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Abstract 

The human cerebellum is involved in language, motor tasks and cognitive processes such as 

attention or emotional processing. Therefore, an automatic and accurate segmentation method is 

highly desirable to measure and understand the cerebellum role in normal and pathological brain 

development. In this work, we propose a patch-based multi-atlas segmentation tool called CERES 

(CEREbellum Segmentation) that is able to automatically parcellate the cerebellum lobules. The 

proposed method works with standard resolution magnetic resonance T1-weighted images and 

uses the Optimized PatchMatch algorithm to speed up the patch matching process. The proposed 

method was compared with related recent state-of-the-art methods showing competitive results 

in both accuracy (average DICE of 0.7729) and execution time (around 5 minutes). 

 

 

Keywords: MRI, cerebellum lobule segmentation, non-local multi-atlas patch-based label fusion, 

optimized patchmatch. 
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1. Introduction 

The human cerebellum is a neuroanatomical structure within the human brain located below the 

cerebrum and connected to the brainstem through the cerebellar peduncles. Although it 

represents a small percentage of the total intracranial volume, about 10%, it plays a key role in 

motor coordination and learning (Manto et al., 2013). The cerebellum acts as a modulator for the 

motor cortex signals to perform fine and precise movements through the integration of the inputs 

signals from the somatosensory system and cerebellar cortex. It has been shown that cerebellar 

damage leads to important motor dysfunctions such as limb ataxia, balance alterations and other 

deficits in motor coordination (Kase et al., 1993; Compston and Coles, 2008; Davie et al., 1995; 

Klockgether, 2008). Recent neuroimaging studies indicate that cerebellum is also involved in many 

cognitive functions (Stoodley, 2012) such as attention, emotion or behavior (Timmann et al., 

2010). 

Despite the cerebellum being involved in many brain functions, it has been widely understudied. 

Lately, several publications have focused on the study of the cerebellum and its implication in 

several neuropsychiatric pathologies. For example, patients with schizophrenia showed a reduced 

vermis (Okugawa et al., 2002) and subjects with Alzheimer's disease presented smaller posterior 

lobes (Thomann et al., 2008). Nevertheless, there exist publications with inconclusive results 

regarding the role of the cerebellum in different neuropsychiatric disorders (Nenadic, Sauer and 

Gaser, 2010; James et al., 2004). This could be explained by the fact that accurately segmenting 

the cerebellum is quite challenging due to its complex anatomy. 

Cerebellar anatomy consists of a white matter tree structure located behind the pons. It is divided 

into two hemispheres (left and right), with each white matter branch surrounded by a layer of grey 

matter that creates folds called foliations. These grey matter folds are denominated cerebellum 

lobules. The size, position and number of (visible) lobules is highly variable between subjects 

which makes the segmentation process challenging. 

Manual segmentation (delineation) by an expert requires a huge effort since it is a time consuming 

and tedious process. Delineation by non-expert raters may be faster but still impractical for studies 

applied to a large cohort of subjects. Further, both alternatives require dealing with inter and 

intra-rater variability. A few semi-automatic methods have been developed offering large 

structure parcellation as the brainstem, white matter and grey matter (Weier et al., 2012). These 

methods intend to reduce the time required by a human rater while keeping the reliability of 

manual delineation. However they are still time consuming. 

An alternative to the manual segmentation is using multi-atlas based segmentation (Aljabar et al., 

2009) which consists of transferring and combining multiple manual segmentations to the case to 

be segmented. One of the first automated algorithms specifically developed for cerebellum 

segmentation is SUIT (Diedrichsen, 2006). In this method, a set of manually labeled images was 

used to build a probabilistic atlas that was then warped into the target image space. However, 

SUIT is not able to capture all the anatomical variability due to the use of a single atlas approach. 
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In addition, the method developed by Diedrichsen is semi-automatic since it includes a cerebellum 

extraction step that is suggested to be manually corrected for optimal results. 

Fully automatic methods appeared in the last years. Bogovic et al. (2013) published a method 

called ACCLAIM using deformable models and random forest boundary classification. Recently 

Yang et al. (Yang et al., 2015) proposed a segmentation method combining multi-atlas label fusion 

and tissue/boundary classification in a graph-cut segmentation framework to address the high 

variability of the cerebellum anatomy achieving good results at the expense of a high 

computational burden (execution time of several hours per case). Also recently, a new approach 

based on multi-atlas segmentation called MAGeT Brain (Chakravarty et al., 2013; Park et al., 2014) 

has been proposed for cerebellum lobule segmentation. This new approach aims at solving the 

problem of having very few exemplar cases (manual segmentations) of a given segmentation 

protocol. It uses the estimation of a large set of non-linear deformations to map the example cases 

to a set of unlabeled templates increasing the number of candidate segmentation to apply a final 

majority vote based label fusion. MAGeT Brain demonstrated better results than single atlas and 

classical multi-atlas label fusion using majority voting methods at the expense of a high 

computational cost in terms of both memory and execution time. Finally, Weier et al. published 

another multi-atlas segmentation method named RASCAL (Weier et al., 2014) based on a multi-

atlas patch-based label fusion. It utilizes a library of manually segmented cases that is non-linearly 

registered into the target image space to perform the labeling process. 

