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Abstract

The disparity between the chronological age of an individual and their brain-age measured based on biological information has the
potential to offer clinically-relevant biomarkers of neurological syndromes that emerge late in the lifespan. While prior brain-age
prediction studies have relied exclusively on either structural or functional brain data, here we investigate how multimodal brain-
imaging data improves age prediction. Using cortical anatomy and whole-brain functional connectivity on a large adult lifespan
sample (N = 2354, age 19-82), we found that multimodal data improves brain-based age prediction, resulting in a mean absolute
prediction error of 4.29 years. Furthermore, we found that the discrepancy between predicted age and chronological age captures
cognitive impairment. Importantly, the brain-age measure was robust to confounding effects: head motion did not drive brain-based
age prediction and our models generalized reasonably to an independent dataset acquired at a different site (N = 475). Generalization
performance was increased by training models on a larger and more heterogeneous dataset. The robustness of multimodal brain-age
prediction to confounds, generalizability across sites, and sensitivity to clinically-relevant impairments, suggests promising future
application to the early prediction of neurocognitive disorders.
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Highlights

• Brain-based age prediction is improved with multimodal
neuroimaging data.

• Participants with cognitive impairment show increased
brain aging.
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gael.varoquaux@inria.fr (Gaël Varoquaux), kynast@cbs.mpg.de (Jana
Kynast), fbeyer@cbs.mpg.de (Frauke Beyer), kharabian@cbs.mpg.de
(Shahrzad Kharabian Masouleh), huntenburg@cbs.mpg.de (Julia M.
Huntenburg), lampe@cbs.mpg.de (Leonie Lampe),
rahim.mehdi@gmail.com (Mehdi Rahim),
abraham.alexandre@gmail.com (Alexandre Abraham),
cameron.craddock@childmind.org (R. Cameron Craddock),
steffi.riedel-heller@medizin.uni-leipzig.de (Steffi

Riedel-Heller), tobias.luck@medizin.uni-leipzig.de (Tobias Luck),
markus.loeffler@imise.uni-leipzig.de (Markus Loeffler),
schroet@cbs.mpg.de (Matthias L. Schroeter), witte@cbs.mpg.de (Anja
Veronica Witte), villringer@cbs.mpg.de (Arno Villringer),
margulies@cbs.mpg.de (Daniel S. Margulies)

• Age prediction models are robust to motion and generalize
to independent datasets from other sites.
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1. Introduction

The brain continues to change throughout adult life. Struc-
tural aspects, such as cortical thinning, demonstrate robust pat-
terns of alteration during adulthood (Hogstrom et al., 2013;
Storsve et al., 2014). Likewise, age-related differences in brain
function, demonstrated through studies of functional connectiv-
ity, have also been observed (Damoiseaux et al., 2008; Dennis
& Thompson, 2014).

Establishing the trajectories of such changes over the lifes-
pan provides a basis for characterizing clinically-relevant devia-
tions (Ziegler et al., 2012; Raz & Rodrigue, 2006). Brain-based
age prediction offers a promising approach for providing per-
sonalized biomarkers of future cognitive impairments by cap-
turing deviations from typical development of brain structure
and function.

Brain-based age prediction aims to estimate a person’s age
based on brain data acquired using magnetic resonance imaging
(MRI, Franke et al., 2010; Franke & Gaser, 2012). In a first
step, an age prediction model is trained based on brain imaging
data from a large lifespan sample. In a second step, this model
can be used to estimate a novel individual’s age based solely on
their brain-imaging data. By comparing a person’s estimated
age with their chronological age, conclusions about age-typical
and atypical brain development can be drawn.

Brain-based age prediction exemplifies a larger trend in neu-
roscience (Bzdok, 2016; Gabrieli et al., 2015; Pereira et al.,
2009; Varoquaux & Thirion, 2014) and psychology (Yarkoni
& Westfall, 2016) to move from correlative to predictive stud-
ies, often using tools from machine learning. Individual brain-
based prediction and classification may give rise to brain
imaging-based biomarkers that could aid clinical diagnostics,
for instance, by predicting an individual’s risk of developing
dementia based on their brain (Bron et al., 2015).

One successful age prediction framework is based on
structural brain data analyzed with voxel-based morphometry
(VBM, Franke et al., 2010; Franke & Gaser, 2012). Using
this approach, accelerated brain aging was found in patients
with Alzheimer’s disease (Franke et al., 2010; Franke & Gaser,
2012), traumatic brain injuries (Cole et al., 2015), psychiatric
disorders (Koutsouleris et al., 2013), and subjects with risks to
physical health (Franke et al., 2014). This brain-age metric can
also predict the future conversion from mild cognitive impair-
ment to Alzheimer’s disease (Gaser et al., 2013). This compu-
tational approach is not restricted to showing accelerated brain
aging as a negative effect but has also been used to demonstrate
the positive effects of education, physical exercise (Steffener
et al., 2016), and meditation (Luders et al., 2016) on brain ag-
ing. Other work has shown that accelerated brain development
is related to accelerated cognitive development in young sub-
jects (Erus et al., 2014).

In addition to brain structure, functional connectivity based
on resting-state fMRI data (Craddock et al., 2013) also has
the potential to provide clinically-relevant biomarkers (Crad-
dock et al., 2009; Castellanos et al., 2013), as the data is eas-
ily acquired in a clinical setting (Greicius, 2008; Damoiseaux
et al., 2012). Similar to the structural age estimation approach,

Dosenbach et al. (2010) demonstrated that this is also feasible
with resting-state functional connectivity data from young sub-
jects. As different MRI modalities capture not only shared but
also unique information about brain aging (Groves et al., 2012),
prediction accuracy may benefit by incorporating these addi-
tional sources of information. For instance, Brown et al. (2012)
and Erus et al. (2014) have shown that combining information
from gray and white matter anatomy increases prediction ac-
curacy in young subjects. The present study investigates how
combining data from two even more dissimilar sources, brain
anatomy and functional connectivity, influences age prediction
in a lifespan sample. This is important as function and structure
convey converging as well as diverging information (Damoi-
seaux & Greicius, 2009).

While machine-learning methods enable predictions on a
single-subject level, factors driving these predictions are often
difficult to determine. Predictions that appear to be based on
brain information may actually be driven by confounds. One
major confound in functional and structural MRI is head mo-
tion (Satterthwaite et al., 2013; Power et al., 2012; Reuter et al.,
2015; Alexander-Bloch et al., 2016). For instance, head mo-
tion can make cortex appear thinner (Reuter et al., 2015). An
age-related increase in head motion might give rise to a suppos-
edly ’brain-based’ age predictor that relies heavily on head mo-
tion. Furthermore, while machine learning models are trained
on one dataset and evaluated on another, in neuroimaging these
datasets often come from the same study, i.e., same site and
scanner. In such cases, models may overfit one site’s subtle
idiosyncrasies, rendering poor predictive power for data from
another site. Therefore, in the current study we aimed to ad-
dress these confounds by determining the effect of head motion
on brain-based age prediction and predictive performance on
data from a novel site.

The present study investigates (i) whether incorporating mul-
tiple imaging modalities increases prediction accuracy, (ii)
whether cognitive impairments are related to brain aging, and
(iii) how robust our predictive models are, specifically regard-
ing head motion and generalizabilty to new datasets. Us-
ing data from brain anatomy and functional connectivity, we
show that (i) incorporating multiple modalities increases pre-
dictive performance, (ii) cognitive impairments are related to
advanced brain aging, and (iii) our models are robust as they
are not driven by head motion and generalize reasonably to new
datasets.

