
Convexity-constrained and nonnegativity-constrained spherical 
factorization in diffusion-weighted imaging

Daan Christiaensa,d,*, Stefan Sunaertb,c,d, Paul Suetensa,d, and Frederik Maesa,d

aKU Leuven, Department of Electrical Engineering, ESAT/PSI, Leuven, Belgium

bKU Leuven, Department of Imaging & Pathology, Translational MRI, Leuven, Belgium

cUZ Leuven, Department of Radiology, Leuven, Belgium

dUZ Leuven, Medical Imaging Research Center, Leuven, Belgium

Abstract

Diffusion-weighted imaging (DWI) facilitates probing neural tissue structure non-invasively by 

measuring its hindrance to water diffusion. Analysis of DWI is typically based on generative 

signal models for given tissue geometry and microstructural properties. In this work, we generalize 

multi-tissue spherical deconvolution to a blind source separation problem under convexity and 

nonnegativity constraints. This spherical factorization approach decomposes multi-shell DWI data, 

represented in the basis of spherical harmonics, into tissue-specific orientation distribution 

functions and corresponding response functions, without assuming the latter as known thus fully 

unsupervised. In healthy human brain data, the resulting components are associated with white 

matter fibres, grey matter, and cerebrospinal fluid. The factorization results are on par with state-

of-the-art supervised methods, as demonstrated also in Monte-Carlo simulations evaluating 

accuracy and precision of the estimated response functions and orientation distribution functions 

of each component. In animal data and in the presence of edema, the proposed factorization is able 

to recover unseen tissue structure, solely relying on DWI. As such, our method broadens the 

applicability of spherical deconvolution techniques to exploratory analysis of tissue structure in 

data where priors are uncertain or hard to define.
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1. Introduction

Diffusion-weighted imaging (DWI) is a non-invasive magnetic resonance imaging technique 

with the unique ability to probe tissue microstructure in vivo, by measuring its hindrance to 

*Corresponding author: daan.christiaens@kuleuven.be (Daan Christiaens). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2018 February 01.

Published in final edited form as:
Neuroimage. 2017 February 01; 146: 507–517. doi:10.1016/j.neuroimage.2016.10.040.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



water diffusion (Le Bihan et al., 1986). The water diffusion process is sensitive to the 

cellular structure of the surrounding tissue, in particular the presence of cell membranes and 

intracellular organelles (Beaulieu, 2002). DWI is applied in both neuroscientific research 

and clinical practice, for studying brain organization, detecting pathology, and measuring 

disease progression.

The DWI signal can be represented in many ways, including the spherical harmonics (SH) 

basis (Frank, 2002) and the cumulant expansion (Kiselev, 2010) of which diffusion tensor 

imaging (DTI) (Basser et al., 1994) is a special case. Parameters such as fractional 

anisotropy (FA) introduced in the context of such signal representations, are sensitive to 

changes in the underlying tissue microstructure. However, their interpretation at the cellular 

level is less straightforward.

In an effort to provide more specific measures, a myriad of models have been introduced that 

relate the measured signal to neural tissue structure. These models typically decompose the 

diffusion signal into cellular compartments, such as intra- and extra-axonal space or free 

water (Panagiotaki et al., 2012), weighted by their respective volume fractions. Similarly, 

nonnegativity-constrained spherical deconvolution (CSD) adopts a single fibre compartment 

of fixed anisotropy, the fibre response function (RF), which contributes linearly and 

independently to the DWI signal across all fibre orientations in the voxel (Tournier et al., 

2004, 2007). Deconvolution then facilitates estimating the orientation distribution function 

(ODF) of fibres in that voxel, a metric of apparent fibre density in white matter (Raffelt et 

al., 2012; Dell’Acqua et al., 2013). CSD was later extended to multi-tissue (MT-)CSD 

(Jeurissen et al., 2014), which incorporates partial voluming with adjacent tissues that are 

not adequately modelled by the fibre response function (Parker et al., 2013; Roine et al., 

2014). Each tissue compartment is then characterized by a fixed response function, assumed 

to be known a priori.

This work generalizes MT-CSD to a blind source separation problem, akin to nonnegative 

matrix factorization (NMF) (Paatero and Tapper, 1994; Lee and Seung, 1999; Wang and 

Zhang, 2013). NMF decomposes each input vector as a nonnegative linear combination of 

unknown source vectors. Similarly, our approach expands the diffusion signal in a basis of 

response functions, adapted to the tissue structure and to the DWI data at hand. The resulting 

components can be associated with different normal tissue types and certain types of 

pathology. As such, our method strikes a balance between signal representation and tissue 

modelling: it seeks a decomposition that closely represents the data, subject to minimal 

constraints that give structural interpretation to the component basis functions.

