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Abstract

Here we address an important issue that has been embedded within the neuroimaging community 

for a long time: the absence of effect estimates in results reporting in the literature. The statistic 

value itself, as a dimensionless measure, does not provide information on the biophysical 

interpretation of a study, and it certainly does not represent the whole picture of a study. 

Unfortunately, in contrast to standard practice in most scientific fields, effect (or amplitude) 

estimates are usually not provided in most results reporting in the current neuroimaging 

publications and presentations. Possible reasons underlying this general trend include: 1) lack of 

general awareness, 2) software limitations, 3) inaccurate estimation of the BOLD response, and 4) 

poor modeling due to our relatively limited understanding of FMRI signal components. However, 

as we discuss here, such reporting damages the reliability and interpretability of the scientific 

findings themselves, and there is in fact no overwhelming reason for such a practice to persist. In 

order to promote meaningful interpretation, cross validation, reproducibility, meta and power 

analyses in neuroimaging, we strongly suggest that, as part of good scientific practice, effect 

estimates should be reported together with their corresponding statistic values. We provide several 

easily adaptable recommendations for facilitating this process.

Introduction

Just as cartography requires a balance to be struck between the loss of important detail and 

the exactitude of a map that has “the scale of a mile to the mile” (Carroll, 1889), so too 

science requires careful extraction and summarization following an experiment. In other 

words, to present concisely the important components of the data and analyses, an 

investigator reports the experiment and makes a generalized conclusion based on some 

supporting evidence: a small condensed set of numbers. The crucial question is: how much 

or to which extent should the investigator compress the information without sacrificing too 

much? There are arbitrary choices that have to be made, but there are some definite 

thresholds under which loss of information is too great for optimal utility.

For example, in a typical statistical analysis, two quantitative results are produced for each 

effect of interest: the estimation for the amplitude of the effect itself (e.g., a β value from 

regression analysis or GLM) and the associated statistic (e.g., t or z). The former provides 
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the magnitude of a physical measurement, which is the essence of scientific investigation, 

while the latter offers statistical substantiation for the effect estimate in the form of a 

significance level (or confidence interval, the implied range that may contain the effect 

estimate with a certain likelihood). While the relationship between the two quantitates is 

tight, each conveys distinct information about the result of the experiment; in most scientific 

disciplines, it is considered unacceptable if only significance is reported (Sullivan and Feinn, 

2012): the statistic value serves as auxiliary evidence for the existence of the targeted effect, 

and it is the effect estimate itself that is the center of investigation as the physical property of 

interest. For example, suppose that physicists would like to validate the predictions of the 

general relativity (Einstein, 1915) by investigating the gravitational waves from the merger 

of two black holes. It would be hard to imagine that they would only report a statistical value 

or the significance of their measurement (e.g., a chance of 1 event per 203,000 years, or a 

significance level of 3.4 × 10−7), but that they would not reveal the strength of the signal 

they have detected (a peak gravitational-wave strain of 1.0 × 10−21 in the frequency range of 

35 to 250 Hz) (Abbott et al., 2016).

However, within the field of neuroimaging, it has remained the predominantly common 

practice to report only statistical mapping tests in publications and presentations, a custom 

which has been largely (and per-plexingly) immune to critical scrutiny. For instance, one 

typically sees brain results provided as blobs whose color spectrum corresponds to t- or z-

values (or occasionally to p-values), and most of the time the underlying degrees of freedom 

are left out, rendering the statistics even harder to interpret. Similarly, in tabulated results for 

brain regions, standard reports usually contain the coordinates and statistic value at a single 

peak voxel (which is itself defined, again, as the maximum of the statistical values, not of 

the effect estimates, within the region), and the effect estimate at such a peak voxel is rarely 

reported. The same phenomenon commonly occurs in reporting results of seed-based 

correlation analyses for resting-state data, where the brain maps and tables usually show the 

statistic (often z) values instead of and without including inter-regional correlations.

Recently there have been a number of discussions about the use and misuse of p-values in 

the scientific community (e.g., Wasserstein and Lazar, 2016; Nuzzo, 2014), and others have 

been more critical of the “cult” or “obsession” of statistical significance (e.g., Ziliak and 

McCloskey, 2009). The editors of the journal, Basic and Applied Social Psychology, have 

gone so far as to take the seemingly extreme step as to no longer accept papers with p-values 

due to the concern of the statistics being used to support lower-quality research (Trafimow, 

2014). In a sense, our concern here is related, and addressing it would also alleviate many of 

these other topical issues, but the issue is specifically focused on the need for including the 

effect estimate in neuroimaging studies. To frame the discussion here, we quote the six 

guiding principles on p-values in a recent statement released by The American Statistical 

Association (ASA) (Wasserstein and Lazar, 2016):

1. P-values can indicate how incompatible the data are with a specified statistical 

model.

2. P-values do not measure the probability that the studied hypothesis is true, or the 

probability that the data were produced by random chance alone.

Chen et al. Page 2

Neuroimage. Author manuscript; available in PMC 2019 June 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Scientific conclusions and business or policy decisions should not be based only 

on whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an effect or the 

importance of a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a 

model or hypothesis.”

We believe that the neuroimaging field needs to move forward to promote the reportage of 

the effect estimates along with the corresponding statistics. We first discuss the statistical 

terms in the context of FMRI analyses, highlighting specific features related to that field. We 

then argue that full reporting in FMRI is necessary and promotes good scientific practice, 

clarity, increased reproducibility, cross-study comparability and allows for proper meta and 

power analyses. Finally, we provide several recommendations for researchers and software 

designers to facilitate these “best practices” actions.

