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Abstract

A number of central nervous system (CNS) diseases exhibit changes in myelin content and 

magnetic resonance longitudinal, T1, and transverse, T2, relaxation times, which therefore 

represent important biomarkers of CNS pathology. Among the methods applied for measurement 

of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium 

single pulse observation of T1 and T2 (mcDESPOT) approach is of particular interest. mcDESPOT 

permits whole brain mapping of multicomponent T1 and T2, with data acquisition accomplished 

within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the 

limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-

resolution mapping, required for the depiction of small structures and to reduce partial volume 

effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially 

improved determination of MWF from mcDESPOT imaging data. However, our previous study 

was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC 

analysis to the simultaneous determination of whole-brain MWF and relaxation times using the 

two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies 

indicate the overall greater performance of this approach compared to the stochastic region 

contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT 

data. SRC estimates of the transverse relaxation time of the long T2 fraction, T2,l, and the 

longitudinal relaxation time of the short T1 fraction, T1,s, clustered towards the lower and upper 

parameter search space limits, respectively, indicating failure of the fitting procedure. We 

demonstrate that this effect is absent in the BMC analysis. Our results also showed improved 

parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find 

that the combination of BMC analysis and mcDESPOT, BMC-mcDESPOT, shows excellent 

performance for accurate high-resolution whole-brain mapping of MWF and bi-component 

transverse and longitudinal relaxation times within a clinically realistic acquisition time.
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1. INTRODUCTION

Alterations in myelin content and in magnetic resonance relaxation times T1 and T2 have 

been shown to be sensitive biomarkers for a number of central nervous system diseases. 

These include multiple sclerosis (1–5), brain atrophy (6, 7), epilepsy (8–11), Parkinson’s 

disease (7), Alzheimer's disease (12, 13), phenylketonuria (14, 15), psychotic disorders (16), 

and schizophrenia (17–20). While it is most often assumed that relaxation within each 

imaging voxel may be described by a single T1 or T2 value, this assumption does not capture 

the structural and compositional complexity of brain tissue. In fact, previous studies have 

demonstrated the presence of multi-component T1 and T2 relaxation processes in brain as an 

indicator of compartmentation (5, 21–33). Multicomponent relaxometry (MCR) analysis has 

characterized two main water pools, with distinct relaxation times and fractions. The pool 

exhibiting the more rapid transverse relaxation and smaller fraction size has been attributed 

to myelin-bound water, while the more slowly-relaxing pool has been assigned to relatively 

unbound intra- and extracellular water (21, 23, 28, 34).

A variety of approaches to MCR have been applied to in-vivo clinical studies (28, 29, 32, 

35–43), and have been reviewed recently by Alonso-Ortiz et al. (23). Among these methods, 

the multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) 

method, based on steady-state magnetic resonance imaging (MRI) sequences, is of particular 

interest (28, 44). mcDESPOT allows simultaneous mapping of multicomponent T1 and T2 

relaxation times and myelin water fraction (MWF), providing improved sensitivity and 

specificity to tissue changes associated with development or pathology. Moreover, 

mcDESPOT permits the use of a relatively short echo time, TE, thereby allowing improved 

detection of the short-T2 component of the signal, representing the MWF. Finally, 

mcDESPOT makes use of conventional MR acquisition sequences, namely, fully balanced 

steady state free precession (bSSFP) and spoiled gradient recalled echo (SPGR), widely 

available on clinical MRI systems. Overall, then, mcDESPOT is particularly attractive for 

clinical investigations (26, 30, 45).