In addition, this method addresses a very practical problem regarding multi-tissue CSD, 

namely estimating response functions from the data at hand. Originally, white matter (WM) 

fibre response functions were fitted to the DWI data in a single-fibre mask of high FA, after 

reorientation of the diffusion tensor eigenvectors (Tournier et al., 2004, 2007). Alternative 

recursive approaches have been introduced, which segment single-fibre voxels and reorient 

the data based on the peaks of the fibre ODFs iteratively (Tournier et al., 2013; Tax et al., 

2014), or which calibrate the kernel anisotropy in each voxel separately under sparsity 

constraints (Schultz and Groeschel, 2013). However, these techniques do not directly 
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generalize to other tissue types, such as grey matter (GM) and cerebrospinal fluid (CSF). 

Current literature therefore relies on tissue segmentation of T1-weighted images (T1) to 

define GM and CSF kernels, which requires the T1 to be aligned to the DWI data (Jeurissen 

et al., 2014). As this is rarely the case in practice, direct DWI tissue segmentation methods 

have been introduced independently and simultaneously, based on sparsity-constrained NMF 

(Jeurissen et al., 2015) or convexity-constrained NMF (Christiaens et al., 2015b, Appendix 

A) of the isotropic mean DWI signal per shell. These methods circumvent T1 requirement 

and are thus applicable in any reference frame without external input, but still rely on the 

diffusion tensor model for reorienting the DWI data in each single-fibre voxel. Here, we 

account for the full anisotropy of the DWI signal by extending NMF to convolution in 

spherical harmonics.

In related work, Xie et al. (2011) applied NMF to single-shell diffusion tensor data. Reisert 

et al. (2014) have introduced a more general dictionary learning method that imposes 

sparsity on the tissue ODFs. In contrast to their approach, we do not impose any constraints 

on the ODFs except for nonnegativity. Instead, we constrain the tissue RFs to be convex 

combinations of the data voxels. As such, physical plausibility of the tissue responses is 

ensured in a purely data-driven manner.

Extending our previous conference paper (Christiaens et al., 2015a), we made improvements 

to the initialization, the optimization, and the convergence criterion, improving the overall 

performance and speed of the algorithm. The accuracy and precision of our convexity- and 

nonnegativity-constrained spherical factorization (CNSF) technique are evaluated in Monte 

Carlo simulations at various noise levels. In addition, we include results on healthy brain 

data, both in vivo and ex vivo, and in the presence of pathology, and show that the 

decomposition can be associated to known anatomy.

2. Method

2.1. Multi-tissue spherical convolution

Multi-tissue spherical convolution (Tournier et al., 2007; Jeurissen et al., 2014) assumes 

linear partial volume effect (PVE) to decompose the DWI signal into n tissue components, 

each of which is the spherical convolution of a response function (RF) and an orientation 

distribution function (ODF). The response function is an axially symmetric function Ht,b(θ) 

that characterizes the signal anisotropy and attenuation across b-values for each component 

t. Each RF is assumed to be spatially-invariant. The ODF Ft(θ, ϕ) is a nonnegative function 

on the sphere that determines the local directionality and density of that particular 

component in the voxel. As such, the diffusion signal Sb(g) in each voxel, for gradient 

direction g and given b-value, becomes

(1)
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All functions are commonly represented in the basis of real, symmetric spherical harmonics 

(SH) of maximum order ℓmax (Tournier et al., 2007; Descoteaux et al., 2009; Jeurissen et al., 

2014). As such, the convolution reduces to a multiplication of the coefficients of 

corresponding order ℓ, i.e.,  with ℓ ∈ {0, 2, …, ℓmax} and 

m ∈ [−ℓ, ℓ]. The response functions are axially-symmetric, and therefore constrained to the 

spherical harmonics of phase m = 0, known as zonal spherical harmonics.

For this work, we structure the SH coefficients of the DWI signal in tensor S̄, indexed by the 

voxel v and shell b, and rewrite (1) as

(2)

In this equation, H̄ contains the zonal SH coefficients of the response functions, indexed by 

component t and shell b. F̄ contains the SH coefficients of the ODFs, indexed by voxel v and 

component t. The operator ⊛ is introduced to denote spherical convolution in the SH basis, 

and corresponds to the matrix product of every slice F·,·,(ℓ,m) with slice H·,·,ℓ of corresponding 

order ℓ. Note that the ℓ = 0 coefficients of F̄ represent the isotropic volume fraction or density 

of each tissue.