In this paper, we introduce a new pipeline for cerebellum lobule segmentation that is based on an 

adaptation of a recently proposed segmentation method called Optimized PatchMatch Label 

fusion (OPAL) (Ta et al., 2014; Giraud et al., 2015). This method consists of a multi-atlas patch-

based (Rousseau et al., 2011) segmentation with a non-local label fusion technique that produces 

fast and accurate segmentations using a library of manually segmented cases. The original method 

developed for hippocampus segmentation (Coupe et al., 2011) has been adapted to segment the 

cerebellum anatomy using a library of non-linearly registered cases instead of using only an affine 

registration as in the original method. A post-processing step has been added to enforce regularity 

of the different lobule labels. Also, given the small size of the template library (only 5 cases) we 

extended the number of templates of the library by adding automatically segmented cases.   
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2. Materials and methods 

In the following sections, the data used in this paper and the proposed method details are 

described. We have called the proposed method CERES (for CEREbellum Segmentation).  

2.1. Image data 

In this work, two datasets have been used. A High Resolution (HR) set of 5 MR T1-weighted images 

has been used to construct the library of manually labeled cases. A second dataset of 20 standard 

resolution images has been used to evaluate the proposed method and to compare it with other 

related approaches. The HR images are publicly available at the CoBrALab website     

(http://cobralab.ca/atlases/Cerebellum.html). Both the HR images used as input and the manually 

labeled validation dataset are the same as those used in Park et al. (2014). 

HR dataset 

These cerebellar atlases were created based on HR MR images from 5 healthy volunteers (2 male, 

3 female, aged 29–57). We used T1-weighted images that were acquired on a GE Discovery MR 

750 3 T system (General Electric, Waukesha, WI) using an 8-channel head coil. High-resolution T1-

weighted images were acquired using the 3D inversion-prepared fast spoiled gradient-recalled 

echo acquisition, FSPGR-BRAVO, in a scan time of ~ 20 min with the following parameters: TE/TR = 

4.3 ms/9.2 ms, TI = 650 ms, α = 8°, 2NEX, FOV = 22 cm, slice thickness = 0.6 mm, 384 × 384 in-

plane steps for an approximate isotropic resolution of 0.6 mm dimension voxels. Reconstruction 

filters, ZIPX2 and ZIP512, were also used resulting in isotropic 0.3 mm3 voxels with a final matrix 

size of 489x734x503 voxels (Park et al., 2014). These HR MR images were manually segmented by 

two expert raters that allowed for both inter- and intra-rater comparisons of segmentations to 

validate the consistency of the manual segmentation protocol (for details of the segmentation 

protocol please see (Park et al., 2014)). The cerebellum was manually delineated into 26 

structures: White matter and Lobules I-II, III, IV, V, VI, Crus I, Crus II, VIIb, VIIIa, VIIIb, IX, and X 

considering left and right hemispheres as shown in Figure 1. One of the authors of this manuscript, 

Min Tae M. Park, was one of the manual raters of these data. 

 

Figure 1: Example of one HR case and its corresponding manual segmentation. 
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Standard resolution dataset 

MR images from 10 healthy control and 10 patients with schizophrenia (15 male, 5 female, 

average 30.1 years age, range 25–35 years) were used to create a validation set. Imaging data 

were acquired using an 8-channel head coil on a 1.5 T GE Echospeed system (General Electric 

Medical Systems, Milwaukee, WI), which permits maximum gradient amplitudes of 40 mT/m. Axial 

inversion recovery prepared spoiled gradient recall images were acquired: echo time (TE) = 5.3 ms, 

repetition time (TR) = 12.3 ms, time to inversion (TI) = 300 ms, flip angle = 20°, number of 

excitations (NEX) = 1 (124 contiguous images, 1.5 mm thickness, 0.78 x 0.78 mm in plane 

resolution). These images were linearly registered to the MNI space using MRITotal software 

(Collins et. al, 1994) to perform the manual labeling thus resulting in a 1 mm3 image resolution and 

a matrix size of 181x217x181 voxels. The whole cerebellum is manually segmented on these 20 

cases dataset and the left cerebellum was segmented on 10 of the cases while in the other 10 the 

right cerebellum was segmented (24 lobules: I-II, III, IV, V, VI, Crus I, Crus II, VIIb, VIIIa, VIIIb, IX, and 

X). The definition of the lobules is the same as the atlases and it is shown in Figure 1. One of the 

authors of this manuscript, Min Tae M. Park, was one of the manual raters of these data. 

2.2. Preprocessing 

All the images are preprocessed to enhance their quality and to transform them to a common 

intensity and geometric space. The steps included in this preprocessing are the following: 

Denoising 

The Spatially Adaptive Non-local Means Filter is applied to reduce the noise in the images. This 

filter was chosen because it is able to automatically deal with both stationary and spatially varying 

noise levels (Manjón et al., 2010). 

Inhomogeneity correction in native space 

The N4 bias field correction (Tustison et al., 2010) is applied to correct intensity inhomogeneities 

across the images. This step is applied to improve the registration process but not used as a final 

bias correction method as will be described later. 