In mcDESPOT analysis, SPGR and bSSFP datasets are acquired over a range of flip angles 

(FAs), with very short repetition times, TRs. Two different bSSFP datasets are acquired 

respectively with radio-frequency (RF) phase increments equal to 0 or π (bSSFP0 and 

bSSFPπ) to correct for off-resonance effects (44). Although this formalism has been 

extended to include a third pool to account for either partial volume effects (27) or 

magnetization transfer (46), mcDESPOT modeling is generally restricted to a two-pool 

model. Even with this restriction, quantitative parameter estimation from mcDESPOT is 

problematic, especially at the low-to-moderate signal-to-noise ratios (SNRs) typical of high-

resolution imaging (25, 47, 48). In recent studies, Zhang et al. (33, 49), Lankford and Does 

(50) and Bouhrara et al. (47) showed that for a two-component implementation of 

mcDESPOT using stochastic region contraction (SRC) with nonlinear least squares (NLLS), 
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determination of relaxation times was problematic due to the flatness of the parameter least-

squares energy surfaces. It was found, for example, that estimates of T1 for the more rapidly 

relaxing component, and of T2 for the more slowly relaxing component, showed a tendency 

to cluster respectively at the upper and the lower limits of the specified parameter spaces 

(33, 49).

In a recent study, Bouhrara and Spencer showed that the quality of MWF estimates from the 

two-component mcDESPOT signal model was greatly enhanced through use of a new 

Bayesian Monte Carlo (BMC) analysis (25). However, that work was limited to MWF 

analysis and did not address the important issue of relaxation time estimation. In this work 

we therefore extend BMC-mcDESPOT analysis to the simultaneous estimation of MWF and 

relaxation times over the whole brain with a voxel volume of 1 mm3, with an acquisition 

time of under 15 minutes. In addition, we directly demonstrate the superior performance of 

BMC compared to the conventional approach using SRC.

2. MATERIALS & METHODS

2.1. Experimental Analysis

2.1.1. Data Acquisition—All experiments were performed on a 3T whole body Philips 

MRI system (Achieva, Best, The Netherlands) using the internal quadrature body coil for 

transmission and an eight-channel phased-array head coil for reception. Data were collected 

at low-resolution (LR) or high-resolution (HR) from four volunteers, from whom written 

informed consent was obtained prior to participation. All examinations were performed with 

approval of the local Institutional Review Board. Table 1 summarizes the experimental 

acquisition and reconstruction parameters of mcDESPOT imaging data for each volunteer. 

LR images were obtained with an acquisition voxel size of 2 mm x 2 mm x 2 mm and 

reconstructed to this same voxel volume of 8 mm3 while all HR images were acquired with 

an acquisition voxel size of 1.5 mm x 1.5 mm x 1.5 mm and reconstructed to a voxel volume 

of 1 mm3 using zero-filling to improve visual quality.

In our in-vivo studies, SNR was estimated as the mean signal value within a large region in 

SPGR images obtained over all non-zero FAs divided by the mean signal value for FA = 0o. 

These SNR values were ~30 and ~50 for the HR and LR protocols (Table 1), respectively.

2.1.2 Data Analysis—We assumed a two-component non-exchanging system consisting 

of a short, s, and long, l, T1 and T2 components (25, 28, 51). Analysis was performed 

explicitly accounting for nonzero TE as incorporated into the TE-corrected-mcDESPOT 

(TEC-mcDESPOT) signal model (52). Images from each mcDESPOT dataset were analyzed 

on a voxel-wise basis. First, monoexponential T1 maps were generated through a fit of the 

SPGR data as a function of FAs to a functional form incorporating only a single underlying 

component. Similarly, T2 and off-resonance maps were then generated according to the 

DESPOT2-FM method (53) by fitting the bSSFP datasets as a function of FAs to a single 

component form of the signal, using the voxel-wise T1 value obtained as outlined above. 

Finally, the off-resonance map was combined with the SPGR and bSSFP datasets to 

simultaneously generate fs, T2,s, T2,l, T1,s, and T1,l maps, with fs defining the MWF. Manual 
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segmentation was performed to eliminate ventricles and non-brain regions within the 

images, with parameter maps generated for the remaining regions of interest.

The first analysis consisted of investigating the performance of the BMC approach for 

generating high-resolution MWF, T2,s, T2,l, T1,s, and T1,l maps. Analysis was performed for 

all LR and HR datasets described in Table 1. Details regarding the mathematical aspects of 

BMC-mcDESPOT analysis for simultaneous estimation of all system parameters are given 

in the Appendix.

