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Abstract  

In order to promote survival through flexible cognition and goal-directed behaviour, the brain has to 

optimize segregation and integration of information into coherent, distributed dynamical states. 

Certain organizational features of the brain have been proposed to be essential to facilitate cognitive 

flexibility, especially hub regions in the so-called rich club with shows dense interconnectivity. 

These structural hubs have been suggested to be vital for integration and segregation of information. 

Yet, this has not been evaluated in terms of resulting functional temporal dynamics. A 

complementary measure covering the temporal aspects of functional connectivity could thus bring 

new insights into a more complete picture of the integrative nature of brain networks. Here, we use 

causal whole-brain computational modelling to determine the functional dynamical significance of 

the rich club and compare this to a new measure of the most functionally relevant brain regions for 

binding information over time (“dynamical workspace of binding nodes”). We found that removal 

of the iteratively generated workspace of binding nodes impacts significantly more on measures of 

integration and encoding of information capability than the removal of the rich club regions. While 

the rich club procedure produced almost half of the binding nodes, the remaining nodes have low 

degree yet still play a significant role in the workspace essential for binding information over time 

and as such goes beyond a description of the structural backbone. 
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Introduction 

Every conscious human experience of perceptions, memories and emotions relies on the flexible 

integration and segregation of information (Baars, 1989; Dehaene et al., 1998; Tononi et al., 1998). 

Importantly, this information integration is above and beyond the information available from the 

sum of its parts (Balduzzi and Tononi, 2008; Griffith and Koch, 2012), and as such has been linked 

to consciousness (but can also proceed without awareness (Mudrik et al., 2014)).  

 

The integration of information is likely to take place in a functionally coherent, yet distributed 

network of brain regions, where computations are highly segregated (Power et al., 2011; Sporns, 

2013). However, these computations must also be integrated globally and over time (Hansen et al., 

2015). Large-scale projects such as the Human Connectome Project (Van Essen et al., 2012) and 

Human Brain Project (Gerstner et al., 2012) have begun to map the brain structurally and 

functionally, providing the experimental tools to aid a deeper understanding of how the brain 

integrates and segregates relevant information.  

 

These projects use primarily non-invasive neuroimaging methods to map the human connectome 

(Sporns et al., 2005) as the complete map of the brain’s neural elements and their structural 

interactions that allow complex integration and segregation of relevant information (Sporns, 2013). 

Structural anatomical connectivity can be precisely extracted by diffusion weighted/tensor imaging 

(DWI/DTI) measuring the white-matter fiber tracts constrained by the diffusion of water molecules 

(Basser and Pierpaoli, 1996; Beaulieu, 2002), from which the connectivity can be reconstructed by 

deterministic or probabilistic tract-tracing methods (Hagmann et al., 2010; Johansen-Berg and 

Rushworth, 2009). Similarly, functional information can be mapped in vivo in humans on the scale 

of millimetres by magnetic resonance imaging (MRI) at a temporal resolution of seconds or by 

magnetoencephalography (MEG) allowing a much finer temporal resolution of milliseconds. 

Typically, functional neuroimaging studies have measured task-related activity, but in the past 

decade studies have started to measure spontaneous resting-state activity over several minutes 

(Snyder and Raichle, 2012). These resting state studies have found highly reproducible and 

organized patterns of brain activity (Damoiseaux et al., 2006; Greicius et al., 2003), which overlap 

with task-related activity patterns (Fox and Raichle, 2007; Smith et al., 2009). 

 

Mapping the human connectome has identified some of the crucial structural topological features of 

human brain architecture relevant for the functional integration and segregation of information. 

Graph-theoretical measures have shown that the brain is structured as a small-world network (Watts 

and Strogatz, 1998) around a large number of spatially distributed network communities with 
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clustered connectivity in which the local computations are likely to be highly segregated (Power et 

al., 2011; Sporns, 2013) (although see (Markov et al., 2013)). Furthermore, network hubs linking 

those network communities could potentially serve to ensure efficient communication and 

information integration (Bullmore and Sporns, 2009). Notably, some hubs show rich, dense 

interconnectivity and form a central core of structural connectivity (static domain) or ‘rich club’ that 

has been suggested to play an important role for global brain integration (Van Boven and 

Loewenstein, 2003; van den Heuvel and Sporns, 2011). This raises the question whether the brain 

regions from the rich club are sufficient for optimal information flow over time. Misic and 

colleagues have shown that the hippocampus is a critical convergence zone for information flow, 

despite its modest degree profile (Mišić et al., 2014). This suggests that a region that is structurally 

not densely connected could still be crucial for information flow. In this paper we suggest a new 

degree-naive measure to describe the functional relevance of brain regions in dynamically 

integrating information over time.  

 

In order to gain more insight into functional connectivity and network measures, significant 

progress has been made using whole-brain computational models. Such models have shown to be 

able to reflect and reproduce much of the dynamics and complexity of the real brain. The models 

typically use various mesoscopic top-down approximations of brain complexity with dynamical 

networks of local brain area attractor networks (Cabral et al., 2014a), where the more advanced 

models use a dynamic mean-field model derived from a proper reduction of a detailed spiking 

neuron model (Deco et al., 2013b). Furthermore, the dynamics of whole-brain models rely on 

reducing the complexity of brain networks by using a given macro scale brain parcellation, which 

historically has been carried out based on careful studies of the properties of the underlying brain 

tissue (Zilles and Amunts, 2010), which has been supplemented with modern neuroimaging 

parcellations that typically range from tens to several hundreds of regions (Craddock et al., 2013). A 

current popular choice for whole brain parcellations is the automated anatomical labeling (AAL) 

parcellation with 116 regions in the cerebellum, cortical and subcortical regions (Tzourio-Mazoyer 

et al., 2002). Whole-brain computational models have been able to provide a mechanistic 

explanation of the origin of resting-state networks, as e.g. shown for resting-state networks derived 

from resting-state MRI data (Deco and Jirsa, 2012; Honey et al., 2007) and for resting-state 

networks derived from MEG data (Cabral et al., 2014b). Such models have been successfully used 

to show that both spontaneous and task-related neural activity are strongly dependent on the 

properties of the underlying structural connectivity and the dynamical working point, where the 

working point refers to the oscillatory and bifurcation properties of any given node (Deco and 

Corbetta, 2011). 
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The optimal functioning of the brain in terms of information processing depends on its ability to 

balance the amount of spatial segregation and integration of relevant information (Deco and 

Kringelbach, 2014; Sporns, 2013). Although information capability (entropy) and integration are 

not directly related to brain function, both measures represent fundamental aspects of brain 

organization and are indeed related to the exploration of the dynamical repertoire (Deco et al., 2015; 

Tononi et al., 1994). Moreover, emergent research has revealed that the richness of that exploration 

is related with task activity (Palva and Palva, 2012). Hence, measures of information capability and 

integration can be used to characterise the richness of the functional dynamics.  

 

Here we used whole-brain computational modelling to clarify the functional role of the rich club 

and the functional impact on resting state activity. First, we compared this topological measure to a 

novel dynamical measure of the temporal binding of information, which we call the dynamical 

workspace of binding nodes. It is proposed that evaluation of temporal binding reveals which 

regions within the network are more integrative, or binding, across both space (over spatial 

segregated brain regions) and time (as defined by the grand average of functional activity over time) 

(as carefully described in Deco et al., 2015). This measure is related to the binding problem  – that 

is how distributed information is bound and made available for awareness and consciousness (Crick 

and Koch, 1990). We compared the top ranked brain regions belonging to the rich club and to the 

workspace of binding nodes, and used whole-brain computational modelling to measure the impact 

of removing the members of either clubs on the integration and information capabilities of the 

human brain. This direct comparison is included to illustrate the conceptual difference of the 

dynamical workspace of binding nodes as a measure capable of finding functionally relevant nodes 

that may not exhibit high structural connectivity. 

 

Experimental Procedures 

Ethics 

This study was approved by the internal research board at CFIN, Aarhus University, Denmark. 

Ethics approval was granted by the Research Ethics Committee of the Central Denmark Region (De 

Videnskabsetiske Komitéer for Region Midtjylland). Written informed consent was obtained from 

all participants prior to participation.  