2.2. Convexity- and nonnegativity-constrained spherical factorization

Considering both the response functions H̄ and the ODFs F̄ as unknown, expression (2) can 

be seen as a NMF or blind source separation problem, in which a data matrix is decomposed 

as the product of a source matrix and a nonnegative weight matrix (Paatero and Tapper, 

1994; Lee and Seung, 1999; Wang and Zhang, 2013). In this case, the unknown sources are 

the response functions of separate components, the weights are the associated ODFs, and we 

aim to find

(3)

The matrix A evaluates the SH basis across a dense set of directions, to impose 

nonnegativity of the estimated ODFs denoted by vector slices fv,t,·. The vector fv,t,· thus 

contains the SH coefficients F̄ at index (v, t) for all (ℓ, m). The only parameters in this 

framework are the number of components n and the maximal harmonic order ℓmax of each 

component.

However, the solution to (3) is not unique. As illustrated in Fig. 1, the response functions H̄ 

span a n-gonal simplicial cone in the high-dimensional data space, radiating outwards from 

the origin 0. Only voxels “within” this cone are represented exactly; data points “outside” 
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this cone give rise to the residual under minimization in (3). As such, any combination of 

RFs that envelops all observed data points gives rise to a zero residual, but may not 

necessarily be physically meaningful. Therefore, we impose a convexity constraint (Ding et 

al., 2010), which ensures that all sources Ht are a convex combination of the measured 

signal S̄ after reorientation. In other words, the convexity constraint ensures that all response 

functions are observed in the data, typically in voxels with low PVE in both spatial and 

angular domains. These low-PVE voxels will serve as linear basis functions that explicitly 

model the RFs as a function of the measured data. With the convexity constraint, the RFs are 

then represented as a contracted tensor-matrix product along the dimension of voxels v:

(4)

such that each coefficient ht,b,ℓ = z·,b,ℓ · wt,· with voxel weights W ≥ 0 and ||wt,·||1 = 1. The 

auxiliary tensor Z̄ contains the coefficients of the best fitting zonal harmonics to the data S̄, 
across all possible orientations of a symmetry axis. These best fitting zonal harmonics are 

precomputed in each voxel, by reorienting the signal such that axis (θ, ϕ) coincides with the 

z-axis and evaluating the residual as the energy across coefficients of phase m ≠ 0. This 

residual is an antipodally symmetric function on the sphere, and its minimum is selected 

with an exhaustive search across a dense set of directions. For a corpus callosum voxel, the 

result typically resembles a single-fibre white matter response function. For voxels in grey 

matter or CSF regions, the best fitting zonal harmonic is more isotropic.

2.3. Optimization

The resulting factorization problem is computed iteratively, alternately solving for F̄ given 

H̄, and for H̄ – implicitly represented by W – given F̄. This procedure is initialized with k-

means and repeated until convergence.

Initialization—The response functions H̄ are initialized with spherical k-means clustering 

of the best-fitting zonal harmonics Z̄. Spherical k-means (Dhillon and Modha, 2001) is 

identical to the standard k-means algorithm (MacQueen, 1967), but uses the cosine distance 

instead of the Euclidian distance between data points. This cosine metric is independent of 

scaling effects, and instead minimizes the within-cluster angle between all datapoints. As 

such, spherical k-means partitions the simplicial cone of Fig. 1 in k sub-cones, making it 

well suited for initializing any nonnegative factorization method. Moreover, this k-means 

initialization obeys the convexity constraint: there exists a W(0) for which the initialization 

H̄(0) = Z̄ ×v W(0).

In addition, the initialization is adapted to n response functions of given ℓmax each, by 

projecting all centroids to the appropriate subspace in each k-means iteration. The 

appropriate subspace is chosen by selecting the permutation of centroids that minimizes the 

projection residual. For example, in case of ℓmax = (8, 0, 0) the two centroids closest to the ℓ 
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≤ 0 subspace are projected onto this subspace, to ensure that they represent isotropic 

functions. Finally, since k-means itself is randomly initialized, the entire procedure is 

repeated 10 times to ensure robustness, and the result of minimal residual is selected.

Solve for F ̄(k)—Given response functions H̄(k), the tissue ODFs become

(5)

When unfolding all tensors along the dimensions of shells and SH coefficients, this results in 

a constrained least squares problem for every voxel v. This minimization problem is solved 

with quadratic programming (QP) subject to non-negativity constraints on F̄. Expression (5) 

is identical to multi-shell multi-tissue spherical deconvolution (Jeurissen et al., 2014).

Solve for H ̄(k+1)—Subsequently, given ODFs F̄(k), the new response functions become

(6)

This expression is cast as one global constrained least squares problem, by unfolding all 

tensors across voxels, shells, and SH coefficients. The optimal RF weights W are then 

computed with QP, using an interior point method initialized with the solution of the 

previous iteration.