In recent studies, Zhang et al. (33, 49) showed that determination of relaxation times from 

mcDESPOT using SRC (54) can be problematic. Motivated by their observations, we 

performed a second analysis in which we generated MWF, T2,s, T2,l, T1,s, and T1,l maps 

using SRC. This analysis was performed on the LR and HR datasets acquired from 

Volunteer #1 (Table 1). Wide limits for the initial parameter bounds were used to avoid an 

over-constrained parameter space (33, 47, 51). These limits were 1 ms ≤ T2,s ≤ 60 ms, 60 ms 

≤ T2,l ≤ 200 ms, 10 ms ≤ T1,s ≤ 650 ms, 10 ms ≤ T1,l ≤ 3500 ms and 0 ≤ fs ≤ 0.45. These 

same limits were used in all BMC analyses as well. Histograms of parameter values were 

calculated from white matter (WM) voxels in several slices, with the WM regions defined 

using manual segmentation of T2 maps generated using the DESPOT2-FM method described 

above.

Finally, the mean and SD for each estimated parameter were calculated over three regions of 

interest (ROIs) in several slices. The first ROI (ROI #1) lay within the frontal lobes, the 

second ROI (ROI #2) lay within the regions surrounded by the insular cortex, internal 

capsule, thalamus and putamen, and the third ROI (ROI #3) enclosed all WM regions. This 

analysis was performed on the parameter maps obtained from HR datasets using BMC or 

SRC.

2.2. Simulation Analysis

Numerical simulations were used to further assess the performance of parameter 

determination using BMC-mcDESPOT and for comparison with those computed using SRC. 

The following input parameters describing acquisition were used: TRSPGR = TRbSSFP = 6.5 

ms, TESPGR = 1 ms, αSPGR = [2 4 6 8 10 12 14 16 18 20]o, and βbSSFP = [2 6 14 22 30 38 

46 54 62 70]o, with two bSSFP datasets generated with RF phase increments of 0 or π 
respectively. Input parameters defining the system were: fs (i.e. MWF) = 0.2, T2,s = 15 ms, 

T2,l = 75 ms, T1,s = 500 ms, and T1,l = 1500 ms, corresponding to WM values obtained from 

the in-vivo analysis described above. Results were obtained over 1001 noise realizations and 

are presented as histograms. All analyses were performed at steady-state SNR of 500, 

defined as SNR = M0 / σ, where M0 represents the signal amplitude at TE = 0 ms. This 

steady state SNR value corresponds to an in-vivo SNR of ~20–30 as defined above. More 

extensive numerical analyses are presented in the Supplementary Material.

3. RESULTS

Figure 1 shows examples of MWF, T2,s, T2,l, T1,s and T1,l maps derived from brain images 

using BMC-mcDESPOT. HR datasets and LR datasets were acquired with isotropic voxel 
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volumes of 1 mm3 and 8 mm3 respectively. Parameter maps derived from the HR and LR 

datasets were similar overall, especially in the WM regions. However, as expected, the HR 

maps better define anatomic details and regional patterns. The LR maps showed, overall, 

greater dispersion in derived parameter estimates especially at interfaces between gray and 

white matter, likely due to partial volume effects. Moreover, in contrast to the WM regions, 

all T2,s maps showed high dispersion in the CSF and gray matter. This is a direct 

consequence of the very low values of MWF in these regions, which renders it impossible to 

assign meaningful values of T2,s.

