 is also utilized through data doubling.

The tricky aspect for the ISC data in the LME framework (9) is the presence of double 

random intercepts: even though the two random effects are essentially just the same (one 

being recycled due to the symmetric nature of correlation coefficient), the index restraint of i 
> j in the LME model (9) creates a scenario where the two random effects are not fully 

crossed. By loosening the constraint, we create an LME system having fully crossed random 

effects as well as balanced structures for both of the random-effects model matrices, leading 

to an identical variance estimate for each. To discount for the double usage of the data, we 

adjust the standard error out of the REML estimates as well as the DFs for the statistics, 

approaches which the consistency of the simulation results verified as being acceptable. By 

comparing to previous results in Part I, our LME modeling strategy has been validated 

through both simulations in FPR and power assessment as well as results from an 

experimental dataset.

The LME/CRE formulation not only allows us to properly partition the effects, but also 

offers an important feature: the variance-covariance structure that is naturally embedded in 

the model through two crossed random effects, θi and θj, can be explicitly estimated from 

the data. Unlike in conventional parametric models, where differentiations are explicitly 

made among paired, one- or two-sample t-tests, and ANOVA (or similarly for nonparametric 

methods such as permutations or bootstrapping), a single, comprehensive framework for 

LME is adaptable to various scenarios with between- and within-subject explanatory 

variables (Baaven et al., 2008). In practice, through a data duplication procedure, we achieve 

a balanced data structure with fully crossed random effect components, leading to easy 

implementation with the standard REML algorithm for LME as well as to a consistent 

estimation of the variances of crossed random effects (e.g.,  in (9)). To counter the 

effect of data redundancy, we propose that the resulting inflation in statistical inferences be 

compensated by adjustments in the number of degrees of freedom. The LME methodology 

with crossed random effects (9) will be soon added into the publicly available AFNI (Cox, 

1996) program 3dLME (Chen et al., 2013), which was originally developed for the general 

LME platform (8).

Adaptability and advantages of LME/ CRE

In the same manner that the standard LME system (8) has a high adaptability, so the 

formulation (6) for ISC data can be easily extended to two or more groups and to include 

other between-subject variables, such as quantitative covariates, through augmenting the 

fixed-effects model matrix X. For example, any quantitative covariates (e.g., age or IQ) and 

subjects from m groups can be modeled through adding m − 1 dummy-coded columns to X. 

Furthermore, the LME approach to ISC data can be naturally adapted to include within-
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subject factors (e.g., different types of viewed scenes), which cannot be easily handled under 

the standard parametric framework nor readily within the nonparametric frameworks 

discussed in Part I. The ability to suit a wide array of variable types and model organization 

is a powerful feature of the LME/CRE framework.

The analytical depth of LME offers multiple advantages over the conventional ANOVA or 

GLM due to its broader flexibility to deal with data that are acquired from related (or 

clustered) measuring units. 1) One generic and uniform LME platform can be constructed to 

incorporate and adapt to both categorical and quantitative variables. 2) LME is capable of 

handling missing data as long as they occur at random. 3) LME provides various systematic 

and principled approaches to characterizing heteroscedasticity and non-spherical (or 

aspherical) variance-covariance structure of the random effect components (Bates et al., 

2015). For example, the cross-subject variance ζ2 was assumed to be the same between the 

two groups in our analysis with the experimental data (fourth column on the second row, 

Fig. 5), the comparison with the case of one group (fourth column on the first row, Fig. 5) 

justifies the homoscedasticity assumption. However, it is convenient to specify different 

cross-subject variances across groups, if desired, within the LME framework.

4) LME provides a platform by which all desired explanatory variables can be incorporated 

simultaneously into one model. Due to practical considerations, such as computational 

power and heterogeneous stimulus timing across subjects, the current practice with FMRI 

data analysis pipeline inherits the historical approach of splitting the whole analysis into two 

major steps, individual and group levels, with the assumption that the effect estimates from 

the individual level are equally reliable. A better approach would be to adopt LME by 

combining all the subjects’ data into a hierarchical model, while an alternative is to take both 

the effect estimates and their reliability information together to the group analysis (Worsley 

et al., 2002; Woolrich et al., 2004; Chen et al., 2012).