What is the effect estimate in neuroimaging?

In neuroimaging, the ultimate focus is on the physical evidence for the brain’s neuronal 

response, which evidence is typically embodied in the strength of the FMRI BOLD signal. 

For task-related experiments, the response strength is reflected in the effect estimate (or β 
value) associated with a task/condition or with a linear combination of β’s from multiple 

tasks, such as the contrast between two tasks. For seed-based correlation analyses with 

resting-state data, time series correlation captures the relationship between a seed and the 

rest of the brain. Similarly, for naturalistic scanning, one measure is the “inter-subject 

correlation” (ISC) at a region that features the synchronization or similarity among subjects 

(Hasson et al., 2004). It is worth noting that, in typical multivariate pattern analysis (Haxby 

et al., 2001), the sensitivity measure showing the percentage of cases in which a classifier 

makes correct predictions is not an effect estimate, but it is a metric that combines the size of 

the effect (i.e., how discriminable the experimental conditions are) with the statistical 

reliability with which the effect is estimated (i.e. the noise level on the activity patterns). 

Similarly, some model-based methods have been adopted to account for rich sets of FMRI 

measurements in fields such as vision studies. Even though an effect estimate in the 

conventional sense cannot be defined under such scenarios, the proportion of variance in the 

data that could be accounted for by a model (Kay et al., 2013) or by a representational 

similarity matrix (Khaligh-Razavi and Kriegeskorte, 2104) can effectively serve as a 

physical metric that characterizes the model performance.

Here, we use the term “effect estimate” to refer generally to any of these or analogous cases: 

the estimated response magnitude (e.g., β value) of a regression model or GLM, the 

estimated correlation coefficient in the context of correlation analyses, etc. We note that in 

the statistical literature, the phrase “effect size” can typically encompass two distinct 

scenarios: one for describing absolute (or unstandardized) effect size (the estimated 

magnitude of an effect under investigation, e.g., sample mean or the estimated β in a 

regression model), and the other for describing standardized effect magnitude (e.g., Cohen’s 
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d ), which is typically used when the measurement units have no intrinsic meaning (e.g., 

Likert-type scale adopted in survey research), when a comparison is performed between two 

different scales (e.g., relative effect sizes among different confounders such as age and sex), 

or when data variability is the focus of study (Sullivan and Feinn, 2012). While it is well 

known that the acquired BOLD signal has only arbitrary units, it might seem that the second 

usage of effect size is a good candidate. However, FMRI data are commonly scaled to a 

more meaningful evaluation in terms of percent signal change (as discussed further below). 

As such, here we use the term “effect estimate” in FMRI to refer to the unit-bearing case of 

“effect sizes” in the context of percent signal change.

What does a t-statistic value reveal in neuroimaging?

A t-statistic value for an effect estimate is calculated as the latter divided by its standard 

error, which represents the reliability or accuracy of the effect estimate. Thus, the t-statistic 

is a mixture of two components, the effect estimate and the noise estimate. However, both 

components vary across the brain. For example, the variability of BOLD response may 

partially result from the inhomogeneity of vascularization, and the variability of the noise 

level may be caused by the heterogeneous sensitivity profiles of RF coils across the brain. 

The combined impact from the two components makes the t-statistic unsuitable for 

comparing effects across regions, subjects, and groups. In addition, as a dimensionless 

measure, the t-statistic is more susceptible to sample size (number of trials or subjects), 

signal-to-noise ratio (SNR), preprocessing steps/methods, experimental designs, unexplained 

confounds, and scanner parameters than the effect estimate itself. Therefore, statistic values 

only serve the purpose of a binary inference of null (e.g., there is no difference between the 

two conditions) versus alternative (e.g., there is difference between the two conditions) 

hypotheses, and it does not provide any information about the specific response magnitude. 

For example, two voxels (or regions) with the same t-statistic value in the brain do not mean 

the same response amplitude, and vice versa (Fig. 1). That is to say, the t-statistic does not 

carry enough interpretation information for the effect of interest.

Practical realities/difficulties of FMRI

There are several features inherent to FMRI acquisition and analysis that present challenges 

to an investigator interpreting and reporting results. At first glance, some of these may seem 

to explain the present practices of reporting only statistic values as results. We describe them 

briefly here, and then discuss how they actually necessitate, rather than discourage, the 

inclusion of effect estimates in the end.

Units and scaling

As noted above, one complication of the FMRI signal is that the numerical value from the 

scanner does not have any specific physical meaning and is essentially arbitrary. As a 

consequence, the signal value may vary across brain regions, sessions, days, subjects, 

studies, and scanners. To deal with this arbitrariness, a normalization step is typically 

adopted by researchers by scaling the signal so that the relative magnitude of the BOLD 

response is comparable between different contexts. For example, by default in AFNI (Cox, 
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1996) the time series is scaled by the mean value at each voxel, so that the effect estimate for 

each condition can be directly interpreted as a percent signal change relative to the voxel-

wise temporal mean; as a result, effect estimates themselves are interpretable, carry real 

information about the size of the BOLD effect, and are comparable across brain regions, 

conditions, subjects, groups, studies and scanners1 and Matlab toolbox MarsBaR (Brett et 

al., 2002) are often used to convert the effect estimates into percentage at the regional level 

in FSL and SPM, respectively.