 

Overall analysis pipeline 

In order to determine the impact of brain regions on functional dynamics, we analyzed the 

functional and structural connectivity of neuroimaging data together with whole-brain 
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computational modelling. We defined a new measure that allowed us to capture the key regions for 

binding functional connectivity over time. These regions together form the dynamical workspace of 

binding nodes, comparable to the rich club in the domain of structural connectivity networks. The 

following pipeline outlines the necessary and sufficient steps to calculate this workspace of binding 

nodes, and compare the impact of these regions to the rich club. For all subsequent analysis and 

calculations we used both the structural (DTI) and functional (rs-fMRI) imaging data from 16 

healthy subjects: 

1. Structural connectivity. A group-averaged structural connectome (see Figure 1A and Structural 

connectivity analysis) was constructed and subsequently used to estimate the regions forming the 

rich club (see Measure of Rich Club). 

2. Dynamical whole-brain computational modelling. The group-averaged structural and functional 

connectomes were further combined (see Figure 1B and Functional connectivity analysis) to 

optimize the whole-brain computational model (see Figure 1C and Whole-Brain Dynamic Mean 

Field Model). As shown in previous studies (Cabral et al., 2014a), the outcome of this model 

captures many significant features of the resting-state dynamics of functional connectivity.  

3. Rich club membership was determined using a standard method on the structural connectivity 

data (van den Heuvel and Sporns, 2013a), shown in Figure 3. 

4. Membership to the workspace of binding nodes was established by combining whole-brain 

computational modelling and functional connectivity neuroimaging data. In order to get a measure 

of binding we first quantified the entropy of the resting state activity (see Figure 1D and Measure of 

Resting Entropy), based on the modeled connectivity, i.e. the resting state dynamics. The workspace 

of binding nodes was then defined as the regions with largest impact on resting entropy by 

sequentially removing regions from the modeled functional connectivity network (see Measure of 

Workspace of Binding nodes). 

5. The functional impact on brain dynamics of the binding nodes and rich club was determined by 

removing the top-ranked members and comparing their impact on integration and information 

capability of the modeled resting-state dynamics with perturbations (see Whole-Brain Dynamic 

Mean Field Model). Hence, novel measures of integration and information capability (see Figure 

1E, Measure of integration, and Figure 1D, Measure of Information Capability) were used to 

evaluate the impact that removing each set of nodes had on the resting-state and stimulated 

dynamics. The evaluation of these measures over the stimulated dynamics corresponds to 

estimating what we call the perturbational integration and perturbational information capability.  
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Empirical neuroimaging data collection  

All participants were recruited through the online recruitment system at Aarhus University. Data 

were collected at CFIN, Aarhus University, Denmark, from 16 healthy right-handed participants (11 

men and 5 women, mean age: 24.75+/-2.54). Participants with psychiatric or neurological disorders 

(or a history thereof) were excluded from participation in this study. 

 

Data collection parameters 

The MRI data (structural MRI, rs-fMRI and DTI) were collected in one session on a 3T Siemens 

Skyra scanner at CFIN, Aarhus University, Denmark. The parameters for the structural MRI T1 

scan were as follows: voxel size of 1 mm3; reconstructed matrix size 256x256; echo time (TE) of 

3.8 ms and repetition time (TR) of 2300 ms. The resting-state fMRI data were collected using 

whole-brain echo planar images (EPI) with TR = 3030 ms, TE = 27 ms, flip angle = 90˚, 

reconstructed matrix size = 96x96, voxel size 2x2 mm with slice thickness of 2.6 mm and a 

bandwidth of 1795 Hz/Px. Approximately seven minutes of resting state data were collected per 

subject. 

 

The DTI data were collected using TR = 9000 ms, TE = 84 ms, flip angle = 90˚, reconstructed 

matrix size of 106x106, voxel size of 1.98x1.98 mm with slice thickness of 2 mm and a bandwidth 

of 1745 Hz/Px. Furthermore, the data were collected with 62 optimal nonlinear diffusion gradient 

directions at b=1500 s/mm2. Approximately one non-diffusion weighted image (b=0) per 10 

diffusion weighted images was acquired. Additionally, the DTI images were collected with different 

phase encoding directions. One set was collected using anterior to posterior phase encoding 

direction and the second acquisition was performed in the opposite direction. 

 

Functional connectivity analysis 

The functional connectivity analysis of the resting state fMRI from the 16 participants progressed 

using the following three-step process: 

 

1) Brain parcellation 

We used three versions or sub-parcellations of the automated anatomical labeling (AAL) template 

to parcellate the entire brain into 76 cortical regions (AAL76), 90 regions (adding 14 subcortical 

regions, AAL90) and 116 regions (adding another 26 cerebellar regions, AAL116) (Tzourio-

Mazoyer et al., 2002). The linear registration tool from the FSL toolbox (www.fmrib.ox.ac.uk/fsl, 

FMRIB, Oxford) (Jenkinson et al., 2002) was used to coregister the EPI image to the T1-weighted 

structural image. The T1-weighted image was co-registered to the T1 template of ICBM152 in MNI 
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space (Collins et al., 1994). The resulting transformations were concatenated and inversed and 

further applied to warp the AAL template (Tzourio-Mazoyer et al., 2002) from MNI space to the 

EPI native space, where interpolation using nearest-neighbor method ensured that the discrete 

labelling values were preserved. Thus the brain parcellations were conducted in each individual’s 

native space. 

 

2) Functional connectivity matrices  

Preprocessing of the functional fMRI data was carried out using MELODIC (Multivariate 

Exploratory Linear Decomposition into Independent Components) Version 3.14 (Beckmann and 

Smith, 2004), part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). We used the 

default parameters of this imaging pre-processing pipeline on all participants: motion correction 

using MCFLIRT (Jenkinson et al., 2002); non-brain removal using BET (Smith, 2002); spatial 

smoothing using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalisation of the 

entire 4D dataset by a single multiplicative factor and high pass temporal filtering (Gaussian-

weighted least-squares straight line fitting, with sigma = 50.0s). 

 We used tools from FSL to extract and average the time courses from all voxels within each 

AAL cluster. We then used Matlab (The MathWorks Inc.) to compute the pairwise Pearson 

correlation between all 76 regions, applying Fisher’s transform to the r-values to get the z-values for 

the final 76x76 FC_fMRI matrix (AAL76, including only cortical regions). For further analysis, we 

also created a 90x90 correlation matrix (AAL90, including subcortical regions), as well as a 

116x116 correlation matrix (AAL116, including all cortical, subcortical and cerebellar regions). 

 

3) Group average 

We averaged the correlation matrices for all 16 participants to get three group averaged FC_fMRI 

matrices: FC76 (for AAL76), FC90 (for AAL90) and FC116 (for AAL116). 

 

Structural connectivity analysis 

We generated the structural connectivity (SC) maps for each participant using the DTI data 

acquired. We processed the two datasets acquired (each with different phase encoding to optimize 

signal in difficult regions). The construction of these structural connectivity maps or structural brain 

networks consisted of a three-step process. First, the regions of the whole-brain network were 

defined using the AAL template as used in the functional MRI data. Secondly, the connections 

between regions in the whole-brain network (i.e. edges) were estimated using probabilistic 

tractography. Thirdly, data were averaged across participants. 
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1) Brain parcellation 

Identical to the procedure used for analysing the rs-fMRI data, we used the AAL template to 

parcellate the entire brain into three sub-parcellations: AAL76, AAL90 and AAL116. We used the 

FLIRT tool from the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford) to coregister the b0 

image in diffusion MRI space to the T1-weighted structural image and then to the T1 template of 

ICBM152 in MNI space (Collins et al., 1994). The two transformation matrices from these 

coregistration steps were concatenated and inversed to subsequently be applied to warp the AAL 

templates (Tzourio-Mazoyer et al., 2002) from MNI space to the diffusion MRI native space.  

 

2) Analysis of interregional connectivity  

We used the FSL diffusion toolbox (Fdt) in FSL to carry out the various processing stages of the 

diffusion MRI data. We used the default parameters of this imaging pre-processing pipeline on all 

participants. Following this preprocessing, we estimated the local probability distribution of fibre 

direction at each voxel (Behrens et al., 2003). We used the probtrackx tool in Fdt to provide 

automatic estimation of crossing fibres within each voxel. This has been shown to significantly 

improve the tracking sensitivity of non-dominant fibre populations in the human brain (Behrens et 

al., 2007). 

 

The connectivity probability from a seed voxel i to another voxel j was defined by the proportion of 

fibres passing through voxel i that reach voxel j using a sampling of 5000 streamlines per voxel 

(Behrens et al., 2007). This was extended from the voxel level to the region level, i.e. in an AAL 

parcel consisting of n voxels, 5000xn fibres were sampled. The connectivity probability Pij from 

region i to region j is calculated as the number of sampled fibres in region i that connect the two 

regions divided by 5000xn, where n is the number of voxels in region i.  