MNI affine registration 

All the images have to be registered to a common coordinate space so that the anatomy within 

the case to be segmented and the library cases is consistent. To this end, the images are linearly 

registered (affine transform) to the Montreal Neurological Institute (MNI) space using the MNI152 

template. This is done using the Advanced Normalization Tools (ANTs) (Avants, Tustison and Song, 

2009).  

Inhomogeneity correction in MNI space 

N4 method is used to remove the inhomogeneity of the images in the MNI space (Tustison et al., 

2010). We use the MNI125 intracranial mask to better correct the brain region. We found 
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experimentally that the application of N4 method in MNI space has a superior performance 

compared to its application on native space.   

Cerebellum area cropping  

A cropping step is applied to reduce the computational burden of the method limiting the 

processing to the cerebellum area. A cropping 3D window was calculated from the limits of the 

average of all the atlas labels of the library in the MNI space (including a margin of 5 voxels in all 3 

dimensions). 

Low dimensional non-linear registration estimation 

To achieve a better cerebellum anatomic matching between the target image and the library of 

manually labeled templates, the cropped area of both (target and templates) is non-linearly 

registered to the cropped MNI152 atlas (the non-linear transformation is estimated but not 

applied). Although the segmentation process could be performed at this non-linear MNI152 space, 

the inverse transformation needed to map back the segmentation result on the original linear MNI 

space would reduce segmentation quality due to the introduction of interpolation artifacts.  

Applying successive transformations implies performing successive interpolations. Instead, we 

segment the target case in the linear MNI space avoiding the use of a non-linear inverse 

transformation on the result. To this end, a customized subject-specific library is created by 

concatenating the forward non-linear transformation to the MNI152 atlas of each library case and 

the inverse non-linear transformation of the subject to be segmented. By doing this we are 

applying the transformation once, so only one interpolation is needed. Although the custom 

library has interpolation errors these are minimized during the label fusion step. 

The registration step has a huge impact on segmentation accuracy. We tested 3 different 

resolution levels (low=4 mm3, medium=2 mm3 and high=1 mm3). In general, a high dimensional 

transformation (1 mm3) is expected to better match the reference anatomy. However, this is 

highly dependent on the data topology and we found that the low dimensional registration (4 

mm3) provided the best segmentation results (being also the most efficient in terms of 

computational load). The non-linear registration was performed using ANTs tool (Avants, Tustison 

and Song, 2009) with cross correlation similarity measure.  

Intensity normalization 

As previously commented, it is necessary to normalize the images in order to obtain the same 

intensity values across subjects for cerebellar tissues (white matter and grey matter). This is 

required to perform the patch-based segmentation that finds matches between the target image 

and the library of templates using an intensity-based similarity metric. To this purpose, a local 

intensity normalization based on regions of interest (ROIs) is applied in a similar manner to the 

method proposed by Asman and Landman (2012) in the multi-atlas segmentation challenge of 

MICCAI 2012. 
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We use the average MNI152 atlas as the reference image that is mapped to the target space by 

applying the previously computed non-linear inverse transformation. Then the majority voting 

segmentation obtained from the library is used to define several ROIs (one for each label). Next, 

the median intensity for each ROI is calculated for both target and atlas and a second order 

polynomial function is fitted to map the corresponding median intensities. Finally, the intensities 

of the target case are normalized to the atlas intensities by evaluating the fitted function at every 

target voxel intensity value. Note that we use median intensity values instead of mean values 

because it was found to be more robust to the presence of outliers. 

2.3. Library construction 

To construct the library of templates, the HR dataset mentioned in Section 2.1 was preprocessed 

as described in Section 2.2. Label maps delineated on native space were linearly mapped to the 

MNI space. Then, images and labels were left-right flipped to double the library size (from 5 to 10 

labeled cases). The fact that the cerebellum is nearly symmetric allows the segmentation process 

to take benefit from this step as long as we are increasing the number of anatomical references 

(patterns) locally. Images and labels were then cropped to the cerebellum region. Afterwards, the 

non-linear transformation of these cropped images to the cropped MNI atlas was estimated. 

These transformations are used to non-linearly register the entire library to the space of the case 

to be segmented in a similar way as done in (Weier et al., 2014). Finally, the images were intensity 

normalized. Note that the resulting library at MNI space has a 1 mm3 resolution (original HR data 

had a 0.3 mm3 voxel dimensions). 

2.4. Segmentation pipeline description 

Preprocessing 

Any new unlabeled case is preprocessed as previously described by applying the denoising, the 

linear registration to the MNI space, the inhomogeneity correction, the cropping, the non-linear 

registration and the local intensity normalization. Finally, the estimated non-linear transformation 

is used to create the subject-specific library. After this process, all the library templates are non-

linearly registered to the target case requiring only one non-linear transformation estimation 

instead of N non-linear transformations (where N is the number of subjects in the library).  