One may argue that the voxel-wise baseline, instead of the mean, is a more accurate 

candidate to serve as the scaling factor. However, in FMRI the drift effect (or the presence of 

low frequency components due to scanner drift, shim effects) embedded in the signal 

complicates the isolation of the “real” baseline value. For instance, with a linear drift in the 

BOLD signal there is no way to clearly define where the baseline is located: beginning, end 

or somewhere in between? In practice, the fluctuations due to the task effect are very small 

relative to the absolute values of the signal (e.g., most task effects are around 1% or less 

relative to the BOLD signal mean), leading to a negligible difference when the voxel-wise 

mean, instead of the “true” but unknown baseline, is used in scaling2. Even if there are 

different preferred mechanisms of scaling, it appears to be a truth universally acknowledged 

that the BOLD signal can and should be calibrated through a normalization step, providing a 

meaningful and comparable measure. While there is not a single method for calibrating the 

effect estimate or signal change to a meaningful unit that is uniformly adopted by all 

researchers, such a difficulty should not be an excuse for not reporting the BOLD response.

Modeling difficulties

One aspect of FMRI data is that the hemodynamic response (HDR) is captured by a curve 

with a slow upstroke and a sluggish recovery; the curve may also contain an undershoot 

right after the stimulus onset or at the end of the recovery phase (D’Esposito et al., 1999). In 

addition to the overall amplitude, the response may vary across cognitive states, tasks, brain 

regions, and subjects with respect to response characteristics such as rise and fall speed, 

peak duration, undershoot shape, and overall duration. The nature of the HDR is still not 

fully understood due to the complicated and multifaceted biophysical processes involved.

As the underlying components comprising the BOLD signal are still poorly understood, the 

performance of the regression model at the individual subject level is often poor. For 

example, attenuations across trials or within each block are usually not considered; the 

impact of physiological (cardiac and breathing) effects is mostly lacking, though it is 

1Similarly, “grand mean scaling” is typically performed in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and SPM (http://
www.fil.ion.ucl.ac.uk/spm/), by dividing the signal by the average value across the brain as well as across time. The purpose of grand 
mean scaling is to bring the effect estimates to a similar range so that they are roughly comparable across brain regions, sessions, days, 
subjects, studies, and scanners. However, such a scaling method does not exactly lead to the interpretation of percent signal change 
because of spatial heterogeneity. Program featquery
2The negligible effect of replacing the true “baseline” value by the voxel-wise mean can be demonstrated by a back-of-the-envelope 
calculation. Suppose that the signal intensity at a voxel has a mean value of 2400 for the time series (after slow drift effects are 
removed), peak intensity corresponding to a task is 2410, and a “real baseline” value is 2390. The scaled peak value at the voxel by the 
mean is 100 × 2410/2400 ≈ 100.417, and the scaled baseline value of 100 × 2390/2400 = 99.583. The percent signal change for the 
task relative to the baseline is thus estimated as (100.417 – 99.583)/100 ≈ 0.834% in the regression model. Alternatively, if we analyze 
the data without scaling, the “true” percent signal change of the condition would be calculated as (2410 − 2390)/2390 ≈ 0.837%. The 
ratio of the difference between the two estimates relative to the true effect estimate is (0.837 − 0.834)/0.837 ≈ 0.358%.
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occasionally modeled (e.g., ANATICOR, Jo et al., 2010). Because of these factors, the 

variance due to poor modeling overwhelms all other sources (e.g., across trials, runs, and 

sessions) in the total data variances (Gonzalez-Castillo et al., 2016); that is, the majority 

(e.g., 60–80%) of the total variance in the data is not properly accounted for in statistical 

models. There are also strong indications that a large portion of BOLD activations are 

usually unidentified at the individual subject level due to the lack of power (Gonzalez-

Castillo et al., 2012)3. The detection failure (false negative rate) at the group level would 

probably be equally high, if not higher. Due to the presence of large variability and 

unaccounted-for noise, low reliability leads to inaccurate estimation of the effect of interest. 

For example, the habituation (or saturation) effect due to the repetition of a condition with 

many trials is typically not modeled at the individual level, and such fluctuations relative to 

the average effect would be bundled as noise. In addition, when a presumed HDR function is 

not accurately represented in a typical modeling strategy, this may result not only in the 

detection failure at the subject level but also possibly in a large power loss at the group level, 

due to the lack of flexibility to accommodate HDR shape variability (Chen et al., 2015).

Another modeling difficulty that arises when comparing effect estimates across studies is the 

dependence of the BOLD effect percent signal change on scanning parameters (e.g., B0, TE, 

slice thickness, etc., discussed further below). The current state of modeling does not make 

combining/contrasting effect estimates from significantly different types of scans 

practicable. For this reason, it is important to clearly specify the MRI setup used.

Limitations of statistical signiftcance testing

Under the methodology of null hypothesis significance testing (NHST), the statistic value is 

mainly used to determine the statistical significance level of an effect estimate so that false 

positive rate is controlled. Once the value surpasses the threshold, the specific value of the 

statistic is neither as informative nor as important as the response amplitude or effect 

estimate. The current misplaced focus on statistical significance when reporting a scientific 

result (Ziliak and McCloskey, 2009) is equally detrimental as shown by a popular statistical 

fallacy: If the result is not statistically significant, then it proves that no effect or difference 

exists. As the p-value under a null hypothesis is a conditional probability, it cannot be stated 

that the probability of obtaining the data under the current study given the null is the same as 

that of the null given the data.