Figure 2 shows examples of MWF, T2,s, T2,l, T1,s, and T1,l parameter maps derived from the 

HR and LR human brain images using SRC. Parameter values derived from HR or LR were 

again similar, especially in WM regions. However, visual inspection (Figs. 1–2) as well as 

histogram analysis (Fig. 3) demonstrate that the derived parameter estimates using SRC 

(Fig. 2–3) differed substantially from those obtained with BMC (Figs. 1 and 3), particularly 

for T2,s, T2,l and T1,s. In addition, unlike BMC, SRC resulted in substantial random variation 

in the estimation of T2,s, and clustering of T2,l and T1,s estimates towards the lower and 

upper search space limits, respectively. T1,l and MWF maps derived from SRC and BMC 

showed similar regional patterns, although lower dispersion was evident in the MWF 

estimates derived using BMC. These results indicate the superior overall performance of 

BMC as compared to SRC. We also observed that the clustering of T1,s estimates towards 

the upper search space limits using SRC was reduced to some extent in the LR parameter 

maps as compared to the HR maps. This is likely due to the relatively higher SNR of the 

former.

Figure 4 shows parameter histograms of fs (i.e. MWF), T2,s, T2,l, T1,s, and T1,l obtained 

using Monte Carlo simulations over 1001 noise realizations. Results were obtained at an 

SNR value of 500 using SRC or BMC. Using SRC, T2,l estimates were clustered towards the 

lower search space limit while T1,s estimates were clustered towards the upper search space 

limit; this behavior is in good agreement with our in-vivo observations (Figs. 2–3). In 

contrast, BMC parameter estimates were preferentially distributed around the true input 

values and avoided search space boundaries. Further, parameter estimates using SRC 

showed larger bias and dispersion compared to BMC. Extensive numerical analysis further 

demonstrating the overall superior performance of BMC is presented in the Supplementary 

Material (Fig. Sup.1).

Figure 5 shows parameter means and SDs of estimates of MWF, T2,s, T2,l, T1,s, and T1,l 

calculated from the three HR datasets (Table 1). For each HR dataset, results were obtained 

over three ROIs using BMC and SRC analyses. The results indicate good reproducibility for 

both analysis methods between the three subjects for all estimated parameters. However, 

BMC analysis was able to detect regional variation in all system parameters, while SRC 

showed substantial regional changes in MWF, T2,s and T1,l only. In fact, T2,l and T1,s 

calculated using SRC showed artifactually decreased regional variation; the averaged values 

calculated over the three subjects were T2,l = 64 ± 3.9 ms and T1,s = 626 ± 7.6 ms, which are 

very close to the lower and upper search space limits of 60 ms and 650 ms, respectively. In 

contrast, the averaged values of these parameters calculated using BMC, 77 ± 2.1 ms and 

517 ± 13.2 ms, were well-within the search space limits. This is consistent with Figs. 2–4 
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and the comments above. Finally, parameter estimates of MWF, T2,s and T1,l derived using 

SRC showed, overall, higher SDs as compared to those derived using BMC. In fact, the 

average SD values over the three volunteers in the estimation of MWF, T2,s and T1,l, 

respectively, were 0.1, 8.2 ms and 425 ms using SRC, and 0.06, 5.4 ms and 360 ms using 

BMC. This is in good agreement with Fig. 2, which shows substantial spatial irregularities, 

especially in derived MWF and T2,s values, as compared to the BMC results of Fig. 1.

4. DISCUSSION

In 1994, Mackay et al. demonstrated in-vivo MCR in the human brain for myelin mapping 

using MRI (21). Since then, MCR has become an active area of research, with several 

methods having been developed to either accelerate data acquisition (23, 28, 29, 32, 36, 37, 

39, 40, 55) or to improve parameter determination (23, 25, 36, 44, 56–65). Among these, 

mcDESPOT permits rapid whole-brain coverage, and so may have particular potential for 

clinical investigations, especially those involving patients with limited ability to remain 

stationary for the lengthy duration of MRI studies. However, it has been shown (25, 33, 47, 

48) that the high dimensionality of the mcDESPOT signal models renders parameter 

estimation problematic when the acquired images exhibit substantial noise, such as in the 

case of high-resolution mapping. However, we showed that the quality of derived MWF 

estimates is greatly enhanced using BMC analysis (25). In the present work, we generalized 

BMC-mcDESPOT to the simultaneous estimation of MWF and relaxation times for a two-

component model; simulation analysis demonstrated that BMC allows high quality 

determination of all system parameters. Further, our in-vivo analysis showed that high-

quality, high-resolution MWF and relaxation time maps may be obtained with an isotropic 

voxel volume of 1 mm3 within a clinically realistic acquisition time, permitting accurate 

depiction of anatomical detail and regional patterns compared to LR mapping (Fig. 1).