 

For each brain region, the connectivity probability to each of the other 115 regions within the AAL 

was calculated. Due to the dependence of tractography on the seeding location, the probability from 

i to j is not necessarily equivalent to that from j to i. However, these two probabilities are highly 

correlated across the brain for all participants (the least Pearson r=0.70, p< 10-50). As directionality 

of connections cannot be determined based on diffusion MRI, the unidirectional connectivity 

probability Pij between regions i and j was defined by averaging these two connectivity 

probabilities. This unidirectional connectivity was considered as a measure of the structural 

connectivity between the two areas, with Cij=Cji. We implemented the calculation of regional 

connectivity probability using in-house Perl scripts. For both phase encoding directions, 76x76, 

90x90 and 116x116 symmetric weighted networks were constructed based on the AAL76, AAL90 
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and AAL116 parcellations, and normalised by the number of voxels in each AAL region; thus 

representing the structural connectivity network organization of the brain.  

 

3) Group averaging 

We averaged across all 16 healthy participants to get three group averaged structural connectivity 

network matrices: SC76, SC90 and SC116. 

 

Whole-Brain Dynamic Mean Field Model 

The computation of the dynamics sustained by the underlying empirical structural connectivity was 

based on the model of Deco et al. (2014b). This model describes the functional dynamics of local 

regions in a given brain parcellation; each composed by excitatory–inhibitory subnetworks (E–I 

networks), through the underlying anatomical SC which is gained from diffusion-imaging data from 

healthy human subjects as described above (SC76, SC90 and SC116). The excitatory synaptic 

currents are mediated by NMDA receptors and the inhibitory currents are mediated by GABA-A 

receptors. The dynamics of the model describes the time evolution of the mean synaptic activity of 

each local node (i.e., brain region) by following synaptic equations: 

 

 

𝑢𝑢𝑖𝑖
(𝐸𝐸) = 𝐼𝐼0,𝐸𝐸 + 𝑤𝑤𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖

(𝐸𝐸) + 𝐺𝐺 ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗 𝑆𝑆𝑖𝑖
(𝐸𝐸) −  𝑤𝑤𝐸𝐸𝐸𝐸,𝑖𝑖𝑆𝑆𝑖𝑖

(𝐸𝐸) + 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖    (1) 

 

𝑢𝑢𝑖𝑖
(𝐼𝐼) = 𝐼𝐼0,𝐼𝐼 + 𝑤𝑤𝐼𝐼𝐼𝐼𝑆𝑆𝑖𝑖

(𝐸𝐸) −  𝑤𝑤𝐼𝐼𝐼𝐼𝑆𝑆𝑖𝑖
(𝐼𝐼)       (2) 

 

 

𝑟𝑟𝑖𝑖
(𝐸𝐸) = 𝛷𝛷(𝐸𝐸)�𝑢𝑢𝑖𝑖

(𝐸𝐸)� = 𝑎𝑎𝐸𝐸𝑢𝑢𝑖𝑖
(𝐸𝐸)−𝑏𝑏𝐸𝐸

1−exp(−𝑑𝑑𝐸𝐸(𝑎𝑎𝐸𝐸𝑢𝑢𝑖𝑖
(𝐸𝐸)−𝑏𝑏𝐸𝐸))

      (3) 

 

𝑟𝑟𝑖𝑖
(𝐼𝐼) = 𝛷𝛷(𝐼𝐼)�𝑢𝑢𝑖𝑖

(𝐼𝐼)� = 𝑎𝑎𝐼𝐼𝑢𝑢𝑖𝑖
(𝐼𝐼)−𝑏𝑏𝐼𝐼

1−exp(−𝑑𝑑𝐼𝐼(𝑎𝑎𝐼𝐼𝑢𝑢𝑖𝑖
(𝐼𝐼)−𝑏𝑏𝐼𝐼))

     (4) 

 

𝑑𝑑𝑆𝑆𝑖𝑖
(𝐸𝐸)

𝑑𝑑𝑑𝑑
= −𝑆𝑆𝑖𝑖

(𝐸𝐸)

𝜏𝜏𝐸𝐸
+ �1 − 𝑆𝑆𝑖𝑖

(𝐸𝐸)�𝑦𝑦𝑦𝑦𝑖𝑖
(𝐸𝐸) + 𝛽𝛽𝜂𝜂𝑖𝑖(𝑡𝑡)     (5) 

 

 

𝑑𝑑𝑆𝑆𝑖𝑖
(𝐼𝐼)

𝑑𝑑𝑑𝑑
= −𝑆𝑆𝑖𝑖

(𝐼𝐼)

𝜏𝜏𝐼𝐼
+ 𝑟𝑟𝑖𝑖

(𝐼𝐼) + 𝛽𝛽𝜂𝜂𝑖𝑖(𝑡𝑡)       (6)  
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where 𝑆𝑆𝑖𝑖
𝐸𝐸,𝐼𝐼 denotes the average excitatory or inhibitory synaptic fraction of open channels at the 

local area i (𝑖𝑖 ∈ [1, … ,𝑁𝑁]). 𝑟𝑟𝑖𝑖
𝐸𝐸,𝐼𝐼 denotes the population firing rate of the excitatory (E) or inhibitory 

(I) population in the brain area i. The population firing rates are sigmoid functions (Φ(I) and Φ(E)) of 

the input synaptic currents to the excitatory or inhibitory population i is given by 𝑢𝑢𝑖𝑖
𝐸𝐸,𝐼𝐼. Synaptic 

currents are the sum of local currents within the local E–I networks, excitatory currents from the 

other local nodes, and external inputs Iext. The local currents in node i are the sum of constants 

inputs to excitatory and inhibitory populations, noted I0,E and I0,I, respectively, local excitatory-to-

excitatory currents 𝑤𝑤𝐸𝐸𝐸𝐸𝑆𝑆𝑖𝑖
(𝐸𝐸) , local inhibitory-to-excitatory currents 𝑤𝑤𝐸𝐸𝐸𝐸,𝑖𝑖𝑆𝑆𝑖𝑖

(𝐼𝐼) , local excitatory-to-

inhibitory currents 𝑤𝑤𝐼𝐼𝐼𝐼𝑆𝑆𝑖𝑖
(𝐸𝐸), and local inhibitory-to-inhibitory currents 𝑤𝑤𝐼𝐼𝐼𝐼𝑆𝑆𝑖𝑖

(𝐼𝐼). The weights of these 

local connections are given by: 𝑤𝑤𝐸𝐸𝐸𝐸 = 1.4 ; 𝑤𝑤𝐼𝐼𝐼𝐼 = 0.15 ; 𝑤𝑤𝐼𝐼𝐼𝐼 = 1 ; and the feedback inhibition 

weight, 𝑤𝑤𝐸𝐸𝐸𝐸,𝑖𝑖 , is adjusted for each node i so that the firing rate of the local excitatory neural 

population is clamped around 3Hz, whenever nodes are connected or not — this regulation is 

known as Feedback Inhibition Control (FIC) and the algorithm to achieve it is described in Deco et 

al. (2014b). It has been demonstrated that the FIC constrain leads to a better prediction of the 

resting functional connectivity and a more realistic network evoked activity (Deco et al., 2014b). 

The excitatory pools are coupled by long-range connections based on the DTI Structural Matrix C. 

The structural matrix C denotes the density of fibres between cortical areas i and j and is scaled by a 

global scaling factor G (global conductivity parameter scaling equally all excitatory synapses). The 

global scaling factor is a control parameter that is adjusted to move the system to its optimal 

working point, defined by the point where the simulated functional connectivity maximally fits the 

empirical functional connectivity (i.e. the point where the Pearson correlation between the 

simulated and empirical FC is maximal, (Deco and Jirsa, 2012; Deco et al., 2013a; Deco et al., 

2014a)). In our case, for the experimental data described above, the maximal fit (Pearson 

correlation between the empirical and simulated FC equal 0.56) was obtained at G=1.1. Iext denotes 

the external stimulation for simulating stimuli evoked activity and its values are extracted from a 

Gaussian distribution with mean 0 and standard deviation of 0.02. Under resting state conditions, 

the external stimulations are set to zero for all regions. In equations (5) and (6) 𝜂𝜂𝑖𝑖(𝑡𝑡) is Gaussian 

noise and the noise amplitude at each node is β=0.01. The values of all parameters are taken from 

Deco et al. (2014b) and are presented in Table 1.  

