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Abstract

Inferring the microstructure of complex media from the diffusive motion of molecules is a 

challenging problem in diffusion physics. In this paper, we introduce a novel representation of 

diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion 

disturbance function. This disturbance function contains information about the (intra-voxel) spatial 

fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying 

tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance 

function to characterize the tissue structure and organization. Moreover, we provide an exact 

relation between the disturbance coefficients and the time-varying moments of the diffusion 

propagator, as well as their relation to specific tissue microstructural information such as the intra-

axonal volume fraction and the apparent axon radius. The proposed approach is quite general and 

can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without 

using the Gaussian phase approximation. The relevance of the proposed PICASO model is 

explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the 

estimated disturbance coefficients can distinguish different types of microstructural organization 

of axons.
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1. Introduction

Biological tissue contains a complex layout of cells obstructing the diffusive motion of 

molecules. Molecular movements can be exploited for characterizing complex media, as is 

done in several fields of scientific investigation (Carslaw and Jaeger, 1959; Altieri et al., 

1995; Valentini et al., 2000; Balogh et al., 2008; Martin, 1990) with many neuroimaging 
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applications (Van Everdingen et al., 1998; Le Bihan, 2003; Tuch et al., 2003; Le Bihan et al., 

1992). Understanding the molecular diffusion in restricted environment has been a major 

step toward identifying the microstructure of the underlying media. Explicit modeling of 

restricted diffusion can be obtained from simple geometrical shapes by adding boundary 

conditions (Carslaw and Jaeger, 1959; Neuman, 1974). Restricted diffusion in arbitrary 

shapes and complex environments relies on numerical methods such as finite element 

methods or Monte Carlo simulations (Hagslätt et al., 2003; Hwang et al., 2003; Fichele et 

al., 2004; Grebenkov, 2007; Jin et al., 2009; Grebenkov, 2010; Grebenkov et al., 2013; Van 

Nguyen et al., 2014). However, the human brain tissue is neither uniform nor a completely 

restricted medium. Both, the restricted diffusion from the intra-axonal and intra-cellular 

space and hindered diffusion from the extra-axonal space contribute to the diffusion 

magnetic resonance imaging (dMRI) signal at each voxel. The axonal barriers not only 

determine the restricted diffusion in intra-axonal space but also hindered diffusion in extra-

axonal space. Due to anisotropically laid-out axonal structures and crossing and dispersed 

fiber bundles in brain tissue, the dMRI signal is orientation-dependent. But even in the most 

basic and simplest arrangement of coherently (without dispersion) laid out fiber bundles 

oriented in a single direction, the inverse problem of inferring the salient characteristics of 

the tissue structure from the dMRI measurements has not been completely solved. In other 

words, the exact relation between the dMRI measurements and the microstructural 

arrangement of axons is not fully understood. In this paper, we propose one solution to this 

problem by incorporating the structural information in terms of a disturbance function to 

represent spatially varying diffusivities and then solving the resulting partial differential 

equation analytically.

Several groups of methods have been proposed for modeling the dMRI signal acquired using 

a standard single diffusion encoding (SDE) experiment (Basser et al., 1994; Assaf et al., 

2002; Jensen et al., 2005; Schultz et al., 2014; Özarslan et al., 2009; Morozov et al., 2014; 

Huang et al., 2015). A large family of methods focus on estimating the ensemble average 

propagator (EAP) of the diffusing spins under the narrow pulse approximation (Cheng et al., 

2010; Merlet and Deriche, 2013; Özarslan et al., 2013; Scherrer et al., 2013; Rathi et al., 

2014; Ning et al., 2015; Ghosh and Deriche, 2016). These methods provide a probabilistic 

estimate of the displacement of water molecules, which can then be used to compute 

properties such as the non-Gaussianity, kurtosis etc. of the diffusion propagators. However, 

these methods, while being quite sensitive, fail to provide very specific information about 

the tissue structure. On the other hand, an alternative group of approaches focus on 

identifying highly specific information about the tissue, such as estimating the axon 

diameter from dMRI data (Assaf et al., 2008; Alexander et al., 2010; Morozov et al., 2013; 

Huang et al., 2015; De Santis et al., 2016). However, as mentioned in (Burcaw et al., 2015), 

the problem of estimating axon diameters may be ill-posed due to the negligible attenuation 

in signal originating from within axons of diameter smaller than 3 μm, which is the size of 

an overwhelming majority of axons in the human brain (Aboitiz et al., 1992; Liewald et al., 

2014).

Another group of methods focus on understanding tissue microstrucure from the time-

varying apparent diffusion coefficient (ADC). Several theories have been proposed to 

understand the time-dependent ADC in disordered media based on specific assumptions 
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(Bouchaud and Georges, 1990; Havlin and Ben-Avraham, 1987; Metzler and Klafter, 2000; 

Topgaard and Söderman, 2003; Åslund and Topgaard, 2009; Novikov et al., 2011). In 

particular, it was shown in (Mitra et al., 1993) that the surface-to-volume ratio can be 

estimated from the diffusion signal if the diffusion time is very short. The long-time scale 

time-varying ADC and other higher order moments of the displacements have been studied 

in (Özarslan et al., 2006, 2012). Recently, the relation between the time-dependent ADC and 

the tissue packing structure was explained in (Novikov et al., 2011; Novikov and Kiselev, 

2010; Novikov et al., 2014; Burcaw et al., 2015; Fieremas et al., 2016) using the effective 

medium theory (EMT). In the finite-pulse case, this approach depends on using the Gaussian 

phase approximation (GPA), which does not account for the non-Gaussian part of the 

diffusion process. Moreover, the relation between the model parameters and the physical 

packing structure of tissue is not explicit. Thus, existing models of diffusion, while being 

very sensitive to tissue changes, do not provide a clear understanding between the structural 

organization and packing structure of axons and the measured diffusion signal.

Our contributions

In this paper, we propose a novel theory, starting from the first principles, by considering the 

diffusion equation with spatially varying diffussion coefficients. We introduce a structural 

disturbance function as the input to the diffusion equation that captures the spatial 

fluctuations of the diffusion processes. Following the concept of input-output analysis 

(Banks et al., 1993; Pillai and Shim, 2012; Isakov, 2006; Pintelon and Schoukens, 2012), we 

obtain an exact relation between diffusion MRI signal and the structural disturbance 

function. To the best of our knowledge, the proposed theoretical framework presented here is 

one of the first attempts to use this concept for solving the fundamental diffusion equation 

with a spatially varying diffusivity term. The salient features of our approach are 

summarized below:

• The microscopic tissue structure and organization is implicitly captured via the 

Fourier Transform of a novel disturbance function (i.e., a function that captures 

the structural disturbances in the diffusion process due to restrictions and 

hindrances).

• A general relation is derived between the structural disturbance function, the 

EAP, and the EMT. Further, the proposed approach models the dMRI signal 

without assuming Gaussian Phase Approximation (GPA).

• We quantify the structural organization of tissue in terms of short- and long-

range (short and long length scale) disturbance coefficients derived from the 

disturbance function. Using Monte-Carlo simulations and in-vivo Human 

Connectome Project (HCP) dMRI data sets, we show that these indices can be 

used to identify the microstructural arrangement of axons.

• The proposed approach is quite general and can be used with any type of 

gradient sequence (i.e., the fundamental concepts developed here are not limited 

to using the SDE sequence and other types of sequences can potentially be used). 

In this work however, we show results using SDE experiments only.
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The remainder of this paper is organized as follows: In the Theory section, we present an 

overview of the proposed method based on the modified diffusion equation that contains a 

spatial disturbance term. More specifically, we derive a relation between the disturbance 

term and the ensemble average diffusion propagator and its time-varying moments, along 

with the connection to the effective medium theory. We introduce several methods for 

estimating the diffusion disturbance function using dMRI measurements. We also provide a 

more general solution for dMRI signal for any type of pulse sequences based on a modified 

Bloch-Torrey equation. In the Experiments section, we present details about the Monte-

Carlo simulations and the models that are used to characterize the measurements in the in-

vivo HCP data sets. The experimental outcomes are presented in the Results section, which 

is followed by a section on discussion and conclusions.