There is a clear difference between statistical significance and practical significance. The 

absence (or ignorance) of a real effect estimate in results reporting has prompted the 

distinction between the two types of significance: substantive significance or practical 

significance in terms of effect magnitude and statistical significance in terms of probability 

3Specifically, an unusual FMRI study was designed with 500 trials each of which was a 60 s block with 20 s of a simple task and 40 s 
of rest. 100 scanning runs were distributed among 10 different scanning sessions/days over a 3-month period, and each run contained 5 
trials/blocks. Among the four components of variance (across-sessions, across-runs, across-blocks and measurement error) in the total 
within-subject variance in effect estimates, Gonzalez-Castillo et al. (2016) found that: 1) the measurement error is the dominant source 
of within-subject variance across the brain; 2) the across-session variance was the second highest contributor in occipital cortex, while 
across-runs variance was for most other regions, and 3) across-block variance can exceed across-session variance in higher-order 
cognitive networks. The impact and implication of inhomogeneous variance distributions in the brain across blocks, runs, and sessions 
are unknown, especially for a typical FMRI design that only contains less than 30 trials, much shorter than this extra long study with 
500 trials.
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threshold (Gelmen and Stern, 2006). For example, it was shown that “emotional contagion 

occurs without direct interaction between people (exposure to a friend expressing an 

emotion is sufficient), and in the complete absence of nonverbal cues” through Facebook 

(Kramer et al., 2013). However, it was later pointed out that the effect size measured by 

Cohen’s d = 0.02 was so small that such a tiny difference in emotional contagion is not 

practically meaningful. In other words, a trivial effect (a tiny difference between two groups 

or conditions, or a negligible correlation) can become statistically significant with enough 

sample size. For example, a drug effect in a clinical trial, even if statistically significant, may 

not offer much practical benefit when the effect is small (e.g., lowering cholesterol level by 

2.7 mmol/L). Similar pitfalls have been seen in studies which “demonstrated” that beautiful 

parents have more daughters, and violent men have more sons (Gelman and Weakliem, 

2009). Importantly, without presenting the effect estimate, not only would one be unable to 

gauge the false negative rate or power of the study, (i.e., the probability of failure or success, 

respectively, to detect the effect), but it would also be impossible to assess two other useful 

but less known errors (Gelman and Tuerlinckx, 2000): type M (tendency to over- or under-

estimate the effect magnitude) and type S (likelihood of obtaining the incorrect directionality 

or sign of the effect).

One may argue that it is difficult to clearly define a threshold for practical significance of 

BOLD response. However, a similar situation is faced in every field of science: some results 

are clearly practically meaningful (e.g., a 90% reduction of cancer rates with a side effect-

free treatment) while others may be more difficult to classify as such (e.g., a 0.5% reduction 

of cancer rates with some side effects), and a single, stationary boundary between the two 

cases cannot be drawn4. This does not mean that the issue of practical significance should 

not be addressed. Authors presenting work will have to interpret and make a case for any 

results they judge to be practically significant, which will then be assessed by the larger 

scientific community. Thresholds may not be binary and boundary levels may change of 

time due to understanding, technology, etc. The question of practical significance goes 

beyond pure statistics, and, as such, it requires more than just statistical values. Reporting 

effect estimates is the first step for the discussion of practical significance to take place 

within the neuroimaging community.

Activation identification in FMRI data analysis heavily relies on contrasting between 

conditions; however, another subtlety is that the contrast between a significant effect and a 

nonsignificant one is not necessarily itself statistically significant. For example, suppose 

that, with 16 subjects (and 15 degrees of freedom), positive and negative conditions have 

effect estimates of 1.0 and 0.45 percent signal change, respectively, and both estimates have 

the same standard error of 0.3. Even though the positive condition is statistically significant 

(t(15) = 3.33, two-tailed p = 0.0045) and the negative condition is not (t(15) = 1.5, two-tailed 

p = 0.15) at 0.05 level, their contrast could be statistically insignificant (e.g., t(15) = 1.65, 

two-tailed p = 0.12) (Fig. 2).

4We note that even statistical significance shares the same difficulty in definition. The nominal significance level of 0.05 that is 
adopted as a standard in many areas of science including neuroimaging is an arbitrary one. However, other scientific fields have 
chosen other values, such as in particle physics where more stringent false positive control is typically required (e.g., 5 standard 
errors).
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The classical statistical testing is consistent with the Popperian paradigm in which science 

advances through the proposition and refutation of hypotheses (Popper, 1963). However, the 

omnipresence of focus on statistic values alone, while ignoring the effect estimates, 

unavoidably encourages and facilitates a yes/no binary thinking, and has in fact led to the 

false interpretation that sub-threshold regions have no activation and that supra-threshold 

regions comprise the entire story (Gelman, 2013). In addition, the approach suffers from a 

“statistical significance filter” (Gelman and Weakliem, 2009): results that reach a preset 

significance level inherently overestimate the effect and may occur in the opposite direction 

of the true effect.

Why is it crucial to report effect estimates?

The effect estimate provides a piece of hard, quantitative evidence in an analysis, and it 

should be reported as the main finding of a modeled or measured effect (Sullivan and Feinn, 

2012). The corresponding statistic or p value usually indicates the reliability or accuracy of 

the effect estimate, but it cannot replace the information content of the effect estimate itself. 