2. Materials: lifespan data & preprocessing

Two independent samples were investigated in this study: the
LIFE (Loeffler et al., 2015) and the Enhanced Nathan Kline
Institute – Rockland sample (NKI, Nooner et al., 2012). Since
the majority of analyses is performed on the LIFE dataset, the
NKI set is described in detail in Appendix A.

2.1. LIFE sample

Participants took part in the LIFE-Adult-Study (life.
uni-leipzig.de, Loeffler et al., 2015) of the Leipzig Re-
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search Centre for Civilization Diseases (LIFE) and were ran-
domly selected, community-dwelling volunteers. The study
was approved by the institutional ethics board of the Medical
Faculty of the University of Leipzig. Participants signed an in-
formed consent form and were paid for their participation.

Of the 10000 volunteers participating in the LIFE-study, ap-
proximately 2600 also underwent MRI assessment and neu-
ropsychological testing. In the present study, data from 2354
individuals were included. Exclusion criteria included neurora-
diological findings, missing MRI data or excessive head motion
in the functional scans (mean FD > 0.6 mm, Power et al., 2012).
Subjects were between 19 and 82 years (M = 58.68; S D =

15.17; 1120 female, 1234 male).

2.2. Cognitive phenotyping
Neurocognitive Disorder. The Diagnostic Statistical Manual of
Mental Disorders 5th edition (DSM-5, American Psychiatric
Association, 2013) introduced Neurocognitive Disorder (NCD)
as a new diagnostic category for acquired cognitive dysfunc-
tion. NCD diagnosis comprises the evaluation of subjective
cognitive complaints, cognitive performance and independence
in activities of daily living. To this end, a comprehensive and
domain specific neuropsychological evaluation is required, in-
cluding the cognitive domains attention, executive function,
memory, language, visuoconstruction, and social cognition.

Two subtypes of NCD are distinguished: mild and major
NCD. Both sub-types are characterized by subjective cognitive
complaints. Mild NCD is presented with a cognitive perfor-
mance decline that ranges between -1 and -2 SD below age and
gender norms in at least one cognitive domain, and preserved
independence in daily life. Contrary, persons with major NCD
have severe cognitive deficits (<-2 SD below age and gender
norms) in at least one cognitive domain that interfere with in-
dependence in everyday activities. Thus, the term major NCD
represents the current concept of dementia.

The DSM-5 criteria for NCD diagnosis served as a tem-
plate to characterize the study sample with respect to objective
cognitive impairment (OCI). Only OCI was investigated in the
present study. Independence in daily activities and subjective
cognitive complaints were not considered as a criterion for cog-
nitive phenotyping in this study as consensus questionnaires are
still lacking.

Neuropsychological assessment. Cognitive performance was
assessed with a set of standard neuropsychological tests, span-
ning several cognitive domains (Loeffler et al., 2015). All
scores were carefully checked for missing values and plausibil-
ity. The Stroop test (Stroop, 1935; Treisman & Fearnley, 1969;
Zysset et al., 2001; Schroeter et al., 2002), which quantifies
executive functions, was administered. Social cognition was
assessed with the Reading the Mind in the Eyes test (RMET,
Cohen et al., 2001; Bölte, 2005), which quantifies the abil-
ity to infer mental states only from eye gaze. The CERAD-
plus (Thalmann et al., 1997; Morris et al., 1989) is a dementia
screening battery focusing on Alzheimer’s disease. It includes
tests of verbal and figural memory and learning (10-items word
list, figure recall), language (Boston Naming Test, semantic and

phonematic verbal fluency), and visuoconstrution (figure copy).
This battery also includes the Mini Mental State Examination
(MMSE, Folstein et al., 1975) as well as the Trail Making Test
(TMT, Reitan, 1979), which measures visual attention and cog-
nitive flexibility.

Domain-specific scores. For the domain-specific evaluation of
cognitive performance, test scores were assigned to the cog-
nitive domains proposed by the DSM-5 and aggregated (Beck
et al., 2014).

Scores for the following domains were calculated:

• attention (TMT-A time to complete (TTC), TMT-A errors,
Stroop neutral reaction time (RT), Stroop neutral % cor-
rect),

• executive function (TMT-B TTC / TMT-A TTC, Stroop in-
congruent TTC / Stroop neutral TTC),

• memory (CERAD word list (trial 1, 2, 3, total, delayed
recall, recognition), CERAD figure delayed recall),

• language (Boston Naming Test, semantic fluency (ani-
mals), phonematic fluency (s-words)),

• visuoconstruction (CERAD figure copy), and

• social cognition (RMET).

Objective cognitive impairment (OCI). To translate neuropsy-
chological measures into scores informative of cognitive perfor-
mance independent of age, sub-test scores were z-standardized
within the corresponding age- and sex group (18-39, 40-49, 50-
59, 60-64, 65-69, 70-74, 75+ years). Where necessary, stan-
dardized scores were inverted so that a higher score reflects
higher performance. If more than one sub-test measure per do-
main was available, sub-tests were averaged within domains.
These domain-specific scores can be interpreted as the average
performance of a person in a certain domain and a deviation
from their peers’ performance in that domain. Based on the
domain-specific scores and in analogy to aforementioned NCD
classification scheme, subjects were classified as OCI-norm, -
mild (at least one domain score between -1 and -2 SD), or -
major (at least one domain score <-2 SD), if they had at least
three valid domain scores.

2.3. MR data

Brain imaging was performed using a 3T Siemens Trio scan-
ner equipped with a 32 channel head coil.

Resting-state functional images were acquired using an T2*-
weighted echo-planar imaging sequence with an in-plane voxel
size of 3×3 mm, slice thickness of 4 mm, slice gap of 0.8 mm,
30 slices, echo time (TE) of 30 ms, repetition time (TR) of 2000
ms and a flip-angle of 90◦. This sequence lasted 10 min (300
volumes), during which participants were instructed to keep
their eyes open and not to fall asleep. A gradient-echo fieldmap
with the same geometry was recorded for distortion correction
(TR = 488 ms, TE 1 = 5.19 ms, TE 2 = 7.65 ms).
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High resolution T1-weighted structural images were ac-
quired using an MP-RAGE sequence with 1 mm isotropic vox-
els, 176 slices, TR = 2300 ms, TE = 2.98 ms, and inversion
time (TI) = 900 ms.

2.4. MR data preprocessing
MRI data processing was implemented in a python pipeline

via Nipype (v0.10.0, Gorgolewski et al., 2011), which included
routines from FSL (v5.0.9, Jenkinson et al., 2012), FreeSurfer
(v5.3, Fischl, 2012), ANTS (v2.1.0, Avants et al., 2011),
CPAC (v0.3.9.1, fcp-indi.github.io), and Nilearn (v0.2.3,
nilearn.github.io, Abraham et al., 2014). The pipeline is
available at github.com/fliem/LIFE_RS_preprocessing.

Functional MRI. After removal of the first five volumes (to
allow the magnetization to reach a steady state) and motion
correction (FSL mcflirt), rigid body coregistration of the func-
tional scan to the anatomical image (FreeSurfer bbregister), as
well as EPI distortion corrections (FSL fugue) were calculated
and jointly applied in a subsequent step to each volume of the
functional scan. Denoising included removal of (i) 24 motion
parameters (CPAC, Friston et al., 1996), (ii) motion and signal
intensity spikes (Nipype rapidart), (iii) six components explain-
ing the highest variance from a singular value decomposition of
white matter and cerebrospinal fluid time series (CompCor, Be-
hzadi et al., 2007, signals extracted from individual masks cre-
ated with FSL fast, decomposition executed with CPAC), and
(iv) linear and quadratic signal trends. Subsequently, functional
data were morphed to MNI space via transformation fields es-
timated from the structural data (ANTS). Functional data were
then band-pass filtered between 0.01 and 0.1 Hz (Nilearn).