Convergence—The alternating least squares optimization procedure is repeated until the 

residual  converges to a stable minimum. The convergence criterion 

is met when the relative decrease in residual (r(k) − r(k+1))/r(k) is smaller than a threshold ε = 

0.5%.

2.4. Implementation

The procedure was implemented in Python, using custom code for evaluating the SH basis 

and CVXOPT (Andersen et al., 2014) for QP optimization. Each shell is multiplied with the 

square root of its number of gradient directions, in order to equalize the fitting residual for 

all DWI volumes. For practical purposes, the iterative procedure is run on a subset of 1000 

voxels, randomly selected across a brain mask after applying a 3-pass erosion filter. 

Afterwards, the ODFs are computed for the entire image based on the resulting RFs H̄★ in a 

single run of minimization problem (5).
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3. Validation

3.1. Phantom simulation

The accuracy and precision of the proposed unsupervised factorization method are evaluated 

and compared against supervised deconvolution with the ground-truth RFs in simulated 

phantom data. This phantom consists of 3 components that mimic WM, GM, and CSF, 

respectively represented at ℓmax = 8, 0, and 0. The ground-truth ODFs consist of a collection 

of 70 voxels containing either pure tissue (single fibre WM, GM, or CSF), 2 equally-

weighted WM fibres at different crossing angles (from 0° to 90°), or WM-GM, WM-CSF 

and GM-CSF partial voluming (from 0 to 100%) in which WM is simulated as a 60° fibre 

crossing. The ground-truth RFs used in the simulations were originally estimated from 

selected voxels of in vivo DWI data.

Noise-free phantom DWI data are subsequently simulated with forward convolution 

according to (1). The DWI signal is then sampled with a uniform gradient scheme adapted to 

multi-shell data (Caruyer et al., 2013). This scheme contains 150 gradient directions: 5 

unweighted images (b = 0), 20 diffusion-weighted images at b = 1000 s/mm2, 45 images at b 
= 2000 s/mm2, and 80 images at b = 3000 s/mm2. Finally, Rician noise is added to all data, for 

signal-to-noise ratio (SNR) ranging from 5 to ∞. SNR is defined w.r.t. the mean b = 0 

intensity in WM. At each noise level, 100 noisy data instances are generated in order to 

assess accuracy and precision.

3.2. Accuracy and precision

Each noisy realization of the phantom data is factorized in 3 components, one at ℓmax = 8 and 

two at ℓmax = 0. The latter two isotropic components are sorted based on their RF b-value 

attenuation to ensure a similar order between the estimated and ground-truth components. 

The mean RF of each component 〈Ht〉 is subsequently computed as the ensemble average of 

the estimated RFs over all noise realizations at given SNR.

Accuracy and precision of the estimated RFs are assessed with the relative root-mean-

squared (RMS) difference between their coefficients H and a reference H0

(7)

in which the Frobenius norm corresponds to the total energy over all shells according to 

Parseval’s theorem. Accuracy is measured between the mean RF of each component 〈Ht〉 
and its corresponding ground-truth RF Gt, i.e., Erms(〈Ht〉, Gt). Precision is reported as the 

average error 〈Erms(Ht, 〈Ht〉)〉 between the estimated RFs of each noise realization and their 

mean.

Accuracy and precision of the estimated ODFs are assessed with the error between their 

respective volume fractions. In addition, the accuracy and precision of the estimated ODF 

peaks of anisotropic component 1 are measured in the simulated WM crossing fibre region 
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of varying angle. To this end, the two largest local maxima of ODF 1 exceeding a threshold 

of 0.3 are computed with a Newton gradient-ascent method and clustered according to the 

reference orientations. Accuracy is then quantified as the angular bias between the average 

peak orientation across noise realizations and the ground truth. Precision was measured as 

the mean angle between each estimated fibre orientation and its respective average.

3.3. Results

The mean RF of each component at SNR = 20 is depicted in Fig. 2 for visual comparison to 

the ground truth. At this noise level, the estimated RFs are highly accurate, as evidenced by 

a relative RMS error < 2% and a close visual similarity in both scale and anisotropy. The 

bottom row of Fig. 2 shows the accuracy and precision as a function of SNR. Both accuracy 

and precision improve for increasing SNR and the RMS error is practically eliminated at 

SNR = ∞. At SNR < 20, RF accuracy reduces more strongly than precision, indicating a 

bias towards the Rician noise.

Secondly, Fig. 3 shows that the estimated volume fractions of each component converge 

towards the results of direct MT-CSD with ground-truth RFs for increasing SNR. At low 

SNR, CNSF provides better estimates of the true volume fractions than direct deconvolution. 