 

Analytical FC: The Moments Method 

In order to obtain an analytical reduction of the whole-brain dynamical mean field model, we used 

the Moments Method for deriving approximated equations for the statistics of the gating variables 

and the synaptic activity (Deco et al., 2014b). To estimate the network’s statistics, we assume that 
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the noise is sufficiently weak so that the state variables fluctuate around their mean value and, by 

linearizing the equations, we focus on the linear fluctuations. In this way, we express the system of 

stochastic differential equations (1–6) in terms of the first- and second-order statistics of the 

distribution of synaptic gating variables: 𝜇𝜇𝑖𝑖
(𝑚𝑚), the expected mean gating variable of a given local 

neural population of type m (where m=E or I) of the cortical area i, and 𝑃𝑃𝑖𝑖𝑖𝑖
(𝑚𝑚𝑚𝑚), the covariance 

between gating variables of neural populations of type m and n of local cortical areas i and j, 

respectively. The statistics are defined as: 

𝜇𝜇𝑖𝑖
(𝑚𝑚)(𝑡𝑡) = 〈𝑆𝑆𝑖𝑖

(𝑚𝑚)(𝑡𝑡)〉      (7) 

𝑃𝑃𝑖𝑖𝑖𝑖
(𝑚𝑚𝑚𝑚)(𝑡𝑡) = 〈�𝑆𝑆𝑖𝑖

(𝑚𝑚)(𝑡𝑡) − 𝜇𝜇𝑖𝑖
(𝑚𝑚)(𝑡𝑡)��𝑆𝑆𝑗𝑗

(𝑛𝑛)(𝑡𝑡) − 𝜇𝜇𝑗𝑗
(𝑛𝑛)(𝑡𝑡)�〉    (8) 

Where the angular brackets <.> denote the average over realizations (i.e. average over simulated 

trials). In vector form, the system of equations is written as: 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑆𝑆

(𝐸𝐸)

𝑆𝑆(𝐼𝐼)� = �𝑓𝑓
(𝐸𝐸)�𝑆𝑆(𝐸𝐸),𝑆𝑆(𝐼𝐼)�
𝑓𝑓(𝐼𝐼)�𝑆𝑆(𝐸𝐸),𝑆𝑆(𝐼𝐼)�

� + 𝜂𝜂(𝑡𝑡)  

      

(9) 

 where 𝑆𝑆 = �𝑆𝑆(𝐸𝐸), 𝑆𝑆(𝐼𝐼)� = �𝑆𝑆1
(𝐸𝐸), … , 𝑆𝑆𝑁𝑁

(𝐸𝐸), 𝑆𝑆1
(𝐼𝐼), … , 𝑆𝑆𝑁𝑁

(𝐼𝐼)� , 𝜂𝜂  is Gaussian noise,  𝑓𝑓𝑘𝑘
(𝐸𝐸)�𝑆𝑆(𝐸𝐸), 𝑆𝑆(𝐼𝐼)� =

−𝑆𝑆𝑘𝑘
(𝐸𝐸)

𝜏𝜏𝐸𝐸
+ �1 − 𝑆𝑆𝑘𝑘

(𝐸𝐸)�𝛾𝛾Φ(𝐸𝐸)�𝐼𝐼𝑘𝑘
(𝐸𝐸)� , and 𝑓𝑓𝑘𝑘

(𝐼𝐼)�𝑆𝑆(𝐸𝐸), 𝑆𝑆(𝐼𝐼)� = −𝑆𝑆𝑘𝑘
(𝐼𝐼)

𝜏𝜏𝐼𝐼
+ Φ(𝐼𝐼)�𝐼𝐼𝑘𝑘

(𝐼𝐼)� for k=1,..,N. 

In the following we use a linear approximation of the fluctuations. As shown in Deco et al. (2014b), 

Taylor expanding 𝑆𝑆 around 𝜇⃗𝜇 = 〈𝑆𝑆〉, i.e. 𝑆𝑆𝑖𝑖
(𝑚𝑚) = 𝜇𝜇𝑖𝑖

(𝑚𝑚) + 𝛿𝛿𝑆𝑆𝑖𝑖
(𝑚𝑚), up to the first order, we obtain the 

motion equations for the means of the gating variables and the covariance of the fluctuations around 

the mean. For the mean values: 

𝑑𝑑𝜇𝜇𝑖𝑖
(𝐸𝐸)

𝑑𝑑𝑑𝑑
= 𝑑𝑑

𝑑𝑑𝑑𝑑
〈𝑆𝑆(𝐸𝐸)〉 = −𝜇𝜇𝑖𝑖

(𝐸𝐸)

𝜏𝜏𝐸𝐸
+ �1 − 𝜇𝜇𝑖𝑖

(𝐸𝐸)�𝛾𝛾Φ(𝐸𝐸)�𝑢𝑢𝑖𝑖
(𝐸𝐸)�     (10) 

 

𝑑𝑑𝜇𝜇𝑖𝑖
(𝐼𝐼)

𝑑𝑑𝑑𝑑
= 𝑑𝑑

𝑑𝑑𝑑𝑑
〈𝑆𝑆(𝐼𝐼)〉 = −𝜇𝜇𝑖𝑖

(𝐼𝐼)

𝜏𝜏𝐼𝐼
+ Φ(𝐼𝐼)�𝑢𝑢𝑖𝑖

(𝐼𝐼)�      (11) 

Where ui(m) is the mean input current to the neural population m=E,I of cortical area i, defined as: 

 

𝑢𝑢�⃗ = �𝑢𝑢��⃗
(𝐸𝐸)

𝑢𝑢��⃗ (𝐼𝐼)� = 𝐖𝐖𝑺𝑺��⃗ + 𝑰⃗𝑰𝟎𝟎 + 𝑰⃗𝑰𝒆𝒆𝒆𝒆𝒆𝒆        (12) 

Where W is a block matrix defined as: 

𝐖𝐖 = �𝑊𝑊𝐸𝐸𝐸𝐸𝐈𝐈𝑁𝑁 + 𝐺𝐺.𝐂𝐂 𝐃𝐃�𝑾𝑾���⃗ 𝑰𝑰𝑰𝑰�
𝑤𝑤𝐸𝐸𝐸𝐸𝐈𝐈𝑁𝑁 𝑊𝑊𝐼𝐼𝐼𝐼𝐈𝐈𝑁𝑁

� , where C is the NxN anatomical matrix, G the global coupling parameter, IN is 

the NxN identity matrix, 𝐃𝐃�𝑾𝑾����⃗ 𝑰𝑰𝑰𝑰� is a NxN diagonal matrix containing the weights of the feedback inhibition 𝑤𝑤𝐸𝐸𝐸𝐸,𝑖𝑖 as 

diagonal elements, and 𝑰𝑰𝟎𝟎 and 𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆 are the vectors containing the constant and external inputs, i.e. leaving the possibility 
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to add external Gaussian perturbation. The perturbation for a single trial is defined by assigning random amplitudes of 

the external noise for each node. Thus for each trial, when perturbing the system, we use random amplitudes for all 

nodes which are extracted from a scaled normal distribution.  

 

Let P being the covariance matrix between gating variables 𝑆𝑆. P is a block matrix defined as: 

𝐏𝐏 = �𝑃𝑃
(𝐸𝐸𝐸𝐸) 𝑃𝑃(𝐸𝐸𝐸𝐸)

𝑃𝑃(𝐼𝐼𝐼𝐼) 𝑃𝑃(𝐼𝐼𝐼𝐼) �. The motion equation of the covariance matrix: 

𝑑𝑑𝐏𝐏
𝑑𝑑𝑑𝑑

= 𝐀𝐀𝐀𝐀 + 𝐏𝐏𝐏𝐏𝐓𝐓 + 𝐐𝐐n  
      

(13) 

Where the superscript T is the transpose, Qn is the covariance matrix of the noise, given by 𝐐𝐐n =

〈𝜂𝜂(𝑡𝑡)𝜂𝜂(𝑡𝑡)𝑇𝑇〉, and A is the Jacobian matrix of the system. A is a block matrix defined as: 

𝐀𝐀 = �𝐴𝐴
(𝐸𝐸𝐸𝐸) 𝐴𝐴(𝐸𝐸𝐸𝐸)

𝐴𝐴(𝐼𝐼𝐼𝐼) 𝐴𝐴(𝐼𝐼𝐼𝐼) �, where 𝐴𝐴𝑖𝑖𝑖𝑖
(𝑚𝑚𝑚𝑚) = �𝜕𝜕𝑓𝑓𝑖𝑖

(𝑚𝑚)(𝜇𝜇��⃗ )

𝜕𝜕𝑆𝑆𝑗𝑗
(𝑛𝑛) �. 