2. Theory

2.1. The ensemble-average disturbance function

The diffusion propagator is the Green’s function of the following partial differential 

equation:

(1)

where  denotes the probability that the water molecules starting at r0 reach a 

location r ∈ ℝ3 in time τ, where the initial state is  with δ(·) being the 

Dirac delta function, and D(r) denotes the diffusivity tensor at r. We define  as the 

displacement of the molecules and denote the corresponding Green’s function as 

. Then Eq. (1) can be equivalently written as:

(2)

with the initial state . We decompose the diffusion coefficient D(r) as:

(3)

where D0 is the spatial average of the diffusion coefficient and  is the corresponding 

spatially varying term, i.e. D0 is the unique value that makes . Then Eq. (2) can 

be rewritten as:

(4)
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(5)

and  denotes the spatio-temporal disturbances to the evolution of the propagator. 

We assume that this disturbance does not change the total number of particles in the system, 

i.e., .

Let Prob(r0) denote the density function of the initial distribution of water molecules. Then 

the ensemble average propagator (EAP) is given by:

(6)

Taking the partial derivative of both sides of Eq. (6) and using Eq. (4), one can derive the 

following partial differential equation for the evolution of the EAP:

(7)

where  denotes the ensemble average disturbance 

(EAD) function that affects the evolution of the EAP. Moreover, since the EAD does not 

change the total number of diffusing particles, we have  for any τ ≥ 0. 

The solution to Eq. (7) is given by:

(8)

where  denotes a zero-mean Gaussian distribution with covariance Σ. If there is no 

disturbance to the diffusion of water molecules, i.e., if , then  is Gaussian 

and the non-Gaussianity of  is caused by the disturbance .

A simpler solution to Eq. (7) can also be obtained using the spatial Fourier transform. To this 

end, let

(9)

denote the spatial Fourier transform of , where q is the angular wave vector. Let

(10)
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denote the spatial Fourier transform of . Henceforth, both û(q, t) and û(r, t) will be 

referred to as the ensemble average disturbance function or EAD. Then, the modified 

diffusion equation (7) can be written as:

(11)

where , and it is equal to D0║q║2 for isotropic D0. The solution of Eq. (11) 

is given by:

(12)

which is the spatial Fourier transform of Eq. (8). Note that, Eq. (12) does not directly 

provide a solution to the original diffusion equation Eq. (1), but of the modified equation 

given in Eq. (4). In the case of an SDE experiment, under the narrow-pulse approximation, 

s(q, t) is also the diffusion MRI signal since it is the Fourier transform of the EAP.

In a uniform medium, there are no restrictions to the diffusing molecules, making û(q, τ) = 

0, which leads to a Gaussian EAP. In a heterogeneous medium with membranes or 

restrictions, the disturbances change the evolution of the EAP making it non-Gaussian and 

s(q, t) naturally becomes a non-exponential function of . Thus, our formulation 

provides a natural explanation for the non-Gaussian signal observed in in-vivo human brain 

data as well as biological tissue as reported in several works (Chin et al., 2002; Mulkern et 

al., 2006; Kiselev and Il’yasov, 2007). Note that, characteristic information about the 

structural organization of the tissue (or medium) is captured by the EAD function, which can 

be estimated from dMRI measurements to infer the properties of the underlying structure.

2.2. On the time-varying moments of EAP

The relation between the time-varying non-Gaussian EAP and the disturbance function can 

be elucidated by analyzing the time-varying moments of . For this purpose, we 

consider the relation between s(q, t) and û(q, t) in the frequency domain using the following 

Fourier transformations:

where we have assumed that s(q, t) = 0 and û(q, t) = 0 for t < 0. Then Eq. (12) gives:

(13)
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where the first term on the right-hand side corresponds to the Gaussian part, while the 

second term captures the structural organization of the underlying substrate. The expression 

in Eq. (13) provides a general representation for the diffusion signal assuming narrow 

gradient pulse.

For a specific disturbance function U(q, ω), the expression in Eq. (13) can be reduced to the 

result obtained using EMT in (Novikov and Kiselev, 2010; Burcaw et al., 2015). In (Novikov 

and Kiselev, 2010), the diffusion signal was represented as:

where Σ(q, ω) was termed as the self-energy term. This expression can be considered as a 

special case of (13) with:

and vise versa. Thus, the results reported in (Novikov and Kiselev, 2010) are equivalent to 

our formulation for SDE experiments with narrow pulses by using change of variables.

To simplify the analysis and without loss of generality, we only consider a fixed diffusion 

direction n so that s(q, t), û(q, t) only depend on the magnitude q := ║q║ and can be 

written as s(q, t) and û(q, t), respectively. We also consider D0 as a scalar representing the 

diffusivity along n. We denote  as the displacement along n. Let 

denote the 2nth order moment . Using Taylor expansion, we can express the diffusion 

signal s(q, t) in Eq. (9) in terms of its moments as:

(14)

where we have assumed that the odd order moments  for n = 0, 1, …, vanish due 

to the macroscopic symmetry of , i.e. . Note that, any asymmetry in 

 will lead to complex values for the dMRI signal, which usually cannot be measured 

reliably in practice. Hence, for all practical purposes, we can safely assume that the odd 

order moments are zero. The mean-squared displacement  and the fourth-order 

moment  can also be expressed in terms of the disturbance function EAD. To show 

this, we use the Taylor expansion of û(q, t):

(15)
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where there is no constant term since û(0, t) = 0, and the odd terms of q vanish for the same 

reason as above.

In order to derive the relation between ,  and û2(t), û4(t), we denote the time-

domain Fourier transform of û(q, t) by

Using the above expansion, we can rewrite Eq. (13) as:

(16)

where . Comparing the corresponding terms in Eq. (16) and Eq. (14), we 

obtain the following relations:

(17)

(18)

Other higher order moments can also be derived in a similar way (see the Appendix B for 

more details on the derivations of the above equations).

2.3. Relation to tissue structure

The connection between the disturbance function and the moments of the EAP in Eq. (17) 

and Eq. (18) allows us to understand the physical meaning of the time-dependent 

coefficients û2(t) and û4(t). By taking the time derivative of Eq. (17), we can also obtain the 

instantaneous diffusion coefficient (see (Burcaw et al., 2015)) given by:

(19)

which depends on the instantaneous value of û2(t). It was shown in (Novikov and Kiselev, 

2010) ([Eq. 39]) that the long-time limit of the instantaneous diffusion coefficient, converges 
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to a constant value , where d is the dimension of the space and 〈(δD)2〉 
denotes the variance of δD(r). Thus, the connection between the disturbance function and 

the results obtained using the EMT becomes more apparent implying:

(20)

Thus, the disturbance function û(q, t), as expected, depends upon the variance in the 

diffusivity, which in turn is a function of the structural organization of the underlying tissue 

substrate.

On the other hand, in the short-time limit, it was shown in (Mitra et al., 1993) that the 

diffusion coefficient decreases as a function of t1/2. Thus, we can assume û2(t) = ct1/2 for 

some constant c whose value is related to the surface-to-volume ratio of the pores. Moreover, 

the short-time analysis of the diffusional kurtosis in (Novikov and Kiselev, 2010) also 

provides interesting insight for understanding the short-time behavior of the higher order 

term û4(t) in (18). In particular, by substituting  in (17) and (18), the time-

dependent diffusional kurtosis (Jensen et al., 2005)

is given by:

In the short-time limit, K(t) is given by

It was also shown using EMT (Novikov and Kiselev, 2010) that the short-time limit of K(t) 

is given by . Comparing the two expressions, we obtain û4(t) ≈ 24〈(δD)2〉t in 

short-time limit.