Hence, the reduced RF accuracy at low SNR does not deteriorate the estimated ODF volume 

fractions, but rather improves them thanks to the increased flexibility of adapting the RFs to 

the noise distribution. The residual bias in WM-GM and WM-CSF PVE voxels originates 

from the non-negativity constraint in both CNSF and MT-CSD, which impedes an exact 

representation of the SH δ-functions in the ground-truth WM ODF. The precision of all 

estimated volume fractions improves for increasing SNR.

Finally, the evaluation of the peak orientations of ODF 1 in Fig. 4 similarly shows that 

CNSF and MT-CSD are equivalent at sufficiently high SNR. For example, at SNR = 20 both 

can discriminate crossing angles > 45° for ℓmax = 8. The precision of both methods is 

identical for all noise levels. At low SNR, direct deconvolution with ground-truth RFs has a 

smaller angular bias than our blind factorization approach, but is perhaps less important at 

this level of precision.

4. Data and results

4.1. Data and preprocessing

Dataset 1—Data of a neurologically healthy subject were provided by the WU-Minn 

Human Connectome Project (Van Essen et al., 2013), subject ID 100307. The diffusion data 

consist of 3 × 90 gradient directions at b-values 1000, 2000, and 3000 s/mm2 and 18 non-

diffusion-weighted images (b = 0), at an isotropic voxel size of 1.25 mm, and was corrected 

for motion, eddy current, and EPI distortions (Glasser et al., 2013). In addition, a T1 of 

isotropic voxel size 0.7mm is available in the same reference frame. All data are corrected 

for intensity inhomogeneity using the T1 bias field estimated with FSL FAST (Zhang et al., 

2001).

Dataset 2—A multi-shell HARDI dataset of a healthy volunteer was acquired with b-

values 700, 1000 and 2800 s/mm2 along 25, 40 and 75 directions respectively, and 8 b = 0 
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images. In addition, 3 b = 0 images were acquired with reverse-phase encoding. The 

isotropic voxel size equals 2.5 mm, TR = 7800 ms, TE = 90 ms (Poot et al., 2010). The 

diffusion dataset was corrected for motion, eddy current, and EPI distortion using FSL 

EDDY and TOPUP (Andersson et al., 2003; Andersson and Sotiropoulos, 2016), as well as 

intensity inhomgeneity with N4 bias field estimation (Tustison et al., 2010). In addition, a 

T1 image is acquired at voxel size 1×1×1.2mm and rigidly coregistered to the corrected 

DWI.

Dataset 3—This dataset originates from a patient who suffered a grade IV glioma in the 

right temporal lobe, and was acquired after tumour resection. The acquisition protocol is 

identical to that of dataset 2, except for the absence of reverse-phase encoded b = 0 images. 

DWI images are therefore not corrected for EPI distortion and not accurately aligned to T1.

Dataset 4—DWI data of an ex vivo rhesus macaque brain were provided by the Duke 

Center for In Vivo Microscopy. The original acquisition, described in Calabrese et al. 

(2014), consisted of a high-resolution DTI dataset and a HARDI dataset of lower resolution. 

The former contains 12 DWI volumes at b-value 1500 s/mm2 and a single b = 0 image, at an 

isotropic voxel size of 130 μm. The latter consists of 30 DWI volumes at b = 4000 s/mm2 and 

one b = 0 image, at an isotropic voxel size of 200 μm. The high-resolution DTI dataset is 

subsampled to the HARDI resolution after affine registration of their corresponding b = 0 

images.

4.2. Results

First, the presented DWI factorization method is applied to healthy human brain datasets 1 

and 2. In line with the validation experiment, we select 3 components: one anisotropic 

component at ℓmax = 8 and two isotropic components at ℓmax = 0. In dataset 1, a single run in 

a subset of 1000 randomly selected voxels took 8 iterations until convergence, or 4 min 59 s 

on a standard desktop. In dataset 2, a single run took 13 iterations in 3 min 20 s. The 

precision of the anisotropic RF equals 3.3% in dataset 1 and 5.6% in dataset 2. Hence, this 

random subsampling enables fast convergence while maintaining sufficient robustness. 

Afterwards, deconvolution of the full image with the resulting RFs takes 15 min to a few 

hours, depending on the size of the data.