Structural MRI. The FreeSurfer software package was used to
create models of the cortical surface for cortical thickness and
cortical surface area measurements. Subcortical volumes were
obtained from the automated procedure for volumetric mea-
sures of brain structures implemented in FreeSurfer.

3. Methods: age prediction analysis

3.1. Age prediction
Models were trained to predict age based on a variety of in-

put data, i.e., functional connectomes of two different spatial
resolutions and measures of cortical anatomy (cortical thick-
ness, cortical surface area, subcortical volumes). A schematic
overview of the age prediction analysis is shown in Figure 1.

3.1.1. Input data
The following five sources of neuroimaging data entered the

age prediction models. Two sources represent brain connectiv-
ity in different spatial resolutions, three sources originate from
brain anatomy:

1. connectivity matrix 197,
2. connectivity matrix 444,
3. cortical thickness,
4. cortical surface area, and

5. subcortical volumes

After extracting feature vectors for each subject and modality
(see Figure 1.1), vectors were stacked to obtain the input data
matrices for the age prediction analysis (see Figure 1.2).

Brain function. Functional connectomes were derived from
preprocessed functional MRI data using the Nilearn package.
Mean time-series were extracted from cortical and subcorti-
cal regions of the functionally defined BASC parcellation at-
las (Bellec et al., 2010, obtained via the Nilearn data fetcher
fetch atlas basc multiscale 2015). Functional connectivity be-
tween all pairs of regions was quantified via Pearson correla-
tion, resulting in a symmetric connectivity matrix. Since mea-
sures derived from connectomes vary with parcellation reso-
lution (Fornito et al., 2010) and there is no ’right’ number of
parcels, we investigated two different levels of spatial granular-
ity. Based on Thirion et al. (2014), who recommend parcella-
tions consisting of around 200 to 500 regions, we reconstructed
connectivity matrices from 197 and 444 regions.

Connectivity matrices underwent Fisher’s r-to-z trans-
formation and a feature vector was extracted from the
lower triangle (N f eatures(connectivity matrix 197) = 19306,
N f eatures(connectivity matrix 444) = 98346). The shape of the
input matrix was Nsub jects × N f eatures (with Nsub jects varying be-
tween analyzes; see section 3.2).

Brain anatomy. Native surface models for cortical thick-
ness and surface area were transformed into the fsav-
erage4 standard space. The data for the two hemi-
spheres was concatenated (N f eatures(cortical thickness) =

N f eatures(cortical sur f ace area) = 5124). Volumetric data for
subcortical regions and measures of global volume were ex-
tracted from the aseg.stats file (N f eatures(subcortical) = 66).

3.1.2. Predictive analysis
Predictive models were implemented in a two-level approach

(see Figure 1.4). On the first level, linear support vector regres-
sion models (SVR, Drucker et al., 1996) were used to predict
age from neuroimaging data (single-source models). On the
second level, predictions from the single-source models were
stacked with random forest (RF, Breiman, 2001) regression
models. Using RF models for stacking multiple neuroimaging
modalities has previously been shown to produce better predic-
tions with smaller variability in prediction errors as compared
to other stacking methods (Rahim et al., 2016). All predictive
analyses have been performed using the python-based Scikit-
learn package (Pedregosa et al., 2011). The code is available at
github.com/fliem/LeiCA_LIFE.

In detail, this procedure entailed (see Figure 1):

1. Train-test-split. Data was split into equally sized training
and test set (see Figure 1.3). The training set was used
to train (learn) the models, the test set was put aside to
subsequently evaluate the models’ performance on unseen
data.

4

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2016. ; https://doi.org/10.1101/085506doi: bioRxiv preprint 

fcp-indi.github.io
nilearn.github.io
github.com/fliem/LIFE_RS_preprocessing
github.com/fliem/LeiCA_LIFE
https://doi.org/10.1101/085506
http://creativecommons.org/licenses/by-nc/4.0/


2. Training of single-source models (see Figure 1.4). Two
parallel approaches have been used to train single-source
models. First, using the neuroimaging data of the en-
tire training set, single-source SVR models were fitted,
resulting in one trained model per source. Second, in
parallel, using the neuroimaging data of the training set,
single-source SVR models were trained in a 5-fold cross-
validation (CV) approach (see Figure 1.4.1). This was
done to obtain unbiased CV-predictions (to be used in the
following step).

3. Training of multi-source models. To aggregate informa-
tion from multiple sources into one prediction, the previ-
ous step’s CV-predictions were stacked (concatenated). A
feature vector based on the single-source predictions was
constructed. Based on this feature vector, the multi-source
models were fitted, to obtain trained multi-source models
(see Figure 1.4.2). This was done in three versions:

(a) stacked-function which combined age predictions
from connectivity matrix 197 and connectivity ma-
trix 444,

(b) stacked-anatomy which combined age predictions
from cortical thickness, cortical surface area, and
subcortical volumes, and

(c) stacked-multimodal which combined age predictions
from all five single-source models.

For instance, in the case of stacked-multimodal, each sub-
ject’s feature vector consisted of the five age prediction
values from the single-source models.

4. Test the models by predicting age in new subjects. The
performance of the trained single- and multi-source mod-
els was tested with the neuroimaging data of the test set
as input (see Figure 1.5). First, single-source predictions
are calculated by using the trained model from step 2 (see
Figure 1.5.1). Second, these predictions are stacked and
fed into the trained model from step 3 (see Figure 1.5.2),
to receive single- and multi-source test set predictions.

5. Evaluate generalization performance. Finally, the mod-
els’ generalization performance can be assessed via the
test set’s absolute error (AE) of the age predictions (ob-
tained in step 4) from chronological age. Additionally, the
coefficient of determination (R2) is also reported.

Statistical tests. To compare models, non-parametric statistical
tests were run on the absolute prediction errors, using the SciPy
package (v0.17.0, scipy.org). Correction for multiple com-
parisons was done using the false discovery rate (FDR) proce-
dure described by Benjamini & Hochberg (1995). Results were
plotted with the Seaborn package (v0.7.0, Waskom et al., 2016).

Tuning of hyperparameters. For the single-source SVR mod-
els, tuning curves for the C parameter were run on the training
data. These curves showed a ‘sweet spot’ for the high dimen-
sional neuroimaging input data (the connectivity matrices, cor-
tical thickness and cortical surface area) around C = 1e−3 (for
an example see Figure A.6). For the lower dimensional subcor-
tical input data, the standard C = 1 performed well. All models
were run with the default ε = 0.1. For the multi-source RF
models, out-of-bag estimates were used to set the tree depth.

3.2. Analysis plan

A brief sketch of the different analyzes, tailored to the dif-
ferent research questions, follows here. Further details can be
found in the results section.

3.2.1. Prediction performance in multimodal data
Age predictions have been performed as described in section

3.1. The entire LIFE sample was split into equally sized train-
ing and test set.

3.2.2. Brain aging in cognitively impaired subjects
For this analysis, the sample was reduced to subjects with

a valid OCI score (see section 2.2). Models were trained on
OCI-norm subjects only. The test set consisted of subjects from
all OCI groups. A brain aging (BA) score was then calculated
for each subject and each single- and multi-source model by
subtracting agechronological from agepredicted. These BA scores
were compared between OCI groups.