The synaptic input variables 𝑢𝑢�⃗  are a linear combination of the gating variables 𝑆𝑆 and, thus, the 

covariance matrix is given analytically by: 

𝐂𝐂𝐯𝐯 = 𝐖𝐖𝐖𝐖𝐖𝐖𝐓𝐓          (14) 

Note that all differential equations after using the moments reduction are deterministic and therefore 

were solved using the Euler method with a time step equal to dt=0.1 ms (after testing for 

convergence with several time steps of dt=0.02, 0.05, 0.1 and 0.15).  

 

 

Measure of Integration 

Integration refers to the ability of the brain to share and broadcast information across brain regions. 

This can be measured in different ways, either by considering the resting state functional 

connectivity or by measuring the effect of systematic perturbations to the resting state.  

 In both cases, integration can be measured using the length of the largest connected component 

(the so-called giant component) in the functional connectivity matrix obtained from a whole-brain 

computational model. The giant component is a measure of the dispersion of information and 

communication.  

 Specifically, for a given absolute threshold 𝜃𝜃 between 0 and 1 (scanning the whole range), the 

functional connectivity matrix, FC (using the criteria |FCij|<𝜃𝜃, i.e. a value of 0 and 1 otherwise) can 

be binarized and the largest component extracted as a measure of integration. Here, the largest 

component is the length of the connected component of the undirected graph defined by the 

binarized matrix considered as an adjacency matrix. This is the largest sub-graph in which 1) any 

http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Subgraphs
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two vertices are connected to each other by paths, and 2) that connects to no additional vertices in 

the super-graph. Note that we use the absolute value since this is a measure of functional 

communication. Finally, in order to get a measure independent of the threshold, this curve can be 

integrated in the range of the threshold between 0 and 1, which defines the measure of integration. 

We normalize this measure by the maximal number of connected brain areas (i.e. all N areas) for 

each integration step and by the number of integration steps such that the maximal integration is 

normalized to one.  

 This integration measure is computed for the resting state functional connectivity with and 

without perturbation. For the pertubation case, the integration is computed for each possible 

external stimulation (i.e. providing random amplitudes of the noise for each node as specified in the 

Moments method above) given rise to a perturbed resting state functional connectivity. The 

perturbational integration is given as the average of the integration over a large amount of 

instantiations of external stimulations. 

 

Measure of (Perturbational) Information Capability 

In order to study the encoding capabilities of the whole-brain network for responding to different 

stimuli, we analyzed its (perturbational) information capability (Deco et al., 2015). We can obtain a 

measure of perturbational information capability by perturbing any node of the brain network (as 

described in the Moments Method) and measure the functional consequences in a whole-brain 

computational model. After adjusting the dynamical working point of the model according to the 

empirical measures of resting functional connectivity (Deco et al., 2014a), we perturb the model 

and the overall statistical dependence among all the nodes can be estimated from the mutual 

information between nodes for each of the random set of inputs. Thus, the information capability is 

calculated as the n-dimensional (where n is the number of brain regions) entropy of the set of 

evoked patterns in terms of firing rate activity (assuming a Gaussian distribution), Hs, and is defined 

as: 

 

HS = 0.5 log((2πe)𝑛𝑛 det𝐶𝐶𝑣𝑣) 

HS = 0.5(n log(2πe) + ∑ log (�i)
n
i=1 )     (15) 

 

Where  are the eigenvalues of the covariance matrix (Cv) of the evoked activity of the excitatory 

units following perturbation (see Moments method). To estimate the statistical significance of 

perturbational information capability, we used 1000 perturbation patterns, repeated 10 times. In 

order to check convergence, we repeated the same procedure with 10 repetitions of 500 patterns. 

iλ

http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Path_%28graph_theory%29
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Please note that the Gaussian assumption is of course an approximation but in the worst case 

provides an upper bound for the entropy (Cover and Thomas, 2005).  

 In order to avoid numerical problems in the estimation of the information capability we 

introduced obfuscating noise of variance 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 = 0.001 so that the information capability is finally 

given by this formula (Norwich, 2003): 

 

IC = 0.5∑ log (1 + �i
�noise
2 )n

i=1        (16) 

This equation represents the information and is derived from the difference between the entropy of 

the signal with noise, HSN and the entropy of the noise, HN: 

 IC = H𝑆𝑆𝑆𝑆 − H𝑁𝑁 

 IC = 0.5�n log(2πe) + ∑ log��i + �noise
2 �n

i=1  � − 0.5(n log(2πe) + ∑ log (�noise
2 )n

i=1 ) 

IC = 0.5� log (1 +
�i

�noise
2 )

n

i=1

 

 

Measure of Resting Entropy 

Similar to the perturbational information capability we calculate the resting entropy by assuming 

that the resting evoked patterns of activity are characterised by a Gaussian distribution. In this case, 

we get the following equation (again using the obfuscating noise approach as above (Norwich, 

2003)): 

 

E = 0.5∑ log (1 + �i
�noise
2 )n

i=1  (17) 

 

Note however, that 𝜆𝜆𝑖𝑖  are the eigenvalues of the covariance matrix of the unperturbed resting 

patterns of activity of the excitatory units, i.e. the normal covariance matrix resulting from the 

model without perturbation. 

 

Measure of Workspace of Binding nodes 

We define binding as the relevance of a single brain region for the resting entropy E. The resting 

entropy reduction resulting from the elimination of a single region is calculated analytically by 

using the moments method and equation (17) described above. We test sequentially the single 
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elimination of each region and select the one that maximally reduces the resting entropy. We use a 

greedy strategy such that after that first elimination, we search for the second region that maximally 

reduces the resting entropy in the same way as before, and we continue so sequentially until only a 

single region remains. The dynamical workspace of binding nodes was defined as the 12 top-ranked 

brain regions according to the binding measure. Note, that we took 12 members to match the 12 rich 

club members obtained from the empirical data, and thus produce a fair and number-matched 

sequence of eliminated nodes, which is the main goal of this study. For the workspace of binding 

nodes, in contrast with the rich club, we did not check for significant relevance of its members but 

instead we selected the equivalent number of members of rich club nodes that are top ranked. In this 

paper, it is beyond our focus to detect the crucial number of members in the dynamical workspace 

of binding nodes independently. We consider that this is not trivial given the fact that a surrogate 

technique, such as the one used for the rich club, cannot be applied here given that the measure of 

binding is dynamical and depends not only on the topology but also on the working point. 

 

Results 

The main aim was to study the dynamical relevance of each brain region for the integration and 

segregation of information in the brain over time. In order to do this we combined functional and 

structural human neuroimaging data with whole-brain computational modelling, to investigate the 

role of brain regions in binding functional connectivity (see Experimental Procedures). As shown 

below in detail, we implemented a new measure of temporal binding of information in the brain, 

which is then used to define a ranking of brain regions participating in this dynamical workspace of 

binding nodes. We compared the workspace of binding nodes to the rich club and found that the 

top-ranked members of the workspace of binding nodes were considerably different from rich club 

members, albeit with some overlap. Furthermore, we found that removing the top-ranked rich club 

members had a significant impact on resting state activity and on measures of perturbational 

integration and segregation, while removal of the top-ranked members of the workspace of binding 

nodes had significantly greater functional impact.  

 

The full data analysis processing pipeline is described in details in the Experimental Procedures. 