The resulting decomposition in RFs and ODFs is shown in Figs. 5 and 6. Figure 5 visualizes 

the ODFs of all components in the full images. In both datasets, anisotropic component 1 is 

strongly associated with WM and its ODF lobes are well aligned with the expected fibre 

structure. Similarly, components 2 and 3 are associated with GM and CSF contrasts. Since 

both components are imposed to be isotropic, their ODFs are isotropic volume fraction maps 

that correspond to the ℓ = 0 SH coefficient. Note that CNSF produces these components in 

random order, and we manually sorted them for WM, GM, CSF correspondence. Figure 6a–

b depicts the resulting RFs, which resemble the anisotropy and attenuation expected of those 

tissues. Figure 6c shows that the residual decreases throughout optimization and converges 

rapidly. Finally, Fig. 6d plots voxel weights W that represent the estimated RFs upon 

convergence. As shown, these weights evolve to a sparse combination of voxels, consistent 

with theoretical proof (Ding et al., 2010).
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Next, we compare the results to MT-CSD as implemented in MRtrix31 (Tournier et al., 

2012). A single-fibre WM RF and isotropic GM and CSF RFs are estimated from the DWI 

data based on a T1 tissue segmentation as described in Jeurissen et al. (2014). The WM 

single-fibre mask is obtained with an iterative procedure based on Tournier et al. (2013). 

These WM, GM, and CSF response functions are depicted in dashed lines in Fig. 6. As 

shown, the RFs estimated with CNSF exhibit similar attenuation across b-values, up to a 

scaling factor. The anisotropic RF of component 1 closely resembles the WM RF when 

rescaled to equalize their b = 0 shells. In addition, Fig. 6c shows that the residual of CNSF 

upon convergence is smaller than the residual of MT-CSD, indicating that a better fit of the 

data is obtained. In Figures 7 and 8, the ODF of component 1 is compared to the WM fibre 

ODF obtained with MT-CSD. Both are qualitatively very similar, showing fibre structure 

and partial voluming with adjacent tissue types. Therefore, the proposed DWI factorization 

method enables the benefits of multi-tissue deconvolution, without relying on T1 or external 

inputs.

In dataset 3, which contains residual edema surrounding the resected tumour, a 

decomposition in 4 components was chosen, 3 of which are constrained to isotropic RFs. As 

can be seen in Figs. 9 and 10, the anisotropic component is again associated to WM, 

whereas the first isotropic components is associated to GM and the second one to CSF. 

Notice how this component detects CSF in the surgical cavity, as well as in the ventricles. 

The third isotropic component is associated with edema in the area surrounding the resected 

tumour. As shown in Fig. 10, the WM fibre ODF detected in component 1 traverses this 

region homogeneously. While CNSF is not directly intended for lesion segmentation, this 

result illustrates how an unsupervised approach can discriminate pathology and adapt to 

outliers in abnormal data.

Finally, we demonstrate CNSF in dataset 4, which originates from an ex vivo rhesus 

macaque brain. Because this data contains little CSF, a factorization into two components 

was selected at ℓmax = 6 and 0. As shown in Figs. 11 and 12, the resulting components are 

associated with WM and GM. At the exceptional spatial resolution in this dataset, this 

decomposition reveals WM fibres traversing distal gyri and protruding into cortical GM 

(Fig. 13) or branching in tree-like structure in the cerebellum (Fig. 14). These results 

illustrate that our method offers a practical means of exploring tissue structure in data where 

no T1 or prior tissue segmentation is available.

5. Discussion

5.1. Unsupervised DWI factorization

As a direct extension of convex nonnegative matrix factorization (Ding et al., 2010) to 

spherical data, CNSF is an unsupervised method: it aims to discover structure in the data, 

without additional input. The data is represented in a generative model predicated on two 

minimal assumptions. First, CNSF assumes linear partial voluming between a set of tissue 

components, each represented by a spatially-invariant response function. Second, it assumes 

1J-D Tournier, Brain Research Institute, Melbourne, Australia, https://github.com/MRtrix3/mrtrix3
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that these response functions are plausible, i.e., evidence of their existence must be found in 

the data.

MT-CSD (Jeurissen et al., 2014) also adopts the first assumption, but additionally assumes 

that all RFs are known a priori or estimated from the data using a prior tissue segmentation. 

Therefore, MT-CSD estimates tissue ODFs specifically related to the input tissue types, 

whereas CNSF looks for general components that best explain the data under the stated 

assumptions. Our results show that in many cases these components are associated with 

known anatomy, although this is never explicitly enforced. Both the phantom experiments 

and the qualitative results in real data demonstrate that CNSF factorization is on par with 

MT-CSD. With a fully unsupervised method and solely relying on DWI, matching the 

performance of its supervised counterpart is arguably the best one can aim for.

Nevertheless, due to their different interpretation CNSF and MT-CSD also serve a different 

purpose. CNSF is primarily suited for exploratory analysis of multi-shell DWI data in which 

a prior tissue segmentation is uncertain or hard to obtain. One example are cases where T1 is 

unavailable or not perfectly aligned to the DWI data. As demonstrated in datasets 1 and 2, 

CNSF successfully decomposes the DWI into WM, GM, and CSF-related contrasts, without 

requiring T1. A second example are cases of pathology, in which the microstructure may be 

altered to the extent that it is no longer accurately described by a WM-GM-CSF model. In 

some cases, such as our result of dataset 3, it may therefore be beneficial to include 

additional components. A third example are preclinical or ex vivo data or data of other 

organs, where the tissue structure differs from human brain. As shown in dataset 4, CNSF 

may discover structure in such data which is challenging to obtain with existing techniques 

that assume prior information.