5) Ideally, model building should be a crucial process in statistical inferences, and LME 

provides an irreplaceable tool in that regard. For example, a simple model, while easy to 

analyze, may tend to strongly distort what the real data reveal. On the other hand, an overly 

complicated model through over-parameterization could lead to high cost in the number of 

degrees of freedom, statistical power, numerical instability, and even an underdetermined 

system. In addition to the enhanced statistical power, LME allows the investigator to apply 

parsimonious principles or Occam’s razor, and to achieve a balanced compromise between 

model complexity and faithfulness to the data (Baaven et al., 2008). Typically characterized 

by criterion indices such as AIC and BIC, the balance is directly reflected in the two 

components of the profiled deviance function6 upon which the optimization is achieved 

through combining the fidelity of the fitted data to the observed data and model complexity. 

The over-parameterization also explains why LME is conservative when the correlation 

parameter ρ is close to 0 (green curve on the first row, Fig. 3): power loss follows when one 

overfits the data with random effects (or correlation structure) that are nonexistent or 

negligible. Here, the same phenomenon occurs in those regions in the brain where ρ is close 

to 0 (Fig. 5), since that implies full independence and would not require modeling with two 

6The profiled deviation is negative twice the log-likelihood function of the LME model.
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random effects (in effect, such modeling then technically represents an ‘over-

parameterization’). However, in practice when using FMRI, this tends to occur in regions 

which are not of interest (such as WM and CSF), and the impact itself is quite small, 

particularly with standard group sizes (e.g., 20 or more). Therefore, adjustments for these 

few cases are not needed within the massively univariate FMRI approach.

Some of these advantages also apply to the comparison between LME and the 

nonparametric approaches explored in Part I, in particular in providing more powerful 

detections (e.g., statistically more sensitive than SWB when ρ < 0.1) and interpretations as 

well as more detailed characterization of the data. For example, by using the standard 

Gaussianity assumption, the insight about the effects for each individual subject is directly 

characterized by the deviation θi and the cross-subject variance component ζ2 in (2). 

Furthermore, the correlation estimate ρ and residual or within-subject variance η2 are also 

part of the output. As shown in Fig. 5, the heterogeneity of the estimated ρ values across the 

brain may reveal invalid assumptions, outlying subjects,or processing issues (e.g., 

suboptimal alignment, superfluous spatial smoothing). Another advantage of LME is its 

higher detection power with one group of subjects than SWB especially when the correlation 

parameter ρ is low. Lastly, in addition to the various flexibilities discussed above, such as the 

capability of handling missing data and various variance-covariance structures, LME is 

computationally more economical and advantageous even compared to the implementations 

that the nonparametric approaches can handle. For instance, each scenario of analyzing one 

or two groups would have to be implemented with a different nonparametric method and 

interface. In contrast, the design matrix X in the formulation (9) plays a role of placeholder 

for fixed effects and allows the flexibility to model unlimited number of explanatory 

variables such as between- or within-subject factors as well as quantitative (between- or 

within-subject) covariates or confounding effects.

Robustness and limitations of LME/CRE

It is of note that the interpretation power and model/data quality check come at some cost as 

well. LME requires stronger assumptions (linearity and Gaussianity) than independence and 

exchangeability in nonparametric methods. If the assumptions are strongly violated (e.g., 

skewed data, outliers), higher false positive or false negative rates may occur. In addition, the 

correlation structure between the two crossed random effects, embodied by the parameter ρ, 

is assumed even though in some brain regions (e.g., white matter) this may be an excessive 

parameterization (see discussion in the previous section). The impact of over-

parameterization is shown though our simulations with a small over-conservative 

performance in controlling for FPR when ρ = 0 (first two rows in Fig. 3). In contrast, the 

nonparametric SWB approach is even worse in controlling FPR when ρ = 0 with one group, 

while SWP performs virtually ideal with two groups.