Since û(q, t) is the spatial Fourier transform of the structural disturbance û(r, t), û(q, t) 
consequently captures the spatial variation of the diffusivity. Thus, û(q, t) at low q-values is 

related to the low spatial frequency (long-distance scale) variations in the spatial 

organization of the tissue, while high spatial frequency (short-distance scale) variations are 

captured by high q-value terms of û(q, t). Moreover, from the expansion in Eq. (10), we note 

that the value of û(q, t) in the low q-value range is dominated by the term û2q2 while the 

term û4q2 becomes non-negligible at high q-values. Thus, û2 and û4 are related to low and 
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high spatial frequency of the structural organization of the tissue. In other words, the values 

of û2(t) and û4(t) are related to the long and short distance disturbance due to the tissue 

structure. Consequently, we will refer to them as the long and short-range disturbance 

coefficients, in the remainder of this paper.

2.4. Estimating structural disturbance using dMRI

The dMRI signal obtained from the traditional Stejskal-Tanner experiment with narrow 

pulses is exactly the Fourier transform of the ensemble-average propagator (EAP) 

(Callaghan, 1991), i.e. s(q, t) in Eq. (9). Both the diffusion time t and the q-value are 

experimental parameters. Several methods (Özarslan et al., 2009; Merlet and Deriche, 2013; 

Özarslan et al., 2013; Ning et al., 2015) have been proposed to estimate the EAP using 

dMRI measurements based on Eq. (9) for a given diffusion time. A limitation of these 

methods is that the estimated EAP does not provide specific information about the 

underlying tissue structure. However, this limitation can be addressed if we can obtain 

information about the EAD from the dMRI measurements.

If the dMRI signal s(q, t) is known explicitly, for all q and t, then the EAD can be deduced 

from Eq. (12) or written directly from Eq. (11) as follows:

(21)

This equation provides an interesting way of estimating EAD function using the dMRI 

measurements. However, the differential operator makes it not very useful in practice to use 

this above equation to estimate û(q, t) due to measurement noise and long scan time. To 

provide insight into the relation between the EAD and tissue structure, in our experiments 

section, we will use Eq. (21) to estimate the EAD for several synthetic structures based on 

simulated (Monte-Carlo) diffusion signal.

2.5. Long-diffusion-time model

As shown in Eq. (20), the long-range disturbance û2(t) converges to a constant value in the 

long-time limit. If the entire function û(q, t) converges to a constant value in much shorter 

time than the diffusion time t, then the dMRI signal s(q, t) has a much simpler expression 

which can be used to estimate the long-time limit of the EAD. Let û(q) denote the long-time 

limit of û(q, t). Using û(q, t) = û(q) in Eq. (12), we obtain the following model for the dMRI 

signal:

(22)
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In the Experiments section, we will show that the EAD converges to a stationary state (or a 

very slowly time-varying state) in a much shorter time than typical diffusion times used on 

clinical scanners. Thus, Eq. (22) provides a long-time scale dMRI model.

The long-time limit of Eq. (22) also provides insights on understanding the relation between 

the model parameters û2, û4, D0 and the structural organization. Expanding û(q) into its 

Taylor series, we get:

(23)

Taking the limit of Eq. (22), we have

(24)

On the other hand, we may decompose the dMRI signal s(q, t) into two components as in 

(Assaf et al., 2008; Alexander et al., 2010; Huang et al., 2015) given by:

where sintra(q, t), sextra(q, t) denote the dMRI signal contribution from the intra and extra-

axonal spaces, respectively. We assume that the displacements of all extra-axonal molecules 

diverge at long diffusion time, while all the molecules in the intra-axonal space have 

bounded trajectories. Then, the signal sextra(q, t) decays to zeros at long diffusion time. Thus, 

the long-time scale dMRI signal is given by:

(25)

where  denotes the mean-squared displacement of the intra-axonal molecules and it is 

equal to  where rapp is the apparent axon radius. The value of rapp relates to the 

distribution of axon sizes (Özarslan et al., 2011), and  is equal to 〈r4〉 / 〈r2〉 with 〈rk〉 
being the k-th order moment of the axon-radius distribution (Burcaw et al., 2015). 

Comparing (24) and (25), we obtain the following equations:

(26)

(27)
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which provides direct relation between the short and long-range disturbance coefficients and 

the tissue structural organization. In particular, under the assumptions made above, Eq. (26) 

shows that the long-range disturbance coefficient is proportional to the diffusivity with their 

ratio being the relative intra-axonal volume fraction. In other words, if two structures have 

the same intra-axonal volume fraction, then the structure with stronger long-range 

disturbance will have higher diffusivity. Moreover, Eq. (27) shows that the short-range 

disturbance is closely related to the axon diameter. In particular, Eqs. (26) and (27) imply 

that . In Appendix C, we provide the exact expression for û2(t) and û4(t) for 

diffusion in restricted cylinders to show that Eqs. (26) and (27) indeed hold in this standard 

case.

Having shown the connection between our work and several of existing works, we note that 

the general representation for the dMRI signal in Eq. (12) was derived without any 

assumption about the existence of tissue compartments. Hence, it is interesting that the 

proposed PICASO model provides a direct connection with the multi-compartment models 

in the long-time scale regime.

In practice, the order of the expansion in Eq. (23) depends on the maximum q-value that can 

be obtained from MRI scanners. Since q is in the reciprocal space of , the largest q-value 

determines the highest spatial-frequency (or the shortest range) of disturbances that can be 

probed by dMRI measurements. For example, for human brain tissue, the short-range 

disturbances are primarily caused by the compactly packed intra and extra-axonal space, 

which is of the order of 1 μm. But the maximum q-value that can be reached on modern 

clinical scanners is usually much smaller than 1 rad/μm. In this scenario, the diffusion signal 

only contains information from long-range or longer length scale disturbances. Thus, we can 

approximate û(q) = û2q2 in the low q-value regime. If the maximum q-value can reach some 

value near 1 rad/μm, then the diffusion signal also contains contributions from short-range 

structures (small, compactly packed structures), in which case we can assume û(q) = û2q2 + 

û4q4. To this end, we will refer û2 and û4 as the long and short-range disturbance indices, 

respectively.

2.6. The modified Bloch-Torrey Equation

In the above analysis, we only focused on analyzing the dMRI signal from experiments with 

narrow pulses and its relation with tissue structures. A more general method for analyzing 

the relation between the dMRI signal obtained using any type of gradient waveforms and 

tissue structure is given by the Bloch-Torrey equation (BT) (Torrey, 1956):

(28)

where r ∈ ℝ3 denotes the location of the spins in a 3-dimensional space, m(r, τ) is the 

complex-valued magnetization density function, g(t) is the product of the gyromagnetic ratio 

and the vectorial gradient strength, and D(r) is the diffusivity tensor as before. Let t denote 

the instant when the signal is collected. Then, the dMRI signal is the sum of the 

magnetization of all the protons (Callaghan, 1991) and is given by:
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which is a function of the gradient sequence and the diffusion time.

Proceeding along the lines of Eqs. (1)–(4), we consider a decomposition of the D(r) as in Eq. 

(3) and denote:

as the disturbance function that depends on the magnetization density m(r, τ). Then Eq. (28) 

can be rewritten as:

(29)

Since um(r, τ) depends on m(r, τ), and m(r, τ) depends on the gradient sequence upto time 

τ, i.e., g(s) for s ∈ [0, τ], we can denote um(r, τ) by:

where  denotes the gradient sequence upto time τ. Using 

 in Eq. (29), we obtain the following modified Bloch-Torrey equation:

(30)

Next, we will derive the exact relation between s(g, t) and the disturbance function 

.

2.7. Solving the modified Bloch-Torrey equation

First, we denote the spatial Fourier transform of m and u by:

By taking the spatial Fourier transform of Eq. (30), we obtain the following PDE:

(31)

Let . If the gradient satisfies the echo condition so that q(0) = 0 and 

assuming s(0, t) = 1, the diffusion signal  is given by:
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(32)

Note that, Eq. (32) is not a direct solution to the original equation Eq. (28) but of its 

modified form in terms of the EAD function. A detailed derivation of Eq. (32) is given in 

Appendix A. Note that, the difference between Eq. (32) and the expression in Eq. (12) is the 

time dependence of the q(τ) and the dependence of  on the gradient sequence. 