Labeling  

Non-local patch-based label fusion  

Non-local patch-based label fusion is a multi-atlas segmentation technique that combines multiple 

reference atlas segmentations to produce a new segmentation that fits the anatomy of a new 

unlabeled case (Coupé et al., 2011). In this strategy, the final label for each image voxel is 

estimated by performing a weighted label fusion of a set of sample patches within a specific 

search area centered on the target voxel for all N cases in the library. The estimation is computed 

as follows: 
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𝑣(𝑥𝑖) =
∑ ∑ 𝑤(𝑥𝑖, 𝑥𝑠,𝑗)𝑦𝑠,𝑗𝑗∈𝑉𝑖

𝑁
𝑠=1

∑ ∑ 𝑤(𝑥𝑖, 𝑥𝑠,𝑗)𝑗∈𝑉𝑖

𝑁
𝑠=1

 (1) 

 

where Vi represents the search area, N is the number of subjects in the template library, ys,j is a 

possible label from the voxel xs,j at the position j in the subject s and w(xi, xs,j) is the patch similarity 

defined as: 

𝑤(𝑥𝑖 , 𝑥𝑠,𝑗) = 𝑒𝑥𝑝
−‖𝑃(𝑥𝑖)−𝑃(𝑥𝑠,𝑗)‖

2

2

ℎ2  
(2) 

 

where  P(xi) is the patch centered at xi, P(xs,j) the patch centered at xj in the templates and ||.||2 is 

the normalized L2 norm (normalized by the number of elements) calculated from the distance 

between each pair of voxels from both patches P(xi) and P(xs,j). h is a normalization parameter that 

is estimated from the minimum of all patch distances within the search area.  

Although the non-local label fusion is a powerful segmentation technique, one of its drawbacks is 

its high computational cost (mainly due to the patch similarity estimation) that limits its use on 

large images and big libraries. Recently, a fast patch matching techniques have been proposed 

that significantly reduces the computational burden of non-local methods (Ta et al., 2014; Giraud 

et al., 2015).  

The PatchMatch algorithm 

The PatchMatch (PM) algorithm (Barnes et al., 2009) is an efficient strategy to find patch 

correspondences between two images (originally 2D). It is based on the hypothesis that given a 

patch p(i,j)  an image A that matches a patch p(i',j')  an image B, then the adjacent patches of 

p(i,j) will probably match the adjacent patches of p(i',j'). 

This algorithm is implemented in three steps: initialization, propagation and random search. First, 

in the initialization, a random patch from B is assigned to each patch in A. Second, adjacent 

patches are tested to improve the current match by following the concept of adjacency. Third, 

with the aim of avoiding local minima, random samples are selected within a neighborhood and 

compared to the current match. The second and third steps are repeated iteratively to improve 

the correspondences. This method quickly converges and gives an approximate nearest neighbor 

field (ANN) that is a set of correspondences between images A and B. 

Optimized PatchMatch (OPAL) 

A 3D extension of PM to deal with MR images was recently proposed by (Ta et al, 2014). This 

method, called OPAL, applies PM to 3D MR images and finds patch correspondences between a 

given image S and a library of L templates. One of the benefits of the PM algorithm is that its 

complexity only depends on the size of the image A and not on the size of the library L. This 
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advantage allows computation of patch correspondences between an image S and a large library L 

= {T1,...,TN} without using any template preselection at an almost constant computational cost 

(discarding library loading time). Compared to PM method, OPAL has a constrained random 

initialization since typically both target and library are located in the same geometric space (MNI 

space) and therefore good matches for the target patches are expected to be close in the library 

space. For further details, see the original OPAL paper (Ta et al., 2014) and its recent extension 

paper (Giraud et al., 2015). 

Multi-scale OPAL label fusion  

In patch-based segmentation, the patch size is a key parameter that is strongly related to the 

structure to be segmented and the image resolution. This can be empirically optimized for a 

specific dataset. It can be seen in the literature that multi-scale approaches improve segmentation 

results (Manjón et al., 2014). In OPAL (Giraud et al., 2015) independent and simultaneous multi-

scale and multi-feature ANN fields were computed. In this paper, a multi-scale approach was also 

used but only voxel intensities are considered as a feature. Finally, several different ANNs are 

computed for different scales resulting in different label probability maps and have to be 

combined. In OPAL, the final estimation is obtained by simply averaging these maps by using a late 

fusion (Snoek, Worring and Smeulders, 2005). All maps were equally contributing to the final 

estimation. In this paper, two scales are used and a different label dependent adaptive weighting 

scheme is proposed to fuse these maps (eq. 3). 

𝑝(𝑙) = 𝛼(𝑙)𝑝1 (𝑙) + (1 − 𝛼(𝑙))𝑝2(𝑙) (3) 

 

where p1(l) is the probability map of scale 1 for label l, p2(l) the probability map of scale 2 for label 

l, p(l) is the final probability map for label l and 𝛼(𝑙) ∈ [0,1] is the mixing coefficient for label l 

optimized using a gradient descent technique. For this optimization, we minimized the 

segmentation error (i.e., maximizing DICE coefficient). For this process, since the training dataset 

was very small (N=5) we used the validation dataset using a leave-one-out approach to avoid bias 

in the method comparison section. Specifically, we performed 20 estimation rounds (removing 

one case each time). Details are given in the experiments section. 