More specifically, the LME estimation for the fixed effects would still be unbiased even if 

the random effects are inaccurately specified or when the Gaussianity or homoscedascity 

assumption is violated (Pinheiro and Bates, 2004). Nevertheless, the misspecification or 

distributional violation usually leads to potentially misaligned statistical inferences due to 

inaccurate estimate for the standard error of each fixed effect (Verbeke and Molenberghs, 
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2000). Under those circumstances, a nonparametric approach, if feasible (e.g., cases with 

one or two groups without covariates), might be a better choice. However, no clear-cut 

recommendation can be offered regarding method decision because of the complexity with 

different modeling capabilities as well as the difficulty in model building, tuning or 

comparing when simultaneously analyzing a large number of voxels in the brain.

Interpreting ρ as intraclass correlation (ICC)

When applied to the ISC data, the two random effect components in the LME model (9) 

share the same variance, and lead to the multiplicative factor of 2 in the correlation 

coefficient (4). Interestingly, we note that the ρ value as a variance ratio can be recognized as 

the direct definition of intraclass correlation (ICC) here in an LME context. In contrast to the 

upper bound shown through an abstract proof with eigenvalues in Part I, this ICC 

interpretation under the LME framework gives a direct and meaningful explanation as to 

why ρ ≤ 0.5: there are two random intercepts in the LME system (2), i.e., two copies of the 

cross-subject variance ζ2 in the variance partitioning.

The ICC in general can be interpreted in four perspectives. 1) The ICC is the proportion of 

total variance that is attributed to a random factor (or accounted for by the association across 

the levels of the random factor); that is, as the variance associated with the random factor 

increases, it is assumed to be less likely that the levels (e.g., subjects in the ISC context) 

within the factor are similar. 2) The ICC is the expected correlation between two responses 

that are randomly drawn among the factor levels (e.g., the correlation of two ISC values, zij 

and zjk, associated with the same subject j, which is exactly the original definition of ρ in 

Introduction). When some subjects have generally higher (or lower) ISC values relative to 

the group (or fixed) effects, or when there is some extent of consistency among all the ISC 

values associated with a specific subject, then those ISC values are correlated, and the 

formulation (4) basically captures that correlation or consistency. 3) ICC is an indicator of 

homogeneity of the responses among the levels (e.g., subjects) of the random factor: a higher 

ICC means more similar or homogeneous responses. 4) It shows the extent of common 

environments that responses share. The ICC would be larger if responses associated with the 

same factor level (e.g., subject) are under more similar environments and have closer values.

Within the ISC context, the ICC interpretations of ρ may even be useful in model quality 

check. For instance, when ρ is close to zero, the ISC values associated with a subject are no 

more similar than those from different subjects, and the random effect components could be 

removed to avoid unnecessary over-parameterization. In addition, the spatial heterogeneities 

of the ICC ρ across the brain, as well as the between- and within-subject variances ζ2 and 

η2, are revealing as shown in the results from the real data analysis (Fig. 5 and Fig. 8).

Relation of ISC to multivariate distance matrix regression (MDMR)

With the definition of the distance between a pair of subjects i and j as  (Gower 

and Krzanowski, 1999), where rij is the ISC value at a voxel, the ISC data may benefit from 

combination with a multivariate distance matrix regression (MDMR) approach. MDMR 

allows for between-subjects explanatory variables and has been adopted in FMRI for 

investigating resting-state data (e.g., Shehzad et al., 2014). When the Gaussianity 
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assumption of the ISC data is severely violated, MDMR may well be a better choice, thanks 

to the permutation testing employed in evaluating the significance level of an effect for the 

associated pseudo-F statistic. However, we also note that in most practical situations in 

FMRI, the presented LME approach is advantageous to MDMR in the following aspects: 1) 

LME possesses greater modeling capability (e.g., allowing for within- subject variables); 2) 

unlike in LME, each effect in MDMR is assessed by the associated pseudo-F statistic, but 

the effect estimate is not available, nor is its directionality (positive or negative) known.