5.2. Model selection

The main parameters to select in our approach are the number of components and the SH 

order ℓmax of each component. In this paper, we selected one anisotropic (ℓmax = 8) and two 

isotropic (ℓmax = 0) components for healthy human brain data, in line with Jeurissen et al. 

(2014). However, in other datasets it may be beneficial to use different settings. The question 

then arises how one should determine the optimal number of components to use. This 

problem is generally known as model selection or rank selection.

Model selection provides a trade-off between goodness of fit and model complexity. One 

approach is to use Akaike Information Criterion (AIC) (Akaike, 1974) or the Bayesian 

Information Criterion (BIC) (Schwarz, 1978) to select such trade-off. Another option is 

cross-validation (Owen and Perry, 2009). In our previous conference paper (Christiaens et 

al., 2015a), we applied BIC to suggest the required number of components. However, 

different model selection criteria are not always in agreement with each other, and which 

one to use remains an open question. Therefore, in this work the number of components is 

selected empirically, based on the nature of the data.

5.3. Future perspectives

The presented DWI factorization method lends itself to a number of applications not yet 

explored in the current paper. A first example is factorization of multi-modal data that 
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includes DWI. T1-weighted, fluid-attenuated inversion recovery (FLAIR), MR spectroscopy 

metabolite contrasts, or any other scalar image can be included as additional isotropic 

“shells” in the input tensor S̄, provided they are co-registered with the DWI data. Such 

multi-modal approach may be particularly beneficial for tissue differentiation in pathology, 

as demonstrated in brain tumours and high-grade gliomas in particular (Sajda et al., 2004; 

Ortega-Martorell et al., 2012; Sauwen et al., 2015). In contrast to those earlier studies, CNSF 

leverages the full directional nature of the signal and assumes linearity at the level of the 

acquisition, rather than in derived parameters such as FA. A multi-modal approach may also 

“augment” single-shell DWI data to facilitate multi-tissue decomposition. Secondly, CNSF 

can be extended to population studies by including voxels across many subjects in the data 

tensor S̄. As such, the resulting tissue response functions provide an optimal representation 

of the entire dataset, while the ODFs are quantitatively comparable across subjects. Finally, 

the presented DWI factorization method may have interesting applications in other organs, 

such as cardiac tissue or prostate tissue, in which current supervised techniques are not 

directly applicable.

6. Conclusion

This work introduced a generalization of multi-tissue spherical deconvolution as a blind 

source separation problem, formulated as convex nonnegative factorization in the SH basis. 

Like CSD, our approach assumes non-negativity of the tissue ODFs and spatial invariance of 

their RFs, but jointly optimizes the RFs instead of assuming them as known.
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List of Abbreviations

CNSF convexity- and nonnegativity-constrained spherical factorization

CSD constrained spherical deconvolution

CSF cerebrospinal fluid

DTI diffusion tensor imaging

DWI diffusion-weighted imaging

FA fractional anisotropy

GM grey matter

HARDI high angular resolution diffusion imaging
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MT-CSD multi-tissue CSD

NMF nonnegative matrix factorization

ODF orientation distribution function

PVE partial volume effect

QP quadratic programming

RF response function

RMS root-mean-square

SH spherical harmonics

SNR signal-to-noise ratio

T1 T1-weighted image

WM white matter
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Figure 1. 
Illustration of the simplicial cone spanned by 3 response functions (RF) projected into a 3-

dimensional subspace, shown as red, green, and blue dots. The best fitting zonal harmonic in 

each voxel is similarly depicted in this subspace as black crosses. Data points scattered 

within the simplicial cone are exactly represented as nonnegative combinations of the RFs. 

Data points outside this cone can not be represented exactly and give rise to a residual fitting 

error. The convexity constraint ensures that all RFs are convex combinations of the data 

points, i.e., located within the point cloud itself and typically driven towards its extremes 

throughout optimization.
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Figure 2. 
Response functions (RFs) in the simulated phantom data. Top row: mean RFs across all 

noise instances at SNR = 20 (full lines), compared to the ground truth RFs (dashed lines). 

RF 1 (anisotropic, ℓmax = 8) corresponds to the simulated WM, isotropic RFs 2 and 3 

correspond with the simulated GM and CSF tissues respectively. Bottom row: Accuracy ± 

precision of the estimated RFs, measured with the relative RMS error to the ground-truth. 