First, we determined the structural connectivity (SC) in a group of 16 healthy participants using 

probabilistic tractography on DTI data, combined with the AAL sub-parcellations of 76, 90 and 116 

regions (AAL76, AAL90, AAL116; see Experimental Procedures and Figure 1A). We also used 

standard tools to determine the functional connectivity (FC) of the spontaneous resting state 

fluctuations using the same group of participants (Figure 1B).  
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Second, we used a standard method with graph theoretical tools to determine the rich club members 

(van den Heuvel and Sporns, 2013a). We probed the structural and functional first order and second 

order characteristics of the various sub-parcellations, and specifically we extracted the rich club 

members at the rich club coefficient shown in Figure 2A (van den Heuvel and Sporns, 2013a). A set 

of brain areas in the network shows a rich club structure if its level of interconnectivity exceeds the 

level of connectivity that can be expected on basis of chance alone. In particular, the weighted rich 

club coefficient Φ(k) is computed as the ratio between 1) the weights of connections present within 

the subnetwork S of regions with a degree >k and 2) the total sum of weights present within a subset 

of same size of the top ranking connections in the network. The normalized rich club coefficient 

Φnorm(k) (red curve) is computed by dividing Φ(k) (continuous black curve) by Φrandom(k) (dashed 

black curve), with Φrandom(k) computed as the average rich club coefficient for each k of a set of 

1000 randomized graphs (acquired by randomizing the adjacency matrix A preserving the degree 

sequence) (Rubinov and Sporns, 2010). Membership of the rich-club is determined if the 

normalized rich club coefficient Φnorm(k) is larger than one, for a range of increasing degrees level 

k. We determined the degree (Figure 2B), mean resting functional connectivity (rFC, Figure 2D) 

and variance for each brain area respectively (Figure 2F). The qualitative comparisons of those 

curves show a weak relationship between the structural (degree) and functional (mean rFC and 

variance), indeed the level of correlations between those curves was moderate to low (correlation 

rFC and degree: 0.53; variance and degree:0.37). The mean rFC and variance for each brain area 

were calculated by summing those values (shown in Figure 2C and 2E) over all the pairs connecting 

that region with the rest of other regions. 

 

Third, we used whole-brain computational modelling (using the Moments reduction of a stochastic 

mean field model, see Experimental procedures, which confers the advantage of handling the 

stochasticity in a deterministic and semi-analytical way) combined with empirical functional and 

structural connectivity to determine the workspace of binding nodes for the data (Figures 1C and 3, 

and Experimental Procedures). The workspace of binding nodes is defined as the 12 top-ranked 

brain regions according to binding. Here the top 12 was used to allow a comparison of the 

functional workspace of binding nodes to the 12 hubs previously shown in the structural rich club 

(see Methods for a discussion of this definition). In Figure 3A we show five cases of sequential 

elimination according to the lowest degrees (blue curve), to the largest degree (black curve), to the 

largest nodal variance (dashed red curve), to a random selection (dashed green curve), and to using 

the workspace of binding nodes strategy (red curve), i.e. searching for the brain region that 

maximally reduces the resting entropy. The largest degree and largest variances reduces the resting 

entropy very efficiently (as intuitively expected), much more than the sequential elimination of the 
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lowest degree regions, but not so efficiently as the optimal elimination of workspace of binding 

nodes regions (as expected by definition). To further probe this, we provide an inset which shows 

that eliminating the top-ranked workspace of binding nodes regions indeed (by definition) 

maximally reduces the resting entropy and therefore defines a ranking of regions that are maximally 

relevant for the processing of information (as we will show in Figure 6). Many of the regions in the 

workspace of binding nodes are also high degree “rich club” regions, but not all high degree regions 

are ranked in the same way and also low degree regions are part of the workspace of binding nodes. 

This overlap demonstrates that the rich club is of course related to the binding nodes but that the 

latter definition is better at capturing the functional relevance of the functional integration and 

information capability of the brain. In order to study the intersection between high degree and 

workspace of binding nodes regions, we show in Figure 3B the degree of the sequentially 

eliminated regions for the rich club case (black curve) and for the workspace of binding nodes case 

(red curve). It is clear that for the sequential elimination of regions according to largest degree, we 

obtain a monotonically decreasing curve, whereas for the elimination according the maximal 

reduction of resting entropy not necessarily the highest degrees regions are selected. Nevertheless, a 

tendency of selecting high degree regions is also shown in the stochastic decreasing of the curve. 

Figure 3C shows the intersection between those two groups (high degree and workspace of binding 

nodes). This figure clearly shows that the regions in the dynamical workspace of binding nodes do 

not have a one to one correspondence with the high degree regions, but that the later are a subset of 

the first. Figure 3D illustrates, for each brain area, the degree and the percentage of reduced resting 

entropy by elimination of that region. Figure 3E shows their correlation (r=0.56, p<0.001). Again, 

even if there is a correlation (as expected and speculated) between high degree regions and its 

relevance for the global dynamics, as evaluated by the resting entropy, the relationship is not 

deterministic (one to one). Not all high degree regions are relevant for the global dynamics. In 

summary, the results show that ranking regions according to their temporal binding, i.e. impact on 

the resting entropy, is a more direct and effective way of ranking the “dynamical” relevance of 

regions. Also note that the structural characterization of the rich club property does not rank each 

single region, as it is describing a property of a set of regions. Only if a regions has a k-level  above 

a certain threshold, then the Φnorm  is calculated to identify rich club members.  

 

Fourth, we constructed four different whole-brain networks (see Experimental Procedures). The 

first case (SC) corresponds to the use of the full structural connectivity matrix. The second case 

(SC_NRC, SC minus Non-Rich Club regions) corresponds to the SC matrix but without 12 brain 

regions with the lowest degree, and therefore not exhibiting the rich club structure as the low degree 

means they do not reach the k-level threshold necessary to qualify for the rich club. The third case 
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(SC_RC, SC minus rich club regions) corresponds to the SC matrix but without the top-ranked 12 

regions in the rich club with maximal degree (i.e. number of structural connections with other 

regions). The fourth case (SC_BC, SC minus regions in the workspace of binding nodes), 

corresponds to the main finding of this paper, namely the use of the SC matrix without the top-

ranked 12 brain regions in the dynamical workspace of binding nodes, i.e. showing the largest 

reduction of the information capability under resting state conditions. In Figure 4 we plot these four 

networks with the corresponding structural connectivity matrices (top row, Figure 4), the 

covariances matrices under resting conditions (middle row, Figure 4), and the degree of each brain 

regions (bottom row, Figure 4). In Figure 5 we show the effects of different node removal 

strategies, including topological (top-ranked brain regions in degree, betweenness centrality and 

participation coefficient) and dynamical features (top-ranked brain regions in workspace of binding 

nodes), in the entropy of resting state. The figure shows that the resting entropy is maximally 

reduced for the case of the greedy removal of the workspace of binding nodes, when compared to 

all other strategies tested in this study, including degree and betweenness centrality.  

 

Finally, we used whole-brain computational modelling to study the integration and segregation 

capabilities of these four structural networks, which allowed us to detect which brain regions are 

more relevant for the global processing of modelled external information. In particular we were 

careful to use our previous whole-brain computational model which re-balances the level of 

excitation/inhibition of each brain region in order to maintain the negligible short-range correlations 

and introduce through the underlying neuroanatomical coupling the proper large-range functional 

correlations (i.e. the resting state networks, see Experimental Procedures). This dynamic mean field, 

derived from a proper reduction of a detailed spiking neuron model, describes the local brain 

dynamics of each brain area. After adjusting the dynamical working point of the model (see 

Methods) to the empirical resting FC, we study the integration and information capability of the 

whole brain model, first by considering its resting state dynamics, and second by considering its 

evoked activity obtained by stimulating off-line in silico the whole brain model by a random set of 

Gaussian inputs (see Methods). In Figure 6, we show the perturbational integration and information 

capability for the resting state dynamics (dashed curve) and for the stimulated case, i.e. the 

corresponding perturbational integration and information capability. To estimate the statistical 

significances of perturbational integration and information capability, we used 1000 different 

random stimulations of all the nodes in the model over time (repeated 10 times), and in order to 

check convergence we repeated the procedure for 10 repetitions of 500 different patterns (see 

Experimental Procedures). As described in the Moments method, the perturbation for a single trial 

is defined by assigning random amplitudes of the external noise for each node. Thus for each trial, 
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when perturbing the system, we use random amplitudes for all nodes which are extracted from a 

scaled normal distribution. In both cases we got the same highly significant results, with error 

intervals (bars not visible in the graphic) below 0.002 and corresponding p values below 0.000001. 

We show the results of using three sub-parcellations of the AAL (AAL76, AAL90 and AAL116). In 

all cases, the maximal reduction of integration and information capability is observed for the 

SC_BC case where the members of the workspace of binding nodes were eliminated. Equally, the 

figure also shows that removing the high degree rich club brain regions (SC_RC) is damaging in 

terms of functional integration and segregation – although not as damaging as removing the regions 

from the workspace of binding nodes. In Figure 7 we show 3D renderings of the members of the 

workspace of binding nodes and rich club. Furthermore, Figure 7 shows a comparison of the 

workspace of binding nodes and rich club nodes with in the centre of the panel a representation of 

the overlap of nodes common to both. 