Conclusion

The LME modeling provides a well-suited platform for the ISC data at the group level with 

each ISC value partitioned into fixed effects and two random intercepts. Through a data 

duplication step, we construct testing statistics that achieve proper FPR, without resorting to 

the computationally expensive approaches in statistical inferences. In addition, the LME 

flexibility allows the investigator to conveniently include various fixed effects including 

within-subject explanatory variables. Other benefits are strong interpretation power, 

relatively low computational cost, and data/model quality control. The LME modeling 

strategy and statistical inference scheme will be added into the AFNI program 3dLME that 

was originally developed for neuroimaging group analysis with a general LME interface 

(Chen et al., 2013). In addition to omnibus F-statistics for main effects and interactions as 

well as fixed effect estimates and their t-statistics, 3dLME also allows various post hoc tests.
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Appendix A. List of acronyms used in the paper

ANOVA analysis of variances GLM general linear model

BLUE best linear unbiased estimate ICC intraclass correlation

BLUP best linear unbiased predictor ISC inter-subject correlation

CRE (LME with) crossed random effects LME linear mixed-effects

DF degrees of freedom REML restricted maximum likelihood

EW element-wise SW subject-wise

FPR false positive rate

Appendix B. FMRI processing

The general sequence of FMRI data preprocessing steps was described in the Methods 

section of this paper. However, for greater specificity and reproducibility, in this section we 

also include the exact command that was implemented for the processing. While there were 

several processing steps (or blocks) specified, each with many user-chosen options, it is 

possible to provide the exact pipeline in a succinct manner because the processing blocks 
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and options were created and specified using afni_proc.py in AFNI (v16.1.16; Cox, 1996). 

This tool permits the user full freedom to tailor a desired pipeline that may be reliably 

duplicated for the entire group, stored for future reference and published with a study for 

unambiguous description.

In this study FreeSurfer’s recon-all was first run on the anatomical volume in order to 

produce tissue segmentation maps used in the processing (v5.3.0; Fischl et al.). The 

FreeSurfer output was converted into NIFTI format for use in AFNI using SUM.Vs 

@SUMA_MakeSpec_FS command (Saad et al., 2004; Saad and Reynolds, 2012), and then 

maps of the WM and ventricles were selected. The commands for these steps are provided in 

Table 1. In Table 2 we include the afni_proc.py command used in the present study (which is 

about 25 lines; based on the help file’s Example 11) that generates a full, executable 

processing pipeline of > 500 lines.

Appendix C. ISC analysis results with experimental dataset involving BGC

The group analyses involving the BGC Z21 are shown here in Figures 6, 7, and 8, as 

counterparts of Figures 3, 4, and 5.
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Figure 1. 
ISC matrix R(n) and its Fisher-transformed counterpart Z(n) with one group of n subjects. 

Due to the symmetry, only half of the off-diagonal elements (shaded in gray) are usually 

considered in group analysis.
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Figure 2. 
Schematic illustration of R(n) and the Fisher-transformed ISC data Z(n) for two groups, G1 

and G2, highlighting the lower triangular elements. With n1 and n2 subjects, respectively, in 

the two groups G1 and G2, the  elements in Z11 (blue) and 

 elements in Z22 (red) are WGC values while the N12 = n1n2 elements in 

Z21 (green) show the BGC values. Six meaningful group tests can be formulated: three 

effects Z11, Z21, and Z22, and three comparisons Z11 vs Z22, Z11 vs Z21, and Z22 vs Z21, as 

discussed in the text.
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Figure 3. 
Simulation parameters and results are shown here for three methods: SWB, SWP and LME. 