3.2.3. Robustness against confounds
Head motion. The robustness of our approach against head
motion was investigated with the models described in section
3.2.1. First, we did this using motion regression. On the group-
level, head motion (mean FD derived from the functional scans)
was regressed out of the input matrices in the single-source
models for the entire training and entire test set separately.
Mean FD was derived from the functional acquisition and used
as a measure of head motion for the functional as well as the
structural data. Second, as an alternative, motion matching was
performed by creating a subsample of the test set that does not
show an age × motion correlation. For direct comparison, an
equally sized random sample was also drawn. These test sam-
ples were then used to evaluate the performance of the models
trained on the full training sample (see 3.2.1).

Generalization to new site. In this step we investigated how
the models generalize to data from a new site (different coun-
try, scanner, acquisition protocol, subjects). Age predictions
were performed on data from the NKI set using models trained
on LIFE data (one sample training; section 3.2.1). In a sub-
sequent analysis, models were re-trained on a training set that
combined the original LIFE training sample with a small num-
ber of subjects from the NKI set, to increase the generalizability
of the predictive models (two sample training). Finally, to in-
crease the training sample size, the one and two sample training
was repeated, including the majority of the LIFE data into the
training sample, not only the original training set (99 % of the
entire LIFE sample; 1% was retained for a rough check of the
models on LIFE data). This analysis will be referred to as full
LIFE sample training approach.
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Figure 1: Overview of feature extraction and predictive analysis. (1) For each subject, feature vectors from the following data sources are extracted: connectivity
matrix 197, connectivity matrix 444, cortical thickness, cortical surface area, and subcortical volumes. (2) Within each source, data for subjects are concatenated
to obtain input data matrices. (3) Data is split into training and test set. (4) Training data (yellow line) is used to train age prediction models. (4.1) First, five single-
source support vector regression models (SVR) are trained to predict chronological age based on training brain data. (4.2) Second, the single-source predictions
(red line) are stacked and entered into the training of multi-source random forest models (RF). Three separate multi-source models were trained: stacked-function
(combining connectivity matrix 197 and connectivity matrix 444), stacked-anatomy (combining cortical thickness, cortical surface area, and subcortical volumes),
and stacked-multimodal (combining all five single-source models). (5) The trained models (green line) are then evaluated. (5.1) Trained single-source models
give single-source age predictions based on test data (blue line). (5.2) These predictions are stacked and entered into the trained multi-source models to obtain
multi-source age predictions. Prediction performance is evaluated by comparing predicted age with chronological age.
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4. Results

Our results demonstrate that i) incorporating multiple brain
imaging modalities increases age prediction performance (Fig-
ure 2 and 3); ii) subjects with objective cognitive impairment
show advanced brain aging compared to subjects without objec-
tive cognitive impairment (Figure 4); iii) our prediction models
are robust against confounds (Figure 5), i.e., not driven by head
motion and generalize to new datasets. For the comparison of
modalities, data for models of all modalities will be presented.
After showing that the multimodal approach outperforms the
others, the remainder of the results, for the sake of brevity, will
focus on this model. The full results can be found in Appendix
B.

4.1. Multimodal data increases prediction performance

Based on the entire LIFE sample, age prediction models
were trained on the training set (N = 1177) and evaluated
on the test set (N = 1177). Figure 2 shows prediction per-
formance on the test sample (for full statistics see Table B.1).
All models show good prediction performance (mean abso-
lute error between 4.29 and 7.29 years, R2 between 0.62 and
0.87). The stacked models show better performance than sin-
gle source models, with the stacked-multimodal model outper-
forming all other models. Additionally, this model also shows
the least prediction variability. By going from the second best
model, stacked-anatomy, to the best, stacked-multimodal, ap-
proximately half a year in prediction accuracy is gained. Ta-
ble B.2 shows feature importances for the multi-source models.

Figure 3 shows the individual predictions for the stacked-
multimodal model, the model with the best predictive perfor-
mance.

4.2. Advanced brain aging in cognitively impaired subjects

Based on a large battery of cognitive tests, subjects with
mild or major OCI were identified. For this analysis, the mod-
els were trained on half of the OCI-norm subjects (Ntraining =

724). Subsequently, age predictions were performed on a test
sample containing OCI-norm, mild and major subjects (test:
Nnorm = 729,Nmild = 632,Nma jor = 251) and compared
between groups (sample characteristics can be found in Ta-
ble B.4). Figure 4 shows the advanced brain aging in OCI pre-
dicted by the stacked-multimodal model. Figure B.7 shows that
all models, except stacked-function, show a significant progres-
sion in brain aging related to the severity of OCI (see Table B.6
for full statistics). This finding demonstrates that the age pre-
diction models capture aspects of cognitive impairment.

4.3. Robustness against confounds

Head motion. Our sample showed a substantial age × motion
correlation (rage×motion = 0.43; p = 1.87e−15; head motion de-
fined as mean FD derived from the functional scans). To test
the influence of head motion on the age prediction models, the
following two analyses have been performed.

connectivity matrix 197

connectivity matrix 444

stacked-function

5.99 (4.57)

5.77 (4.42)

5.25 (4.40)

function

cortical thickness

cortical surface area

subcortical

stacked-anatomy

5.95 (4.69)

7.29 (5.96)

6.44 (5.02)

4.83 (4.01)

anatomy

0 2 4 6 8 10
absolute prediction error (years)

stacked-multimodal 4.29 (3.49)

multimodal

Age prediction performance 
 of different modalities

Figure 2: Prediction performance (absolute error on test set, lower values are
better). Note that the stacked-multimodal model shows the least prediction er-
ror. Black dots represent significant (p(FDR) < 0.05) deviation from the best
model, indicating that stacked-multimodal significantly outperforms all other
models. Error bars represent 95% CI bootstrapped with 1000 iterations. Num-
bers next to error bars represent mean (standard deviation). Stacked models are
shown with hatched bars. For full statistics see Table B.1

Motion regression. To test the models’ robustness against head
motion, we regressed out head motion (mean FD) from the
input data (for training and test set separately). Regressing
out motion reduces prediction accuracy significantly (e.g., the
stacked-multimodal model’s error increases from 4.29 to 6.95
years; see Figure B.8 and Table B.7). This might either be the
result of head motion driving the prediction models, or, due to
the large variance shared by age, head motion and the brain
measures, of too aggressively removing age-related variance
while removing motion-related variance. To test these two al-
ternative explanations, the following motion matching analysis
was performed.

Motion matching. In this analysis, a motion adjusted subsam-
ple of the test set is created by restricting the sample to sub-
jects with a mean FD between 0.19 and 0.28 mm and an age
above 25 years, which results in a motion matched subsample
(N = 387; rage×motion = 0.06; p = 0.26). Excluding subjects
with a mean FD lower than 0.19 was necessary to create a bal-
anced sample, because of the dominance of young subjects with
low motion. An equally sized non-motion-adjusted subsample
was randomly drawn for comparison (rage×motion = 0.42; p =

2.45e−18). These subsamples (N = 387) were used to evalu-
ate the influence of motion in the models trained on the origi-
nal training set (N = 1177; see 4.1). The stacked-multimodal
model (Figure 5.1), as well as all other models (Figure B.9)
perform equally well with and without motion matching (all
p > 0.49; for full statistics see Table B.8), indicating that head
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Figure 3: Chronological and predicted age from the stacked-multimodal
model. Circles represent subjects, the solid line the perfect prediction, dashed
lines the mean absolute prediction error (4.29 years).