 

Discussion 

We used whole-brain computational modelling to address a key question in neuroscience: namely 

what brain regions are most important for integration of information processing. While some 

progress has been made through defining topological measures such as the so-called rich club, the 

functional consequences of these brain regions have not been assessed and in particular the 

importance of time in brain processing has not been fully explored. Here we used whole-brain 

computational modelling on neuroimaging data from a group of healthy participants to study the 

functional role of the rich club on information processing in the healthy brain, by measuring the 

impact on perturbational integration and segregation (information capability) upon removing the 

rich club. We found that there was a significant influence of the rich club on these measures but we 

also compared this to our novel measure of binding, which ranks brain regions according to their 

binding capability. This new binding measure is significantly more computationally expensive 

compared to the simple rich club algorithm but also performs significantly better. There is some 

overlap between nodes (almost half) but the remaining binding nodes were non-rich club members, 

with even some of them having low degree – a third of the binding nodes have degree below 

average. This could be interpreted in the context in the important findings by Misic and colleagues 

(Misic et al., 2014) who found that the hippocampus, despite having a relatively low degree, acts as 

a critical convergence zone and its functional capacity is shaped by its embedding in the large-scale 

connectome.  
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Still, compatible with the main notion of the rich club we showed that degree is the topological 

feature with maximal impact in resting entropy, when compared to other key metrics such as 

participation coefficient and betweenness centrality (Figure 5). We also found that removal of the 

top-ranked rich club members significantly impaired the integration and information capability of 

the brain compared to non-rich club members (compare SC_NRC with SC_RC in Figure 6). This 

significant reduction following removal of rich club members strengthens recent analytic results 

(Goni et al., 2014) and results from a psychiatric context (van den Heuvel et al., 2013). Yet, we also 

found that removal of members of the dynamical workspace of binding nodes further significantly 

reduced the integration and information capability of the brain compared to removing the rich club 

members (compare SC_BC with SC_RC, Figure 6). As the dynamical workspace of binding nodes 

is defined by the measure of resting entropy, this metric is by definition most influenced by 

removing the top ranking nodes on this measure. However, this clearly shows that the binding club, 

defined in functional connectivity, is conceptually very different from the rich club, defined in 

structural connectivity. Furthermore, comparing both the rich club and the workspace of binding 

nodes on the functional measure of perturbational integration and information capability, shows that 

the removal of the binding club has a maximal effect on this measure when compared to removal of 

the structurally defined rich club. While there is some overlap between the members of the 

workspace of binding nodes and the rich club, there are also clear differences (see Figure 3). This 

finding that an area that is not well connected structurally can be crucial in information flow is in 

line with a recent study on information flow (Misic et al., 2014). The results show that 

approximately 30% of the binding nodes reveal a below average degree and are thus considered to 

not be well connected. 

 

Evaluating temporal binding reveals which regions within the network are more integrative, or 

binding, across both space and time. These regions can be said to comprise the brain’s dynamical 

workspace of binding nodes. The brain regions included in the workspace of binding nodes are 

straightforwardly ranked according to their level of temporal binding.  

 

Our novel measure of binding could potentially offer new information on the temporal binding of 

information which is related to the binding problem (Engel and Singer, 2001), i.e. how distributed 

information is bound and made available to consciousness (Crick and Koch, 1990). We hypothesize 

that regions belonging to the temporal ‘dynamical workspace of binding nodes’ could be important 

for mediating the concatenation of different brain states during cognitive sequences, and as such 

may be important for facilitating awareness.  
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Yet, future studies will have to rigorously assess any claims for the utility of the dynamical 

workspace of binding nodes in participating in and mediating between different state changes, 

including sleep and wakefulness, and for the ability to distinguish between the human brain in 

health and disease (Deco and Kringelbach, 2014).  

 

It should be noted that in this study the widely used and accepted AAL parcellation was employed. 

There are however other parcellation schemes available, e.g. the parcellations described by 

Craddock and colleagues consisting of 200 and 400 cortical, subcortical and cerebellar areas 

(Craddock et al., 2013). Although these areas described by Craddock are uniform and unbiased, the 

AAL is based on functional properties of anatomical data. 

 

The analysis has also brought forward a rather interesting finding in terms of lateralisation. The 

rigorous analysis using the greedy removal of regions in the workspace of binding nodes that have a 

maximal impact on the brain dynamics, regardless of interconnectivity, has shown that regions that 

are most important for the dynamics do not in fact have to be symmetrical between hemispheres. 

Although some brain regions in the workspace of binding nodes are lateralised, there are also brain 

regions that are included in this workspace of binding nodes that appear in both hemispheres. The 

question of lateralisation should be further explored in future work. 

 

An interesting finding in this study is that the left hemisphere appears more pronounced in terms of 

binding nodes. This of course could open a discussion regarding lateralisation and what this could 

possible mean. It has been found previously in structural studies that the left hemisphere presents 

more central or indispensable regions for the whole-brain structural network compared to the right 

hemisphere (Iturria-Medina et al., 2011). In light of this research it may not be surprising that this 

study indeed finds a left hemispheric bias in terms of binding nodes. 

 

One potential limitation of this paper is the choice of the whole-brain model. Here we used an 

established dynamic mean field model, which has been successful in describing empirical resting 

data (xx Deco). Yet, other future models might perform better in terms of fitting with the empirical 

data and thus could potentially yield more precise results. It is an open question if the binding nodes 

obtained with other models would be stable. Still, all models can be approximated through 

linearisation, and a simple spatial autoregressive model yields similar results (Messe et al., 2014). 

We thus speculate that the binding nodes will be stable across models but this remains an open 

empirical question. 
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Overall, in this article we use whole-brain computational modelling to introduce a promising new 

measure of binding in the human brain, by which brain regions are ranked according to their level 

of temporal binding. We show how the top-ranked brain regions in this workspace of binding nodes 

are different from the brain regions in the structurally defined rich club (albeit with some overlap) 

(see Figure 7). The overlap found between the workspace of binding nodes and the rich club 

consists of both cortical and subcortical regions. Specifically, we found the following regions in 

both the workspace of binding nodes and the rich club: the left putamen, left precuneus, and left 

mid-occipital cortex and the right putamen, right hippocampus and right superior frontal gyrus. We 

use whole-brain computational modelling to show that the workspace of binding nodes outperforms 

the rich club in terms of integration and information capability. Whereas it is obvious that structural 

and functional connectivity are two different measures, this study reveals that only some of the 

areas from the structural backbone of the brain play a key role in information integration. Some 

crucial areas are not captured by this structural measure and as such we suggest the use of the 

dynamical workspace of binding nodes for functional connectivity analyses. These findings suggest 

that node degree alone may not be a sufficient player to describe the complexity of integrative 

processes across the brain. Hence, in order to be considered an important region in regulating 

information flow across the brain (high functional richness), it is essential to comprise additional 

topological features, such as measures of centrality (van den Heuvel and Sporns, 2013b) or network 

embedding or context (Misic et al., 2014), to the original concept of rich club. This could 

potentially lead to a high degree of convergence between the two metrics, and as such significantly 

expand our knowledge on which intrinsic network mechanisms are driving crucial aspects of the 

brain’s complex dynamics. Furthermore, a comprehensive understanding of the key topological 

drivers of temporal binding may help to elucidate which local and global network behaviours 

should be ‘induced’ to promote optimal dynamical balance, in different neuropsychiatric disorders. 
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Table 1 - Parameters of dynamic mean-field model. 