Label regularization 

As a consequence of the reduced size of the template library, the segmentations produced by the 

labeling method may present slightly irregular edges. To reduce this effect we propose a post-

processing step to regularize the label maps by convolving them with a smoothing kernel of 5x5x5 

voxels. Then, the label with the maximum weight is assigned to each voxel. This penalizes narrow 

structures being coherent with the layered definition of the cerebellum lobules. To prevent small 

lobules from being eliminated, the original (not convolved) maps are combined with the 

corresponding smoothed one using a mixing parameter: 
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𝑝𝑓(𝑙) = 𝑝(𝑙) + (𝑙) · 𝐻 𝑝(𝑙) (4) 

 

where 𝑝𝑓(𝑙) represents the final weight of label 𝑙, H is the convolution kernel and (𝑙) is the 

regularization mixing coefficient of label l optimized in an orthogonal manner performing a 

dichotomic search to find the optimal value for each label. We performed the optimization using 

the validation dataset following a leave-one-out approach as done for the estimation of the alpha 

coefficients.  

 

 

Figure 2 presents an overview of the whole pipeline showing the workflow for a new case to be 

segmented. 

Figure 2: Segmentation pipeline overview. 

Library extension 

To mitigate the effect of the reduced size of the library of manually segmented templates, an 

automatic library extension strategy was used. To this purpose, 100 randomly selected unlabeled 

images from healthy subjects were used. The images belong to the IXI - Information eXtraction 

from Images (EPSRC GR/S21533/02) dataset which is publicly available at its website 

(http://biomedic.doc.ic.ac.uk/brain-development). 
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The library extension strategy consisted of applying the described segmentation pipeline to the 

new set of images and to add these images and the corresponding segmentations to the library as 

done in some previous works (Eskildsen et al., 2012; Giraud et al., 2015). 

3. Experiments and results 

Several experiments were performed to estimate optimal method parameters and to compare the 

performance of the proposed method in terms of accuracy and computational time with other 

related state-of-the-art approaches.  

Method parameters 

As OPAL (Giraud et al., 2015) has been developed and evaluated for hippocampus segmentation, 

an optimization was required to adapt a set of parameters in order to obtain optimal cerebellum 

segmentation results. To measure the accuracy we used the DICE (Zijdenbos et al., 1994) 

coefficient for the 13 structures of the cerebellum (left and right labels have been combined into a 

single one). Results for the following experiments are calculated over the validation set. Note that 

since only half cerebellum was manually labeled, results were obtained only comparing the 

segmentation results with the labeled area (discarding the other half cerebellum). In all the 

experiments we set the patch sizes to 3x3x3 and 9x9x9 voxels, respectively. The restricted search 

area was set to 7x7x7 voxels. The number of PMs was set to 32 and the number of iterations of 

OPAL to 4. 

Library construction 

We mentioned that CERES works using a preprocessed library of manually segmented cases. In this 

preprocess the images are located in the MNI space by linear registration. Then the images are 

cropped and registered again to better fit the cerebellum anatomy. This second registration has a 

significant impact in the segmentation. We tested three different approaches to estimate the 

impact of the different transformation options. The first one consists on performing a linear 

registration in the cropped MNI space. In the second approach a non-linear transformation is 

estimated to register the training templates to the cropped MNI space. Finally, in the third one, we 

generate a subject specific library by nonlinearly registering all the training templates to the 

cropped image of the subject in the MNI space. In table 1, the results of these three different 

options are presented.  

As can be noted, the subject specific library construction option was the best one for all the 

structures. In this experiment, we applied OPAL method without any of the proposed 

optimizations to measure just the influence of the library construction approach.    
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Table 1: Mean and standard deviation DICE results for CERES segmentation over the validation set. 

Columns show the average values and standard deviation for the lobules and the whole 

cerebellum. The values are calculated in the native space. Best results marked in bold. 

Lobule Linear reg. Non-linear reg. Subject specific 

AVERAGE 0.7207 ± 0.0574 0.7549 ± 0.0452 0.7595 ± 0.0474 

Lobule I-II 0.4022 ± 0.2157 0.4165 ± 0.1993 0.4226 ± 0.2110 

Lobule III 0.6644 ± 0.2039 0.7044 ± 0.1728 0.7068 ± 0.1714 

Lobule IV 0.6879 ± 0.1625 0.7156 ± 0.1301 0.7213 ± 0.1374 

Lobule V 0.7263 ± 0.1424 0.7448 ± 0.1315 0.7514 ± 0.1376 

Lobule VI 0.8392 ± 0.0437 0.8620 ± 0.0322 0.8667 ± 0.0322 

Lobule Crus I 0.8678 ± 0.0297 0.8937 ± 0.0174 0.8970 ± 0.0161 

Lobule Crus II 0.7564 ± 0.0668 0.7973 ± 0.0545 0.8024 ± 0.0553 

Lobule VIIB 0.6076 ± 0.1354 0.6667 ± 0.1107 0.6742 ± 0.1107 

Lobule VIIIA 0.7277 ± 0.0705 0.7783 ± 0.0691 0.7830 ± 0.0692 

Lobule VIIIB 0.8012 ± 0.0541 0.8456 ± 0.0383 0.8499 ± 0.0358 

Lobule IX 0.8623 ± 0.0383 0.8813 ± 0.0322 0.8849 ± 0.0313 

Lobule X 0.7053 ± 0.0830 0.7529 ± 0.0438 0.7540 ± 0.0473 

Cerebellum 0.9274 ± 0.0107 0.9346 ± 0.0091 0.9358 ± 0.0091 

 

Muli-scale mixing coefficient 

As explained before, OPAL obtains the matches for every image patch at different scales and then 

performs a late fusion. We compared the uniform averaging scheme (α=0.5) as done in original 

OPAL paper with the proposed adaptive method.  Table 2 shows the results for the two compared 

options. Note that we optimized these coefficients 20 times using leave-one-out cross validation.  