0 2 4 6

brain aging (years)

-0.38 (5.68)

0.74 (5.78)

1.72 (6.85)

OCI group
norm
mild
major

Brain aging differences between
 objective cognitive impairment (OCI) groups

stacked-multimodal

Figure 4: Differences in brain aging (brain aging = predicted age - chrono-
logical age) between OCI groups for stacked-multimodal. Positive brain aging
values indicate that a brain appears older than expected from chronological age.
Note that brain aging significantly increases with severity of OCI, i.e., more ad-
vanced brain aging in OCI. Numbers next to error bars represent mean and
standard deviation. For full data see Figure B.7 and Table B.6.

motion is not driving the age prediction models and that mo-
tion regression is removing too much meaningful age-related
variance.

Generalization to new site. To demonstrate how the models
generalize to data from a new site (different country, scanner,
acquisition protocol, subjects), we predicted age on NKI data
with models that have been trained on LIFE data (one sample
training). While the models perform much better than chance,
unsurprisingly, better predictive performance is achieved on
LIFE than on NKI data (Figure 5.2; for full data see Fig-
ure B.10 and Table B.9). Assuming that models show higher
generalizabilty if trained on more heterogeneous data, the fol-
lowing post-hoc analysis tested whether adding a small num-
ber of subjects from NKI to the LIFE training sample in-
creases generalization (two sample training; training sample:
NLIFE = 1177; NNKI = 46, representing around 10% of the
NKI sample).

While prediction performance increases by adding subjects

4.06
(3.50)

4.05
(3.26)

(1) motion matching

motion adjusted
False
True

4.29
(3.49)

8.02
(5.28)

(2) generalization to new site: 
      one sample training

site
within (LIFE)
between (NKI)

4.46
(3.70)

6.93
(5.09)

(3) generalization to new site: 
      two sample training

site
within (LIFE)
between (NKI)

0 2 4 6 8 10 12 14 16
absolute prediction error (years)

7.79
(4.97)

6.56
(4.50)

(4) generalization to new site: 
      full LIFE sample training, test on NKI data

training
one sample
two samples

Robustness of age prediction
stacked-multimodal

Figure 5: Robustness of age prediction against confounds for the stacked-
multimodal model. (1) Motion matching analysis show that age prediction
works equally good in motion adjusted (without age × motion correlation) and
non-adjusted (with age × motion correlation) groups, indicating that the pre-
dictive model is not driven by head motion. Full data are shown in Figure B.9
and Table B.8. Note that the slightly lower prediction error (around 4.06) as
compared to the original analysis (around 4.29; see Figure 2) is a result of the
restricted age range of the test samples in the motion matching analysis. Hence,
those values should only be compared within the motion matching analysis and
not with the original analysis. (2) Generalization to new site. Standard training
procedure (one sample training) showed significantly (p(FDR) < 0.05 as in-
dicated by the black dot) better prediction performance in LIFE data (within
site) than in NKI data (between site, for full data see Figure B.10 and Ta-
ble B.9). (3) After training the model on a mixed-site sample (two sample
training, NLIFE = 1177; NNKI = 46), predictions on the NKI data improve (Ta-
ble B.10), but the predictions on the main training site LIFE (within site) still
are significantly better than on the minor training site NKI (between site, for full
data see Figure B.11 and Table B.11). (4) Finally, generalization is investigated
by training on the full LIFE sample (Ntraining,LIFE = 2377). Test prediction
performance on between-site NKI data for one sample training (LIFE sample
only) and two samples (LIFE + NKI samples; Ntraining,NKI = 46) slightly in-
creases as compared to the original training approach (green bars from (2) and
(3); for full data see Figure B.12 and Table B.12).
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from NKI to the training sample (see Table B.10), Figure 5.3
shows that prediction still works better on LIFE data (for full
data see Figure B.11 and Table B.11). We also demonstrate that
these results are robust across different random splits of the data
(see Table B.13).

As a further attempt to increase generalizability, we pursued
the full LIFE sample training approach. Here, we repeated the
one and two sample training using the majority of all LIFE data
for training (training samples: one sample training: NLIFE =

2377); two sample training. NLIFE = 2377; NNKI = 46). These
trained models were then evaluated with the (remaining) NKI
data. This further increases generalizability and reduced the
prediction error. For the stacked-multimodal (two sample) anal-
ysis it decreases to 6.56 years (Figure 5.4), which is a slight
reduction compared to the original two sample result of 6.93
years (for full data see Table B.12 and Figure B.12, for a scatter
plot of test predictions Figure B.13).

5. Discussion

The aim of the current study was to establish a novel mul-
timodal brain-based age prediction framework that makes use
of information from anatomy and functional connectivity. We
found that (i) including multimodal information increases pre-
diction accuracy, (ii) objective cognitive impairment is associ-
ated with increased brain aging, and (iii) our framework is ro-
bust against confounds, most importantly, against head motion,
and generalizes to new datasets, especially if the training set is
composed of a large and heterogeneous dataset.

Age prediction was best achieved using the multimodal ap-
proach (stacked-multimodal), which showed a mean absolute
age prediction error of 4.29 years. This is approximately a
half-year more accurate than when only taking anatomical in-
formation into account (stacked-anatomy). Furthermore, the
multimodal approach shows less variability in prediction per-
formance. We assume that the gain in prediction accuracy is
a result of the different brain-imaging modalities’ shared vari-
ance, via reducing the measurement error of brain data, as well
as unique variance, via the addition of new information. Aggre-
gating multiple sources of neuroimaging data via Random For-
est models has been shown to work well (Rahim et al., 2016).
In particular, aggregating data via RF models results in bet-
ter age prediction performance as compared to merely averag-
ing single-source predictions (e.g., for stacked-multimodal: age
prediction error of 4.29 vs 5.08 years).

Our anatomical approach is conceptually similar to the
framework of Franke et al. (2010). The main difference is
the choice of anatomical data analysis tool: voxel-based mor-
phometry in their work, surface-based morphometry in ours.
Their best model showed a mean absolute prediction error of
4.61, which is in agreement with the performance of stacked-
anatomy at 4.83 years. The surface-based morphometry ap-
proach has the advantage of disentangling structural informa-
tion of cortical thickness and surface area (Meyer et al., 2014).
Age prediction based on cortical thickness worked better than
based on cortical surface area, which is well in line with
stronger age-related effects in cortical thickness than in surface

area (Hogstrom et al., 2013). Future studies might also inves-
tigate whether considering additional information about white
matter anatomy further reduces prediction accuracy. How much
further the prediction accuracy can be reduced, i.e., the lower
bound, is unclear. Due to individual differences in the brains of
individuals of the same age, some prediction error will always
persist.

We investigated brain aging in individuals with objective
cognitive impairment. By subtracting chronological age from
predicted age, we calculated a brain aging score (also called
brainAGE (brain age gap estimate) by Franke et al. (2010), or
PAD (predicted age difference) by Cole et al. (2015)). The mul-
timodal approach, as well as most other approaches we inves-
tigated, predicted significantly increased brain aging in partic-
ipants with objective cognitive impairment. The progression
of brain aging always followed the progression of OCI and in-
creased from normal to mild to major OCI individuals. The
strongest differences in brain aging between the OCI groups
was observed in the model using subcortical data. This sug-
gests that while the multimodal approach performed best in age
prediction, differences in cognitive performance might be better
characterized using specific modalities. As different patholo-
gies might be detectable early in different MRI modalities, fu-
ture studies should consider the effectiveness of predictive mod-
els of different uni- and multimodal approaches in the context
of a given pathology.