In this study we compared the performance of the BMC-mcDESPOT analysis with that of 

the SRC algorithm, conventionally used for parameter estimation with mcDESPOT, for 

determination of MWF and relaxation times. Overall, we found greatly reduced bias and 

dispersion in the estimation of all system parameters using BMC (Figs. 1–5, Fig. Sup.1). We 

attribute this to several factors, including the implicit incorporation of noise SD and the 

marginalization over nuisance parameters in the BMC analysis (25). In fact, a fundamental 

difference between Bayesian methods and the several variants of NLLS algorithms, such as 

SRC, is that the posterior probabilities resulting from the former are obtained through 

incorporation of the entire specified ranges of nuisance parameters through marginalizations. 

In contrast, the evaluation of single combinations of estimated parameters required to 

optimize the objective function in NLLS leads to potential difficulties with local minima, 

especially in higher-dimensional problems such as mcDESPOT (47). A drawback to 

Bayesian analysis is the requirement for high dimensional integration in order to perform the 

marginalizations. To overcome this, we have implemented Monte Carlo sampling to perform 

the required integrations, although more advanced sampling strategies such as Markov chain 

Monte Carlo may further improve performance (66).

Our numerical and in-vivo analyses showed that using SRC, T2,l estimates were 

preferentially clustered close to the lower search space limit, while T1,s estimates were 
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preferentially close to the upper search space limit (Fig. 2–4, Fig. Sup.1). This is in good 

agreement with the observations of Zhang et al. (33, 49). This problem was markedly 

reduced using BMC, with parameter estimates distributed around mean values that were 

clearly separated from the search space limits. However, visual inspection of the parameter 

maps (Figs. 1–2) as well as more quantitative analysis (Fig. 3–5) showed higher dispersion 

in derived parameter estimates as compared to the literature (26, 28, 33, 44, 49, 67), 

especially using SRC. We attribute this to our use of relatively large parameter space bounds 

to avoid bias (33, 47, 51); as has previously been noted, this comes at the expense of 

increased dispersion (47, 51). A priori restriction of the allowable parameter space therefore 

represents a tradeoff between bias and dispersion.

In agreement with recent studies (33, 49), our results showed that MWF and relaxation 

parameters values derived from mcDESPOT were substantially different from those derived 

from a CPMG analysis. This can be attributed to the fact that MRI pulse sequences, 

including mcDESPOT and CPMG, are influenced to substantially different degrees by 

experimental and physiological effects. Therefore, received signals will deviate from their 

ideal models due to diffusion (68–71), exchange (33, 72, 73), off-resonance effects (74–76), 

magnetization transfer (49, 77–79), J-coupling (80–82), spin locking (83, 84), internal 

gradients (85, 86), and magnetization spoiling (87, 88). The importance of these effects will 

depend both upon the specifics of the sample or subject under investigation and on the 

details of the pulse sequence, including the selection of parameters such as TE, TR, FAs, RF 

pulse shape, and gradient durations and amplitudes (89–93).

Our HR analyses were performed on three healthy young volunteers. While BMC showed 

good reproducibility between these subjects for all estimated parameters (Fig. 5), larger 

groups of subjects would be required for statistical comparisons between groups varying by, 

for example, age or disease status.