Results in table 2 show the average dice of the 20 cases using its corresponding set of coefficients 

(estimated from the 19 remaining cases of the validation set, i.e. excluding the case under study). 

In Tab. 3, for sake of simplicity we only show the average of the 20 different estimations. In 

following experiments, the 20 different sets of alpha coefficients will be used for validation to 

prevent the validation cases to be included in its own segmentation process. 

Table 2: Mean DICE results for CERES segmentation over the validation set. Columns show the 

average values for the different lobules and the whole cerebellum for the two compared 

approaches. Best results marked in bold. 

Lobule  = 0.5  adaptive (LOOCV) 

AVERAGE 0.7595 0.7640 

Lobule I-II 0.4226 0.4364 

Lobule III 0.7068 0.7237 

Lobule IV 0.7213 0.7281 

Lobule V 0.7514 0.7517 

Lobule VI 0.8667 0.8673 
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Lobule Crus I 0.8970 0.9000 

Lobule Crus II 0.8024 0.8034 

Lobule VIIB 0.6742 0.6756 

Lobule VIIIA 0.7830 0.7848 

Lobule VIIIB 0.8499 0.8506 

Lobule IX 0.8849 0.8855 

Lobule X 0.7540 0.7604 

Cerebellum 0.9358 0.9370 

 

 

Table 3: Values for the adaptive  coefficient optimized using a gradient descent technique. 

Label  coefficient Label  coefficient 

Lobule I-II 0.82 Lobule VIIB 0.59 

Lobule III 0.81 Lobule VIIIA 0.59 

Lobule IV 0.71 Lobule VIIIB 0.61 

Lobule V 0.59 Lobule IX 0.60 

Lobule VI 0.50 Lobule X 0.79 

Lobule Crus I 0.81 WM 0.51 

Lobule Crus II 0.60 Background 0.82 

 

Impact of label regularization 

We performed a similar experiment to measure the effect of the label regularization on the 

segmentation results. Table 4 shows the results of the proposed regularization method computed 

over the 20 subjects within the validation dataset. Note that we optimized these coefficients 20 

times using leave-one-out cross validation as previously described and the final DICE coefficients 

shown in table 4 were computed using the corresponding parameter set from the leave-one-out 

estimation. Also, in the following experiments, the 20 different sets of beta coefficients will be 

used to prevent the validation cases to be included in its own segmentation process.  

Despite the fact that the global improvement is limited, an important increase in lobule I-II, which 

is a difficult structure to segment given its high variability within subjects, can be seen due to the 

regularization. The optimal values of α coefficient were 18 for lobule I-II and 4 for the rest of 

structures including the background label. To more specifically evaluate the impact on the label 

contour, we calculated the Hausdorff distance (Beauchemin et al., 1998) for each label. Despite 

the differences not being significant, regularization tends to produce lower distances. 

Table 4: Mean DICE and Hausdorff distance results for CERES segmentation over the validation set. 

Columns show the average values for the lobules and the whole cerebellum. The values are 

calculated in the native space. Best results are marked in bold. 

Structure No regularization Regularization 

 DICE Hausdorff DICE Hausdorff 
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AVERAGE 0.7640 6.3992 0.7702 6.3302 

Lobule I-II 0.4364 3.2214 0.5056 2.8571 

Lobule III 0.7237 6.2210 0.7157 6.0854 

Lobule IV 0.7281 5.5987 0.7320 5.4904 

Lobule V 0.7517 6.7155 0.7535 6.7022 

Lobule VI 0.8673 6.1831 0.8678 6.1557 

Lobule Crus I 0.9000 6.5719 0.9005 6.5583 

Lobule Crus II 0.8034 10.9254 0.8043 10.8393 

Lobule VIIB 0.6756 9.8729 0.6778 9.9934 

Lobule VIIIA 0.7848 8.4833 0.7862 8.3133 

Lobule VIIIB 0.8506 4.7480 0.8531 4.7222 

Lobule IX 0.8855 5.0390 0.8858 5.0499 

Lobule X 0.7604 3.2097 0.7603 3.1952 

Cerebellum 0.9370 - 0.9372 - 

 

 

 Impact of extended library size 

In this experiment we evaluated the impact of the number of subjects from the extended library 

used to perform the labeling step. The extended library included the original 10 manually labeled 

templates and 100 automatically segmented images from IXI dataset. From the library, the N most 

similar cases (in the mean squared error sense) to the target are selected. As can be noticed in 