The brain-age metric provides an interpretable aggregate
measure of brain aging processes in brain structure and func-
tion. However, if the primary research interest is predict-
ing cognitive performance, why investigate this via metrics of
brain-age? Ideally, the predictive model should be created us-
ing a study-specific cognitive target (for instance, see Ullman
et al., 2014). Directly predicting future cognitive performance
certainly holds tremendous potential to identify specific cog-
nitive modalities at risk of future decline. These models of-
fer a valuable foundation for innovating tailored interventions
through, for example, cognitive training.

However, to obtain stable models large datasets with brain
and behavioral data is required. Assessment of brain-age of-
fers an alternative and complementary measure that is already
available through several publicly available large-scale brain-
imaging datasets. Such data can be used to train models, which
are then complemented by a smaller, but richer dataset that in-
cludes information about cognitive performance, in order to test
specific hypotheses.

Confounding effects of head motion in brain-imaging stud-
ies have received increased interest in the recent years (e.g.,
see Power et al., 2012; Reuter et al., 2015). The present
study demonstrated that head motion does not drive brain-based
age prediction and that regressing out motion might also affect
meaningful age-related variance. While the estimation of head
motion in functional MRI scans is well established, this is much
more challenging for structural MRI scans due to their longer
acquisition times. While there exist special acquisition proto-
cols tailored to measure head motion (for instance see Reuter
et al., 2015), these are not yet standard, and do not apply to
already existing data. However, since head motion has within-
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subject stability (Van Dijk et al., 2012), we took head motion
estimates based on functional scans as a proxy for head mo-
tion in structural scans, as also done by Alexander-Bloch et al.
(2016). Nevertheless, motion between different scan blocks cer-
tainly can differ, which might render the motion metrics derived
from functional scans a poor proxy for structural scans. For in-
stance, the time point of collecting the structural data (at the be-
ginning or end of a scanning session) might result in different
motion characteristics due to fatigue of the study participants
or adaptation to the in-scanner situation. These effects have not
yet been studied systematically and deserve attention in future
studies.

Age prediction models perform significantly better when
trained and tested on data from the same site, as compared to
data from different sites. Training models on a larger and more
heterogeneous dataset modestly improves the prediction accu-
racy. However, since even in this case within-site prediction
outperforms between-site prediction this topic deserves more
attention in future work. Several factors may have contributed
to the better generalizability observed in the NKI dataset us-
ing anatomical rather than functional information. First, the
anatomical sequences used in both studies are quite similar,
while the functional sequences differ with regards to temporal
and spatial parameters. Second, anatomical information ana-
lyzed with surface-based morphometry shows higher reliability
(Liem et al., 2015) than functional MRI (Shehzad et al., 2009).
To avoid fitting models to the idiosyncrasies of a given study,
future studies should broaden the variability of training data by
including data from an array of sites, as recently demonstrated
(Abraham et al., 2016; Cole et al., 2015).

A standardization of MRI acquisition protocols may also
contribute to a better generalization of predictive models.
Quantitative structural MRI (Lutti et al., 2014) or calibration of
functional sequences (Chiarelli et al., 2007) may provide more
reliable and valid brain measurements, resulting in better pre-
dictors. However, these techniques are not currently standard
practice and require further development for widespread appli-
cation (e.g., see Dubois & Adolphs, 2016).

By moving from correlative studies to predictive studies us-
ing tools from machine learning (Gabrieli et al., 2015; Yarkoni
& Westfall, 2016), cognitive neuroscience as a basic science
might be complemented with an applied component that can
give relevant insights into both clinical pathologies as well
as the healthy spectrum of aging. This may range from
brain-based biomarkers for neurological or psychiatric dis-
eases, to identifying potential future cognitive impairments on
an individual-level and designing targeted cognitive training.

6. Conclusions

In the present study, we demonstrated that including informa-
tion from multiple MR modalities, i.e., anatomy and functional
connectivity, increased accuracy of brain-based age prediction.
Brain-age measured with this multimodal framework was ac-
celerated in subjects with cognitive impairment. Importantly,
head motion does not drive brain-based age prediction and pre-
dictive models generalize to new datasets, especially if those

are trained on large and heterogeneous datasets. Given these
findings, measuring brain aging using machine learning meth-
ods holds promise for establishing brain-based biomarkers that
could aid diagnosis of neurocognitive disorders and be relevant
for clinical practice.
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Appendix A. Supplementary methods

Appendix A.1. Tuning curve

R2

Figure A.6: Exemplarily, a tuning curve is presented for cortical thickness. The tuning curve was run on the training set. The support vector regression’s C
parameter (x-axis) was varied, the R2 (coefficient of determination, y-axis) was evaluated as training and cross-validation score. A ’sweet spot’, a maximum
cross-validation score (green line) only a slightly better training performance (red line), can be seen around C = 10−3.

Appendix A.2. NKI sample

Data from the enhanced Nathan Kline Institute - Rockland sample (fcon_1000.projects.nitrc.org/indi/enhanced,
Nooner et al., 2012) was used in parts of this study. Subjects selected for the present work (N = 475) were between 18 and 85
years (M = 45.78; SD = 18.91; 311 female, 161 male).

Appendix A.3. MR data

Brain imaging was performed on a a 3T Siemens Trio scanner with a 32 channel head coil.
T2*-weighted functional images were acquired using an multiband echo-planar-imaging sequence with 3 mm isotropic voxels,

40 slices, echo time (TE) of 30 ms, repetition time (TR) of 645 ms, multiband acceleration factor of 4 and a flip-angle of 60◦

(fcon_1000.projects.nitrc.org/indi/enhanced/mri_protocol.html). The resting-state sequence lasted approximately
9.5 min (900 volumes), during which subjects were instructed to keep their eyes open and not to fall asleep. No fieldmaps have
been acquired.

High resolution T1-weighted structural images were acquired using the MP-RAGE sequence with 1 mm isotropic voxels, 176
slices, a TR of 1900 ms, and a TE of 2.52 ms.

Appendix A.4. MR data preprocessing

Preprocessing was performed very similar to preprocessing of the LIFE sample detailed in section 2.4. Since no fieldmaps were
available for NKI and data from the two studies have been preprocessed independently, minor differences exist: CompCor was
performed with five components instead of six and normalization into standard space was performed with FSL’s FNIRT, not ANTS.
Preprocessing scripts are available at github.com/fliem/nki_nilearn.

Appendix B. Supplementary results

Appendix B.1. Multimodal data increases age prediction performance
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M(APE) SD(APE) R2 W p(FDR)

connectivity matrix 197 5.99 4.57 0.75 2e+05 8.2e-38
connectivity matrix 444 5.77 4.42 0.77 2.1e+05 9.1e-31
stacked-function 5.25 4.40 0.80 2.3e+05 1.6e-22

cortical thickness 5.95 4.69 0.75 2.1e+05 9.9e-32
cortical surface area 7.29 5.95 0.62 1.7e+05 5.9e-53
subcortical 6.44 5.02 0.71 1.9e+05 1.6e-40
stacked-anatomy 4.83 4.01 0.83 2.7e+05 1.8e-10

stacked-multimodal 4.29 3.49 0.87 - -

Table B.1: Age prediction (absolute prediction error (APE)) on the test sample. Statistical test against best model (Wilcoxon signed-rank test against stacked-
multimodal; N = 1177). See Figure 2.

Appendix B.2. RF feature importance

stacked-function stacked-anatomy stacked-multimodal

connectivity matrix 197 0.12 - 0.09
connectivity matrix 444 0.88 - 0.68
cortical thickness - 0.53 0.14
cortical surface area - 0.03 0.01
subcortical - 0.44 0.08

Table B.2: Values of feature importance from the Random Forest multi-source models showing the contribution of the single-source data.