In the present work, we based our analysis on SPGR and bSSFP signal models that account 

for nonzero TE, that is, we used the TEC-mcDESPOT signal model (52). The neglect of the 

transverse signal decay that occurs during TE has been recently shown to potentially 

introduce large biases in parameter estimates from mcDESPOT (52). Nevertheless, 

limitations remain in the signal modeling of mcDESPOT, which represent limitations of the 

present work as well as in certain literature results. First, the mcDESPOT signal models 

analyzed by ourselves and others neglect finite RF pulse length (94–98). Similarly, we 

assumed perfect spoiling of transverse magnetization before each excitation pulse in the 

SPGR sequence; it has been shown that there may be a degree of preservation of transverse 

coherence in fast SPGR sequences with concomitant deviation of the signal behavior from 

the idealized model (87, 88, 99). Further, we assumed a two-component signal model; it has 

been shown that a three-component model improves the performance of mcDESPOT 

analysis in regions exhibiting partial volume effects, such as boundaries between brain tissue 

and ventricles and meninges (27). In addition, we assumed no exchange between the two 

proton pools. Extension of the BMC analysis to incorporate exchange is straightforward in 

principle and would permit evaluation of the impact of exchange on relaxation times, as well 

as on the estimate of MWF. Our analysis also assumes that the effect of magnetization 

transfer between free water protons and macromolecules is small (49). Moreover, we 

Bouhrara and Spencer Page 7

Neuroimage. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assumed a Gaussian noise distribution for our Bayesian analysis to obtain closed form 

expressions for marginalized joint likelihood functions (25). However, it is well-known that 

the noise in magnitude MR images follows a noncentral-χ distribution (100), which can be 

approximated by a Gaussian distribution only for relatively high SNR. Finally, as with any 

MRI sequence, the spatial encoding gradients of steady-state sequences modulate the degree 

of signal attenuation due to water diffusion (101, 102). However, water diffusion in different 

compartments, such as myelin sheets and intra- and extra-cellular spaces, is not incorporated 

into the mcDESPOT formalism. While extensive further investigation would be required to 

analyze all of the above effects, the present work stands to demonstrate the feasibility of 

high-resolution mapping of MWF and relaxation times under clinical MRI acquisition 

conditions.

5. CONCLUSIONS

We have demonstrated the feasibility of simultaneous HR mapping of MWF and relaxation 

times in white matter regions of human brain using BMC-mcDESPOT. High-resolution 

whole-brain maps of MWF and transverse and longitudinal bi-component relaxation times 

can be obtained in less than 15 min.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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6. Appendix

6.1. BMC-mcDESPOT Analysis for the estimation of all system parameters

The estimate, λ̂i, of a given parameter, λi, belonging to the set of unknown parameters λ is 

given by (25):

[A.1]

Here, P(λi|S)is the posterior distribution of λi given the vector S = (SSPGR SbSSFP0 SbSSFPπ) 

of measured signals, each of which is itself a vector describing the signal amplitude for each 

value of FA, m denotes one of a total of M random sets of parameter combinations sampled 

from a grid defining the range of our Monte Carlo integration, λ* is equivalent to λ but 

excludes the parameter λi being estimated and so represents the vector of nuisance 

parameters in the determination of λi, and P(λ*) = 1/λ* is the product of prior distributions 

for the elements of λ* taken as noninformative Jeffreys priors (25, 103). For example, the 

prior distribution in the estimation of T1,s is given by: P(λ*) = 1/λ* = (1/fs) * (1/T2,s) * 

(1/T2,l) * (1/T1,l). This is a widely-used though strictly improper prior. P(S) = ∫P(λ*) L(S|

λ) dλ is a normalization constant. We note that, in our previous paper (25), dλ in the 

definition of P(S) was erroneously written as dλ*, although the numerical calculations were 

performed with the correct expression. Finally, L(S|λ) is the marginalized joint likelihood 

function of S given λ (25):

[A.2]

where S̃ and M̃ are respectively the experimental and theoretical signals normalized by their 

respective mean values calculated over K SPGR or N bSSFP FAs (25). The theoretical 

SPGR and bSSFP signals are given in the following section. For computational efficiency, 

the likelihood function given in Eq. A. 2 is first calculated for all random parameter 

combinations. Then, for each parameter, the likelihood function is combined with the 

corresponding joint prior to create the joint posterior distribution for each of those random 

parameter combinations. Finally, the parameter estimate is obtained based on the first 

moment of the joint posterior distribution after marginalization over nuisance parameters.