For this reason, the importance of reporting the specific effect estimate under study has been 

repeatedly emphasized in various fields. For example, one recommendation from the 

American Psychiatric Association (Wilkinson et al., 1999) reads: “Always present effect 

sizes for primary outcomes... If the units of measurement are meaningful on a practical level 

(e.g., number of cigarettes smoked per day), then we usually prefer an unstandardized 

measure (regression coefficient or mean difference) to a standardized measure (r or d).” We 

enumerate here specific examples and applications of this principle within the FMRI 

context.

Reproducibility

Reproducibility is critical for scientific investigations, and it can be quite challenging for 

FMRI studies, as the data typically have low SNR and low reliability for each effect 

estimate. One should not overemphasize the statistical thresholding and lose sight of the 

scientific context, particularly where the noise is usually much stronger than the signal in the 

data. In recent surveys, about 60% of published experiments failed to survive replication in 

psychology (Baker, 2015) and about 40% in economics (Bohannon, 2016), and the situation 

with neuroimaging is likely not much better (Griffanti et al., 2016).

In fact, the availability of the effect estimate in the literature becomes pivotal in cross-

examining or reproducing the results across studies. Verification for regional activations 

based on statistical significance would partially serve the purpose, but reproducibility cannot 

be solely built on statistical values. The notion that statistical significance alone does not 

imply result replicability is nicely captured by Thompson (1999): “it would be the abject 

height of irony if, out of devotion to replication, we continued to worship at the tabernacle of 

statistical significance testing, and at the same time we declined to (a) formulate our 

hypotheses by explicit consultation of the effect sizes reported in previous studies and (b) 

explicitly interpret our obtained effect sizes in relation to those reported in related previous 

inquiries.”
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With both the effect estimate and its standard error (or reliability/accuracy, which is 

embedded in the t-statistic value, for example) available, one can readily compare and verify 

the effect estimates across conditions, regions, subjects, groups, studies, scanners, etc. For 

example, suppose that a previous study indicated an effect estimate of 0.73% signal change 

with a statistic value of t(16) = 4.12 at a peak voxel (defined by the maximum effect estimate 

within a cluster) or the whole region. In such a case, a researcher would find that having an 

effect estimate of 0.65% with t(22) = 3.75 in her own study would be compatible with the 

existing result, while an effect estimate of 0.11% with t(22) = 3.35 would unlikely be. 

Obviously such comparisons (or reproducibility) would be impossible if only statistic values 

are reported in the literature, as currently prevalent in neuroimaging.

Furthermore, one can also use effect estimate reporting to easily spot unrealistic results at a 

region, either in one’s own pre-published work or, an unfortunate practical necessity, in an 

existing research article. For example, a region might show up having more than 3.14% 

signal change while still exhibiting a reasonable statistical significance due to modeling 

issues, noise, etc. If only statistics were used for thresholding, coloring and reporting, then 

such an artifactual result would likely go undetected by either the authors or, later, other 

readers. Thus, viewing the effect estimates themselves provides a verifiable benchmark and 

an extra layer of safety against false positives, increasing reproducibility in reporting.

Clarity

It is a common practice in FMRI literature to present brain activation maps that are both 

thresholded and colored by statistic values. However, such presentations entirely ignore the 

effect estimates, and such coloration has been shown to lead to distorted impression of the 

results in recent surveys (Engel and Burton, 2013). If only the significance level of a 

correlation or BOLD response at a region is given, one would have no idea about the 

strength of the effect or the association, and thus the scientific relevance is missing. In other 

words, with the current practice of reporting statistic values alone, at best the results are 

ambiguous and at worst they are misleading.

To drive home the point that a statistic or p value is not the whole picture nor as informative 

as combining with the effect estimate, consider the following example at the group level. 

Suppose that at one region the effect estimate is 0.03% signal change with p = 0.001 while at 

another region the response is 0.94% with p = 0.053. Is the higher statistical significance 

with the first voxel more worthy of reporting than the second? On the surface, the response 

of 0.03% at the first region occurred with greater confidence while the second region failed 

to reach the arbitrarily designated significance level of 0.05. On one hand, a small effect 

estimate of 0.03% is shown with high reliability across subjects. On the other hand, the 

response magnitude of 0.94% is quite a bit stronger, despite its relatively high standard error, 

and might be more neurologically relevant or important than the statistically significant 

response of 0.03%. Furthermore, the second region might have reached the nominal 

significance level with a larger number of subjects or through accounting for cross-subjects 

variability by incorporating subject-specific covariates such as age, IQ, etc. Looking at this 

example without the effect estimates, one might easily misinterpret the results, especially 

when the second scenario is not reported due to its failure to reach the nominal significance 
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level. By the same token, the example shown in Fig. 2 demonstrates the danger of solely 

focusing on statistical significance without revealing the real effect estimates: an evidence of 

failure to reach a designated significance level is not the same as a failure of evidence for a 

real effect.

Directly relevant to the neuroimaging community is the moral from these examples: without 

the effect estimate, the sole focus on statistical significance often presents a distorted picture. 

Specifically, the power with neuroimaging data is typically low due to the the facts that large 

parts of the signal that cannot currently be accounted for and that there is large variability 

across subjects. The presence of many false negatives may lead to the illusion that a 

statistically insignificant effect is equivalent to a nonexistent effect, when in some cases 

there are not enough data to discern whether the effect is practically important. In other 

words, type M errors tend to increase, and a distorted interpretation may occur without the 

presence of effect estimates that may be assessed more accurately than the decontextualized 

statistic values.