In order to gain insight about the gradient-dependence of , we will discuss in 

detail the models for the disturbance function in the case of SDE experiments with finite 

pulse width and double diffusion encoding (DDE) experiments.

2.8. On the dependence of the disturbance function on gradient sequences

In the case of SDE experiments, a single gradient direction is used during the entire 

diffusion experiment. Consequently, all the elements of the gradient sequence g(τ) and the 

trajectory q(τ) in the q-space can be represented as linear functions of the maximum q-value 

qmax as: g(τ) = qmaxcg(τ) and q(τ) = qmaxcq(τ) for some scalar function cg(τ) and cq(τ), 

respectively. In SDE experiments, the functions cg(τ) and cq(τ) only depend on the pulse 

width and diffusion time1. Thus, if the pulse width and diffusion time are fixed, the function 

 only depends on qmax and τ. Consequently, the disturbance function can 

be simplified to , which has a similar form as the disturbance 

function in Eq. (10) in the narrow-pulse case.

In the case of DDE experiments, the gradient directions may not be collinear with each other 

(Özarslan and Basser, 2008; Shemesh et al., 2010). Since the elements in  and q(τ) are 

related to the gradient waveform before and after the time instant τ, the functions g(τ) and 

q(τ) cannot be represented by scaling of a single vector qmax as in the SDE experiments. 

Nevertheless, the functions g(τ) and q(τ) in DDE experiments can be represented as a linear 

combination of two vectors, i.e., q1,max and q2,max, which are the maximum q-values for the 

two pairs of pulses, respectively. Thus, the disturbance function can be written in the form 

û(q1,max, q2,max, τ), which is different from the simplified model in SDE experiments. The 

dependence of the disturbance function on the gradient sequence indicates that the DDE 

experiments may provide additional information about the microscopic structure of the 

tissue that cannot be probed by SDE experiments, as has already been pointed out in 

(Özarslan and Basser, 2007; Özarslan, 2009; Lawrenz et al., 2010; Jespersen, 2012).

1In SDE experiments, qmax = gδ and the function cg(τ) and cq(τ) are given by:
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In the rest of this paper, we will only focus on the SDE experiments and analyze the 

biophysical meaning of the model parameters in the disturbance function û(qmax, τ). The 

time dependent q(τ) in SDE experiments is given by:

We clarify a few notations that we use in the next section; q(τ) denotes the q-value at a 

particular time instant τ, while writing it without the argument τ implies q := qmax = gδ 
which denotes the maximum q-value in SDE experiments. Hence, in the rest of this section, 

û(qmax, τ) is written as û(q, τ).

3. Methods and Modelling

We demonstrate the performance of the proposed approach using both Monte-Carlo 

simulations and in-vivo data sets. In the simulations, we first compared diffusion MRI 

signals and the estimated disturbance functions from three synthetic tissue structures 

mimicking the intra-axonal, myelin, extra-axonal spaces. Moreover, we also examined the 

differences in diffusion signals and disturbance functions due to the partial-volume effect 

using an additional pair of synthetic structures. In the in-vivo data experiments, we tested the 

proposed approach using two data sets that were acquired from the WU-Minn HCP and 

MGH HCP connectome scanner (Van Essen et al., 2013; Setsompop et al., 2013), 

respectively. The experimental results demonstrate how the PICASO model can be used to 

understand the tissue microstructural organization and how it changes with diffusion time 

and gradient strength.

3.1. Comparing axonal packing structures using Monte-Carlo simulations

We generated synthetic diffusion data using Monte-Carlo simulations on three types of 

cellular and axonal packing in a two-dimensional substrate. The simulated field of view of 

these structures was 100 × 100 μm2. Figs. 1a, 1b and 1c illustrate a partial field of view with 

size 30 × 30 μm2 for the three types of packing, which are denoted by Structure 1, Structure 

2 and Structure 3, respectively. The green circles (regions) are the myelin sheaths that 

surround the axons shown in red. The g-ratio (the ratio between the inner and outer radii of 

each green circle) for all axons was set to 0.6, which is based on result from Rushton (1951) 

and Basser (2004). Structure 1 has small and more densely packed axons. Structure 3 has 

relatively loosely packed large axons. The intra-axonal volume fraction, myelin volume 

fraction and extra-axonal volume fraction for the three structures are {0.24, 0.43, 0.33}, 

{0.23, 0.40, 0.37} and {0.23, 0.41, 0.36}, respectively. The extra-axonal volume fraction is 

close to the histology results from monkey brain in (Lamantia and Rakic, 1990). The 

average axon radius weighted by the intra-axonal areas for the three structures was 0.31, 

0.50, 0.68 μm, respectively.

In our Monte-Carlo simulations, a total of 105 particles were randomly selected from a 

uniform distribution within the extra axonal space (no particles were initialized in the myelin 
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areas since the MRI signal decays quickly due to very short T2 of myelin water (Laule et al., 

2007) and long TE of clinical acquisitions). During a time step of dt = 0.005 ms, each 

particle moved a distance of  μm along a randomly selected direction with D = 2 

μm2/ms. The boundaries were considered impermeable, so that the particles would reflect 

off the myelin sheaths. Then the dMRI signal from the extra-axonal space was computed 

from the simulated trajectories of the particles. The dMRI signal within each synthetic axon 

was computed using the explicit expressions proposed in (McCall et al., 1963) and 

(Neuman, 1974) for SDE experiments with narrow and finite pulses, respectively. The 

ensemble dMRI signal was computed as the average of intra and extra-axonal signal 

weighted by the corresponding volume fractions.

3.1.1. SDE simulations with narrow pulses—In this simulations, we sampled the 

dMRI signals s(q, t) for the three structures at a dense set of time points in the interval 0 ≤ t 
≤ 80 ms with 0 ≤ q ≤ 3 rad/μm. The baseline diffusion coefficients D0 for the three structures 

was estimated by fitting the signal s(q, t) in the interval 0 ≤ q ≤ 0.1 rad/μm and 0 ≤ t ≤ 1 ms 

using the DTI model . Using Eq. (21), we computed the two-dimensional EAD 

function û(q, t) in the interval 1 ≤ t ≤ 80 ms for the three structures. The disturbance function 

u(q, τ) in the interval τ ∈ [t0, t] can still be estimated from s(q, t) using Eq. (21). We assume 

that s(q, t0) is Gaussian for a presumed small t0 = 1 ms, and estimate the corresponding 

diffusivity as the baseline D0. The EAD function at high q-values and its evolution process 

with time was also estimated to understand the nature of the disturbance function. From the 

estimated u(q, t) at t = 80 ms, we also computed the corresponding û2 and û4 coefficients 

using Eq. (15).

3.1.2. Finite-pulsed SDE simulations—Based on the collected particle trajectories, we 

computed two sets of diffusion data with different experimental parameters. In the first set, 

we set the pulse width to δ = 10.6 ms, diffusion time of Δ = 43.1 ms and gradient strength of 

g = 20, 40,…, 100mT/m, while the experimental parameters for the second set were: δ = 

12.9ms, Δ = 21.8ms and g = 30, 60,…, 300mT/m. The pulse width, diffusion time and 

maximum gradient strength of the two sets of signals were chosen according to the 

parameters in the WU-Minn HCP and MGH HCP diffusion data sets, respectively.

The maximum q-value for the first data set (WU-Minn HCP) is qmax,1 = 0.2836 rad/μm 

while for the second data set (MGH HCP) is qmax,2 = 1.0353 rad/μm. The different qmax-

values allow assessment of different types of microstructural information about the tissue. 