6.2. SPGR and bSSFP signal models

Neglecting exchange between components, the two-component SPGR signal is given by (52)
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[1]

where s and l respectively denote the short- and long- T2 components, fs is the fraction of the 

short T2 component,  represents the signal amplitude at echo time TE = 0 and 

incorporates proton density, T2′ and machine factors (47, 52), and αk is the kth excitation 

FA out of a total of K FAs. We also define  and E1,j = 

exp(−TRSPGR/T1,j) , where T1,j is the spin-lattice and T2,j is the spin-spin relaxation time of 

the jth component.

Similarly, the two-component bSSFP signal in the absence of exchange between components 

is given by (52)

[2]

where

and

where  represents the bSSFP signal amplitude at echo time TE = 0 and incorporates 

proton density and machine factors, βn is the nth excitation FA out of a total of N FAs, and φ 
= 2π · Δω · TRbSSFP + ϑ, with Δω the off-resonance frequency of proton pools with the 

assumption that both proton pools exhibit the same chemical shift, and ϑ the phase 

increment of the applied RF pulse. Finally, E1,j = exp(−TRbSSFP/T1,j) and E2,j = 

exp(−TRbSSFP/T2,j).
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Highlights

• We extend Bayesian Monte Carlo (BMC) analysis of the two-component 

mcDESPOT signal model to simultaneous estimation of myelin water fraction 

(MWF) and relaxation times.

• Simulations and in-vivo studies indicate the superiority of BMC-mcDESPOT 

as compared to the conventional approach based on nonlinear least squares 

analysis.

• We demonstrate that use of BMC-mcDESPOT permits accurate high-

resolution mapping of MWF and relaxation times within a clinically realistic 

acquisition time.
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Figure 1. 
Figure 1a. Representative MWF, T2,s, T2,l, T1,s, and T1,l maps calculated for Volunteer #1 

(Table 1) using BMC-mcDESPOT. Results are presented for both high-resolution (HR) and 

low-resolution (LR) datasets. The HR maps allows greater depiction of anatomical detail and 

regional patterns as compared to the LR maps. Note that the displayed color scales are 

different from the boundary limits of the parameter space used in the fitting process for 

improved visualization. 1b. Representative MWF, T2,s, T2,l, T1,s, and T1,l maps calculated 

for Volunteer #3 (HR, left panels) or Volunteer #4 (LR, right panels) (Table 1) using BMC-

mcDESPOT. The HR maps allows greater depiction of anatomic detail and regional patterns 

as compared to the LR maps. Note that the displayed color scales are different from the 

boundary limits of the parameter space used in the fitting process. 1c. High-resolution MWF, 

T2,s, T2,l, T1,s, and T1,l maps calculated from brain images of Volunteer #3 (Table 1) using 

BMC-mcDESPOT. Results are presented for four different slices. Note that the displayed 

color scales are different from the boundary limits of the parameter space used in the fitting 

process.
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Figure 2. 
Representative MWF, T2,s, T2,l, T1,s, and T1,l maps calculated for Volunteer #1 using SRC. 

Results are presented for both HR and LR datasets. Note that the displayed color scales are 

different from the boundary limits of the parameter space used in the fitting process.
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Figure 3. 
Representative histograms of MWF, T2,s, T2,l, T1,s and T1,l obtained using BMC or SRC 

analysis from white matter regions within the HR parameter maps calculated for Volunteer 