Validation of BOLD response detection power through effect estimates

Although most research-oriented investigations place a heavily-lopsided emphasis on the 

false positive rate controllability, sensitivity (or power) may also be a primary focus under 

some circumstances, such as pre-surgical detection, where the efficiency is usually less than 

10% (Button et al., 2013). Several particular factors may contribute to a cluster not being 

able to achieve the desired significance at the group level under a rigorous procedure.

a. To achieve the desired significance or power at the cluster level (or in the FDR 

sense), it is usually necessary to have a large number of subjects, which most 

studies lack due to financial and/or time costs.

b. Spatial alignment has multiple steps including cross-TR (“motion correction”), 

cross-session, cross-modality and cross-subject components, increasing the 

overall chance of misalignment. An erroneous or even suboptimal alignment 

procedure will surely impact the power performance at the group level.

c. The variation in response magnitude or SNR across regions, as well as the 

variation of the underlying region’s spatial extent, may also lead to different 

efficiency in activation detection across the brain. An intrinsically small response 

magnitude or small region, such as the amygdala, requires a smaller voxel-wise 

p-values to survive the family-wise error (FWE) or false discovery rate (FDR) 

correction compared to their larger counterparts, and this may not always be 

realistic to achieve in a study. The popular small volume correction (SVC) is 

offered as a band-aid solution, but is not always rigorous or valid, and may 

become problematic when other regions are of interest at the same time.

d. If a two-tailed test, when appropriate, is strictly performed instead of two 

separate one-tailed tests as blindly practiced in the field5, or if FWE/FDR 

5This is essentially a multiple comparisons problem. When a two-tailed t-test is more suitable, simultaneously performing two one-
tailed t-test is equivalent to artificially inflate the p-value by a factor of 2; for example, a p-value of 0.01 for a two-tailed t-test 
corresponds to a p-value of 0.005 for each of the two associated one-tailed t-tests.
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correction (including correction for multiple tests such as six pairwise 

comparisons among four levels of a factor) is rigorously executed, many studies 

would rightly face the issue of power deficiency.

The issue of reporting marginally significant effects is controversial (e.g., Pritschet et al., 

2016). Should one not report a cluster simply because it cannot pass the rigorous statistical 

thresholding through FWE/FDR control at the present group size? We argue that, even if a 

cluster fails to survive rigorous correction, it does not necessarily mean that the results are 

not worth reporting, because they may be suggestive and provide some benchmark for future 

confirmation. Statistical inference should not be a binary decision, and the inclusion of effect 

estimates allows for a consistent approach to avoid this and to achieve a balance between 

false positives and false negatives (Lieberman and Cunningham, 2009). Thus we propose a 

two-tier approach to reporting clusters. In addition to the conventional FWE control, we 

believe that, if the individual voxels within a region achieve a basic significance level (e.g., p 
≤ 0.05) and if the cluster possesses some practically significant spatial extent (e.g., less than 

the minimum cluster size required by a family-wise error correction scheme but still roughly 

within the underlying anatomical structure), its reporting is warranted. Nevertheless, the 

reporting has to be combined with the corresponding effect estimate as well as a cautionary 

statement about the marginality. On the other hand, the activation of a cluster may become 

questionable with an unreasonable effect magnitude (e.g., 3.5% signal change) even if the 

cluster survives stringent statistical thresholding, and again, readers can only detect such 

suspicious results if the effect estimate is reported, providing a safeguard against potential 

false positives (Fig. 3).

Validation of BOLD response modeling through hemodynamic response 

curve

There are three common approaches to modeling the BOLD HDR. The first one presumes a 

fixed shape (or model-based) impulse response (IRF), such as the gamma variate in AFNI 

(Cohen, 1997) or the “canonical” IRF in SPM and FSL (Friston et al., 1998a). With this 

method, a single regression coefficient (or β) associated with each condition in the 

individual subject analysis reflects the major HDR magnitude (e.g., percent signal change). 

The second approach makes no assumption about the IRF’s shape and estimates it with a set 

of basis functions, the number of which varies depending on the basis set and the duration 

over which the response is being modeled. For example, a common approach to this 

estimated-shape method consists of using a set of equally-spaced TENT (piecewise linear) 

functions (linear splines), and each of the resulting regression coefficients represents an 

estimate of the response amplitude at some time after stimulus onset. This produces an 

ordered set of effect estimates for each modeled HDR. The third approach lies between the 

two extremes and uses a set of two or three basis functions (Friston et al., 1998b). In this 

adjusted-shape method, the first basis (canonical IRF) captures the major HDR shape, and 

the second basis (the time derivative of the canonical IRF) provides some flexibility in 

modeling the delay or time-to-peak. The third basis (resulting curve, which is the derivative 

relative to the dispersion parameter in the canonical IRF) allows the peak duration to vary. 