False positive rate (FPR) performances are illustrated in the first two rows, and power 

achievement in the last two rows. Each of the four columns represents the number of 

subjects in each group (one group, n = 10, 20, 40, 80; two groups, n1 = n 2 = 10, 20, 40, 80). 

The gray band of FPR = 0.05 in the first two rows indicates the 95% confidence interval of 

the target (or nominal) value (with a width of ±0.012 for each simulation with 5000 

realizations†). The curves for FPR and power were fitted to the simulation results (plotting 

symbols) through a cubic smoothing spline. Among the three possible comparisons for the 
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two-group scenario, only the direct contrast between the two WGCs, Z11 vs Z22, is shown 

here, but the results for other two indirect contrasts (Z11 vs Z21 and Z11 vs Z21) with SWP 

were similar (see Fig. 8 in Appendix C). The SWP testing is uniformly well-behaved and 

essentially ideal for two groups (black in the second row). On the other hand, in the one-

group case, LME offers a uniformly better FPR control, even though it can be a little over-

conservative (blue in the first row) when ρ ≤ 0.1. Notice that the y-axis range of FPR, [0, 

0.15] here (upper two panels), is different from that in Fig. 2 in Part I [0, 0.8], due to method 

variability.

†The confidence band is computed with the assumption of a binomial distribution B(n,p), 

where n = 5000, p = PFR = 0.05.
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Figure 4. 
Three parameters, correlation value ρ (red), cross- and within-subject variances ζ2 (gray) 

and η2 (purple) are estimated through LME with one and two groups, and then averaged 

across the 5000 simulations. The retrieved ρ values match reasonably well the six simulation 

parameter values of ρ, and the estimated variances ζ2 and η2 satisfy the variance 

decomposition 2ζ2 +η2 = σ2 (=1, here).
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Figure 5. 
Performance comparisons with an experimental dataset. Axial views (Z = 8 mm; 

radiological convention: subject left is right) of ISC group results (thresholded by p-values, 

below) of an experimental dataset are illustrated for three methods: SWB for males, SWP 

for group comparison, and LME. The colors code for ISC values in the first two columns 

(which were inverse Fisher-transformed from the z-values of the LME output), for the 

estimated p in the third column, and for the estimated between- and within-subject variances 

ζ2 and η2, respectively, in the last two columns. The colorization for the two variances is 

different from the first three columns due to the range differences, and the value of  in 

the colorbar, 0.00248, is an approximate lower bound for η2 for time series with T = 406 

points, as shown in (5). For the male group (n = 24, upper panel, two-tailed significance 

level p = 0.001) LME was slightly more powerful than SWB in small portions of the brain. 

For two-group comparison (n1 = n2 = 24, lower panel, two-tailed significance level p= 0.05), 

LME and SWP rendered very similar identifications. Their performances for the BGC, R11, 

and the other two indirect contrasts (R11 vs R21 and R22 vs R21) are shown in Fig. 8 of 

Appendix C. We note that 1) the parameters ρ, ζ2, and η2 for the group comparison (last 

three images in the lower panel) were estimated with the assumption of same variances 

across the groups (homoscedasticity); 2)multiple testing correction was not performed so 

that voxel-wise comparisons among the methods could be directly visualized; and 3) the 

three methods rendered virtually the same group estimate for ISC, but differed slightly in 

significance detection (i.e., the color at each voxel is roughly the same across the three 

testing methods if the significance survives the corresponding threshold).
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Figure 6. 
Simulation parameters and results are shown here for Z21 and the contrast between Z11 and 

Z21 with three methods: SWB, SWP and LME. False positive rate (FPR) performances are 

illustrated in the first two rows, and power achievement in the last two rows. Each of the four 

columns represents the number of subjects in each group (one group, n = 10, 20, 40, 80; two 

groups, n1 = n2 = 10, 20, 40, 80). The gray band of FPR = 0.05 in the first two rows 

indicates the 95% confidence interval of the target (or nominal) value (with a width of 

±0.012 for each simulation with 5000 realizations†). The curves for FPR and power were 

fitted to the simulation results (plotting symbols) through a cubic smoothing spline. The 
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SWP testing is uniformly well-behaved and essentially ideal for two groups (black in the 

second row). On the other hand, in the case with Z21, LME offers a uniformly better FPR 

control, even though it can be a little over-conservative (green in the first row) when ρ ≤ 0.1. 