Appendix B.3. Cross-validation (CV) scores

M(APE) SD(APE) M(R2) SD(R2)

connectivity matrix 197 6.33 0.31 0.72 0.03
connectivity matrix 444 6.02 0.40 0.75 0.03
stacked-function 5.45 0.20 0.78 0.02

cortical thickness 6.25 0.12 0.73 0.02
cortical surface area 7.21 0.34 0.61 0.04
subcortical 6.60 0.34 0.69 0.04
stacked-anatomy 4.98 0.10 0.82 0.02

stacked-multimodal 4.53 0.12 0.85 0.01

Table B.3: CV scores of five folds run on training sample.

Appendix B.4. Increased brain aging in impaired subjects

15

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 7, 2016. ; https://doi.org/10.1101/085506doi: bioRxiv preprint 

https://doi.org/10.1101/085506
http://creativecommons.org/licenses/by-nc/4.0/


OCI group N M(Age) SD(Age) Sex(f/m)

norm 729 59.2 15.2 364/365
mild 632 58.0 14.9 294/338
major 251 58.3 15.7 115/136

Table B.4: Sample characteristics of OCI (objective cognitive impairment) groups of the test sample.

OCI norm OCI mild OCI major
M(APE) SD(APE) M(APE) SD(APE) M(APE) SD(APE) H p(FDR)

connectivity matrix 197 6.61 5.28 6.22 4.86 7.09 5.91 1.9 0.61
connectivity matrix 444 6.21 4.95 5.87 4.64 6.83 5.53 4.1 0.35
stacked-function 5.69 4.73 5.54 4.74 6.20 5.64 0.95 0.62

cortical thickness 5.87 4.77 6.17 5.18 7.11 5.80 6.8 0.13
cortical surface area 7.62 6.41 7.58 6.66 8.34 7.33 1 0.62
subcortical 6.16 4.74 6.47 5.19 7.73 6.50 7.1 0.13
stacked-anatomy 4.76 3.91 4.90 4.08 5.43 5.23 1.1 0.62

stacked-multimodal 4.40 3.60 4.48 3.72 5.16 4.81 2 0.61

Table B.5: Differences in absolute prediction error (APE) between objective cognitive impairment (OCI) groups (Kruskal-Wallis H-test: effect of OCI group (norm,
mild, major) on absolute prediction error (APE); N(norm) = 729, N(mild) = 632, N(major) = 251; N(training) = 724.

OCI norm OCI mild OCI major
M(BA) SD(BA) M(BA) SD(BA) M(BA) SD(BA) H p(FDR)

connectivity matrix 197 0.48 8.45 1.31 7.79 2.22 8.97 7.9 0.026
connectivity matrix 444 -0.04 7.95 0.75 7.45 1.52 8.66 7.5 0.027
stacked-function -0.24 7.40 0.64 7.26 1.22 8.30 5.1 0.077

cortical thickness 0.73 7.54 2.16 7.76 2.99 8.68 21 5.1e-05
cortical surface area 1.32 9.87 2.82 9.69 3.31 10.61 15 0.001
subcortical -0.12 7.78 1.39 8.18 3.91 9.32 44 2.1e-09
stacked-anatomy -0.52 6.14 0.76 6.33 1.88 7.31 26 7.8e-06

stacked-multimodal -0.38 5.68 0.74 5.78 1.72 6.85 22 4e-05

Table B.6: Differences in brain aging (BA) between objective cognitive impairment (OCI) groups (Kruskal-Wallis H-test: effect of OCI group (norm, mild, major)
on brain age; N(norm) = 729, N(mild) = 632, N(major) = 251). N(training) = 724. See Figure B.7.
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Figure B.7: Differences in brain aging between objective cognitive impairment (OCI) groups. Positive brain aging values indicate that a brain appears older than
expected from chronological age. Note that for the majority of models impairment measured by OCI is significantly related to higher brain aging (as indicated by
the black dot), i.e., more advanced brain aging. For full statistics see Table B.6.
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Appendix B.5. Robustness against head motion

Appendix B.5.1. Motion regression
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Figure B.8: Motion adjustment via motion regression. Absolute prediction error significantly increases if motion is regressed out of brain data (black dots). Motion
adjusted: True: analysis includes motion regression on brain data; False: original analysis without motion regression.

motion adjusted False motion adjusted True
M(APE) SD(APE) R2 M(APE) SD(APE) R2 W p(FDR)

connectivity matrix 197 5.99 4.57 0.75 8.21 6.33 0.53 1.9e+05 1.3e-39
connectivity matrix 444 5.77 4.42 0.77 8.60 6.92 0.47 1.8e+05 1.7e-46
stacked-function 5.25 4.40 0.80 8.95 7.71 0.40 1.7e+05 3.2e-48

cortical thickness 5.95 4.69 0.75 8.08 6.57 0.53 1.9e+05 1e-42
cortical surface area 7.29 5.95 0.62 8.95 7.48 0.41 2.1e+05 3.6e-33
subcortical 6.44 5.02 0.71 8.39 6.48 0.51 2.1e+05 2e-33
stacked-anatomy 4.83 4.01 0.83 7.04 6.08 0.63 2.1e+05 3.6e-33

stacked-multimodal 4.29 3.49 0.87 7.60 6.95 0.54 1.8e+05 7.3e-47

Table B.7: Motion adjustment via motion regression. Absolute prediction error (APE) significantly increases if motion is regressed out of brain data. Motion
adjusted: True: analysis includes motion regression on brain data; False: original analysis without motion regression. R2: coefficient of determination. (Wilcoxon
signed-rank test: motion adjusted False against True; N = 1177). See Figure B.8.

Appendix B.5.2. Motion matching
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Figure B.9: Motion adjustment via motion matching. Motion adjusted: True: sample without age ×motion correlation; False: sample with preserved age ×motion
correlation. Note that for all models prediction with and without motion matching is equally good, indicating that the models’ predictions are not driven by head
motion. For full statistics see Table B.8.

motion adjusted False motion adjusted True
M(APE) SD(APE) R2 M(APE) SD(APE) R2 U p(FDR)

connectivity matrix 197 5.87 4.83 0.70 5.90 4.36 0.61 7.3e+04 0.65
connectivity matrix 444 5.63 4.48 0.73 5.78 4.26 0.63 7.3e+04 0.65
stacked-function 5.20 4.71 0.74 5.26 4.35 0.66 7.3e+04 0.65

cortical thickness 5.72 4.32 0.73 5.30 4.10 0.67 7.9e+04 0.49
cortical surface area 6.93 5.41 0.60 6.16 4.76 0.56 8e+04 0.49
subcortical 6.32 4.83 0.67 5.74 4.34 0.62 7.9e+04 0.49
stacked-anatomy 4.57 3.83 0.82 4.30 3.63 0.77 7.8e+04 0.65

stacked-multimodal 4.06 3.50 0.85 4.05 3.26 0.80 7.4e+04 0.86

Table B.8: Motion adjustment via motion matching. Note that for all models prediction with and without motion matching is equally good, indicating that the
models’ predictions are not driven by head motion. Motion adjusted: True: sample without age × motion correlation; False: sample with preserved age × motion
correlation. (Mann-Whitney U test: motion adjusted False against True; N(False) = 387, N(True) = 387). See Figure B.9.
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Appendix B.6. Generalization to new site