#1. The mean and standard deviation values are as indicated, with BMC generally 

outperforming SRC. Unlike BMC, SRC resulted in a clustering of T2,l and T1,s estimates 

towards the lower and upper search space limits, respectively. These results indicate the 

superior overall performance of BMC as compared to SRC.
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Figure 4. 
Histograms of MWF, T2,s, T2,l, T1,s and T1,l obtained using BMC or SRC analysis over 1001 

noise realizations using numerical simulations. Vertical red dashed lines indicate true input 

parameter values: fs = 0.2, T2,s = 15 ms, T2,l = 75 ms, T1,s = 500 ms and T1,l = 1500 ms. The 

mean and standard deviations are as indicated. Note that using SRC, T2,l estimates were 

clustered towards the lower search space limit while T1,s estimates were clustered towards 

the upper search space limit. In contrast, BMC parameter estimates were distributed around 

the true input values and avoided search space boundaries.
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Figure 5. 
Means and standard deviations of estimates of MWF, T2,s, T2,l, T1,s and T1,l calculated from 

the HR datasets acquired from the brains of three volunteers (Vol) (Table 1). For each HR 

dataset, results were obtained in three different regions of interest (ROIs) using BMC or 

SRC analysis. ROI #1 lay within the frontal lobes, ROI #2 lay within the regions surrounded 

by the insular lobes, internal capsules, thalamus and putamen, and ROI #3 incorporated all 

WM regions.
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Table 1

In-vivo acquisition parameters

Volunteers
Acquisition parameters

Low-resolution (LR) protocol High-resolution (HR) protocol

Volunteer #1
Healthy 23 

year-old male

3D SPGR: αSPGR = [2 4 6 8 10 12 14 16 18 20]o, TESPGR = 
1.2 ms, TRSPGR = 6.5 ms.

3D bSSFP: βbSSFP = [2 6 14 22 30 38 46 54 62 70]o, 
TEbSSFP = 3.2 ms and TRbSSFP = 6.5 ms.

3D SPGR: αSPGR = [2 4 6 8 10 12 14 16 18 20]o, TESPGR = 
1.2 ms, TRSPGR = 6.5 ms.

3D bSSFP: βbSSFP = [2 6 14 22 30 38 46 54 62 70]o, TEbSSFP 
= 3.2 ms and TRbSSFP = 6.5 ms.

Volunteer #2
Healthy 22 

year-old male

FoV = 230 x 180 x 130 mm3, matrix size = 116 x 90 x 65, 
acquisition voxel size ≃ 2 mm x 2 mm x 2 mm, total 

acquisition time ≃ 10 min.

FoV = 230 x 180 x 130 mm3, matrix size = 153 x 120 x 86, 
acquisition voxel size ≃ 1.5 mm x 1.5 mm x 1.5 mm, total 

acquisition time ≃ 17 min.

Volunteer #3
Healthy 29 

year-old male
-

3D SPGR: αSPGR = [2 4 6 8 10 12 14 16 18]o, TESPGR = 
0.83 ms, TRSPGR = 6 ms.

3D bSSFP: βbSSFP = [2 4 7 11 16 24 32 40 50]o, TEbSSFP = 
2.8 ms and TRbSSFP = 5.8 ms.

FoV = 230 x 190 x 140 mm3, matrix size = 154 x 127 x 94, 
acquisition voxel size ≃ 1.5 mm x 1.5 mm x 1.5 mm, total 

acquisition time ≃ 15 min.

Volunteer #4
Healthy 22 

year-old male

3D SPGR: αSPGR = [2 4 6 8 10 12 14 16 18 20]o, TESPGR = 
0.83 ms, TRSPGR = 6 ms.

3D bSSFP: βbSSFP = [2 6 14 22 30 38 46 54 62 70]o, 
TEbSSFP = 2.8 ms and TRbSSFP = 5.8 ms.

FoV = 200 x 216 x 140 mm3, matrix size = 100 x 108 x 70, 
acquisition voxel size ≃ 2 mm x 2 mm x 2 mm, total 

acquisition time ≃ 11 min.

-

*
FoV: Field of view. The bSSFP images were acquired twice, once with RF phase increment, θRF, of 0 (bSSFP0) and once with θRF of π 

(bSSFPπ). All images were acquired with SENSE factor = 2. LR images were reconstructed to voxel volume = 8 mm3 while HR images were 

reconstructed to voxel volume = 1 mm3.
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