Notice that the y-axis range of FPR, [0, 0.15] here (upper two panels), same as in Fig. 3, is 

different from that in Fig. 2 in Part I [0, 0.8], due to method variability. The results for the 

contrast of Z22 and Z21 are virtually the same as that of Z11 and Z21 due to the symmetry.

† Tlie confidence band is computed with the assumption of a binomial distribution B(n, p), 

where n = 5000, p = PFR = 0.05.
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Figure 7. 
Three parameters, correlation value ρ (red), cross- and within-subject variances ζ2 ((gray) 

and η2(purple) shown here are estimated through LME with the BGC Z21 and the contrast 

between Z11 and Z21, and then averaged across the 5000 simulations. The retrieved ρ values 

match reasonably well the six simulation parameter values of ρ, and the estimated variances 

ζ2 and η2 satisfy the variance decomposition 2ζ2 + η2 = σ2 = 1. The results for the contrast 

of Z22 and Z21 are virtually the same as that of Z11 and Z21 due to the symmetry.
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Figure 8. 
Performance comparisons with an experimental dataset for the BGC, R21 and the contrast of 

R22 vs R21. Axial views (Z = 8 mm; radiological convention: left is right) of ISC group 

results (thresholded by p-values, below) of an experimental dataset are illustrated for three 

methods: SWB for R21, SWT for R22 vs R21, and LME. The contrast of R22 vs R21can be 

performed, but is not shown here. The colors code for ISC values in the first two columns 

(which were inverse Fisher-transformed from the z-values of the LME output), for the 

estimated ρ in the third column, and for the estimated between- and within-subject variances 

ζ2 and η2 in the last two columns. The colorization for the two variances is different from 

the first three columns due to the range differences. For BGC (upper panel, two-tailed 

significance level p = 0.001), LME was slightly more powerful than SWB in small portion 

of the brain. For two-group comparison (n1 = n2 = 24, lower panel, two-tailed significance 

level p = 0.05), LME and SWT rendered very similar identifications. We note that 1) the 

parameters ρ, ζ2, and η2 for the group comparison (last three images in the lower panel) 

were estimated with the assumption of same variances across the groups (homoscedasticity); 

2)multiple testing correction was not performed so that voxel-wise comparisons among the 

methods could be directly visualized; and 3) the three methods rendered virtually the same 

group estimate for ISC, but differed slightly in significance detection (i.e., the color at each 
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voxel is roughly the same across the three testing methods if the significance survives the 

corresponding threshold).
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Table 1

Commands to process the anatomical data set using FreeSurfer, SUMA and AFNI prior to running 

afni_proc.py. The result of these steps is the production of tissue maps from each subject’s anatomical volume 

to be used to create regressors for the FMRI processing.

# Commands run prior to afni_proc.py, each in appropriate

# directories for the data sets for each subject

# Run FreeSurfer on the anatomical, and then use

# SUMA to convert the FS output to NIFTI for AFNI to use.

recon-all -all -subject $subj -i $anat

@SUMA_Make_Spec_FS -sid $subj -NIFTI

# Select the ventricle maps from the FS output.

3dcalc -a aparc+aseg.nii -datum byte -prefix FT_vent.nii \

  -expr ’amongst(a,4,43)’

# Select the WM maps from the FS output.

3dcalc -a aparc+aseg.nii -datum byte -prefix FT_WM.nii \

  -expr ’amongst(a,2,7,16,41,46,251,252,253,254,255)’
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Table 2

A compact tcsh script that contains the succint, tailored afni_proc.py command used to generate the full 

processing pipeline (> 500 lines) in AFNI for this study. To implement across the group, one simply loops 

through a list of subjects, entering the given file name as the sole command line argument, which is passed to 

the variable $subj.