Appendix B.6.1. Generalization to new site: One sample training
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Figure B.10: Standard training procedure (one sample training) showed significantly (p(FDR) < 0.05 as indicated by the black dot) better prediction performance
in LIFE data (within site) than in NKI data (between site). See Table B.9).

site within (LIFE) site between (NKI)
M(APE) SD(APE) R2 M(APE) SD(APE) R2 U p(FDR)

connectivity matrix 197 5.99 4.57 0.75 11.56 7.23 0.48 1.5e+05 7.4e-49
connectivity matrix 444 5.77 4.42 0.77 11.85 7.19 0.46 1.4e+05 1.7e-57
stacked-function 5.25 4.40 0.80 11.22 7.04 0.51 1.3e+05 5.4e-63

cortical thickness 5.95 4.69 0.75 9.23 7.06 0.62 2.1e+05 4.4e-17
cortical surface area 7.29 5.95 0.62 13.24 10.14 0.22 1.9e+05 8.3e-26
subcortical 6.44 5.02 0.71 9.10 6.49 0.65 2.1e+05 1.4e-14
stacked-anatomy 4.83 4.01 0.83 7.39 5.59 0.76 2e+05 7.5e-19

stacked-multimodal 4.29 3.49 0.87 8.02 5.27 0.74 1.6e+05 2.7e-43

Table B.9: Generalization to new site. Standard training procedure (one sample training) showed significantly better prediction performance in LIFE data (within
site) than in NKI data (between site) (Mann-Whitney U test: site within (LIFE) against between (NKI); N(within (LIFE)) = 1177, N(between (NKI)) = 475). See
Figure B.10.

Appendix B.6.2. Generalization to new site: Two samples training
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training one sample training two samples
M(APE) SD(APE) R2 M(APE) SD(APE) R2 W p(FDR)

connectivity matrix 197 11.53 7.30 0.48 10.35 7.15 0.56 3.3e+04 1.3e-06
connectivity matrix 444 11.74 7.22 0.47 10.17 6.94 0.57 2.2e+04 9e-20
stacked-function 11.12 7.05 0.51 9.90 6.88 0.59 3.8e+04 0.0015

cortical thickness 9.21 7.03 0.62 8.11 5.93 0.72 3.3e+04 1.3e-06
cortical surface area 13.23 10.20 0.22 11.64 8.29 0.43 3.2e+04 3.5e-07
subcortical 9.04 6.50 0.65 8.01 6.18 0.71 3.8e+04 0.0012
stacked-anatomy 7.37 5.50 0.76 6.88 5.25 0.79 4.3e+04 0.17

stacked-multimodal 8.00 5.21 0.74 6.93 5.08 0.79 3.6e+04 0.00012

Table B.10: Generalization to new site. Comparing test prediction performance on NKI data (between site); training on one vs two sites (Wilcoxon signed-rank test:
training one sample against two samples; N = 429).

site within (LIFE) site between (NKI)
M(APE) SD(APE) R2 M(APE) SD(APE) R2 U p(FDR)

connectivity matrix 197 6.51 5.03 0.71 10.35 7.15 0.56 1.7e+05 1.5e-21
connectivity matrix 444 5.87 4.53 0.76 10.17 6.94 0.57 1.6e+05 5.8e-29
stacked-function 5.32 4.49 0.79 9.90 6.88 0.59 1.5e+05 1.7e-37

cortical thickness 6.27 4.88 0.73 8.11 5.93 0.72 2.1e+05 7.3e-08
cortical surface area 7.81 6.13 0.57 11.64 8.29 0.43 1.8e+05 1e-16
subcortical 7.91 6.50 0.55 8.01 6.18 0.71 2.5e+05 0.51
stacked-anatomy 5.11 4.27 0.81 6.88 5.25 0.79 2e+05 2.2e-09

stacked-multimodal 4.46 3.70 0.85 6.93 5.08 0.79 1.8e+05 1.8e-19

Table B.11: Generalization to new site. After training the model on a mixed-site sample (two sample training, Ntraining,LIFE = 1177; Ntraining,NKI = 46), predictions
on the NKI data improve, but the predictions on the main training site LIFE (within site) still are significantly better than on the minor training site NKI (between
site). (Mann-Whitney U test: site within (LIFE) against between (NKI); N(within (LIFE)) = 1177, N(between (NKI)) = 429). See Figure B.11.
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Figure B.11: After training the model on a mixed-site sample (two sample training, Ntraining,LIFE = 1177; Ntraining,NKI = 46), predictions on the NKI data improve
(Table B.10), but the predictions on the main training site LIFE (within site) still are significantly better than on the minor training site NKI (between site).
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Appendix B.6.3. Generalization to new site: Training on full LIFE sample

training one sample training two samples
M(APE) SD(APE) R2 M(APE) SD(APE) R2 W p(FDR)

connectivity matrix 197 11.31 7.12 0.50 9.75 6.74 0.60 2.9e+04 1.2e-10
connectivity matrix 444 11.05 7.17 0.51 9.45 6.50 0.63 2.5e+04 3.7e-16
stacked-function 10.27 6.59 0.58 8.88 6.41 0.66 3.7e+04 0.00028

cortical thickness 8.59 6.51 0.67 7.79 5.93 0.73 3.3e+04 4.2e-07
cortical surface area 12.08 9.24 0.35 11.08 7.89 0.48 3.5e+04 5.4e-05
subcortical 8.97 6.50 0.65 8.11 6.23 0.71 3.9e+04 0.0046
stacked-anatomy 7.35 5.29 0.77 6.74 4.94 0.80 4.2e+04 0.1

stacked-multimodal 7.79 4.96 0.76 6.56 4.49 0.82 3.5e+04 5.4e-05

Table B.12: Generalization to new site; training on full LIFE sample (Ntraining,LIFE = 2377). Comparing test prediction performance on NKI data (between site);
training on one sample (LIFE sample only) vs two samples (LIFE + NKI samples; Ntraining,NKI = 46. (Wilcoxon signed-rank test: training one sample against two
samples; N = 429). See Figure B.12.
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Figure B.12: Generalization to new site; training on full LIFE sample (Ntraining,LIFE = 2377). Comparing test prediction performance on NKI data (between site);
training on one sample (LIFE sample only) vs two samples (LIFE + NKI samples; Ntraining,NKI = 46. See Table B.12.
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Figure B.13: Chronological and predicted age for the NKI test set from the stacked-multimodal model with the two sample training approach. Circles represent
subjects, the solid line the perfect prediction, dashed lines the mean absolute prediction error (6.56 years).

Appendix B.7. Robustness of two sample training approach

within (LIFE) between (NKI)
M(APE) SD(APE) M(R2) SD(R2) M(APE) SD(APE) M(R2) SD(R2)

connectivity matrix 197 6.33 0.09 0.72 0.01 10.32 0.23 0.57 0.01
connectivity matrix 444 5.85 0.10 0.76 0.01 10.58 0.27 0.55 0.02
stacked-function 5.29 0.08 0.79 0.01 9.94 0.20 0.59 0.02

cortical thickness 6.39 0.12 0.72 0.01 8.20 0.17 0.71 0.01
cortical surface area 7.62 0.13 0.59 0.01 11.21 0.20 0.47 0.01
subcortical 7.65 0.25 0.58 0.04 8.58 0.31 0.67 0.04
stacked-anatomy 5.24 0.12 0.80 0.01 7.51 0.39 0.76 0.02

stacked-multimodal 4.57 0.12 0.85 0.01 7.26 0.37 0.78 0.02

Table B.13: Stability of two sample training (cf. Table B.11) over ten random splits.
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