 

Excitatory gating variables 

𝑎𝑎𝐸𝐸= 310 (nC-1) 

𝑏𝑏𝐸𝐸=125 (Hz) 

𝑑𝑑𝐸𝐸=0.16 (s) 

𝜏𝜏𝐸𝐸 = 𝜏𝜏𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁=100 (ms) 

𝐼𝐼0,𝐸𝐸=0.3820 (nA) 

Inhibitory gating variables 

𝑎𝑎1= 615 (nC-1) 

𝑏𝑏1=177 (Hz) 

𝑑𝑑1=0.087 (s) 

𝜏𝜏1 = 𝜏𝜏𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺= 10 (ms) 

 𝐼𝐼0,𝐼𝐼=0.2674 (nA) 

Fixed local connectivity parameters 

𝑊𝑊𝐸𝐸𝐸𝐸=1.4 

𝑊𝑊𝐼𝐼𝐼𝐼=1 

𝑊𝑊𝐼𝐼𝐼𝐼=0.15 

kinetic parameter 

𝛾𝛾=0.641/1000 
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Figure 1. Overview of methods. In order to address the question of which brain regions are most 

important in integrative processing we analyzed the data from 16 healthy participants using 

topological, functional and computational methods (see Experimental Procedures for detailed 

information). A) As shown schematically, we generated the topological measure of a structural 

connectivity (SC) matrix by combining structural MRI, DTI, the AAL parcellation scheme and 

tractography. B) We also generated the functional connectivity (FC) matrix by analysing the BOLD 

resting state data with the AAL parcellation and correlating the time courses. C) We generated a 

whole-brain computational model using the empirical SC and FC to fit the FC_model output. D) 

Using the model allowed us to estimate the segregation (or information capability) of a given SC as 

the entropy of the set of evoked patterns assuming a Gaussian distribution averaged over a large 

number of external stimulations. E) Similarly, we used the model to estimate the integration as the 

length of the largest connected component in the functional connectivity matrix, averaged over a 

large number of external stimulations. 
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Figure 2. Determining the rich club members. The figure shows the structural and functional first 

order and second order characteristics of the brain network obtained experimentally in a group of 16 

participants and with parcellation of 76 cortical AAL regions (as detailed in the Experimental 

Procedures). A) This structural anatomical network exhibits a rich club organisation, as shown by 

the normalised rich club coefficient curve (van den Heuvel and Sporns, 2013a). By definition, a set 

of brain areas in the network shows a rich club structure if its level of interconnectivity exceeds the 

level of connectivity that can be expected on basis of chance alone. The normalized rich club 

coefficient Φnorm(k) (red curve) is computed by dividing Φ(k) (continuous black curve) by 

Φrandom(k) (dashed black curve), with Φrandom(k) computed as the average rich club coefficient for 

each k of a set of 1000 randomized graphs (acquired by randomizing the adjacency matrix A 

preserving the degree sequence) (Rubinov and Sporns, 2010). B) For each brain region the 

histogram and degree are plotted. C) The average resting functional connectivity (FC) matrix was 

calculated by summing the mean FC resting functional connectivity over all the pairs connecting 

that region with the rest of other regions. D) The mean FC in each brain region is plotted as well as 

the histogram. E) A similar procedure was used to create the average covariance matrix as the sum 

of the variance between all the pairs connecting that region with the rest of other regions. F) The 

variance in each brain region is plotted as well as the histogram. Note that a qualitative comparison 
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of the curves shows a moderate to weak relationship between the degree and mean rFC (G) and 

between degree and variance (H).  
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Figure 3. Determining the dynamical workspace of binding nodes and comparing it to the rich 

club. A) The reduction of information capability is measured by considering resting state conditions 

as a function of a sequence of eliminated brain regions for the AAL76 parcellation. Five cases are 

shown: sequential elimination according to the lowest degrees (blue curve), largest degree (rich 

club, black curve), largest nodal variance (dashed red curve), random order (dashed green curve) 

and the workspace of binding nodes strategy (red curve), i.e. searching for the region that 

maximally reduces the information capability. The largest degree and largest variances reduces the 

information capability very efficiently (as intuitively expected), and much more than the sequential 

elimination of the lowest degree regions. Yet, this is not as efficiently as the optimal elimination of 

regions from the workspace of binding nodes. The inset shows that the workspace of binding nodes 

maximally reduces the measure of information capability and therefore defines a ranking of regions 

that are maximally relevant for the functional dynamics (see Figure 4). Some of the regions from 

the workspace of binding nodes are also high degree “rich club” regions, but not all high degree 

regions are ranked in the same way and also low degree regions are included in the workspace of 

binding nodes. B) To further study the intersection between the workspace of binding nodes and 

rich club regions, we show the degree value of the sequentially eliminated regions for the rich club 

(black curve) and for the workspace of binding nodes (red curve). It is clear that the sequentially 

elimination of regions according the largest degree results in a monotonically decreasing curve, 

whereas for the elimination according the maximal reduction of information capability does not 

necessarily lead to the selection of the highest degrees regions. Nevertheless, a tendency of 

selecting high degrees regions is also shown in the stochastic decreasing of that curve. C) The 
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intersection between those two groups (high degree and workspace of binding nodes) is shown and 

this figure clearly shows that the regions from the dynamical workspace of binding nodes do not 

have a one-to-one correspondence with the high degree regions, but partially overlapping. D) The 

figure plots for each brain region the degree (top) and the percentage of reduced information 

capability (bottom) by elimination of that region. The first column shows a histogram representation 

hereof. E) The figure shows the correlation between the degree and information capability (shown 

in D) as a function of the percentage of reduced entropy (r=0.56, p<0.001), though it should be 

noted that there is no deterministic relationship.  
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Figure 4. Structural connectivity matrices with and without members of the non-rich club, 

rich club, and workspace of binding nodes. The top row figure shows four different structural 

connectivity matrices using the AAL76 parcellation. The middle row shows the covariance matrices 

and the bottom two rows show the degree and histogram for each of the 76 brain regions, 

respectively. The x and y axes are corresponding to brain areas and the colour bars represent the 

strength of structural connectivity and covariance, respectively. The bottom row shows the degree 

(y-axis) for the brain areas in the AAL76 parcellation (x-axis). First column shows corresponds to 

the full structural connectivity (SC) matrix from 16 healthy participants. The second column 

corresponds to the SC matrix minus 12 brain regions which has the lowest ranked degrees, and 

therefore regions not exhibiting the rich club structure (SC NRC). The third column corresponds to 

the SC matrix minus 12 regions in the rich club with maximal degree (i.e. number of structural 
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connections with other regions) (SC RC). The fourth column corresponds to the SC matrix minus 

the top-ranked 12 brain regions in the workspace of binding nodes showing the largest reduction of 

the resting entropy under resting state conditions (SC_BC).  

Figure 5. Impact of different node removal strategies on the entropy of resting state. The 

reduction of entropy is affected by different strategies for node-removal. Here we are using a greedy 

node-removal strategy of top-ranked nodes of the workspace of binding nodes (BC greedy), of the 

node degree (Degree), of betweenness centrality (B. Centrality), of random nodes (Random), 

participation coefficient (P.Index) or just the initial ranked nodes of the workspace of binding nodes 

(BC rank). In all cases, 12 nodes were removed after which the entropy and corresponding standard 

deviation were recalculated. The results clearly show that the greedy removal of nodes from the 

workspace of binding nodes significantly outperforms the other node removal strategies, i.e. 

entropy is reduced maximally when using the greedy node-removal strategy. 
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Figure 6. Directly measuring the causal impact of the rich club and the workspace of binding 

nodes. We show the results of using whole-brain computational modelling to measure the impact 

on integration and information capability resulting from the different strategies of brain region 

elimination shown in figure 3. The left column shows the impact on integration and the right 

column shows the impact on information capability for the resting state dynamics (dashed curve) 

and for the stimulated case (1000 different random stimulations repeated 10 times), i.e. the 

corresponding perturbational integration and segregation (see Experimental Procedures). We show 

this for three different sub-parcellations of the AAL: AAL76 which include only cortical brain 

regions (top row), AAL90 which includes cortical and subcortical regions (middle row), and 

AAL116 which includes the cortical, subcortical and cerebellar regions. In all cases, removing the 

rich club members significantly impacts on both measures. Yet, the maximal reduction of 

integration and perturbational integration, as well as information capability, is observed for the case 
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where the members of the workspace of binding nodes were eliminated. (SC = Structural 

Connectivity; SC NRC = Structural Connectivity – Non-Rich Club members; SC RC = Structural 

Connectivity – Rich Club members; SC BC = Structural Connectivity – members of the workspace 

of binding nodes). 
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Figure 7. Three-dimensional renderings of the workspace of binding nodes and the rich club. 

The figure shows 3D renderings of the AAL90 parcellation with the weighted structural 

connectivity between brain regions. In the top right panel we show four renderings of the 12 top-

ranked regions of the workspace of binding nodes (in transparent blue with a blue node in the centre 

of mass) in top, side, front and perspective views. Similarly, in the bottom right panel we show four 

renderings of the rich club regions (in green). In the left panel we show the regions that are present 

in the workspace of binding nodes (blue) and in the rich club (green). The horizontal bar plot shows 

the node degree colour-coded according to its strength (yellow – high degree; red – low degree) 

Additionally we highlight the brain areas present in both the rich club and the workspace of binding 

nodes in the centre of this panel in black.  
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