# !/bin/tcsh

# FMRI processing script, ISC movie data.

# Assumes previously run FS and SUMA commands, respectively:

# $ recon-all -all -subject $subj -i $anat

# $ @SUMA_Make_Spec_FS -sid $subj -NIFTI

# Set top level directory structure

set subj = $1

set topdir = TOP_LEVEL_FILE_LOCATION

set task = movie

set fsroot = $topdir/freesurfer/subjects

set outroot = $topdir/subject_results/$task.6

# Input directory: unprocessed FMRI data

set indir = $ topdir/orig.data

# Input directory: FreeSurfer + @SUMA_MakeSpec_FS results

set fsindir = $fsroot/$subj/SUMA

# Output directory: name for output

set outdir = $outroot/$subj

# Input data: list of partitioned EPIs (movie clips)

set epi_dpattern = "movie*.HEAD"

# Input data: FreeSurfer results (anatomy, ventricle and WM maps)

set fsanat = ${subj}_SurfVol.nii

set fsvent = FSmask_vent.nii

set fswm = FSmask_WM.nii

afni_proc.py -subj_id $subj.$task \

 -blocks despike tshift align tlrc volreg blur mask regress \

 -copy_anat $fsindir/$fsanat \

 -anat_follower_R0I aaseg anat $fsindir/aparc.a2009s+aseg_rank.nii \

 -anat_follower_R0I aeseg epi $fsindir/aparc.a2009s+aseg_rank.nii \

 -anat_follower_R0I FSvent epi $fsindir/$fsvent \

 -anat_follower_R0I FSWMe epi $fsindir/$fswm \

 -anat_follower_erode FSvent FSWMe \

 -dsets $epi_dpattern \
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 -tcat_remove_first_trs 0 \

 -tlrc_base TT_N27+tlrc \

 -tlrc_NL_warp \

 -volreg_align_to MIN_OUTLIER \

 -volreg_align_e2a \

 -volreg_tlrc_warp \

 -regress_ROI_PC FSvent 3 \

 -regress_make_corr_vols aeseg Fsvent \

 -regress_anaticor_fast \

 -regress_anaticor_label FSWMe \

 -regress_censor_motion 0.2 \

 -regress_censor_outliers 0.1 \

 -regress_apply_mot_types demean deriv \

 -regress_est_blur_epits \

 -regress_est_blur_errts \

 -regress_run_clustsim no \

Neuroimage. Author manuscript; available in PMC 2018 February 15.


	Abstract
	Introduction
	Two prototypical examples of ISC group analysis
	ISC variance-covariance structure

	Methods
	Effect partitioning of ISC data
	A brief description of ISC structure
	A preliminary ISC model at the group level
	Relationship of the preliminary ISC model with the conventional linear mixed-effects (LME) modeling
	Theoretical generalization of the preliminary ISC model to the LME with CRE
	Considerations in numerically solving the LME models with CRE
	Practical LME formulation with fully crossed random effects and a balanced structure

	Results: Simulations and Real Experiment
	Simulations of group analysis with different testing methods
	Performance comparisons with experimental data

	Discussion
	LME as an extension to GLM
	Adoption of the LME/CRE approach to ISC data analysis at the group level
	Adaptability and advantages of LME/ CRE
	Robustness and limitations of LME/CRE
	Interpreting ρ as intraclass correlation (ICC)
	Relation of ISC to multivariate distance matrix regression (MDMR)

	Conclusion
	Appendix A. List of acronyms used in the paper
	Table T3
	Appendix B. FMRI processing
	Appendix C. ISC analysis results with experimental dataset involving BGC
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1
	Table 2