Here, as well, multiple effect estimates are associated with a single HDR.
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With only a single parameter per condition, the fixed-shape approach is the most efficient 

and statistically powerful among the three, if the presumed shape is reasonably close to the 

ground truth. This technique is widely adopted because the corresponding group analysis is 

the easiest. With the adjusted-shape method, the common practice at the group level is to 

focus only on the first effect estimate, ignoring the shape information captured by the second 

and third coefficients. Group analysis using multiple basis functions has recently been 

extensively explored (Chen et al., 2015), and the HDR shape information in the sequence of 

effect estimates can be carried from the individual level over to the group level. The 

powerful validation aspect of this approach is that, even if a region is marginally significant, 

the investigator may argue for the existence of an effect with the presence of the signature 

shape of HDR curve, as well as for subtle response differences in the undershoot, recovery 

phase, etc. The graphical representation of HDR profiles (see Fig. 3) gives one a reassuring 

observation or an extra confidence about their reliability that could not be gained only 

through the conventional statistical safeguards (e.g., when a cluster fails to pass rigorous 

thresholding). With the availability of effect estimates at the multiple time points of the 

whole HDR, it would be hard to fully deny the suggestive value of reporting the cluster 

together with its effect sizes and HDR profiles.

Meta analysis and power analysis

As an integration approach, meta analysis in FMRI is usually performed to combine and 

summarize the results from various studies that are importantly not necessarily fully 

consistent with each other. There have been multiple methods developed for meta analysis. 

For example, the summarization may be based on voxel-wise results, a specific region of 

interest (ROI), labels, coordinates, image, or activation likelihood estimation (Radua and 

Mataix-Cols, 2012). Most of the existing methods do not consider the effect estimates, in 

large part because such information is missing in the literature.

FMRI studies incorporate many factors that easily vary across sites, such as sample size 

(e.g., number of subjects and number of repetitions for each condition), specific task 

designs, scanners, etc.; and, as a result, both the magnitude of an effect and its reliability 

could be largely heterogeneous across reports. If the synthesis through meta analysis is 

solely based on coordinates or statistic value, the results could be unreliable. A recent study 

has shown that, when both effect estimates and their standard errors (which can be derived 

from the t-statistics) are available, meta analysis through a mixed- or random-effects model 

(Maumet and Nichols, 2016) would be more robust than other alternatives such as label- and 

coordinate-based approaches (e.g., coordinates only: activation likelihood estimation, 

Eickhoff et al. 2012; coordinates and Gaussianized Z-values: Radua and Mataix-Cols, 2009; 

Costafreda et al., 2009; Yarkoni et al., 2011). Furthermore, if those studies in which a region 

marginally survives (or even fails to survive) the FWE correction at the cluster level are 

included, an approach with both effect estimates and their stability information incorporated 

in the meta analysis would be more immune to publication bias (Rothstein et al., 2005).

The effect estimate is also a necessary quantity for power analysis. To design an experiment, 

the investigator may take information from previous studies and use power analysis to either 

1) determine the sample size required to achieve a preset power (or false negative rate), or 2) 
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assess the power of a given study (how likely one would detect a specific effect magnitude 

under a particular context). For both calculations, the statistic value as well as the effect 

estimate are needed as prior information. Even though mostly power analysis is currently 

performed with the peak value of t-statistic in the brain or a region (Durnez et al., 2016), the 

approach can be improved if the effect estimates are available in addition to statistic values. 

For example, the peak defined by the effect estimates within a cluster instead would be a 

more accurate representation than one by the t-statistic values. In addition, the availability of 

effect estimates would allow the investigator to perform conventional power analysis at the 

voxel, instead of region, level.

Looking forward, as the amount of public data and subsequent cross validations, meta and 

power analyses increases, it is vital to start providing results from more robust results for 

agglomerative approaches.

Further across-study considerations

As noted above, even scaled as a percent signal change, the BOLD effect estimates depend 

on MR acquisition parameters such as field strength B0, scanner sequence (e.g., SE vs GRE) 

and TE. Such dependencies have been studied and modeled by, for example, Uludağ et al. 

(2009), where total FMRI BOLD percent signal change was shown to increase with field 

strength as well as with TE (and see Uludağ et al. (2009) for details and specific 

dependencies with sequences). In many cases the BOLD percent signal change had 

relatively simple relations of approximately linear or power dependencies on acquisition 

parameters over a broad range of interest. However, these acquisition dependencies further 

complicate the comparison of statistical results across studies, as would be required in meta-

analyses. Additionally, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) values 

are nonlinearly affected by these physical parameters, as well as by slice thickness and voxel 

size. In total, these differences greatly reduce the ability to make meaningful t-statistic 

comparisons directly.

While presently many studies use similar field strengths (i.e., 3T) and a fairly narrow range 

of TE values, scanning at higher field strength (e.g., 7T) is rapidly becoming more common, 

particularly in large, public data projects such as the Human Connectome Project (Van Essen 

et al., 2012). When effect estimates are reported, the additional of information of TE, 

sequence and B0 may still allow for the approximate conversion of BOLD percent signal 

changes to comparable quantities.

Recommendations and conclusion

Scientific investigations usually involve data collection from observational studies or 

meticulously-designed experiments. Raw data with no or little extraction and compression 

would clutter or even obscure the intended message from the investigator. On the other hand, 

overly summarized data or missing information would present less convincing conclusions, 

or, worse, lead to misleading impressions. Statistic values alone do not represent the whole 

scientific endeavor, and there is no reason to believe that neuroimaging should be an 

exception in which physical measurement is largely ignored. As a crucial part of scientific 
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investigation, good statistical practice should reveal relevant quantitative components of data 

summarization including the amplitude of brain response in neuroimaging. Such numerical 

and graphical information would offer a safeguard against spurious results, promote 

reproducibility and aid power and meta analysis. In addition, the effect estimate may either 

offer extra support to or counter the interpretation made from the statistical significance 

alone; either case leads to more accuracy, and therefore its inclusion should be reassuring to 

researchers.