Given the low q-values in the first data set, we expect that the signal contribution is 

primarily from the long-range disturbances, while, both the short and long-range 

perturbations can be measured from the second data set (due to large q-values). To this end, 

we assume that the disturbance function for the first data set is modeled by û(q, t) = û2q2, 

while the disturbance function for the second data set is given by û(q, t) = û2q2 + û4q4. Since 

the gradient pulse length is finite (and not narrow), we used the following signal model for 

the two data sets:
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(33)

(34)

Eq. (33) and Eq. (34) are derived from Eq. (32) with disturbance function being û(q, τ) = 

û2q(τ)2 and û(q, τ) = (û2 +û4q2)q(τ)2, respectively. The model parameters û2, û4, D0 were 

estimated using the lsqnonlin.m routine in Matlab (The MathWorks Inc., Natick, MA) for all 

the simulations.

3.2. Sensitivity to partial-volume effects

In-vivo diffusion MRI data sets are typically plagued with partial-volume effects, especially 

close to white matter-CSF boundaries, due to the relatively large voxel sizes. To understand 

the impact of partial voluming, we estimated the disturbance function in two synthetic 

structures shown in Fig. 2. The blue region at the bottom of Fig. 2b represents CSF area, 

which is separated from the axonal fiber bundles by an impermeable membrane. The intra-

axonal volume fraction, myelin volume fraction and extra-axonal volume fractions for the 

structure illustrated in Fig. 2a are {0.23, 0.37, 0.40}. The volume fraction of the CSF area in 

Fig. 2b is 0.3. We used the same configuration as in the previous simulations to collect the 

diffusion trajectories within the two types of synthetic structures (using Monte-Carlo 

simulations). Then, we generated two sets of diffusion MRI signals with finite pulse width 

using the same parameter as in the previous WU-Minn and MGH HCP simulations. From 

the simulated signals, we used Eq. (33) and (34) to estimate the disturbance functions from 

the two structures, respectively. Results from this experiment are discussed in the Results 

section.

3.3. WU-Minn HCP data set

We tested the performance of our method using the in-vivo WU-Minn HCP dMRI data set. 

The spatial resolution of the diffusion-weighted image was 1.25 × 1.25 × 1.25mm3. The 

experimental parameters were TR/TE = 5500/89 ms, δ = 10.6 ms and Δ = 43.1 ms. The data 

set consisted of three b-values with b = 1000, 2000 and 3000 s/mm2 with b:= γ2g2δ2(Δ

−δ/3). The maximum gradient strength was gmax = 97.4 mT/m. At each b-shell, the diffusion 

signal was acquired along 90 gradient directions. More detailed information about data 

acquisition and pre-processing steps are given in (Sotiropoulos et al., 2013).

Since the maximum q-value for this data set is about 0.2762 rad/μm, we expect that the 

primary contribution to the diffusion signal is only from long-range disturbance. For a full 

three-dimensional analysis, we generalized the scalar model (33) to include the full diffusion 

tensor as follows:
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where M2 and D are both 3 × 3 positive semidefinite tensors. For model simplicity, we 

assume that M2 and D have the same set of eigenvectors. Similar to DTI, we consider the 

eigenvector corresponding to the largest eigenvalue of D as the dominant diffusion direction 

and the corresponding eigenvalue is denoted by d‖. We assume a cylindrical model of 

diffusion, with the two smaller eigenvalues being the same and denoted by d⊥. The two 

eigenvalues of M2 corresponding to the same eigenvectors as d⊥ are assumed to have the 

same value. From the estimated values for M2 and D, we compute Û2:= M2D. Similarly, the 

corresponding eigenvalues of Û2 are denoted by û2,‖, û2,⊥, which represent the long length 

scale disturbance (organization) in the parallel and perpendicular direction of the fiber 

orientation.

3.4. MGH HCP data set

We also tested our method using the MGH HCP data set acquired on the Siemens 3T 

Connectome scanner with maximum gradient strength of 300 mT/m. The spatial resolution 

of this data set was 1.5 × 1.5 × 1.5 mm3. The experimental parameters were TR/TE = 

8800/57 ms, δ = 12.9 ms and Δ = 21.8 ms. The data set consisted of four b-values with b = 

1000, 3000, 5000 and 10000 s/mm2. The number of gradient directions at each b-shell were 

64, 64, 128 and 256, respectively. More detailed information about data acquisition and pre-

processing steps can be found in (Setsompop et al., 2013).

The maximum q-value that can be reached in this data set is about 0.7559 rad/μm, which 

allows for probing short-range disturbances as well. In order to incorporate short-range 

disturbances, we extend the model (34) to the three-dimensional case as follows:

where M2 and D are both 3 × 3 positive semidefinite tensors as before. Similar to the 

previous experiment, we assume that Û2, Û4 and D0 all have the same set of eigenvectors. 

From M2 and M4, we define Û2 := M2D and Û4 = M4D. The eigenvalues for the three 

tensors are denoted by {û2,‖, û2,⊥, û2,⊥}, {û4,‖, û4,⊥, û2,⊥} and {d‖, d⊥, d⊥}, respectively.

4. Results

4.1. Comparing axonal packing structures using Monte-Carlo simulations

4.1.1. Narrow-pulse SDE experiments—As mentioned earlier, we used Eq. (21) to 

estimate the EAD funciton. The first row of Figure 3 shows the simulated dMRI signals s(q, 
t) for the three structures at a selected set of time points. The estimated diffusion coefficients 

using the dMRI signal s(q, t) for 0 ≤ t ≤ 1 ms and 0 ≤ q ≤ 0.1 rad/μm are shown in the first 

row of Table 1. Note that the estimated diffusivity, , for all the three structures is the 

apparent diffusivity and not the intrinsic diffusivity (the true spatially averaged diffusivity 

devoid of the effect of restrictions). This is because the axon sizes used in the simulation are 
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very small, making the effect of restriction quite apparent even at short time scales of 1 ms. 

Thus, an exact estimation of the intrinsic diffusivity would require the use of diffusion signal 

within an ultra short diffusion time ≪ 1 ms or use of correct time-varying model for the 

diffusion process (Mitra et al., 1993). Nevertheless, the estimated u(q, t) still captures the 

structural disturbance due to the underlying structural organization of the tissue. The second 

row of Figure 3 shows the estimated EAD û(q, t) at the same set of time points as in the 

figures in the first row. For each structure, the estimated EAD functions û(q, t) at different 

time points have a similar pattern in q-space, i.e., they are all monotonically increasing in the 

interval 0 ≤ q ≤ 2.6 rad/μm. The functions û(q, t) corresponding to Structure 3 reach their 

maximum value at about q = 2.6 rad/μm. The last row of Figure 3 also shows the same EAD 

functions in the time domain at a selected set of points in q-space. These functions show a 

sharp change during the first 1–2 ms, which corresponds to the change of Dinst at a rate of 

shown in (Mitra et al., 1993). The functions then gradually transition to stationary values 

around 10 20 ms. This implies that the coefficients û2(t) and û4(t) from Eq. (15) for the three 

structures also transition to stationary values after a certain diffusion time.

The blue, green and red dots in Figure 4 show the estimated values of û(q, t) at t = 80 ms for 

the three structures, respectively. The solid lines show the plot using the 4th-order 

approximation û(q) = û2q2 + û4q4 as in Eq. (15) with û2 and û4 estimated using the least-

squares fitting method, whose values are shown in Table 1. We notice that the Structure 3 

has the highest apparent diffusivity, which is consistent with its strongest long-range 

disturbance. On the other hand, the Structure 1 has the weakest long-range disturbance due 

to the densely packed small axons, which leads to the smallest value for the apparent 

diffusion coefficient. From Eq. (26), we also estimated the relative intra-axonal volume 

fractions  for the three structures as 0.44, 0.36 and 0.35, respectively, which is very 

close to the corresponding true values: ,  and 

. Thus, the estimated parameters , û2, û4 correctly reflect the 

microscopic packing of axons in the tissue.