Both accuracy and precision improve for increasing SNR.
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Figure 3. 
Accuracy ± precision of the estimated WM, GM, and CSF volume fractions (VF) estimated 

with CNSF (full blue lines) and with direct MT-CSD using ground-truth RFs (dashed green 

lines), plotted at varying noise levels. The left column originates from a voxel with 50% 

WM-GM partial volume effect (PVE). The middle graphs show the estimated volume 

fractions in a 50% WM-CSF voxel, and the right column for a 50% GM-CSF voxel.
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Figure 4. 
Accuracy (left) and precision (right) of the estimated peak orientations in ODF 1 (blue line), 

compared to the peak orientations of the WM fibre ODF estimated with direct deconvolution 

with the ground truth RFs (green dashed line). The top row plots the angular bias and 

precision at varying signal-to-noise ratio (SNR) in a 60° crossing. The bottom row plots 

these measures for different crossing angles at SNR = 20.
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Figure 5. 
Factorization results with 3 components in healthy human brain datasets 1 and 2: Axial 

slices of the orientation distribution function (ODF) of each component. ODF 1 includes 

directional information associated with white matter fibre structure, ODF 2 and 3 are 

isotropic and are associated with GM, and CSF volume fractions.

Christiaens et al. Page 20

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Factorization results with 3 components in dataset 1 (top) and in dataset 2 (bottom). (a) The 

anisotropic response function (RF) of component 1 (full lines) compared to the WM SF 

response (dashed lines) after equalizing their b = 0 amplitudes. (b) The RF attenuation 

across shells (full), compared to WM, GM, and CSF response functions (dashed). (c) The 

residual throughout optimization (blue curve), compared to the residual of MT-CSD (green 

dashed level). (d) Voxel weights encoding the estimated RFs.
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Figure 7. 
The ODF of the anisotropic CNSF component in dataset 1, compared to the white matter 

fibre ODF obtained with multi-tissue CSD. A close-up of the WM-GM interface shows 

fibres running through the gyrus and protruding into cortical grey matter. In both cases, 

explicit modelling of partial volume contamination produces a clean result with little 

spurious fibre directions.
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Figure 8. 
The ODF of the anisotropic CNSF component in dataset 2, compared to the white matter 

fibre ODF obtained with multi-tissue CSD. A close-up of the semioval centre shows that 

unsupervised CNSF factorization recovers intra-voxel fibre crossings highly similar to 

results of supervised MT-CSD deconvolution. In the ventricles and at the WM-CSF 

interface, little partial volume contamination is observed.
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Figure 9. 
Response functions of 4 factorization components in dataset 3, one anisotropic component 

(RF 1) and three isotropic components (RF 2 – RF 4). RF 1 has the oblate shape 

characterizing of single-fibre white matter. RF 2 and RF 3 have signal attenuations expected 

of GM and CSF respectively. Finally, RF 4 has an attenuation profile between CSF and GM, 

associated with edema.
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Figure 10. 
(A–B) T1- and T2-weighted images of dataset 3, illustrating the resected tumour and residual 

edema. (C–F) ODFs of components 1–4 obtained with CNSF factorization. ODF 1 recovers 

white matter fibre orientation. ODF 2 is associated with grey matter. ODF 3 displays CSF 

contrast in the ventricles and in the surgical cavity. ODF 4 highlights the edemous region 

surrounding the resected tumour. (G–H) A close-up of this region in ODF 1, overlaid onto 

component 4, shows WM fibres traversing the edemous area. A corresponding close-up of 

the T2-weighted image is provided for reference.
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Figure 11. 
Response functions of 2 factorization components in dataset 4, one anisotropic component 

(RF 1) and one isotropic component (RF 2). RF 1 is associated with single-fibre white 

matter. RF 2 is associated with grey matter.

Christiaens et al. Page 26

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
Factorization into 2 components in dataset 4. The ODF of anisotropic component 1 is shown 

on the left, and displays white matter fibre structure. The ODF of isotropic component 2, 

shown on the right, is primarily associated with grey matter.
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Figure 13. 
Coronal slice of the temporal lobe in dataset 4. The background contrast is the volume 

fraction of component 2. Overlaid on top is the ODF of component 1. ODF 1 shows 

longitudinal association fibres traversing white matter and radiating into the grey matter 

cortex, and recovers anisotropic tissue structure in the hippocampus.
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Figure 14. 
Sagittal slice of the cerebellum in dataset 4. The background contrast is the volume fraction 

of component 2. Overlaid on top is the ODF of component 1, which shows the branching 

structure of the arbor vitae in cerebellar white matter.
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