Figure 3 the plateau is reached around 50 cases. Note that we have a noticeable oscillation for 

values higher than 50. As explained before, PatchMatch algorithm involves a random search step 

that is performed iteratively. In contrast to an exhaustive search PatchMatch converges faster 

because it doesn't explores the whole library. Thus we obtain an approximated nearest neighbor 

field. This implies that libraries with different sizes will have a different set of visited patches even 

if the majority of the templates are the same. For this reason, library sizes larger than the optimal 

(50) present oscillation around the optimal result. The use of this library extension enabled to 

improve the mean DICE coefficient from 0.7702 (N=10) to 0.7729 (N=50). Therefore, we set N=50 

as the default parameter of the method.  
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Figure 3: Evolution of DICE coefficient by number of cases from the extended library used for 

segmentation over the validation set. 

Method comparison 

The proposed method (with all the optimizations and the extended library) was compared with 3 

state-of-the-art methods: SUIT (Diedrichsen, 2006), MAGeT (Park et al., 2014; Chakravarty et al., 

2013) and RASCAL (Weier et al., 2014). The different compared methods were applied to segment 

the validation dataset to evaluate their performance. In Table 5 CERES method is compared with 

MAGeT and RASCAL methods for all 12 structures and the whole cerebellum. As can be noticed, 

CERES outperformed both method overall (only MAGeT had a slightly better result for lobule VI).  

 

Table 5: Mean DICE coefficient and standard deviation values for MAGeT, RASCAL and CERES. 

Intra-rater accuracy for the manual segmentations from the validation set is also shown for 

evaluation purposes. Best results are marked in bold (significant differences (p<0.05) are marked 

with * for MAGeT and † for RASCAL comparison). 

Structure MAGeT RASCAL CERES 
Intra-rater 

manual 

AVERAGE 0.7320 ± 0.0568 0.6890 ± 0.0524 0.7729 ± 0.0427† 0.833 

Lobule I-II 0.3960 ± 0.1424 0.3260 ± 0.2178 0.5201 ± 0.1555*† 0.639 

Lobule III 0.6800 ± 0.1741 0.6379 ± 0.2165 0.7213 ± 0.1572 0.751 

Lobule IV 0.6980 ± 0.1440 0.6627 ± 0.1611 0.7271 ± 0.1346 0.818 

Lobule V 0.7320 ± 0.1398 0.6666 ± 0.1560 0.7561 ± 0.1332† 0.881 

Lobule VI 0.8710 ± 0.0359 0.7969 ± 0.0523 0.8695 ± 0.0316† 0.912 

Lobule Crus I 0.8870 ± 0.0257 0.8383 ± 0.0351 0.9007 ± 0.0152† 0.904 

Lobule Crus II 0.7780 ± 0.0679 0.7340 ± 0.0667 0.8096 ± 0.0569† 0.900 

Lobule VIIB 0.5990 ± 0.1487 0.5820 ± 0.1137 0.6850 ± 0.1205*† 0.863 

Lobule VIIIA 0.7300 ± 0.0934 0.6757 ± 0.1426 0.7926 ± 0.0759*† 0.860 
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Lobule VIIIB 0.7970 ± 0.0607 0.7783 ± 0.0931 0.8533 ± 0.0390*† 0.833 

Lobule IX 0.8560 ± 0.0384 0.8460 ± 0.0545 0.8849 ± 0.0327† 0.874 

Lobule X 0.7540 ± 0.0490 0.7237 ± 0.0680 0.7548 ± 0.0469* 0.760 

Cerebellum 0.9250 ± 0.0094 0.9349 ± 0.0089 0.9377 ± 0.0090† 0.941 

 

As SUIT works with a different set of labels, the output segmentations of MAGeT, RASCAL and 

CERES were adapted by fusing lobules I-II, III and IV for a meaningful comparison as done in Park et 

al. (2014). Lobules Crus I and IX were not taken into account due to differences in their definition. 

We processed the validation images using SUIT as described in 

http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit_function.htm without applying any manual 

correction. In Table 6, DICE coefficient values for the different compared methods are shown. 

CERES provided the best results overall (MAGeT results were better for lobule I-IV, Vi and X 

although differences were not significant). In Figure 4, some example images from the different 

method segmentations are shown. 

 

Table 6: Mean and standard deviation for DICE coefficient values for SUIT, MAGeT, RASCAL and 

CERES for the SUIT segmentation protocol. Best results are marked in bold (significant differences 

(p<0.05) are marked with * for SUIT, † for MAGeT and ‡ for RASCAL comparison). 