4.1.2. Finite-pulse SDE experiments—The blue, green and red curves in Figure 5a 

show the estimated signal for the Structures 1, 2 and 3 with the diffusion signal simulated 

using the first set of parameters (low-q-value regime). The signal obtained using the 

PICASO model perfectly matches the monte-carlo simulated measurements that are shown 

as the black star markers. The model parameters corresponding to the three structures are 

shown in Table 2. The estimated EAD, û2q2, is illustrated in Figure 5b in blue, green and red 

curves, respectively. We note that the Structure 1 has the most densely packed axons with 

very small diameters, resulting in lower values for the estimated û2 (long-range disturbance) 

and , as expected. With larger axon sizes (among all the three tissue substrates) which are 

more uniformly distributed, Structure 3 has stronger long-range disturbance and higher 

apparent diffusivity. With axon sizes and packing structure lying in between that of 

Structures 1 and 3 substrates, the estimated long-range disturbance û2 and apparent 

diffusivity  for Structure 2 lie in between that of the other two structures, as expected.
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The blue, green and red curves in Figure 6a show the estimated signal for the three 

substrates with the diffusion signal simulated according to the second set of parameters, i.e. 

δ = 12.9 ms, Δ = 21.8 ms and g = 30, 60, …, 300 mT/m. The signal fitting using the 

PICASO model perfectly matches the Monte-Carlo simulated measurements, which are 

shown as the black star markers in Figure 6a. The estimated model parameters are given in 

Table 3. Similar to the previous result, the Structure 2 still has the lowest values for û2 and 

 while the Structure 1 has the highest values. But the estimated value for û4 for Structure 

1 is highest, while the lowest value is for Structure3, indicating that Structure 1 has the 

strongest short-range disturbance, as expected. The estimated disturbance functions û(q) = 

û2q2 +û4q4 for the three structures are illustrated in Figure 6b.

We note that the model for û(q) used in this example is assumed to be time-invariant. 

However, even with fixed diffusion time and varying gradient strength, the estimated model 

parameters show differences for the different tissue types. Note that, these structures have 

similar intra-cellular, extra-cellular and myelin volume fractions and the average axon 

diameter is less than 1μm for all the substrates. At-least in the noiseless simulations, the 

proposed method is capable of detecting such subtle differences in the tissue structural 

organization.

4.2. Sensitivity to partial-volume effects

The simulated diffusion signals from the two synthetic structures using the Wu-Minn and 

MGH HCP sequences are shown as the solid lines in Figs. 7a and 7c, respectively. Since the 

structure in Fig. 2b is not macroscopically symmetric, the diffusion MRI signal is complex 

valued, i.e.. The blue plots in Figs. 7a and 7c were taken as the absolute value of the 

simulated signals. We note that the analytic expression for the diffusion signal from the CSF 

area with a single restrict barrier is available in (Özarslan et al., 2008). The estimated signals 

using the PICASO model is indicated by the star markers in Figs. 7a and 7c. We note minor 

fitting errors at very high q-values in Fig. (7c), which may have be caused by the truncated 

expansion of û(q) to order 4. The estimated EAD functions using the Wu-Minn experiment 

are shown in Fig. 7b. The û2 values for the two structures with and without the partial-

volume effect are 0.3674 μm2/ms and 0.1745 μm2/ms, respectively. Fig. 7d shows the 

corresponding EAD functions for the MGH acquisition parameters where (û2, û4) values for 

the two structures with and without the partial volume effects are (0.3493 μm2/ms, −0.1042 

μm4/ms) and (0.1991 μm2/ms, −0.0213 μm4/ms), respectively. We note that the partial-

volume effect leads to increased long-range disturbance coefficient and decreased short-

range coefficient, as expected. Very interestingly, we also found similar observations from 

our in-vivo experimental results (the boundary of corpus callosum and vecntricles).

4.3. Estimation results for the WU-Minn HCP data set (low q-value regime)

Figures 8a to 8d show the estimated model parameters û2⊥ (long range disturbance in the 

direction orthogonal to the fiber orientation), û2‖ (long range disturbance along the fiber 

orientation), d⊥ and d‖ (diffusivities perpendicular and parallel to fiber orientation) for a 

coronal slice of the WU-Minn HCP data set. For comparison, we also show the 

perpendicular and parallel diffusivities estimated from the standard DTI model; see Figures 

8e and 8f. We note that the contrasts in the images for û2⊥ and d⊥ are substantially different 
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than those for DTI. The û2⊥ image in Figure 8a shows a similar dark contrast in the 

ventricles and the corpus callosum (CC) area. Since the CC area contains densely packed 

small axons (Aboitiz et al., 1992), it leads to very little long-range disturbance (as expected). 

On the other hand, ventricles are regions with very little structure to hinder water diffusion 

and primarily contain freely diffusing water. Thus, we do not expect any short or long-range 

disturbance in this area, as is clear from Figs. 9a and 14a. Quite interestingly though, due to 

partial volume effect as well as the biological difference between the tissue types at the 

interface of white matter and ventricles, Figure 8a shows a clear boundary between the CC 

and the ventricle area as indicated by the yellow arrow. Though the CC and CSF area both 

have weak long-range disturbances, the mixing of the two structures leads to strong long-

range disturbance, which is consistent with the simulation results in Section 4.2. We note 

that the white-matter region indicated by the yellow arrow in Fig. 8b has lower 

perpendicular disturbance û2⊥ and higher parallel disturbance û2‖. The much stronger 

parallel disturbance may be caused by orientation dispersion in the underlying fiber bundles, 

while the lower û2⊥ may indicate that the axons are very densely packed. This demonstrates 

the potential of the disturbance coefficients in distinguishing different tissue microstructures. 

For clarity, we show a close-up of the estimated long-range disturbance û2⊥ and the FA 

values in Figures 9a and 9b, for the brain region indicated by the yellow arrow in Figure 8a.

Figures 10a to 10f show the same set of model parameters for a sagittal slice of the same 

data set. Figure 10c still shows distinct and clear contrast between CSF and white-gray 

matter areas. To show the difference in the packing structure (and fiber dispersion) as 

captured by û2 within the different regions of the corpus callosum as indicated by the yellow 

arrow in Figure 10a, we plot in Figure 11b the estimated value of û2⊥ at a few manually 

selected set of voxels in the corpus callosum; see 11a. Higher values of û2⊥ in the midbody 

could be caused by loosely packed large axons as shown in (Aboitiz et al., 1992). We also 

note that the genu has slightly lower value for û2⊥ than splenium, implying that the axons in 

the genu are more densely packed and/or less dispersed. Thus, the packing structure as 

captured by û2 is strikingly similar to the schematic of the axon density and size of CC 

shown in (Aboitiz et al., 1992).

Figures 12c to 12d illustrate the estimated disturbance function û2q2 perpendicular to the 

estimated fiber orientation at several different locations in the brain (background is standard 

DTI FA image). From figure 12c it is clear that the genu has the weakest long-range 

disturbance (or very tightly packed axons) compared to the midbody and splenium areas. 

Figure 12d shows clear differentiation between the organizational structure of tissue in the 

cortical and sub-cortical areas, as is also known from histology studies.

To illustrate the robustness of the PICASO model in fitting the measurements, we show the 

estimated signal in 5 representative voxels in Figures 13a to 13e, respectively. The blue, red 

and green curves in Figure 13 show the estimated signal for b = 1000, 2000 and 3000 s/

mm2, respectively, while scanner measurements are shown by the star makers. In these plots, 

the horizontal axis is the cosine of the angle between fiber orientation and the gradient 

directions. The location of the voxels are indicated by the arrows in Figures 12a and 12b, 

respectively, where the background is the FA image from DTI. The estimated model 

accurately fits the measurements especially in the white matter voxels. We expect that using 
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the fourth order term û4 will improve the fit, particularly for the results in Figs. 13d and 13e, 

as will be shown for the MGH-HCP data. Moreover, since the disturbance coefficients are 

sensitive to partial volume effects, the estimated disturbance maps in Fig. 8a and 8b may 

look noisier than the diffusivity maps.