As an antidote to p-hacking or the obsession with statistic values, complete rejection of p-

values in scientific reporting would likely be an overreaction. We believe that it would be 

equally inapropriate to report only the effect estimate without the auxiliary information 

about its reliability in the form of standard error, confidence interval, or statistic value. Both 

pieces of information are needed to see the whole picture. In addition to the response 

magnitude’s serving as a benchmark, another benefit is that, if these multiple pieces of 

information were available in literature, one could identify those regions that showed 

substantial response magnitude but failed to achieve a significance level in the study due to 

large variability across subjects (such results are typically undisclosed.

Some effort has been devoted to promote the standardization of the reporting process in 

neuroimaging analysis (e.g., Poldrack et al., 2008; Carp, 2012; Nichols et al., 2016), but the 

important issue of reporting effect estimates has not been paid much attention. In this 

commentary, we have argued that reporting effect estimates has the same goal and benefit as 

standardization and that it is in fact necessary in order to improve results reporting in the 

field. In addition to revealing modeling specifics such as all explanatory variables, the 

number and directionality of post hoc tests, we strongly believe that effect estimates (e.g., in 

a scaled unit such as percent signal change) should be reported along with statistic values, 

instead of having excessive focus only on the latter in graphical representation. In addition, 

reporting the standardized effect (e.g., Cohen’s d ) may be a valid alternative as well.

Regarding clusterization, we recommend that:

1. the statistic values be used for thresholding only (not for colorization, 

determining maxima of activity, etc.);

2. the activation patterns in brain images be colored by effect estimate values (e.g., 

percent signal change, correlation), not by statistic values; and

3. the full set of parameters (threshold value, degrees of freedom for each statistic 

test, cluster-wise probability, etc.) be explicitly stated.

Effect estimates should also be included in tabulated results at the regional level, with the 

peak defined as the maximum of the effect estimate, not of the statistic values. An even 

better choice for group results is to report the weighted average effect estimate within a 

cluster through a hierarchical model that incorporates three levels of data variability: within-

subject, across voxels (within the region), and across subjects. As the weights are based on 

the reliability information at each level, the outcome would be more informative and less 

vulnerable to statistical thresholding and outliers. They can serve as another layer of 

supporting evidence in activation identification, and this becomes especially crucial when 
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some practical constraints (e.g., few subjects, suboptimal spatial cross-modality/subject 

alignment, small regions) lead to a situation in which a cluster fails to survive rigorous 

thresholding. For plotting ROI data at the group level, we recommend that the effect 

estimates be shown with either standard errors or confidence intervals that incorporate the 

three hierarchical levels of variability: within-subject, across voxels (within the region), and 

across subjects. Analytical toolboxes and software should facilitate, nurture, or even enforce 

a standardized process of generating proper and complete results reporting, thereby reducing 

the emphasis of p-values.

Our suggestions are aligned with and complementary to a proposal of avoiding 

misinterpretations through graphical representation of confidence intervals (Engel and 

Burton, 2013), as well as the guiding principles regarding reporting statistics in the recent 

ASA statement (see Introduction; Wasserstein and Lazar, 2016). Nevertheless, the 

limitations on publishable space and representability are omnipresent with FMRI data; 

openly sharing data is an irreplaceable venue to present the complete results and to reduce 

the vulnerability and pitfalls of statistical significance testing. Einstein noted that, “It can 

scarcely be denied that the supreme goal of all theory is to make the irreducible basic 

elements as simple and as few as possible without having to surrender the adequate 

representation of a single datum of experience” (Calaprice, 2010). Within the applied field 

of FMRI, this notion of making results “as simple as possible but not simpler” should be 

taken to heart and adopted as well. We feel that this can be done only by including the full 

model reports of effect estimates and statistics in the literature.
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Figure 1. 
A statistic value alone does not reveal the relative magnitude for an effect of interest. 

Specifically, two identical t-values (here, with 15 degrees of freedom) may have similar (A) 

or dramatically different (C) effect estimates. On the other hand, two different t-statistic 

values may have the same (or opposite) sequence as (or to) that of the corresponding effect 

estimates; for instance, a larger t-value could correspond to a larger effect estimate if the 

standard error is roughly proportional to the effect estimate (D) or similar or even smaller 

effect estimate if the standard error is smaller (B). The numbers inside the parentheses are 

the degrees of freedom for the t-statistic, and asterisks indicate orders of magnitude in p-

values: * 0.01 ≤ p < 0.05; * *p < 0.01. Effects are scaled units of percent signal change.
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Figure 2. 
A statistically significant (blue) and insignificant (green) effect are shown both in scaled 

units of percent signal change. However, their difference might be practically significant but 

not statistically significant (yellow). Asterisks indicate orders of magnitude in p-values: ∗ 
0.01 ≤ p < 0.05; ∗ ∗ p < 0.01.
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Figure 3. 
Modeling with multiple basis functions may provide more accurate characterization of the 

HDR as well as more powerful activation detection. For example, differences in shape 

features such as undershoot (A) and peak/recovery duration can be readily revealed in 

addition to peak (B). Furthermore, a false response curve, although statistically significant, 

would be identified (C) if its estimated shape dramatically differs from the signature shape 

of HDR.
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