Structure SUIT MAGeT RASCAL CERES 

AVERAGE 0.7097 ± 0.0689 0.7639 ± 0.0792  0.7140 ± 0.0487 0.7888 ± 0.0409 *‡ 

Lobule I-IV 0.7435 ± 0.0880 0.8055 ± 0.0964 0.7703 ± 0.1107 0.7898 ± 0.1021 *  

Lobule V 0.6598 ± 0.1026 0.7429 ± 0.1369 0.6730 ± 0.1560 0.7561 ± 0.1332 *‡ 

Lobule VI 0.7800 ± 0.0543 0.8762 ± 0.0365 0.7994 ± 0.0523 0.8695 ± 0.0316 *‡ 

Lobule Crus II 0.7430 ± 0.0631 0.7787 ± 0.0678 0.7300 ± 0.0667 0.8096 ± 0.0569 *‡ 

Lobule VIIB 0.5701 ± 0.1572 0.6013 ± 0.1476 0.5761 ± 0.1137 0.6850 ± 0.1205 *‡ 

Lobule VIIIA 0.7134 ± 0.0996 0.7330 ± 0.0928 0.6701 ± 0.1426 0.7926 ± 0.0759 *†‡ 

Lobule VIIIB 0.7721 ± 0.0596 0.8012 ± 0.0607 0.7654 ± 0.0931 0.8533 ± 0.0390 *†‡ 

Lobule X 0.6955 ± 0.0512 0.7721 ± 0.0475 0.7275 ± 0.0680 0.7548 ± 0.0469 * 
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Figure 4: Manual, SUIT, MAGeT, RASCAL and CERES segmentation examples over the cases with 

the best, median and worst DICE for CERES. Corresponding DICE is provided for each segmentation. 

Note how SUIT tends to produce oversegmentation and always fills the fissures between lobules. 

Also note the irregular boundary between lobules I-IV(red) and V(yellow) produced by RASCAL in all 

three cases. Finally, in the worst case, it can be seen that lobule VIIIA(purple) in MAGeT and 

RASCAL segmentations is barely visible. 

 

Execution time 

One of the main advantages of our method is its efficiency as it produces competitive results in 

terms of accuracy with a reduced execution time. The slowest method in the comparison was 

MAGeT (approximately 4 hours per case) due to the need of performing many non-linear 

registrations. RASCAL takes around 110 minutes to provide the segmentation result. Finally, SUIT 

(without manual correction) and CERES require around 5 minutes to produce the segmentation. 

Figure 5 shows the computational cost of the different parts of the proposed method. As can be 

noticed the most time consuming part is the non-linear registration estimation. Note also the 

segmentation part took only 1 minute thanks to the efficiency of the OPAL method, while the 

preprocessing remains the most time consuming step of the proposed pipeline. 
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Figure 5: Execution time in seconds for the different parts of the proposed method. 

 

4. Discussion 

We have presented a new pipeline for cerebellum lobule segmentation called CERES that works in 

a fully automatic manner and that is able to provide accurate results in a low computation time. 

We have shown that CERES produces state-of-the-art results outperforming current cerebellum 

segmentation methods such as SUIT, MAGeT and RASCAL. Main contributions of the presented 

method are: 1) the use of an efficient custom made non-linear library for each case to be 

segmented 2) an adaptive multi-scale implementation and 3) a new label regularization step. 

In terms of accuracy, CERES obtained the best results for most of the labels. Each of the 

improvements proposed in the method allowed to consistently leverage the results being the 

custom library construction the most significant one (0.7207 to 0.7595). The adaptive multi-scale 

mixing and the label regularization steps allowed to further boost the results to obtain 0.7729 final 

DICE coefficient. More interestingly, CERES almost reaches intra-rater accuracy for the whole 

cerebellum segmentation (CERES = 0.9377 vs. human = 0.941) (Park et al., 2014). It is worth noting 

that the high accuracy obtained by CERES was achieved using only 5 manually labeled templates. It 

is expected that results with larger manually labeled template libraries will provided significantly 

better results by covering a larger variability of cerebellum shapes and conditions (including 

pathological ones). 

From the efficiency point of view, CERES was found to produce the segmentation results in a very 

short time (5 minutes per case) being the most efficient of the compared methods. This can be 

explained by two main reasons. First, multi-atlas label fusion techniques usually require the 

processing of multiple non-linear registrations which is quite time consuming. CERES only requires 

a single non-linear registration since it applies the N non-linear mapping from a set of pre-

computed transformation to the MNI space. Furthermore, this single non-linear registration being 

low-dimensional and applied to a cropped volume is much faster estimated that high dimensional 

registration typically used in multi-atlas methods. Second, one of the most computationally 

demanding steps in non-local multi-atlas label fusion methods is the patch matching process. In 
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CERES, this time is highly reduced by using OPAL making the patch matching process no longer the 

bottleneck of the segmentation procedure.  

Another important feature of CERES is its adaptability. As it uses a library of manually segmented 

templates as a knowledge base it can learn new anatomies by adding new cases to the library. In 

our experiments, the main limitation of CERES is the small size of the manually labeled template 

library (only 5 cases). In previous multi-atlas label fusion approaches it has been shown that a 

library of at least around 20 cases is required in order to achieve optimal segmentation results. 

Therefore, it is expected that CERES performance will be improved when using a larger library. This 

will be done by adding more manually segmented cases as long as they become available.  

Finally, in order to make CERES pipeline fully and freely accessible to the scientific community, we 

have integrated this pipeline as a part of our online volBrain platform (http://volbrain.upv.es). At 

the time of writing this paper, CERES pipeline has been already applied to more than 3000 cases 

(in around 5 months) with a failure rate lower than 1%.    
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