4.4. Results from the MGH HCP data set (high q-value regime)

Figures 14a to 14f illustrate the estimated model parameters for a coronal slice of the MGH 

HCP data set with the perpendicular and parallel diffusivity from DTI shown in Figures 14g 

and 14h, respectively. The û2⊥ and û2‖ images show similar contrast between different brain 

tissue as in the previous data set. Note that, we see some hindrance to parallel diffusion 

along the fiber orientation as well, which is captured by û2‖. In particular, the yellow arrow 

in Figure 14a points to the boundary between the CC and the cingulum. Note that, although 

visually, the images appear noisier, it is primarily because of two reasons: First, the 

estimated disturbance function is sensitive to changes in tissue types or composition leading 

to higher values of û2 and û4 at the boundaries and in the subcortical gray matter areas which 

has several types of cell nuclei within each voxel. Second, we did not enforce any kind of 

spatial regularization in our estimation algorithm, leading to a bit noisier parameter estimate 

due to the lower signal-to-noise ratio from the high b-value measurements.

Figures 14c and 14d show the estimated short-range disturbance û4⊥ and û4‖ in the 

perpendicular and parallel direction of the fiber orientation, respectively. As seen in Figure 

14c, most single-fiber white matter regions have strong short-range disturbance along the 

perpendicular direction indicating these areas are more densely packed.

Figures 15a to 15h show the estimated map of the disturbance and diffusivity parameters for 

a sagittal slice. As indicated by the yellow arrow in Figure 15a, the midbody of the CC has 

higher long-range disturbances compared to the genu and splenium areas, as expected. 

Figure 16 shows the estimated û2⊥ and û4⊥ at a manually selected set of voxels shown in 

Figures 16a and 16b, respectively. More negative values indicate less short range 

disturbance, while values of û4⊥ closer to 0 indicate dense packing of axons, as is seen in the 

genu and splenium of the CC (but not in the mid-body). We also note that Figure 15a shows 

interesting features in the cortical areas, specifically at the boundaries of tissue types.

Figures 18a to 18e illustrate the estimated and the measured signal in 5 representative voxels 

of the brain. The blue, red, green and magenta curves represent the estimated signal at b = 

1000, 3000, 5000 and 10000 s/mm2, respectively, while the star markers are the 

measurements. The location of the voxels are indicated by the arrows shown in Figures 17a 

and 17b. We note that including the 4th−order term ensures a better fit to the data even at b = 

10000 s/mm2. Figures 17c and 17d show the estimated disturbance functions û2⊥q2 + û4⊥q4 

perpendicular to fiber orientation. The midbody shows stronger long-range disturbance than 

the genu and splenium areas, as expected. The disturbance function estimated at a couple of 

voxels in the cortical and sub-cortical gray matter areas are shown in Figure 17d. We should 

note that the range of q-values is different in Figures 17 and 12, and hence the disturbance 

function looks different, but in the low q-value range, they are consistent.
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From these experiments, it is clear that novel features of structural organization of brain 

tissue can be extracted not only from theoretical predictions and Monte-Carlo simulations, 

but also from in-vivo human brain data.

5. Discussion and conclusions

In this paper, we proposed a novel PICASO model for investigating the biophysical cellular 

and axonal architecture of biological tissue using diffusion MRI. We used the Diffusion 

equation and the Bloch-Torrey equation with spatial variability of the diffusion coefficient to 

incorporate the structural organization of the underlying media. We introduced a novel 

representation of the diffusion MRI signal in terms of a structural disturbance function, 

which contains information about the underlying structural organization of the medium. 

Moreover, we also proposed novel measures termed as the short- and long-range disturbance 

coefficients derived from the disturbance function using dMRI measurements to infer 

specific properties of the tissue structure. We also derived the relation between the 

disturbance function and the EAP, and its connection with the effective medium theory of 

(Novikov and Kiselev, 2010). The relevance of the proposed method was examined using 

Monte-Carlo simulations and in-vivo experiments. The main conclusions from the 

experimental results are summarized below:

• The Monte-Carlo simulation results showed that the proposed method is capable 

of identifying and quantifying different types of packing structure of axons with 

SDE signal acquired at fixed diffusion-time and varying gradient strengths. The 

theory we developed is quite general and models the structural organization 

using a function û(q, t) of both q and t. For simplicity, even if this disturbance 

function is assumed to be time-invariant, the estimated model parameters still 

capture different short and long length scale disturbances associated with the 

structural organization of cells and axons.

• The experimental results using the WU-Minn HCP dMRI data set showed that, 

for diffusion signal acquired at low q-values, the PICASO model can be used to 

estimate long-range disturbance in microstructural arrangement of axons. The 

results show that the long-range disturbance is different for different segments of 

the corpus callosum. Further, several novel contrasts between tissue types, tissue 

boundaries and the corresponding diffusivities were seen, which further reveal 

the packing structure of axons in brain tissue obtained from in-vivo dMRI data.

• The experimental results using the MGH HCP dMRI data set showed that high q-

values can provide information about short-range or short-length scale 

disturbances in the microstructural arrangement of axons. Different types of 

tissue can be distinguished by the estimated disturbance function. However, since 

the SNR is low at high q-values, the estimated model parameters show larger 

variance within the same type of tissue. Hence, an important goal of our future 

work is to investigate a robust estimation method that is not as sensitive to 

measurement noise.

• In this initial work, we developed a general theory to understand the relation 

between the structural organization of brain tissue and the dMRI measurements. 
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Our experiments and simulations were limited to assuming a predominant single 

fiber bundle at each voxel in the brain. Note that, this is a first step towards 

getting a deeper insight into the biophysical properties of the tissue organization 

in the simple case of coherently organized single fiber region, which is still a 

challenging problem and an area of active research as seen with several other 

specific models proposed in the literature (DTI, CHARMED, NODDI, etc.). 

Moreover, we note that a polynomial expansion for the disturbance function may 

not be the most appropriate model for investigating the dependence of the dMRI 

signal on gradient strength. Furthermore, we also assumed that the disturbance is 

cylindrically symmetric to reduce model complexity. Generalizing the 

dependence of the disturbance function on fiber orientation, gradient strength, 

direction and time will be part of our future work.

To conclude, the proposed theory provides a general framework for analyzing 

microstructural organization of brain tissue from in-vivo diffusion signal acquired using the 

standard single pulse experiment. We proposed several novel indices with specific 

biophysical meaning and which have the potential to be used in clinical settings to study 

neuronal abnormalities.

Appendix A. Solving the modified Bloch-Torrey equation

The expression in Eq. (32) can be obtained from Eq. (31) as described below. To re-iterate, 

the PDE in Eq. (32) is given by:

(A.1)

First, we define

Next, we show that the solution for  is given by the following:

(A.2)

Note that, the first term in the right-hand side of Eq. (A.2) depends on  which is the 

initial condition. To verify that Eq. (A.2) satisfies Eq. (31), we first take the partial derivative 

of  with respect to t
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where we have used the chain rule and the following Leibniz integral rule

Similarly, we can derive the partial derivative of  with respect to k as

Then, it is straightforward to verify that  satisfies Eq. (31). By setting k = 0 in Eq. 

(A.2), we obtain the expression in Eq. (32) for the diffusion signal .

An alternative derivation follows from the techniques developed in the field of control 

theory. Consider the following dynamical system:

(A.3)

where u(t) is the input that changes the evolution of x(t). In control theory, the solution to 

this problem is well studied and is given by (Isakov, 2006):

(A.4)

The infinite-dimensional dynamical system (31) is just a more complex version of (A.3) 

with the system matrix A replaced by the time-dependent and commutative operator 
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. Thus, the solution Eq. (A.2) also has a similar form as the solution in 

Eq. (A.4).

We also note that the solution (A.4) still holds even if u(t) depends on x(t). For example, let 

us consider u(t) = Bx(t). Then, Eq. (A.3) reduces to ∂tx(t) = (A + B)x(t) whose solution is 

simply given by:

(A.5)

One can also verify that Eq. (A.5) also satisfies the general solution Eq. (A.4) by replacing 

u(t) with Be(A+B)tx(0). Thus, in the original problem Eq. (31), though the value of 

 may depend on , Eq. (A.2) still provides a general solution for 

analyzing the relation between the diffusion signal and the structural disturbance.

Appendix B. Note on computing the time-varying moments of EAP

We provide more detailed information on computing the time-varying moments given in 

Eqs. (17) and (18). First, we note that the following inverse Fourier transforms:

where h(t) is the Heaviside function, i.e. h(t) = 1 for t ≥ 0 and h(t) = 0 for t ≤ 0. Then, the 

inverse Fourier transform of  and  can be obtained using the Convolution 

Theorem of the Fourier transform.

Appendix C. The disturbance function for restricted diffusion in cylinders

In this appendix, we derive an expression for the ensemble average disturbance (EAD) 

function for diffusion in restricted cylinders. The main purpose is to show that the proposed 

method is also able to model restricted diffusion, where the the EAD has a specific form. 

The diffusion propagator for a perfectly reflecting cylinder with radius a has been derived in 

(Neuman, 1974; Stepišnik, 1993; Callaghan, 1991) and the corresponding diffusion signal is 

given by:

(C.1)
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where Jn and  are Bessel functions of the first kind and their derivatives, respectively, and 

βnk is the kth root of .

Using Eq. (21), we derived the expression for the corresponding EAD:

Using , , and  for x ≪ 1, the Taylor 

expansion of û(q, t) can be written as:

with

The higher order functions  with n ≥ 3 do not contribute to the q2 and q4 terms in û(q, t). 
We note that

(C.2)

Using in Eqs. (26) and (27), the above equation implies fintra = 1 and the axon radius is equal 

to a.
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Figure 1. 
Figs. (a) (b) and (c) show partial field of views of the three simulated tissue structures.
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Figure 2. 
Illustration of two tissue structures used in testing the partial volume effects. The blue region 

at the bottom of Fig. 2b represents the CSF area which is separated from the axonal bundles 

by an impermeable membrane.
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Figure 3. 
The first row shows the narrow-pulse dMRI signal s(q, t) in the q-space at a selected set of 

time points for the three structures. The second row shows the corresponding EAD û(q, t) at 

the same time points. The third row shows the same û(q, t) function in the time domain at a 

selected set of q-values.
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Figure 4. 
The dots are the estimated values of the EAD û(q, t) for the three structures at t = 80 ms. The 

solid lines are the corresponding functions fitted using the model in Eq. (15) with the 

coefficients û2 and û4 shown in Table 1.
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Figure 5. 
The blue, green and red curves in (a) show the simulated signal for δ = 10.6 ms, Δ = 43.1 ms 

and g = 20, 40, …, 100 mT/m corresponds to Structures 1, 2 and 3, respectively. The black 

star markers represent the estimated signal. The blue, green and red curves in (b) show the 

disturbance function û2q2 corresponding to the three structures.
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Figure 6. 
The blue, green and red plots in (a) show the Monte-Carlo simulated signals with δ = 12.9 

ms, Δ = 21.8 ms and g = 30, 60, …, 300 mT/m corresponding to Structures 1, 2 and 3, 

respectively. The black star markers represent the estimated signal using the PICASO model. 

The blue, green and red curves in (b) show the estimated disturbance function û2q2 + û4q4 

corresponding to the three structures.
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Figure 7. 
Figs. 7a and 7c illustrate the simulated (solid lines) and the estimated (star markers) 

diffusion MRI signals from the two structures in Fig. 2 using the Wu-Minn and MGH HCP 

sequences, respectively. Fig. 7b shows estimated disturbance functions using the Wu-Minn 

signals and Eq. (33). Fig. 7d shows the estimated disturbance functions using the MGH 

signals and Eq. (34).
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Figure 8. 
Estimated model parameters for a coronal slice of the HCP data set with all units shown in 

μm2/ms.
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Figure 9. 
Figs. (a) and (b) show the estimated long-range disturbance coefficient û2⊥ and the FA value 

for the brain region pointed by the arrow in Fig. 8a. Fig. (a) highlights the partial-volume 

effect between corpus callosum and ventricle.
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Figure 10. 
Estimated model parameters for a sagittal slice of the WU-Minn HCP data set with all units 

shown in μm2/ms.
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Figure 11. 
Fig. (b) shows the estimated long-range disturbance coefficient û2⊥ with unit shown in 

μm2/ms at a selected set of voxels in the corpus callosum shown in Fig. (a).
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Figure 12. 
Fig. (c) shows the estimated disturbance functions û2q2 at three representative voxels, 

indicated in Fig. (a), in the genu (the bottom line, colored in blue), splenium (the middle 

line, colored in red), and the midbody (the top line, colored in green), respectively. Fig. (d) 

shows the estimated û2q
2 in two voxels, indicated in Fig. (b), in the cortical gray matter (the 

lower line, colored in green), and the subcortical gray matter (the upper line, colored in red), 

respectively.
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Figure 13. 
The solid plots and star markers in Figs. (a) to (e) show the estimated and the measured 

diffusion signal for the voxels indicated in Figures 12a and 12b versus the inner product 

between gradient direction and the dominant eigenvector of the diffusion tensors. The blue, 

red and green plots and markers correspond to the diffusion signal at b-shells with b = 1000, 

2000 and 3000 s/mm2, respectively.
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Figure 14. 
Estimated model parameters for a coronal slice of the MGH HCP data set, where the units 

for û2⊥, û2║, d⊥, d║ are shown in μm2/ms and the units for û4⊥, û4║ are shown in μm4/ms.
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Figure 15. 
Estimated model parameters for a sagittal slice of the MGH HCP data set, where the units 

for û2⊥, û2║, d⊥, d║ are shown in μm2/ms and the units for û4⊥, û4║ are shown in μm4/ms.
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Figure 16. 
Figs. (c) and (d) show the estimated long- and short-range disturbances, i.e. û2⊥ (in μm2/ms) 

and û4⊥ (in μm4/ms), for the set of voxels illustrated in Figs. (a) and (b), respectively.
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Figure 17. 
Fig. (c) shows the estimated disturbance functions û2q2 +û4q4 at three representative voxels, 

indicated in Fig. (a), in the genu (the middle line, colored in blue), splenium (the bottom 

line, colored in red), and the midbody (the top line, colored in green), respectively. Fig. (d) 

shows the estimated û2q2 + û4q4 in two voxels, indicated in Fig. (b), in the cortical gray 

matter (the lower line, colored in green), and the subcortical gray matter (the upper line, 

colored in red), respectively.
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Figure 18. 
The solid plots and star markers in Figs. (a) to (e) show the estimated and the measured 

signal for the voxels indicated in Figures 17c and 17d, respectively, versus the inner product 

between gradient direction and the dominant eigenvector of the diffusion tensors. The blue, 

red, green and magenta plots (and markers) correspond to diffusion signal at b-shells with b 
= 1000, 3000, 5000 and 10000 s/mm2, respectively.
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Table 1

The estimated parameters for the three structures using dMRI signals with narrow pulses.

Structure 1 Structure 2 Structure 3

0.2803 0.5058 0.6903

û2 (μm2/ms) 0.1220 0.1832 0.2423

û4 (μm4/ms) −0.0030 −0.0086 −0.0178
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Table 2

The estimated model parameters for the three structures with δ = 10.6 ms, Δ = 43.1 ms and g = 20, 40, …, 100 

mT/m.

Structure 1 Structure 2 Structure 3

0.2650 0.3260 0.4776

û2 (μm2/ms) 0.1257 0.1499 0.2213
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Table 3

The estimated model parameters for the three structures with δ = 12.9 ms, Δ = 21.8 ms and g = 30, 60, …, 300 

mT/m.

Structure 1 Structure 2 Structure 3

0.2868 0.3593 0.5179

û2 (μm2/ms) 0.1443 0.1762 0.2501

û4 (μm2/ms) −0.0115 −0.0200 −0.0276
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